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Abstract

A simple regression approach to HAC and LRV estimation is suggested. The
method exploits the fact that the quantities of interest relate to only one point
of the spectrum (the origin). The new estimator is simply the explained sum of
squares in a linear regression whose regressors are a set of trend basis functions.
Positive definiteness in the estimate is therefore automatically enforced and the
technique can be implemented with standard regression packages. No kernel
choice is needed in practical implementation but basis functions need to be cho-
sen and a smoothing parameter corresponding to the number of basis functions
needs to be selected. An automated approach to making this selection based on
optimizing the asymptotic mean squared error is derived. The limit theory of
the new estimator shows that its properties, including the convergence rate, are
comparable to those of conventional HAC estimates constructed from quadratic
kernels.

Key words and Phrases: Asymptotic mean squared error, automation, bias, HAC
estimation, long run variance, trend regression, trigonometric polynomial.

JEL Classification: C22

1. Introduction

Attempts to robustify inference in econometrics have led to the systematic devel-
opment of techniques that take into account potential heterogeneity and autocor-
relation in the data. Two major practical applications of this work involve HAC
(heteroskedasticity and autocorrelation consistent) covariance matrix estimation and
long-run variance (LRV) matrix estimation. All HAC and LRV estimators that are
commonly used in econometric work are based on kernel methods. These estimators

∗My thanks go to Bruce Hansen, Guido Kuersteiner and two referees for comments on an earlier
version of the paper. NSF research support under Grant No. SES 04-142254 is acknowledged.
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inherit their form and their asymptotic properties from work in the earlier literature
of spectral density estimation, where kernel methods are again dominant.

Automated versions of these kernel methods have also been developed. Automa-
tion removes the need for discretionary bandwidth choice in kernel estimation by
implementing data-determined bandwidth selection rules that are commonly based
on asymptotic mean squared error formulae. Bandwidth selection rules have been
built into some popular econometric software programs and users may implement
them without having to make any discretionary decisions. This convenience has
helped promote the use of the methods in empirical research. Automated techniques
of this genre, just like the kernel methods on which they are used, themselves belong
to a longer pedigree of related work in statistics.

The present contribution suggests a novel approach to HAC/LRV estimation that
does not involve the direct use of kernels. To the author’s knowledge, the approach is
new and has not been suggested before in any earlier work in statistics or economet-
rics. Unlike conventional procedures the method is not based on kernel estimation,
either by way of a lag kernel of weighted autocovariances or by kernel smoothing of
the periodogram in the frequency domain. However, we shall see that the approach
may be interpreted as producing an asymptotic form of kernel estimate.

The idea is motivated by the fact that the quantities of interest in HAC/LRV
estimation relate to only one point on the spectrum and that this point (the origin)
refers to long-run behavior. This feature is exploited by designing a linear regression
of the variable of interest on a set of regressors designed to represent long-run behavior
directly. The regressors form a set of trend basis functions. Any set of basis functions
may be used, but in the development given here (and in empirical work) it is generally
convenient to use an orthonormal set of trigonometric polynomials. Several examples
are given. The new HAC estimator is simply part of the output of this regression
and is given by the explained sum of squares in a linear regression on the trend basis.
It can be implemented by standard regression packages. Positive definiteness in the
estimate is automatically enforced by its construction as a sum of squares and this
is so whatever the choice of basis functions. This property is important, being one
of the main concerns in Newey and West (1987) and playing a significant role in
Andrews (1991) regarding the selection of suitable kernel functions.

Curiously, this is an example of a regression that would conventionally be regarded
in econometrics as misspecified (or even spurious) because the regressors are in fact
irrelevant to the determination of the dependent variable. Nevertheless, the coeffi-
cients in this regression produce, upon straightforward normalization, a consistent
HAC estimator.

The approach has the advantage of the simple convenience of least squares re-
gression and no kernel choice is needed in its implementation. However, the trend
basis functions need to be chosen and a ‘smoothing’ parameter corresponding to the
number of the trend functions actually used in the regression also needs to be se-
lected. The smoothing parameter choice can be automated based on the behavior of
the asymptotic mean squared error of the estimator and a rule for such automated
implementation is developed in the paper. As far as the choice of trend basis func-
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tions is concerned, it is often convenient to use trigonometric functions and it turns
out that the asymptotic results are invariant to the choice of basis within the class
of trigonometric polynomials.

The fact that consistent estimation is possible using apparently irrelevant regres-
sors may appear somewhat magical. However, projecting a stationary time series
onto a space of trends, even when there is no trend in the data, has the effect of
isolating the long-run behavior in the time series and this is what enables the direct
regression estimation of the long-run parameter. The idea has extensions and many
other applications which are not discussed in the present paper. Some of these are
considered by the author (2004) in other work.

2. Trend Regression of Untrended Time Series

The following development concentrates on the scalar case. Only minor modifications
are required to extend the results to the vector case and matrix HAC estimation.
Accordingly, let ut be a weakly dependent time series satisfying

ut = C (L) εt =
∞X
j=0

cjεt−j ,
∞X
j=0

ja |cj | <∞, C(1) 6= 0, a > 3, (L)

where εt = iid
¡
0, σ2

¢
and E(|εt|v) <∞, for some v > 2.

The time series ut is stationary with variance σ2u =
P∞

j=0 c
2
jσ
2, autocovariance

function γu (h) = E (utut+h) = σ2
P∞

j=0 cjcj+h, finite v’th absolute moment E |ut|
ν ≤³P∞

j=0 |cj |
´v

E |εt|v < ∞, spectrum fu (λ) =
¡
σ2/2π

¢ ¯̄
C
¡
eiλ
¢¯̄2

, and long-run vari-

ance ω2 = 2πfu (0) = σ2C (1)2 . The summability condition in L ensures that

∞X
h=−∞

h3 |γu (h)| <∞, (1)

which is helpful in some technical derivations below and means that fu (λ) has con-
tinuous second derivative f (2)u (λ) = −σ2

2π

P∞
h=−∞ h2γu (h) e

−iλh. Allowance for het-
erogeneity in εt and ut can be made in the usual way with minor modifications to
L (c.f. Phillips and Solo, 1992). without affecting the procedures or the properties
discussed below in an essential way.

Under L, partial sums St =
Pt

i=1 ui satisfy the functional law (e.g., Phillips and
Solo, 1992)

Bn (·) :=
Sbn·c√

n
=

Pbn·c
i=1 ui√
n

⇒ B(·) (2)

where bac signifies the integer part of a,⇒ is weak convergence, and B(·) is Brownian
motion with variance ω2.

Let {ϕk}∞k=1 be a complete orthonormal system in L2[0, 1]. Later, we will work
with the explicit sequence (8) but it is sufficient to assume that the functions ϕk
are twice continuously differentiable on [0, 1]. We propose a regression of ut on
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a collection of K deterministic regressors {ϕk
¡
t
n

¢
}Kk=1 formed by taking the first K

members of this orthonormal sequence evaluated over t = 1, .., n.Write this regression
in the form

ut =
KX
k=1

bbkϕk( tn) + et := bb0KϕKt + et, t = 1, ..., n; (3)

where ϕKt = (ϕ1(
t
n), ..., ϕK(

t
n))

0. In observation format (3) can be written as u =
ΦKbbK + eK , with bbK = (Φ0KΦK)−1Φ0Ku.

Let PK = ΦK (Φ0KΦK)
−1Φ0K and construct the estimate

ω̂2K =
1

K
u0PKu =

µ
u0ΦK√

n

¶µ
Φ0KΦK

n

¶−1µΦ0Ku√
n

¶
. (4)

As shown in Lemma A in the Appendix, n−1
Pn

t=1 ϕKtϕ
0
Kt = IK + O

¡
1
n

¢
and

(n−1
Pn

t=1 ϕKtϕ
0
Kt)

−1 = IK+O
¡
1
n

¢
. Standard functional limit arguments andWiener

integration reveal that for fixed K as n→∞ we have

n−1/2
nX
t=1

ϕKtut →d

Z 1

0
ϕK (r) dB (r) := ξK =d N

¡
0, ω2IK

¢
.

It follows immediately that

1

K
u0PKu→d

1

K
ξ0KξK =d ω

2χ
2
K

K
, (5)

where χ2K is chi-squared with K degrees of freedom. For fixed K, the asymptotic
mean and variance of (5) are

E

µ
1

K
u0PKu

¶
= ω2 + o (1) , Var

µ
1

K
u0PKu

¶
=
2ω4

K
+ o (1) , (6)

as n→∞. These results motivate the long-run variance estimator

ω̂2K =
1

K
u0PKu =

1

K
u0PKuPK , where uPK = PKu, (7)

which, in view of (6), can be expected to be consistent for ω2 when K → ∞ as
n→∞.

The estimate ω̂2K is simply the sample variance of uPK , the data projected onto
the space spanned by the regressors ΦK . Thus, ω̂2K is that part of the sample variance
of ut explained by the regression of ut onto a deterministic trend basis. This explained
sum of squares may be regarded as another way of thinking about a long-run variance
- the contribution to the variation of ut that comes from long-run (or trend-like)
behavior in the series. Thus, there would seem to be a strong heuristic motivation
for considering estimates like (7).

Note that ω̂2K is a nonnegative definite quadratic form in the data, whose matrix
is the projection PK . Thus, ω̂2K belongs to the general class of quadratic estimators of
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ω2. General quadratic estimators were considered in the early spectral analysis liter-
ature but have received little subsequent attention relative to kernel estimates. One
reason is that, for every such quadratic estimator, one can find a corresponding lag
kernel estimator with smaller mean squared error (Grenander and Rosenblatt, 1957,
p.129). Interestingly, as we will show below, ω̂2K turns out itself to be asymptotically
equivalent to a lag kernel estimator and to have nice asymptotic properties analogous
to those of quadratic kernel estimates. Thus, there is no need to adapt ω̂2K into kernel
form and, of course, ω̂2K is positive by construction.

To develop a consistent estimation technique, we need to allow for the number
of regressors K to pass to infinity with the sample size n in such a way that the
regression (3) remains feasible. Accordingly, we impose the following rate condition
on K

n

K2
+

K

n
→ 0, (R)

which requires K to go to infinity faster than
√
n but slower than n. To establish

a central limit theorem for ω̂2K , we need the further condition K = o
¡
n4/5

¢
, which

controls the expansion rate so that there is no bias in the limit.
For an explicit limit theory, including an explicit expression for the limiting bias

of ω̂2K , it is convenient to use the orthonormal sequence

ϕk(r) =
√
2 sin

½µ
k − 1

2

¶
πr

¾
, k = 1, 2, ... (8)

The functions (8) are the eigenvectors of the covariance kernel of Brownian motion
(c.f., Phillips, 1998) and form an orthonormal system for L2[0, 1]. Of course, other
orthonormal sequences can be used. However, it turns out that the asymptotic results
given below are invariant to the choice of the orthonormal sequence within the class
of trigonometric polynomials because the estimates are asymptotically equivalent to
the same lag kernel estimator. This point is discussed below in section 4.

Under this set-up, we give formulae for the limiting bias, variance and mean
squared error and a limit distribution theory for ω̂K . The details of the proofs are
different from those of the conventional literature on HAC estimation and are of some
independent interest, so they are provided here. But the final results end up being
qualitatively similar, as the following result shows.

Theorem Under conditions L and R

(a) limn→∞
¡
n
K

¢2
E
¡
ω̂2K − ω2

¢
= −π2

6

P∞
h=−∞ h2γu (h) := D;

(b) If K = o
¡
n4/5

¢
, then

√
K
¡
ω̂2K − ω2

¢
⇒ N

¡
0, 2ω4

¢
;

(c) If K5/n4 → 1, then limn→∞
¡
n
K

¢4
E
¡
ω̂2K − ω2

¢2
= D2 + 2ω4.

Part (a) shows that ω̂2K has bias of order K2/n2 of the form

E
¡
ω̂2K
¢
= ω2 +

K2

n2
D [1 + o (1)] , where D = −π

2

6

∞X
h=−∞

h2γu (h) := −
π2

6
ω2(2).
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From (b), the variance of ω̂2K is of O
¡
K−1¢ . So, increases in the number of regressors

K increase bias and reduce variance. The situation is analogous to bandwidth choice
in kernel estimation.

The mean squared error of ω̂2K has the form

MSE
¡
ω̂2K
¢
= Bias2 +Var =

K4

n4
D2 +

2ω4

K
.

Optimization of this quantity with respect to K leads to the first order condition
4K3

n4
D2 − 2ω4

K2 = 0, which gives the following formula for the optimal value of K

K = n
4
5

∙
2ω4

4D2

¸ 1
5

. (9)

Of course, this is analogous to conventional MSE optimization formulae for bandwidth
choice in kernel estimation (e.g. Grenander and Rosenblatt, 1957).

Formula (9) can be used to implement a data-determined choice of K in a con-
ventional way. One approach is to use nonparametric estimates of D2 and ω4 in
(9) as, for example, in Newey and West (1994). The most common and convenient
method in practice is a simple plug-in estimator based on the use of a parametric
model for preliminary estimation of ω4 and D2 in (9). In the case of a first order au-
toregression with fitted coefficient â and error variance s2, the standard formulae give
ω̂2 = s2/ (1− â)2 and D̂ = −π2

6 2âs
2/ (1− â)4 . Some modifications to these formulae

may be desirable in cases where â is close to unity. In the context of prewhitening,
for example, Andrews and Monahan (1992) proposed a 0.97 rule in which â be re-
placed by 0.97 whenever â exceeds this value. It is known that this particular rule
seriously interferes with power in some cases, especially stationarity testing (c.f. Lee,
1996). An alternative boundary restriction that seems to improve the size and power
properties of procedures based on HAC estimates is the sample-size-dependent rule
given in Sul, Phillips and Choi (2003), where â is replaced by 1− 1/√n whenever it
exceeds that value.

3. Asymptotic Form as a Kernel Estimator

Lemma B(c) in the Appendix shows that the orthogonal sequence ϕk(r) in (8) satisfies
the following summation formula

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) =

1

2

sin
n
Kπ(t−s)

n

o
sin
n
1
2
π(t−s)

n

o − 1
2

sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o . (10)
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Using this formula and (27), (31) and (36) from the proof of part (b) of the Theorem,
we find that the HAC estimate ω̂2K has the following asymptotic form

ω̂2K =
1

K

n−1X
h=−n+1

1

2

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª
⎛⎝ 1
n

X
1≤t,t+h≤n

utut+h

⎞⎠+Op

Ã√
K

n
+

K2

n2
+

√
logn

K

!

=
n−1X

h=−n+1
kKn

µ
h

n

¶
γ̂u (h) +Op

Ã√
K

n
+

K2

n2
+

√
logn

K

!
, (11)

where

kKn

µ
h

n

¶
=

1

2K

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª = 1

K
cos

½
1

2

Kπh

n

¾
sin
©
Kπh
2n

ª
sin
©
πh
2n

ª (12)

may be regarded as a lag kernel function and γ̂u (h) =
1
n

P
1≤t,t+h≤n utut+h is the

sample autocovariance. The dominant term in (11) has the usual form of a kernel
estimate of ω2 and is dependent onK, which serves the role of a smoothing parameter.
Thus, ω̂2K behaves asymptotically like a kernel estimate.

Let n = KM. For h/n small we can write the lag kernel kKn

¡
h
n

¢
as a function of

h/M in approximate form as follows

kM

µ
h

M

¶
=

1

2K

sin
©
πh
M

ª
sin
©
1
2

πh
KM

ª ∼ sin©πhM ª
πh
M

,

with which we may associate the function

k (x) =
sinπx

πx
,

which is the lag kernel for the Daniell estimate (e.g., Priestley, 1981, p. 441). This
lag kernel is a smoothed periodogram estimate with a rectangular spectral window.
Here, 2π/M is the width of the frequency band over which the periodogram is being
smoothed. The regression based estimate ω̂2K is therefore closely related to this well
known kernel estimate of ω2 and has the same bias, variance and mean squared error
as the Daniell estimate. Evidently, therefore, the asymptotic mean squared error
of ω̂2K is dominated by that of the Bartlett - Priestley quadratic spectral window
(Priestley, 1981; Andrews, 1991).

4. The Effect of Different Trend Bases

We may choose to use other sequences of orthogonal functions on [0, 1] in the regres-
sion (3) and it is interesting to explore the effects of such alternate choices on the
asymptotic kernel form of estimate ω̂2K . In the following discussion, we confine our
attention to sequences of trigonometric polynomials.

Parts (a) and (b) of Lemma C in the Appendix give the following summation
formulae for the orthonormal sine and cosine trigonometric polynomials ϕk(r) =
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√
2 sin {kπr} and ϕk(r) =

√
2 cos {kπr} , respectively,

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) =

sin

½
(K− 1

2)π(t−s)
n

¾
2 sin

n
π(t−s)
2n

o ∓
sin

½
(K− 1

2)π(t+s)
n

¾
2 sin

n
π(t+s)
2n

o . (13)

As in the calculation leading to (11), the second component of (13) turns out to be
of smaller order as K,n→∞ and (11) holds with

kKn

µ
h

n

¶
=

1

2K

sin

½
(K− 1

2)πh
n

¾
sin
©
1
2
πh
n

ª =
1

2K

sin
©
Kπh
n

ª
cos

©
πh
2n

ª
sin
©
1
2
πh
n

ª −
cos

©
Kπh
n

ª
2K

=
1

2K

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª +O

µ
1

K

¶
,

which is asymptotically equivalent to the lag kernel (12). Thus, these different ortho-
normal trigonometric sequences all lead to HAC estimates that are asymptotically
equivalent.

If the complex orthonormal sequence ϕk(r) = e−2πikr is used, then the regression
coefficients in (3) are themselves complex and have the form bbK = (Φ∗KΦK)−1 (Φ∗Ku) ,
where ΦK is the matrix of observations of the K regressors {ϕk

¡
t
n

¢
: k = 1, ...,K}

and ∗ signifies complex conjugation and transposition. In place of (3) we can write

ut =
KX
k=1

bbke− 2πikt
n + et, (14)

which may be regarded as a fitted empirical version of the Cramér representation of
the stationary process ut, which was noticed earlier in Phillips (1996, Remark 5.2a).
Note that λk = 2πk

n → 0 for all k = 1, ..,K since K
n → 0. Thus, the regression

(14) focuses attention on the zero frequency (or long-run) component of the Cramér
representation of ut.

The matrix ΦK satisfies Φ∗KΦK = nIK and is a scaled unitary matrix. So the k’th

element ofbbK is simply the (standardized) discrete Fourier transform, 1nPn
t=1 e

2πikt
n ut,

of ut, which is well-known to satisfy a central limit theorem (e.g. Hannan, 1970, p.
224) upon rescaling. Additionally, as shown in Phillips (1999, theorem 3.2), the
(asymptotically infinite) collection of K such elements have the following limit as
n → ∞ and are asymptotically independent provided K → ∞ but not too fast
relative to n. In particular

ζnk =
1√
n

nX
t=1

e
2πikt
n ut ⇒

Z 1

0
e2πikrdB (r) , k = 1, 2, ...

As is easily seen, the limit variates ζk =
R 1
0 e

2πikrdB (r) are independent complex
Gaussian Nc

¡
0, ω2

¢
. Letting PK = ΦK (Φ∗KΦK)

−1Φ∗K , we then have

ω̂2K =
1

K
u0PKu =

n

K
bb∗KbbK = 1

K

KX
k=1

|ζnk|2 →p E
³
|ζk|2

´
= ω2. (15)
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As such, the estimate ω̂2K may be interpreted as the sample variance of the empirical
estimates (obtained from the fitted regression (14)) of the orthogonal process (at the
zero frequency) that appears in the Cramér representation of ut.

Observe that |ζnk|2 is 2πIu (λk) , where Iu (λ) is the periodogram of ut and λk =
2πk
n are the fundamental frequencies. Thus we can write

ω̂2K = 2π
1

K

KX
k=1

Iu (λk) , (16)

which corresponds to a smoothed periodogram estimate of the spectrum at the zero
frequency (given that K

n → 0). The spectral window in the estimate ω̂2K is clearly
rectangular, just as that of the Daniell window (e.g., Hannan, 1970, p. 279). Again
the results are asymptotically equivalent to those of the estimate (7) based on the
sinusoidal sequence (8).

Of course, this set-up easily permits the use other spectral windows. Let WK =
diag{W (λ1) , ...,W (λK)} be a diagonal matrix prescribing a particular weighting
sequence based on the window function W (λ). Then the HAC estimate

ω̂2KW =
n

K
bb∗KWK

bbK = 2π 1
K

KX
k=1

W (λK) Iu (λk) ,

has the usual form of a smoothed periodogram estimate with spectral windowW (λ) .
In this way, the present approach accommodates all conventional kernel-based HAC
estimates.

5. Discussion

The estimate ω̂2K is straightforward to compute, being one of the outputs of a linear
regression and it has a simple heuristic motivation. The fact that regression on trend
produces this consistent estimate indicates that trend coefficients carry information
about the long-run features of the data, even though the ‘true’ trend coefficients
in this regression of a stationary time series are zero. In fact, as discussed in the
preceeding section, the estimate ω̂2K may be interpreted as the sample variance of the
coefficients in a fitted regression that is an empirical version of the long-run part of
the Cramér representation of a stationary process.

Simulations (not reported here) indicate that ω̂2K performs as well as current
industry-standard methods using quadratic kernels, automated bandwidth selection
and prewhitening (Andrews, 1991; Andrews and Monahan, 1992; Den Haan, W.J.,
and A. Levin, 1997; Lee and Phillips, 1993; Newey and West, 1994). This may
be expected given the asymptotic relationship between ω̂2K and the Daniell kernel
estimate. The regression approach developed here may be extended to estimate the
spectrum of ut at points other than the origin, although we do not pursue that
possibility here.
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6. Additional Lemmas and Proofs

6.1 Lemma A Under R, n−1
Pn

t=1 ϕKtϕ
0
Kt = IK+O

¡
1
n

¢
, and

¡
n−1

Pn
t=1 ϕKtϕ

0
Kt

¢−1
=

IK +O
¡
1
n

¢
, as n→∞.

6.2 Proof We first provide a direct calculation when the elements of ϕKt are
given by the trigonometric functions (8). In this case, the diagonal elements of
n−1

Pn
t=1 ϕKtϕ

0
Kt are

1

n

nX
t=1

ϕ2k

µ
t

n

¶
=

2

n

nX
t=1

sin2
½µ

k − 1
2

¶
πt

n

¾
=
2

n

nX
t=1

1− 2 cos
©
(2k − 1) πtn

ª
2

= 1− 2
n

nX
t=1

cos

½
(2k − 1) πt

n

¾
= 1− 2

n
Re

(
nX
t=1

ei(2k−1)
πt
n

)

= 1− 2
n
Re

(
ei(2k−1)

π
n
ei(2k−1)π − 1
ei(2k−1)

π
n − 1

)
= 1 +

4

n
Re

(
ei(2k−1)

π
n

ei(2k−1)
π
n − 1

)

= 1 +
4

n
Re

⎧⎪⎨⎪⎩ 1− ei(2k−1)
π
n¯̄̄

ei(2k−1)
π
n − 1

¯̄̄2
⎫⎪⎬⎪⎭ = 1 +

4

n

1− cos
©
(2k − 1) πn

ª
2− 2 cos

©
(2k − 1) πn

ª
= 1 +

2

n
,

and the off-diagonals are

1

n

nX
t=1

ϕk

µ
t

n

¶
ϕc

µ
t

n

¶
=

2

n

nX
t=1

sin

½µ
k − 1

2

¶
πt

n

¾
sin

½µ
c− 1

2

¶
πt

n

¾

=
1

n

nX
t=1

∙
cos

½
(k − c)

πt

n

¾
− cos

½
(k + c− 1) πt

n

¾¸

=
1

n
Re

(
nX
t=1

ei(k−c)
πt
n −

nX
t=1

ei(k+c−1)
πt
n

)

=
1

n
Re

(
ei(k−c)

π
n
ei(k−c)π − 1
ei(k−c)

π
n − 1

− ei(k+c−1)
π
n
ei(k+c−1)π − 1
ei(k+c−1)

πn
n − 1

)

=

⎧⎨⎩
1
n k − c odd, k + c− 1 even
− 1n k − c even, k + c− 1 odd
0 k − c, k + c− 1 both odd or even

.

It follows that n−1
Pn

t=1 ϕKtϕ
0
Kt = IK + O

¡
1
n

¢
and

¡
n−1

Pn
t=1 ϕKtϕ

0
Kt

¢−1
= IK +

O
¡
1
n

¢
.
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In the general case, if ϕk (s) is twice continuously differentiable on [0, 1] by Euler
summation we have

1

n

nX
t=1

ϕ2k

µ
t

n

¶
=

1

n

Z n

1
ϕ2k

µ
t

n

¶
dt+

1

2n

½
ϕ2k

µ
1

n

¶
+ ϕ2k

³n
n

´¾
+
2

n

Z n

1

½
t− [t]− 1

2

¾
ϕk

µ
t

n

¶
ϕ0k

µ
t

n

¶
dt

n

=

Z 1

1/n
ϕ2k (s) ds+O

µ
1

n

¶
= 1 +O

µ
1

n

¶
,

since ϕk
¡
t
n

¢
and ϕ0k

¡
t
n

¢
are uniformly bounded on [0, 1] . Similarly, n−1

Pn
t=1 ϕk

¡
t
n

¢
ϕc
¡
t
n

¢
=

O
¡
1
n

¢
uniformly for k 6= c.

6.3 Lemma B For ϕk(r) =
√
2 sin

©¡
k − 1

2

¢
πr
ª
, we have:

(a) ∆ϕk
¡
t
n

¢
= 2
√
2 cos

½¡
k − 1

2

¢ π(t− 1
2)

n

¾
sin
©¡
k − 1

2

¢
π
2n

ª
;

(b)
PK

k=1 ϕk(
t
n) =

√
2
sin2(Kπt

2n )
sin( πt2n)

;

(c)
PK

k=1 ϕk(
t
n)ϕk(

s
n) =

1
2

sin Kπ(t−s)
n

sin 1
2
π(t−s)

n

− 1
2

sin Kπ(t+s)
n

sin 1
2
π(t+s)

n

;

(d) σ4C(1)4

Kn

Pn−1
h=1

sin2{Kπh
n }

sin2{ 12 πhn }
= 2σ4C (1)4 [1 + o (1)] ,

where ∆ is the differencing operator ∆ϕk
¡
t
n

¢
= ϕk

¡
t
n

¢
− ϕk

¡
t−1
n

¢
.

6.4 Proof of Lemma B For part (a)

∆ϕk

µ
t

n

¶
=
√
2

∙
sin

½µ
k − 1

2

¶
πt

n

¾
− sin

½µ
k − 1

2

¶
π (t− 1)

n

¾¸
= 2

√
2

"
cos

(µ
k − 1

2

¶
π
¡
t− 1

2

¢
n

)
sin

½µ
k − 1

2

¶
π

2n

¾#
.

For part (b)

KX
k=1

ϕk(
t

n
) =

√
2

KX
k=1

sin

½µ
k − 1

2

¶
πt

n

¾
=
√
2 Im

(
KX
k=1

ei(k−
1
2)

πt
n

)

=
√
2 Im

(
ei

πt
2n
eiK

πt
n − 1

ei
πt
n − 1

)
=
√
2 Im

(
ei

Kπt
2n
sin
¡
Kπt
2n

¢
sin
¡
πt
2n

¢ )

=
√
2
sin2

¡
Kπt
2n

¢
sin
¡
πt
2n

¢ .
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For part (c)

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) = 2

KX
k=1

sin

½µ
k − 1

2

¶
πt

n

¾
sin

½µ
k − 1

2

¶
πs

n

¾

=
KX
k=1

∙
cos

½µ
k − 1

2

¶
π (t− s)

n

¾
− cos

½µ
k − 1

2

¶
π (t+ s)

n

¾¸

= Re

(
KX
k=1

h
ei(k−

1
2)

π(t−s)
n − ei(k−

1
2)

π(t+s)
n

i)

= Re

(
e
1
2
π(t−s)

n
i e

Kπ(t−s)
n

i − 1
e
π(t−s)

n
i − 1

− e
1
2
π(t+s)

n
i e

Kπ(t+s)
n

i − 1
e
π(t+s)

n
i − 1

)

= Re

⎧⎨⎩e
Kπ(t−s)

2n
i

1
2i

³
e
Kπ(t−s)

2n
i − e−

Kπ(t−s)
2n

i
´

1
2i

³
e
1
2
π(t−s)

n
i − e−

1
2
π(t−s)

n
i
´ − e

Kπ(t+s)
2n

i

1
2i

³
e
Kπ(t+s)

2n
i − e−

Kπ(t+s)
2n

i
´

1
2i

³
e
π(t+s)

n
i − e−

1
2
π(t+s)

n
i
´
⎫⎬⎭

= Re

⎧⎨⎩e
Kπ(t−s)

2n
i
sin
n
Kπ(t−s)
2n

o
sin
n
1
2
π(t−s)

n

o − e
Kπ(t+s)

2n
i
sin
n
Kπ(t+s)
2n

o
sin
n
1
2
π(t+s)

n

o
⎫⎬⎭

= cos

½
1

2

Kπ (t− s)

n

¾ sinnKπ(t−s)
2n

o
sin
n
1
2
π(t−s)

n

o − cos½1
2

Kπ (t+ s)

n

¾ sinnKπ(t+s)
2n

o
sin
n
1
2
π(t+s)

n

o
=

1

2

sin
n
Kπ(t−s)

n

o
sin
n
1
2
π(t−s)

n

o − 1
2

sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o .
For part (d), we use Fejér’s integral giving

σ4C (1)4

Kn

n−1X
h=1

sin2
©
Kπh
n

ª
sin2

©
1
2
πh
n

ª =
σ4C (1)4

K

Z 1

0

sin2
©
2Kπr
2

ª
sin2

©
1
2πr

ª dr [1 + o (1)]

=
σ4C (1)4

K
2K [1 + o (1)] = 2ω2 [1 + o (1)] ,

as required.

6.5 Lemma C

(a) If ϕk(r) =
√
2 sin {kπr} ,

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) =

sin

½
(K− 1

2)π(t−s)
n

¾
2 sin

n
π(t−s)
2n

o −
sin

½
(K− 1

2)π(t+s)
n

¾
2 sin

n
π(t+s)
2n

o ;

12



(b) If ϕk(r) =
√
2 cos {kπr} ,

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) =

sin

½
(K− 1

2)π(t−s)
n

¾
2 sin

n
π(t−s)
2n

o +

sin

½
(K− 1

2)π(t+s)
n

¾
2 sin

n
π(t+s)
2n

o ;

6.6 Proof of Lemma C For part (a)

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) = 2

KX
k=1

sin

½
k
πt

n

¾
sin
n
k
πs

n

o
=

KX
k=1

∙
cos

½
k
π (t− s)

n

¾
− cos

½
k
π (t+ s)

n

¾¸

= Re

(
KX
k=1

h
eik

π(t−s)
n − eik

π(t+s)
n

i)

= Re

(
e
π(t−s)

n
i e

Kπ(t−s)
n

i − 1
e
π(t−s)

n
i − 1

− e
π(t+s)

n
i e

Kπ(t+s)
n

i − 1
e
π(t+s)

n
i − 1

)

= Re

(
e
Kπ(t−s)

n
i − 1

1− e−
π(t−s)

n
i
− e

Kπ(t+s)
n

i − 1
1− e−

π(t+s)
n

i

)

= Re

⎧⎨⎩
³
e
Kπ(t−s)

n
i − 1

´³
1− e−

π(t−s)
n

i
´

2− 2 cos
n
π(t−s)

n

o −

³
e
Kπ(t+s)

n
i − 1

´³
1− e−

π(t+s)
n

i
´

2− 2 cos
n
π(t+s)

n

o
⎫⎬⎭

=
−1 + cos

n
π(t−s)

n

o
+ cos

n
Kπ(t−s)

n

o
− cos

n
(K−1)π(t−s)

n

o
2− 2 cos

n
π(t−s)

n

o
−
−1 + cos

n
π(t+s)

n

o
+ cos

n
Kπ(t+s)

n

o
− cos

n
(K−1)π(t+s)

n

o
2− 2 cos

n
π(t+s)

n

o

= −1
2
+

2 sin

½
(K− 1

2)π(t−s)
n

¾
sin
n
π(t−s)
2n

o
2− 2 cos

n
π(t−s)

n

o

+
1

2
−
2 sin

½
(K− 1

2)π(t+s)
n

¾
sin
n
π(t+s)
2n

o
2− 2 cos

n
π(t+s)

n

o

13



=

sin

½
(K− 1

2)π(t−s)
n

¾
sin
n
π(t−s)
2n

o
1− cos

n
π(t−s)

n

o −
sin

½
(K− 1

2)π(t+s)
n

¾
sin
n
π(t+s)
2n

o
1− cos

n
π(t+s)

n

o

=

sin

½
(K− 1

2)π(t−s)
n

¾
sin
n
π(t−s)
2n

o
2 sin2

n
π(t−s)
2n

o −
sin

½
(K− 1

2)π(t+s)
n

¾
sin
n
π(t+s)
2n

o
2 sin2

n
π(t+s)
2n

o

=

sin

½
(K− 1

2)π(t−s)
n

¾
2 sin

n
π(t−s)
2n

o −
sin

½
(K− 1

2)π(t+s)
n

¾
2 sin

n
π(t+s)
2n

o .

For part (b)

KX
k=1

ϕk(
t

n
)ϕk(

s

n
) = 2

KX
k=1

cos

½
k
πt

n

¾
cos

n
k
πs

n

o
=

KX
k=1

∙
cos

½
k
π (t− s)

n

¾
+ cos

½
k
π (t+ s)

n

¾¸
,

which differs from part (a) only in the sign of the second term. The stated result
therefore follows by the same calculations.

6.7 Proof of Theorem 1

Part (a) In view of Lemma A

E
¡
ω̂2K
¢
=

1

K
tr

⎧⎨⎩
µ
Φ0KΦK

n

¶−1 n−1X
h=−n+1

1

n

X
1≤t,t+h≤n

ϕKtϕ
0
Kt+hγu (h)

⎫⎬⎭
=

1

K
tr

⎧⎨⎩
n−1X

h=−n+1

1

n

X
1≤t,t+h≤n

ϕKtϕ
0
Kt+hγu (h)

⎫⎬⎭
∙
1 +O

µ
1

n

¶¸

=
1

K

KX
k=1

n−1X
h=−n+1

1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
γu (h)

∙
1 +O

µ
1

n

¶¸
,
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and, since ω2 =
P∞

h=−∞ γu (h) ,

E
¡
ω̂2K − ω2

¢
=

n−1X
h=−n+1

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

∙
1 +O

µ
1

n

¶¸

−
∞X

|h|≥n
γu (h)

=
n−1X

h=−n+1

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

∙
1 +O

µ
1

n

¶¸

+o

µ
1

na

¶
, (17)

for a > 3 because¯̄̄̄
¯̄ ∞X
|h|≥n

γu (h)

¯̄̄̄
¯̄ ≤ ∞X

|h|≥n
|γu (h)| ≤

1

na

∞X
|h|≥n

|h|a |γu (h)| = o

µ
1

na

¶
,

by condition L. Also for any positive integer Ln < n we have

n−1X
h=−n+1

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

∙
1 +O

µ
1

n

¶¸

=
LnX

h=−Ln

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

∙
1 +O

µ
1

n

¶¸

+
X

Ln<|h|<n

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

∙
1 +O

µ
1

n

¶¸
,

(18)

and since the elements ϕk
¡
t
n

¢
are bounded uniformly in t we have¯̄̄̄

¯̄ X
Ln<|h|<n

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

¯̄̄̄
¯̄

≤ C
X

Ln<|h|<n
|γu (h)| ≤

C

L3n

X
Ln<|h|<n

h3 |γu (h)| = o

µ
1

L3n

¶
.

Now choose Ln such that
n

L
3/2
n K

+
LnK

n
= o (1) (19)
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as n→∞. Then, 1
L3n
= o

³
K2

n2

´
and¯̄̄̄

¯̄ X
Ln<|h|<n

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶
− 1

⎫⎬⎭ γu (h)

¯̄̄̄
¯̄ = o

µ
K2

n2

¶
. (20)

For the first term of (18) we note that

1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶
ϕk

µ
t+ h

n

¶

=
1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶2
+
1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸
= 1 +

1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸
+O

µ
1

n

¶
, (21)

uniformly in |h| ≤ Ln. It therefore follows from (17) - (21) that

E
¡
ω̂2K − ω2

¢
=

LnX
h=−Ln

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸⎫⎬⎭ γu (h)

+o

µ
K2

n2

¶
+O

µ
1

n

¶
. (22)

Next consider

1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸
=

2

n

X
1≤t,t+h≤n

sin

½µ
k − 1

2

¶
πt

n

¾ ∙
sin

½µ
k − 1

2

¶
π (t+ h)

n

¾
− sin

½µ
k − 1

2

¶
πt

n

¾¸

=
1

n

X
1≤t,t+h≤n

(
cos

½µ
k − 1

2

¶
πh

n

¾
− cos

(
(2k − 1)

π
¡
t+ 1

2h
¢

n

))

− 1
n

X
1≤t,t+h≤n

½
1− cos

½
(2k − 1) πt

n

¾¾
=

µ
1− |h|

n

¶ ∙
cos

½µ
k − 1

2

¶
πh

n

¾
− 1
¸

− 1
n

X
1≤t,t+h≤n

"
cos

(
(2k − 1)

π
¡
t+ 1

2h
¢

n

)
− cos

½
(2k − 1) πt

n

¾#
(23)

Taking the first term of (23), averaging over k, and using the fact that |h| ≤ Ln and
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Ln satisfies (19) so that LnK
n = o (1) , we get

1

K

KX
k=1

cos

½µ
k − 1

2

¶
πh

n

¾
− 1

=
1

K

KX
k=1

(
1− 1

2

µ
k − 1

2

¶2µπh
n

¶2
+ o

µ
K2h2

n2

¶)
− 1

= −K
2π2h2

6n2
[1 + o (1)] . (24)

For h ≥ 0 we can write the second term of (23) as

1

n

X
1≤t,t+h≤n

"
cos

(
(2k − 1)

π
¡
t+ 1

2h
¢

n

)
− cos

½
(2k − 1) πt

n

¾#

=

Z 1−h/n

1/n
cos

½
(2k − 1)π

µ
r +

h

2n

¶¾
dr

∙
1 +O

µ
1

n

¶¸
−
Z 1−h/n

1/n
cos {(2k − 1)πr} dr

∙
1 +O

µ
1

n

¶¸

=

"
sin
©
(2k − 1)π

¡
r + h

2n

¢ª
(2k − 1)π

#1−h/n
1/n

∙
1 +O

µ
1

n

¶¸

−
∙
sin {(2k − 1)πr}
(2k − 1)π

¸1−h/n
1/n

∙
1 +O

µ
1

n

¶¸

=
1

(2k − 1)π

∙
sin

½
(2k − 1)π

µ
1− h

2n

¶¾
− sin

½
(2k − 1)π

µ
h+ 2

2n

¶¾¸ ∙
1 +O

µ
1

n

¶¸
− 1

(2k − 1)π

∙
sin

½
(2k − 1)π

µ
1− h

n

¶¾
− sin

½
(2k − 1)π

µ
1

n

¶¾¸ ∙
1 +O

µ
1

n

¶¸
=

1

(2k − 1)π

∙
sin

½
(2k − 1)π

µ
1− h

2n

¶¾
− sin

½
(2k − 1)π

µ
1− h

n

¶¾¸ ∙
1 +O

µ
1

n

¶¸
− 1

(2k − 1)π

∙
sin

½
(2k − 1)π

µ
h+ 2

2n

¶¾
− sin

½
(2k − 1)π

µ
1

n

¶¾¸ ∙
1 +O

µ
1

n

¶¸
=

2

(2k − 1)π

∙
cos

½
(2k − 1)π

µ
1− 3h

4n

¶¾
sin

½
(2k − 1)π h

4n

¾¸ ∙
1 +O

µ
1

n

¶¸
− 2

(2k − 1)π

∙
cos

½
(2k − 1)π

µ
h+ 4

4n

¶¾
sin

½
(2k − 1)π

µ
h

4n

¶¾¸ ∙
1 +O

µ
1

n

¶¸
= 2

½
cos

½
(2k − 1)π

µ
1− 3h

4n

¶¾
h

4n
− h

4n

¾ ∙
1 +O

µ
1

n

¶¸
, (25)
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for |h| ≤ Ln and Ln satisfying (19). Averaging over k we find

− 1
K

KX
k=1

cos

½
(2k − 1)π

µ
1− 3h

4n

¶¾
h

4n
− h

4n

= − 1
K

KX
k=1

cos

½
−π + (2k − 1) 3h

4n

¾
h

4n
− h

4n

=
1

K

KX
k=1

cos

½
(2k − 1) 3h

4n

¾
h

4n
− h

4n

=
1

K

KX
k=1

(
1− 1

2
(2k − 1)2 π2

µ
3h

4n

¶2) h

4n
− h

4n

=
4K2π29h2

16n2
h

4n
+ o

µ
K2h3

n3

¶
= o

µ
K2h2

n2

¶
= o

µ
K2L2n
n2

¶
. (26)

uniformly in 0 ≤ h ≤ Ln.Without going through the calculation, the same rate result
holds when −Ln ≤ h < 0.

We deduce from (23), (24), (25) and (26) that

1

K

KX
k=1

1

n

X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸

= −
µ
1− |h|

n

¶
K2π2h2

6n2
+ o

µ
K2h2

n2

¶
.

Thus,

E
¡
ω̂2K − ω2

¢
=

LnX
h=−Ln

1

K

KX
k=1

⎧⎨⎩ 1n X
1≤t,t+h≤n

ϕk

µ
t

n

¶ ∙
ϕk

µ
t+ h

n

¶
− ϕk

µ
t

n

¶¸⎫⎬⎭ γu (h)

+o

µ
K2

n2

¶
+O

µ
1

n

¶
= −K

2π2

6n2

LnX
h=−Ln

µ
1− |h|

n

¶
h2γu (h) + o

µ
K2

n2

¶
+O

µ
1

n

¶

= −K
2π2

6n2

∞X
h=−∞

h2γu (h) [1 + o (1)] ,

since 1
n = o

³
K2

n

´
for K satisfying R. Thus

lim
n→∞

³ n

K

´2
E
¡
ω̂2K − ω2

¢
= −π

2

6

∞X
h=−∞

h2γu (h) ,

as stated.
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Part (b) From Lemma A

ω̂2K =
1

K
u0PKu =

1

K

µ
u0ΦK√

n

¶µ
Φ0KΦK

n

¶−1µΦ0Ku√
n

¶
=

1

K

µ
u0ΦK√

n

¶µ
Φ0Ku√

n

¶ ∙
1 +O

µ
1

n

¶¸
=

1

K

KX
k=1

1

n

nX
t,s=1

ϕk(
t

n
)ϕk(

s

n
)utus

∙
1 +O

µ
1

n

¶¸

=
1

K

KX
k=1

n−1X
h=−n+1

1

n

X
1≤t,t+h≤n

ϕk(
t

n
)ϕk(

t+ h

n
)utut+h

∙
1 +O

µ
1

n

¶¸
. (27)

Using the device in Phillips and Solo (1992) we have the decomposition

ut = C (1) εt + ε̃t−1 − ε̃t, for ε̃t =
∞X
j=0

c̃jεt−j , c̃j =
∞X
j+1

cs, (28)

where
P∞

j=0 |c̃j | <∞ under L. Then, (28), partial summation and Lemma B(a) yield

1√
n

nX
t=1

ϕk(
t

n
)ut =

C (1)√
n

nX
t=1

ϕk(
t

n
)εt −

C (1)√
n

nX
t=1

ϕk(
t

n
)∆ε̃t

=
C (1)√

n

nX
t=1

ϕk(
t

n
)εt −

(
1√
n
ϕk(1)ε̃n −

1√
n

nX
t=1

∆ϕk(
t

n
)ε̃t

)

=
C (1)√

n

nX
t=1

ϕk(
t

n
)εt − ϕk(1)

ε̃n√
n

+2
3
2

"
nX
t=1

ε̃t√
n
cos

(µ
k − 1

2

¶
π
¡
t− 1

2

¢
n

)#
1

n

µ
k − 1

2

¶
π

2

sin
©¡
k − 1

2

¢
π
2n

ª¡
k − 1

2

¢
π
2n

=
C (1)√

n

nX
t=1

ϕk(
t

n
)εt +Op

µ
1√
n

¶
+Op

µ
k

n

¶

=
C (1)√

n

nX
t=1

ϕk(
t

n
)εt +Op

µ
1√
n
+

K

n

¶
,
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uniformly in k ≤ K. Thus,

ω̂2K =
1

K

KX
k=1

(
1√
n

nX
t=1

ϕk(
t

n
)ut

)2 ∙
1 +O

µ
1

n

¶¸

=
1

K

KX
k=1

(
C (1)√

n

nX
t=1

ϕk(
t

n
)εt +Op

µ
K

n

¶)2 ∙
1 +O

µ
1

n

¶¸

=
1

K

KX
k=1

(
C (1)√

n

nX
t=1

ϕk(
t

n
)εt

)2 ∙
1 +O

µ
1

n

¶¸

+Op

Ã
K

n

1√
n

nX
t=1

1

K

KX
k=1

ϕk(
t

n
)εt

!
+Op

µ
K2

n2

¶
. (29)

From Lemma B(b),
PK

k=1 ϕk(
t
n) =

√
2
sin2(Kπt

2n )
sin( πt2n)

, and so

Var

(
1√
n

nX
t=1

"
KX
k=1

ϕk(
t

n
)

#
εt

)
=

2σ2

n

nX
t=1

sin4
¡
Kπt
2n

¢
sin2

¡
πt
2n

¢
≤ 2σ2

n

nX
t=1

sin2
¡
Kπt
2n

¢
sin2

¡
πt
2n

¢
= O

ÃZ 1

0

sin2
¡
Kπr
2

¢
sin2

¡
πr
2

¢ dr

!
= O (K) ,

by Lemma B(d). Hence,

1√
K
√
n

nX
t=1

"
KX
k=1

ϕk(
t

n
)

#
εt = Op (1) , (30)

and it follows from (29) and (30) that

ω̂2K =
1

K

KX
k=1

(
C (1)√

n

nX
t=1

ϕk(
t

n
)εt

)2 ∙
1 +O

µ
1

n

¶¸

+Op

Ã√
K

n
+

K2

n2

!
. (31)

Thus,

√
K
¡
ω̂2K − ω2

¢
=

C (1)2√
K

KX
k=1

⎡⎣( 1√
n

nX
t=1

ϕk(
t

n
)εt

)2
− σ2

⎤⎦+Op

Ã
K

n
+

K
5
2

n2

!
(32)
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Write

C (1)2√
K

KX
k=1

⎡⎣( 1√
n

nX
t=1

ϕk(
t

n
)εt

)2
− σ2

⎤⎦
=

C (1)2√
K

KX
k=1

"Ã
1

n

nX
t=1

ϕk(
t

n
)2ε2t − σ2

!
+
2

n

nX
t>s

ϕk(
t

n
)ϕk(

s

n
)εtεs

#
. (33)

In view of Lemma A, we have

C (1)2√
K

KX
k=1

(
1

n

nX
t=1

ϕk(
t

n
)2ε2t − σ2

)

=
C (1)2√

K

KX
k=1

(
1

n

nX
t=1

ϕk(
t

n
)2
¡
ε2t − σ2

¢
+

Ã
1

n

nX
t=1

ϕk(
t

n
)2 − 1

!
σ2

)

=
C (1)2√

K

KX
k=1

(
1

n

nX
t=1

ϕk(
t

n
)2
¡
ε2t − σ2

¢)
+O

Ã√
K

n

!

= Op

Ã√
K√
n
+

√
K

n

!
. (34)

Thus, for K = o
¡
n4/5

¢
we have from (32) - (34)

√
K
¡
ω̂2K − ω2

¢
=

C (1)2√
K

KX
k=1

2

n

nX
t>s

ϕk(
t

n
)ϕk(

s

n
)εtεs + op (1)

=
C (1)2√

K

2

n

nX
t>s

(
KX
k=1

ϕk(
t

n
)ϕk(

s

n
)

)
εtεs + op (1)

=
C (1)2√

K

1

n

⎧⎨⎩
nX
t>s

sin
n
Kπ(t−s)

n

o
sin
n
1
2
π(t−s)

n

o − sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o
⎫⎬⎭ εtεs + op (1)

=
C (1)2√
K
√
n

n−1X
h=1

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª
⎛⎝ 1√

n

X
1≤t,t+h≤n

εtεt+h

⎞⎠
+
C (1)2√

K

1

n

nX
t>s

sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o εtεs + op (1) . (35)

We show that the second term in the final expression (35) is negligible. Note that

C (1)2√
K

1

n

nX
t>s

sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o εtεs
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has mean zero and variance

1

K

σ4

n2

nX
t=2

t−1X
s=1

sin2
n
Kπ(t+s)

n

o
sin2

n
1
2
π(t+s)

n

o
= O

Ã
σ4

K

Z 1

2
n

Z r− 1
n

1
n

sin2 {Kπ (r + p)}
sin2

©
1
2π (r + p)

ª dpdr!

= O

Ã
σ4

K

Z 1

2
n

Z r− 1
n

1
n

1

sin2
©
1
2π (r + p)

ªdpdr!

= O

⎛⎝σ4

K

Z 1

2
n

"
− 2
π

cos
©
π
2 (r + p)

ª
sin
©
π
2 (r + p)

ª#r− 1
n

1
n

dr

⎞⎠
= O

Ã
σ4

K

Z 1

2
n

(
2

π

cos
©
π
2

¡
2r − 1

n

¢ª
sin
©
π
2

¡
2r − 1

n

¢ª + 2

π

cos
©
π
2

¡
r + 1

n

¢ª
sin
©
π
2

¡
r + 1

n

¢ª) dr

!

= O

µ
logn

K

¶
.

Hence

C (1)2√
K

1

n

nX
t>s

sin
n
Kπ(t+s)

n

o
sin
n
1
2
π(t+s)

n

o εtεs = Op

Ãr
logn

K

!
= op (1) , (36)

and so

√
K
¡
ω̂2K − ω2

¢
=

C (1)2√
K
√
n

n−1X
h=1

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª
⎛⎝ 1√

n

X
1≤t,t+h≤n

εtεt+h

⎞⎠+ op (1) .

Next note from Lemma B(d) that

σ4C (1)4

Kn

n−1X
h=1

sin2
©
Kπh
n

ª
sin2

©
1
2
πh
n

ª = 2σ4C (1)4 [1 + o (1)] .

Finally, using a martingale central limit argument along the same lines as that in
Phillips, Sun and Jin (2003), we may establish that

C (1)2√
K
√
n

n−1X
h=1

sin
©
Kπh
n

ª
sin
©
1
2
πh
n

ª
⎛⎝ 1√

n

X
1≤t,t+h≤n

εtεt+h

⎞⎠→d N
³
0, 2σ4C (1)4

´
≡ N

¡
0, 2ω4

¢
,

giving the stated CLT for
√
K
¡
ω̂2K − ω2

¢
.
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Part (c) Part (a) shows that the bias of ω̂2K is given by

E
¡
ω̂2K − ω2

¢
= −K

2

n2
D [1 + o (1)] , where D = −π

2

6

∞X
h=−∞

h2γu (h) ,

while arguments as in part (b) show the variance of ω̂2K to be

Var
©
ω̂2K
ª
=
2ω4

K
[1 + o (1)] .

It follows that

MSE
¡
ω̂2K
¢
= E

¡
ω̂2K − ω2

¢2
=

(µ
K2

n2
D

¶2
+

µ
2ω4

K

¶)
[1 + o (1)]

and, if K5/n4 → 1, we get

lim
n→∞

³ n

K

´4
MSE

¡
ω̂2K
¢
= lim

n→∞

³ n

K

´4
E
¡
ω̂2K − ω2

¢2
= D2 + 2ω4,

as stated.
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