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Abstract

This paper investigates the Harsanyi (1973)-purifiability of mixed strategies in
the repeated prisoners’ dilemma with perfect monitoring. We perturb the game
so that in each period, a player receives a private payoff shock which is indepen-
dently and identically distributed across players and periods. We focus on the
purifiability of a class of one-period memory mixed strategy equilibria used by Ely
and Välimäki (2002) in their study of the repeated prisoners’ dilemma with pri-
vate monitoring. We find that the strategy profile is purifiable by perturbed-game
finite-memory strategies if and only if it is strongly symmetric, in the sense that
after every history, both players play the same mixed action. Thus “most” strategy
profiles are not purifiable by finite memory strategies. However, if we allow infinite
memory strategies in the perturbed game, then any completely-mixed equilibrium
is purifiable.

1. Introduction

Harsanyi’s (1973) purification theorem is one of the most compelling justifications for
the study of mixed equilibria in finite normal form games. Under this justification,
the complete-information normal form game is viewed as the limit of a sequence of
incomplete-information games, where each player’s payoffs are subject to private shocks.
Harsanyi proved that every equilibrium (pure or mixed) of the original game is the
limit of equilibria of close-by games with incomplete information. Moreover, in the
incomplete-information games, players have essentially strict best replies, and so will
not randomize. Consequently, a mixed strategy equilibrium can be viewed as a pure
strategy equilibrium of any close-by game of incomplete information. Harsanyi’s (1973)
argument exploits the regularity (a property stronger than local uniqueness) of equilibria
of “almost all” normal form games. As long as payoff shocks generate small changes in
the system of equations characterizing equilibrium, the regularity of equilibria ensures



that the perturbed game has an equilibrium close to any equilibrium of the unperturbed
game.1

Very little work has examined purification in dynamic games. Even in finite extensive
games, generic local uniqueness of equilibria may be lost when we build in natural
economic features into the game, such as imperfect observability of moves and time
separability of payoffs. Bhaskar (2000) has shown how these features may lead to a
failure of local uniqueness and purification: i.e., for a generic choice of payoffs, there is a
continuum of mixed strategy equilibria, none of which are the limit of the pure strategy
equilibria of a game with payoff perturbations.

For infinitely repeated games, the bootstrapping nature of the system of equations
describing many of the infinite horizon equilibria is conducive to a failure of local unique-
ness of equilibria. We study a class of symmetric one-period memory mixed strategy
equilibria used by Ely and Välimäki (2002) in their study of the repeated prisoners’
dilemma with private monitoring. This class fails local uniqueness quite dramatically:
there is a two dimensional manifold of equilibria.

Our motivation for studying the purifiability of this class of strategies comes from
the recent literature on repeated games with private monitoring. Equilibrium incentive
constraints in games with private monitoring are difficult to verify because calculating
best replies typically requires understanding the nature of players’ beliefs about the
private histories of other players. Piccione (2002) showed that by introducing just the
right amount of mixing in every period, a player’s best replies can be made independent
of his beliefs, and thus beliefs become irrelevant.2 This means in particular that these
equilibria of the perfect monitoring game trivially extend to the game with private
monitoring. Piccione’s (2002) strategies depend on the infinite history of play. Ely and
Välimäki (2002) showed that it suffices to consider simple strategies which condition
only upon one period memory of both players’ actions. These strategies again make a
player indifferent between his actions regardless of the action taken by the other player,
and thus a player’s incentives do not change with his beliefs. Kandori and Obara (2003)
also use such strategies to obtain stronger efficiency results via private strategies in
repeated games with imperfect public monitoring.

At first glance, the equilibria of Piccione (2002) and Ely and Välimäki (2002) involve
unreasonable randomizations: in some cases, a player is required to randomize differently
after two histories, even though the player has identical beliefs over the continuation

1See Govindan, Reny, and Robson (2003) for a modern exposition and generalization of Harsanyi
(1973).

2This was not the first use of randomization in repeated games with private monitoring. A number
of papers construct nontrivial equilibria using initial randomizations to instead generate uncertainty
over which the players can then update(Bhaskar and Obara (2002), Bhaskar and van Damme (2002),
and Sekiguchi (1997)).
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play of the opponent.3 Moreover, the randomizations involve a delicate intertemporal
trade-off. While there are many ways of modelling payoff shocks in a dynamic game,
these shocks should not violate the structure of dynamic game. In repeated games, a
reasonable constraint is that the payoffs shocks should be independently and identically
distributed over time, and moreover, the period t shock should only be realized at the
beginning of period t. Our question is: Do the delicate intertemporal trade-offs survive
these independently and identically distributed shocks?

Our results show that, in the repeated game with perfect monitoring, most (but
not all) of the Ely-Välimäki equilibria can only be purified by infinite horizon strate-
gies, i.e., strategies that are no simpler than those of Piccione (2002). However, while
equilibria of the unperturbed perfect monitoring game are automatically equilibria of
the unperturbed private monitoring game, our purification arguments do not automat-
ically extend to the private monitoring case. We conjecture—but have not been able
to prove—that in the repeated game with private monitoring all the Ely-Valimaki equi-
libria will be not be purifiable with finite history strategies but will be purifiable with
infinite history strategies.

The paper is organized as follows. In Section 2, we review the completely mixed
equilibria of the repeated prisoners’ dilemma introduced by Ely and Välimäki (2002).
The positive and negative purification results for finite history strategies are in Section
3. In Section 4, we present the positive purification result for infinite history strategies.
Finally, in Section 5, we briefly discuss the private monitoring case.

2. Belief-free Equilibria with Perfect Monitoring

Let Γ (0) denote the infinitely-repeated perfect-monitoring prisoners’ dilemma with stage
game:

C D
C 1, 1 −`, 1 + g
D 1 + g,−` 0, 0

Each player has a discount rate δ. The class of symmetric mixed strategy equilibria
Ely and Välimäki (2002) construct can be described as follows: The profiles have one-
period memory, with players randomizing in each period with probability paa′ on C
after the action profile aa′. The profile is constructed so that after each action profile,
the player is indifferent between C and D. Consequently, a player’s best replies are
independent of his beliefs about the opponent’s history, and in this sense the equilibria
are, to use the language introduced by Ely, Hörner, and Olszewski (2003) “belief-free.”
The requirement that after aa′, player 1 is indifferent between playing C and D, when

3Anticipating the notation from the next section, this occurs, for example, when g = ` (the incentive
to play D is independent of the action of the opponent), so that pCC = pDC and pCD = pDD.
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player 2 is playing pa′a yields the following system (where Waa′ is the value to a player
after aa′, and the second equality in each displayed equation comes from the indifference
requirement):

WCC = (1− δ) (pCC + (1− pCC) (−`)) + δ {pCCWCC + (1− pCC) WCD} (1)
= (1− δ) pCC (1 + g) + δ {pCCWDC + (1− pCC) WDD} , (2)

WCD = (1− δ) (pDC + (1− pDC) (−`)) + δ {pDCWCC + (1− pDC) WCD} (3)
= (1− δ) pDC (1 + g) + δ {pDCWDC + (1− pDC) WDD} , (4)

WDC = (1− δ) (pCD + (1− pCD) (−`)) + δ {pCDWCC + (1− pCD) WCD} (5)
= (1− δ) pCD (1 + g) + δ {pCDWDC + (1− pCD) WDD} , (6)

and

WDD = (1− δ) (pDD + (1− pDD) (−`)) + δ {pDDWCC + (1− pDD) WCD} (7)
= (1− δ) pDD (1 + g) + δ {pDDWDC + (1− pDD) WDD} . (8)

Subtracting (2) from (1) gives

0 = pCC {(1− δ) (−g + `) + δ [(WCC −WCD)− (WDC −WDD)]}−(1− δ) `+δWCD−δWDD.

Similarly,

0 = pDC {(1− δ) (−g + `) + δ [(WCC −WCD)− (WDC −WDD)]}−(1− δ) `+δWCD−δWDD,

0 = pCD {(1− δ) (−g + `) + δ [(WCC −WCD)− (WDC −WDD)]}−(1− δ) `+δWCD−δWDD,

and

0 = pDD {(1− δ) (−g + `) + δ [(WCC −WCD)− (WDC −WDD)]}−(1− δ) `+δWCD−δWDD.

Since at least two of the probabilities differ (if not, paa′ = 0 for all aa′), the coefficient
of paa′ and the constant term are both zero:

WCD −WDD =
(1− δ) `

δ
(9)

and

WCC −WDC =
(1− δ) (g − `)

δ
+ WCD −WDD

=
(1− δ) g

δ
. (10)
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Ely and Välimäki (2002) instead work with the values to a player of having his
opponent play C and D this period, V̂C and V̂D. A player is indifferent between C and
D when the opponent plays C if

V̂C ≡ (1− δ) + δWCC

= (1− δ) (1 + g) + δWDC ,

while he is indifferent between C and D when the opponent plays D if

V̂D ≡ (1− δ) (−`) + δWCD

= δWDD.

These two equalities are equivalent to (9) and (10), and so (1-8) imply the player is
indifferent between C and D, when the opponent is playing C this period, and when he
is playing D this period.

Under (9) and (10), the eight equations (1-8) reduce to four (substituting for WDC

and WDD):

WCC = (1− δ) (pCC + (1− pCC) (−`)) + δ {pCCWCC + (1− pCC) WCD} , (11)
WCD = (1− δ) (pDC + (1− pDC) (−`)) + δ {pDCWCC + (1− pDC) WCD} , (12)
WCC = (1− δ) (pCD + (1− pCD) (−`) + g/δ) + δ {pCDWCC + (1− pCD) WCD} ,

(13)

and

WCD = (1− δ) (pDD + (1− pDD) (−`) + `/δ) + δ {pDDWCC + (1− pDD) WCD} . (14)

Treating WCC and WCD parametrically, each equation determines a probability, and so
we have a two dimensional manifold of equilibria (the proof is in the Appendix):

Theorem 1 There is a two-dimensional manifold of mixed equilibria of the infinitely-
repeated perfect monitoring prisoners’ dilemma: Suppose WCC , WCD ∈ (0, 1) satisfy the
inequalities

WCD − δWCC < 1− δ, (15)
δWCD + (1− δ) g/δ < (1− δ) ` + WCC , and (16)

(1− δ) ` < δWCD. (17)

Then, the profile in which player 1 plays C with probability paa′ and player 2 plays C
with probability pa′a after aa′ in the previous period (and both players play pCC in the
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first period), where

pCC =
(1− δ) ` + WCC − δWCD

(1− δ) (1 + `) + δ (WCC −WCD)
, (18)

pDC =
(1− δ) ` + WCD − δWCD

(1− δ) (1 + `) + δ (WCC −WCD)
, (19)

pCD =
(1− δ) (`− g/δ) + WCC − δWCD

(1− δ) (1 + `) + δ (WCC −WCD)
, (20)

and
pDD =

(1− δ) ` (1− 1/δ) + WCD − δWCD

(1− δ) (1 + `) + δ (WCC −WCD)
, (21)

is an equilibrium. Moreover, (15), (16), and (17) are satisfied for any 0 < WCD <
WCC < 1, for δ sufficiently close to 1.

Indeed, for each specification of behavior in the first period, there is a two-dimensional
manifold of equilibria. Our analysis applies to all of these manifolds, and for simplicity,
we focus on the profiles where both players play pCC in the first period.

For later reference, it is useful to note that, using (9) and (10), the expressions for
the probabilities can be written as, for all aa′,

paa′ =
Wa′a − δWDD

(1− δ) (1 + g) + δ (WDC −WDD)
. (22)

3. Finite memory purification

We now argue that if we require that the equilibrium of the perturbed game have finite
history dependence, then it is only possible to purify equilibria of the type described in
Section 2 when they are strongly symmetric (ie., when pCD = pDC).

Let Γ (ε) denote the infinitely-repeated perfect-monitoring prisoners’ dilemma with
stage game:

C D

C 1 + εz1
t , 1 + εz2

t −` + εz1
t , 1 + g

D 1 + g,−` + εz2
t 0, 0

The payoff shock zi
t is private to player i, realized in period t, uniformly distributed on

[0, 1], independently and identically distributed across players, and histories.
We begin by considering one period memory strategy profiles, where the probability

of a player playing C after observing the action profile aa′ last period is denoted by πε
aa′ .

For simplicity we restrict attention to symmetric equilibria, where both players adopt
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the same strategy. Finally, we focus on completely mixed equilibria, where πε
aa′ ∈ (0, 1)

for every action profile aa′.
Denote the marginal type by ẑi

t. If zt
i ≥ ẑi

t, then i plays C, and plays D otherwise.
Then the probability of C is Pr

{
zi
t ≥ ẑi

t

}
= 1− ẑi

t.
Let W ε

aa′ denote the ex ante value function of a player at the action profile aa′,
before the realization of his payoff shock. The ex post payoff from C after CC, and
given the realization of z1

t , is

V ε
CC

(
z1
t ;C

)
= (1− δ)

{
πε

CC − (1− πε
CC) ` + εz1

t

}
+ δ {πε

CCW ε
CC + (1− πε

CC) W ε
CD} ,

while the payoff from D after CC is

V ε
CC

(
z1
t ;D

)
= (1− δ) πε

CC (1 + g) + δ {πε
CCW ε

DC + (1− πε
CC) W ε

DD} . (23)

Since ẑ1
t is indifferent,

(1− δ)
{
πε

CC − (1− πε
CC) ` + εẑ1

t

}
+ δ {πε

CCW ε
CC + (1− πε

CC) W ε
CD}

= (1− δ) πε
CC (1 + g) + δ {πε

CCW ε
DC + (1− πε

CC) W ε
DD} ,

and since πε
CC = 1− ẑ1

t ,

(1− δ) {πε
CC − (1− πε

CC) (`− ε)}+ δ {πε
CCW ε

CC + (1− πε
CC) W ε

CD}
= (1− δ) πε

CC (1 + g) + δ {πε
CCW ε

DC + (1− πε
CC) W ε

DD} ,

or

(1− δ) {πε
CCg + (1− πε

CC) (`− ε)} = δ {πε
CC (W ε

CC −W ε
DC) + (1− πε

CC) (W ε
CD −W ε

DD)} .

Collecting terms gives

0 = {(1− δ) (g − ` + ε)− δ (W ε
CC −W ε

DC − (W ε
CD −W ε

DD))}πε
CC (24)

+ (1− δ) (`− ε)− δ (W ε
CD −W ε

DD) .

Similarly, the payoff from C after DD is

(1− δ)
{
πε

DD − (1− πε
DD) ` + εz1

t

}
+ δ {πε

DDW ε
CC + (1− πε

DD) W ε
CD} ,

while the payoff from D after DD is

(1− δ) πε
DD (1 + g) + δ {πε

DDW ε
DC + (1− πε

DD) W ε
DD} .

Since ẑ1
t is indifferent,

(1− δ)
{
πε

DD − (1− πε
DD) ` + εẑ1

t

}
+ δ {πε

DDW ε
CC + (1− πε

DD) W ε
CD}

= (1− δ) πε
DD (1 + g) + δ {πε

DDW ε
DC + (1− πε

DD) W ε
DD} ,
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and since πε
DD = 1− ẑ1

t ,

(1− δ) {πε
DD − (1− πε

DD) (`− ε)}+ δ {πε
DDW ε

CC + (1− πε
DD) W ε

CD}
= (1− δ) πε

DD (1 + g) + δ {πε
DDW ε

DC + (1− πε
DD) W ε

DD} ,

or

(1− δ) {πε
DDg + (1− πε

DD) (`− ε)}
= δ {πε

DD (W ε
CC −W ε

DC) + (1− πε
DD) (W ε

CD −W ε
DD)} .

Collecting terms gives

0 = {(1− δ) (g − ` + ε)− δ (W ε
CC −W ε

DC − (W ε
CD −W ε

DD))}πε
DD (25)

+ (1− δ) (`− ε)− δ (W ε
CD −W ε

DD) .

Since the equations (24) and (25) have the same structure, if πε
CC 6= πε

DD, it must
be that the coefficient of πε and the constant are both zero:

(1− δ) (g − ` + ε)− δ (W ε
CC −W ε

DC − (W ε
CD −W ε

DD)) = 0

and
(1− δ) (`− ε)− δ (W ε

CD −W ε
DD) = 0. (26)

In other words,

W ε
CD −W ε

DD =
(1− δ) (`− ε)

δ
(27)

and
W ε

CC −W ε
DC =

(1− δ) g

δ
. (28)

Turning to the other histories, the payoff from C after CD (so that the opponent
sees the history DC) is

(1− δ)
{
πε

DC − (1− πε
DC) ` + εz1

t

}
+ δ {πε

DCW ε
CC + (1− πε

DC) W ε
CD} ,

while the payoff from D after CD is

(1− δ) πε
DC (1 + g) + δ {πε

DCW ε
DC + (1− πε

DC) W ε
DD} .

Since ẑ1
t is indifferent,

(1− δ)
{
πε

DC − (1− πε
DC) ` + εẑ1

t

}
+ δ {πε

DCW ε
CC + (1− πε

DC) W ε
CD}

= (1− δ) πε
DC (1 + g) + δ {πε

DCW ε
DC + (1− πε

DC) W ε
DD} ,
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and since πε
CD = 1− ẑ1

t ,

(1− δ) {πε
DC − (1− πε

DC) ` + ε (1− πε
CD)}+ δ {πε

DCW ε
CC + (1− πε

DC) W ε
CD}

= (1− δ) πε
DC (1 + g) + δ {πε

DCW ε
DC + (1− πε

DC) W ε
DD} ,

or

0 = {(1− δ) (g − ` + ε)− δ (W ε
CC −W ε

DC − (W ε
CD −W ε

DD))}πε
DC (29)

+ {(1− δ) (`− ε)− δ (W ε
CD −W ε

DD)}+ ε(1− δ)(πε
CD − πε

DC).

The first two terms in the above equation have the same structure as in (24), and
since the constant term and the coefficient on πε in (24) are both zero, these two terms
vanish. Thus (29) cannot be true for ε > 0 unless πε

CD = πε
DC .

Theorem 2 Let p be a mixed strategy equilibrium of the game with complete informa-
tion that has one period memory (such as an Ely-Valimaki strategy profile). If pa ∈ (0, 1)
and pCC 6= pDD and pCD 6= pDC , then there exists ε̄ > 0 such that for all ε ∈ (0, ε̄),
there is no equilibrium of Γ (ε) with finite memory within ε̄ of p.

Proof. Fix δ = 1
2 min {pa, 1− pa, |pCD − pDC | , |pCC − pDD|}. Consider a profile

with memory K, and suppose it is within δ of p. Let πε
h be the probability of C after

the history h. Then, πε
h ∈ (0, 1) for all h ∈ {C,D}2K , πε

hCC 6= πε
hDD and πε

hDC 6= πε
hCD.

Then the contradiction obtained above for 1-period profiles also arises after the four
histories hCC, hCD, hDC, and hDD, where h ∈ {C,D}2(K−1).

We have established that if pCC and pDD are distinct, a necessary condition for
purifiability by finite memory strategies is that p must be strongly symmetric, i.e. both
players must play the same continuation strategy after every history, even if this history
is asymmetric.

3.1. Purification when pDC = pCD

It is possible to purify when pCD = pDC , since in this case we may choose πε
CD = πε

CD in
the perturbed game, so that (29) is equivalent to (24), with πε

DC replacing πε
CC . There

is thus no inconsistency between the conditions for optimality at the four information
sets, CC, CD, DC, and DD. Let us assume that the ex ante value functions satisfy (27)
and (28). This, in conjunction with πε

CD = πε
CD immediately implies that optimality is

satisfied at all four information sets. It remains to show that we can choose the strategy
profile πε in order to generate these ex ante values.

9



In order to calculate the ex ante values, we need to take into account the dependence
of choice on the realized value of the payoff shock. Note first that Vaa′(z1

t ;D), the ex
post payoff from D after aa′, given the realization of z1

t , is independent of z1
t , and

Vaa′(z1
t ;C) = Vaa′(ẑ1

t ;C) + (1− δ) ε
(
z1
t − ẑ1

t

)
= Vaa′ (D) + (1− δ) ε

(
z1
t − ẑ1

t

)
,

so

W ε
CC = VCC (D) + (1− δ) ε

∫ 1

0
max{z − ẑ1

t , 0} dz

= VCC (D) + (1− δ) ε

∫ 1

ẑ1
t

z − ẑ1
t dz

= VCC (D) + (1− δ) ε

(
z2

2
− zẑ1

t

)∣∣∣∣1
ẑ1
t

= VCC (D) + (1− δ) ε

[(
1
2
− ẑ1

t

)
+

ẑ1
t ẑ1

t

2

]
= VCC (D) +

(1− δ) ε

2
(
1− ẑ1

t

)2 = VCC (D) +
(1− δ) ε

2
(πε

CC)2

and so (using (23))

W ε
CC = (1− δ)

{
πε

CC (1 + g) +
1
2
ε(πε

CC)2
}

+ δ {πε
CCW ε

DC + (1− πε
CC) W ε

DD} . (30)

Rearranging,

(1− δ)
{

πε
CC (1 + g) +

1
2
ε(πε

CC)2
}

+ δπε
CC (W ε

DC −W ε
DD) + δW ε

DD −W ε
CC = 0,

and using (26) and W ε
CD = W ε

DC ,

(1− δ)
{

πε
CC (1 + g) +

1
2
ε(πε

CC)2
}

+ πε
CC (1− δ) (`− ε) + δW ε

DD −W ε
CC = 0

or

(1− δ)
{

πε
CC (1 + g + `− ε) +

1
2
ε(πε

CC)2
}

+ δW ε
DD −W ε

CC = 0. (31)

Proceeding similarly from the value equation for W ε
CD, and using (27) and (28), we have

(1− δ)
{

πε
DC (1 + g + `− ε) +

1
2
ε(πε

DC)2
}

+ δW ε
DD −W ε

CC +
(1− δ)g

δ
= 0. (32)
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From the value equation for W ε
DD,

(1− δ)
{

πε
DD (1 + g + `− ε) +

1
2
ε(πε

DD)2
}
− (1− δ)W ε

DD = 0. (33)

Thus it suffices to find πε
CC , πε

CD, and πε
DD which solve the quadratics (31), (32)

and (33), and which converge to pCC , pCD, and pDD as ε → 0. We set W ε
DD = WDD,

and W ε
CC = WCC , the values in the unperturbed game for the equilibrium we want to

purify. The result then follows from the following lemma (and (22)):

Lemma 1 Let xε solve the quadratic,

aεx
2 + bεx + cε = 0,

where aε, bε, and cε all converge as ε → 0, and limε→0 aε = 0 and limε→0 bε 6= 0. Suppose
moreover that aε, bε, and cε are all differentiable functions of ε in a neighborhood of 0,
with well-defined limits as ε → 0, and limε→0 a′ε 6= 0. Then,

lim
ε→0

xε = − limε→0 cε

limε→0 bε
.

Proof. Solving the quadratic gives two candidate solutions for xε:

xε =
−bε ±

√
b2
ε − 4aεcε

2aε
.

Since the denominator goes to zero as ε → 0, only the positive root yields a well-defined
solution for xε in the limit. In this case, both numerator and denominator go to zero,
and an application of l’Hopital’s rule completes the proof.

Thus, we have a purification, for any values of W ε
DD and W ε

CC in the unperturbed
game. Since any completely mixed symmetric equilibrium can be parametrized by
these two values, we have shown that any such equilibrium can be purified by one
period memory strategies in the perturbed game. We state this result as the following
theorem:

Theorem 3 Let p = (pCC , pCD, pDC , pDD) be a symmetric completely mixed one period
memory equilibrium of the unperturbed game Γ(0), with pCD = pDC . There exists ε̄ > 0
so that for ε < ε̄, there exists πε = (πε

CC , πε
CD, πε

DC , πε
DD), a symmetric one period

memory equilibrium of Γ(ε), and πε → p as ε → 0.
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Theorems 2 and 3 show that a strategy is purifiable by finite memory strategies if
and only if it is strongly symmetric, i.e., at every information set, the two players must
play the same mixed action. This also has implications for the payoffs that may be
sustained. In the unperturbed game, any values in the unit interval that satisfy (9) and
(10) are equilibrium values. In consequence, if δ > max{ g

1+g , `
1+`}, any value in (0, 1)

is an equilibrium value. In the perturbed game, the restriction WCD = WCD implies
that we require δ > g+`

1+g+` . Thus, supporting a non-degenerate set of values requires a
higher discount factor.

4. Purification with infinite memory

We now argue that, when we allow the equilibrium of the perturbed game to have
infinite history dependence, then it is possible to purify equilibria of the type described
in Section 2. Fix an equilibrium with interior probabilities, pCC , pCD, pDC , and pDD ∈
(0, 1).

We first partition the set of histories, H, into equivalence classes where behavior is
identical on elements of the partition. All histories with the same last action profile
aa′ different from CC are equivalent; denote the associated element of the partition by
(aa′, 0). We write this as haa′ ∈ (aa′, 0) for all h and aa′ 6= CC. Two histories ending in
CC are equivalent if the most recent action profile different from CC in the two histories
is the same, aa′ say, and if the same number of occurrences of CC occur in the two
histories after the last non -CC action profile, aa′. Denote the associated element of the
partition by (aa′, k), where k is the number of occurrences of CC after the last non-CC
action profile, aa′. Finally, if h is the k-period history in which CC has been played
in every period, we write (CC, k) for the singleton element of the partition containing
h. Note that the null history is (CC, 0). Note that, any history in an element of the
partition (aa′, k) with k ≥ 1 ends in CC.

The strategy in the perturbed game will be measurable with respect to the partition
on H just described. Fix ε > 0 and let πε

aa′(k) denote the probability with which C
is played when h ∈ (aa′, k), and let W ε

aa′(k) denote the ex ante value function of the
player at this history. If

{
πε

aa′(k)
}

is a sequence (as ε → 0) of equilibria purifying p =
(pCC , pCD, pDC , pDD), then πε

aa′(k) → pCC for all k ≥ 1 and all aa′, and pε
aa′(0) → paa′ ,

as ε → 0. We will indeed show a uniform form of purifiability: the bound on ε required
to make πε

aa′(k) close to pCC is independent of k.
The idea is that in the perturbed game, the payoff after a history ending in CC can

always be adjusted to ensure that the appropriate realization of z in the previous period
is the marginal type to obtain the desired randomization between C and D. We proceed
recursively, fixing probabilities after any history in an element of the partition (aa′, 0)
at their unperturbed levels, i.e., we set πε

aa′(0) = paa′ . In particular, players randomize
in the first period with probability pCC on C, and in the second period after a realized
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action profile aa′ 6= CC with probability paa′ on C.4 This turns out to determine the
value function at histories in (aa′, 0) for all aa′; we write W ε

aa′ for W ε
aa′(0). In the second

period after CC, W ε
CC(1) is determined by the requirement that the ex ante probability

that a player play C in the first period is given by πε
CC(0) = pCC . Given the value

W ε
CC(1), the probability πε

CC(1) is then determined by the requirement that W ε
CC(1)

be the ex ante value at the history CC. More generally, given a history h ∈ (aa′, k) and
a further realization of CC, W ε

aa′(k + 1) is determined by the requirement that the ex
ante probability that a player play C in the previous period is given by πε

aa′(k) = paa′ ,
and then πε

aa′(k + 1) is then determined by W ε
aa′(k + 1).

We begin with histories in (aa′, 0). Recalling the calculations that led to (30),

W ε
CD = (1− δ)

{
pDC (1 + g) + εp2

CD/2
}

+ δ {pDCW ε
DC + (1− pDC) W ε

DD} , (34)

W ε
DC = (1− δ)

{
pCD (1 + g) + εp2

DC/2
}

+ δ {pCDW ε
DC + (1− pCD) W ε

DD} , (35)

W ε
DD = (1− δ)

{
pDD (1 + g) + εp2

DD/2
}

+ δ {pDDW ε
DC + (1− pDD) W ε

DD} , (36)

and

W ε
aa′(k) = (1− δ)

{
πε

a′a(k) (1 + g) + επε
aa′(k)2/2

}
(37)

+δ {πε
a′a(k)W ε

DC + (1− πε
a′a(k))W ε

DD} .

As we indicated above, (34), (35), and (36) can be solved for W ε
CD, W ε

DC , and W ε
DD.

Moreover, these solutions converge to WCD, WDC , and WDD (since these are the only
solutions to (3), (5) and (7) for fixed pDC , pCD, and pDD). It remains to determine
W ε

aa′(k) and πε
aa′(k) for k ≥ 1 (W ε

CC(0) is also determined, since πε
CC(0) = pCC).

At the history h = (a′a, k− 1), the player with payoff realization z = 1−πε
a′a(k− 1)

must be indifferent between C and D:

(1− δ) {πε
aa′ (k − 1) + (1− πε

aa′ (k − 1)) (−`) + ε (1− πε
a′a (k − 1))}

+δ {πε
aa′ (k − 1) W ε

a′a (k) + (1− πε
aa′ (k − 1))W ε

CD}
= (1− δ) πε

aa′ (k − 1) (1 + g) + δ {πε
aa′ (k − 1) W ε

DC + (1− πε
aa′ (k − 1))W ε

DD} .

4More precisely, player 1 randomizes with probability paa′ and player 2 randomizes with probability
pa′a.
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Solving for W ε
a′a(k) as a function of πε

aa′(k − 1) and πε
a′a(k − 1) gives

W ε
a′a(k) =

(1− δ) (g − `)
δ

+ W ε
DC + W ε

CD −W ε
DD (38)

+
(1− δ) `− ε

(
1− πε

a′a (k − 1)
)
− δ[W ε

CD −W ε
DD]

δπε
aa′(k − 1)

.

Given W ε
aa′(k), (37) is a quadratic in πε

aa′(k),

aεπ
ε
aa′(k)2 + bεπ

ε
aa′(k) + cε(k) = 0,

where

aε = ε/2,

bε = (1− δ) (1 + g) + δ (W ε
DC −W ε

DD) ,

and
cε(k) = δW ε

DD −W ε
aa′(k).

Applying Lemma 1,

lim
ε→0

πε
aa′(k) =

limε→0 W ε
aa′(k)− δW ε

DD

limε→0 (1− δ) (1 + g) + δ
(
W ε

DC −W ε
DD

) .

Hence, if W ε
aa′(k) → WCC as ε → 0, then πε

aa′(k) → pCC .

Theorem 4 Let pp = (pCC , pCD, pDC , pDD) be a symmetric completely mixed one pe-
riod memory equilibrium of the unperturbed game Γ(0). For all η > 0, there is exists
ε (η) > 0 such that for all ε < ε(η), the equilibrium of the perturbed game Γ(ε) given by
the probabilities πε

aa′(k) described above satisfies

|πε
aa′ (k)− pCC | < η ∀k ≥ 1.

Proof. The proof of l’Hospital’s rule (see Rudin (1976, p. 109), for example) shows
the following: Suppose f and g are differentiable on (a, b), g′(x) 6= 0 for all x ∈ (a, b),
and there exists δ : [0, η̄] → <+ for some η̄ > 0 such that |x− a| < δ(η) implies
|f ′(x)/g′(x)−A| < η for some A for all η ∈ (0, η̄). If f and g are continuous on [a, b)
with f(a) = g(a) = 0, then |f(x)/g(x)−A| < η for all |x− a| < δ(η) and η ∈ (0, η̄).

Consequently, it is enough to show that δ can be chosen independently of k in the
application of Lemma 1. To apply Lemma 1, we also need to show that b′ε and c′ε have
well-defined limits as ε → 0.

From (34), (35), and (36), there exists κaa′ such that W ε
aa′ = Waa′ + κaa′ε for all

aa′ 6= CC. Fix η < min{pCC/3, pCD, pDC , pDD}. We proceed by induction. We first
prove the inductive step, and then the initial step.
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Suppose k ≥ 2,
∣∣πε

aa′(k − 1)− pCC

∣∣ < η and
∣∣ε d

dεπ
ε
aa′(k − 1)

∣∣ < 2η for all aa′. Since

πε
aa′(k) =

−bε +
√

b2
ε − 2εcε(k)
ε

,

it is enough to consider the behavior of the derivative of the numerator (the derivative
of the denominator being 1). The numerator’s derivative is

−b′ε +
1
2

(
b2
ε − 2εcε(k)

)2 [
2bεb

′
ε − 2cε(k)− 2εc′ε(k)

]
. (39)

If εcε(k) and εc′ε(k) can be made small (we will show that εcε(k) and εc′ε(k) can be made
small by choosing ε small, independently of k), the limiting value of this derivative is
determined by the limiting value of cε(k)/bε (which is pCC).

First we argue that the rate at which cε(k)/bε converges to its limiting value of
pCC is independent of k: Since πε

aa′ (k − 1) > pCC/3 > 0, as ε → 0, the last term in
(38) converges to zero (from (9)) uniformly in k. Equations (10) and (9) then imply
W ε

aa′ (k) → WCC as ε → 0.
It is immediate that cε(k) is bounded independently of k; it remains to bound

c′ε(k) = δκDD − d
dεW

ε
aa′(k). Now,

d

dε
W ε

aa′(k) = κDC + κCD − κDD

+
(1− δ) `− ε

(
1− πε

a′a (k − 1)
)
− δ[W ε

CD −W ε
DD]

δ
(
πε

aa′(k − 1)
)2

d

dε
πε

aa′(k − 1)

+
1

δπε
aa′(k − 1)

{
−1 + πε

a′a (k − 1) + ε
d

dε
πε

a′a (k − 1)− δ[κCD − κDD]
}

= κDC + κCD − κDD −
(
1− πε

a′a (k − 1) + δ[κCD − κDD]
)

δπε
aa′(k − 1)

+
δ(κCD − κDD)ε− ε

(
1− πε

a′a (k − 1)
)

δ
(
πε

aa′(k − 1)
)2

d

dε
πε

aa′(k − 1)

+
ε

δπε
aa′(k − 1)

d

dε
πε

a′a (k − 1)

(where we have used W ε
CD−W ε

DD = WCD−WDD +κCDε−κDDε = (1−δ)`/δ+(κCD−
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κDD)ε). Hence,∣∣∣∣ d

dε
W ε

aa′(k)
∣∣∣∣ ≤ |κDC + κCD − κDD|+

(1 + δ |κCD − κDD|)
δpCC/3

+
(δ |κCD − κDD|+ 1) ε

δ (pCC/3)2

∣∣∣∣ d

dε
πε

aa′(k − 1)
∣∣∣∣

+
ε

δpCC/3

∣∣∣∣ d

dε
πε

a′a (k − 1)
∣∣∣∣

≤ A,

(using
∣∣πε

aa′(k − 1)− pCC

∣∣ < η < pCC/3 in the first inequality, and the bound on∣∣ε d
dεπ

ε
aa′(k − 1)

∣∣ in the second) for some A (independent of k). Hence,∣∣c′ε(k)
∣∣ ≤ δκDD + A.

Thus, there is a bound, ε̄(η), on ε (independent of k) such that εcε(k) and εc′ε(k) are
sufficiently small for ε < ε̄(η) that the expression in (39) is within η of pCC . Hence, from
the observation on l’Hopital’s rule at the beginning of the proof,

∣∣πε
aa′(k)− pCC

∣∣ ≤ η.
We also have the bound on the derivative of the probability, since

ε

∣∣∣∣ d

dε
πε

aa′(k)
∣∣∣∣ =

∣∣∣∣ d

dε
επε

aa′(k)− πε
aa′(k)

∣∣∣∣
≤

∣∣∣∣ d

dε
επε

aa′(k)− pCC

∣∣∣∣ + |pCC − πε
aa′(k)| ≤ 2η,

where the last inequality follows from d
dεεπ

ε
aa′(k) equalling the expression in (39).

Finally, it remains to verify that
∣∣πε

aa′(1)− pCC

∣∣ < η and
∣∣ε d

dεπ
ε
aa′(1)

∣∣ < 2η for all
aa′. It is immediate that for each aa′, there exists εaa′(η) such that the two inequalities
hold for ε < εaa′(η). Taking ε(η) = min{ε̄(η), εCC(η), εCD(η), εDC(η), εDD(η)} com-
pletes the proof.

5. Private Monitoring

As noted in the introduction, much of the interest in the purifiability of mixed strategy
equilibria in repeated games comes from the literature on repeated game with private
monitoring. The systems of equations for the perfect monitoring case can be straight-
forwardly extended to allow for private monitoring. Unfortunately, the particular ar-
guments that we report exploit the perfect monitoring structure to reduce the infinite
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system of equations to simple difference equations, and somewhat different arguments
are required to deal with private monitoring.

We conjecture that the infinite horizon purification results would extend using gen-
eral methods for analyzing infinite systems of equations. Intuitively, private monitoring
will make purification by finite history strategies much harder, as there will be many dif-
ferent histories that will presumably give rise to different equilibrium beliefs that must
lead to identical mixed strategies being played, and this should not typically occur.
This argument can be formalized for one period histories, but we have not established
the argument for arbitrary finite history strategies. However, we believe that the finite
history restriction may place very substantial bounds on the set of mixed strategies
that can be purified in general repeated games, and we hope to pursue this issue in later
work.

A. Proof of Theorem 1

Solving (11-14) for the probabilities gives (18-21). By construction, all relevant incentive
constraints are satisfied, so it only remains to verify that (15), (16), and (17) imply that
the quantities described by (18-21) are indeed well-defined probabilities. Observe first
that pCC > 0, since

0 < (1− δ) ` + WCC − δWCD

⇐⇒ δWCD < (1− δ) ` + WCC ,

which is implied by (16). This then implies that every denominator is positive (since
WCC ≤ 1). Moreover, under this assumption, pCC < 1, since

(1− δ) ` + WCC − δWCD < (1− δ) (1 + `) + δ (WCC −WCD)
⇐⇒ (1− δ) (WCC −WCD) < (1− δ)
⇐⇒ WCC −WCD < 1,

which is always satisfied (since WCD ≥ 0).
Turning to the next quantity, pDC > 0, since

0 < (1− δ) ` + WCD − δWCD

⇐⇒ 0 < ` + WCD,

which always holds. Moreover, pDC < 1, since

(1− δ) ` + WCD − δWCD < (1− δ) (1 + `) + δ (WCC −WCD)
⇐⇒ (1− δ) WCD − δ (WCC −WCD) < (1− δ)
⇐⇒ WCD − δWCC < 1− δ.
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which is (15).
We also have pCD > 0, since

0 < (1− δ) (`− g/δ) + WCC − δWCD

⇐⇒ δWCD + (1− δ) g/δ < (1− δ) ` + WCC ,

which is (16). Moreover, pCD < 1, since

(1− δ) (`− g/δ) + WCC − δWCD < (1− δ) (1 + `) + δ (WCC −WCD)
⇐⇒ WCC −WCD < 1 + g/δ.

Finally, pDD > 0 is equivalent to (17), and pDD < 1 is implied by (15), since

(1− δ) ` (1− 1/δ) + WCD − δWCD < (1− δ) (1 + `) + δ (WCC −WCD)
⇐⇒ WCD − δWCC < (1− δ) (1 + δ) /δ.
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