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Abstract

A voting with absenteeism game is defined as a pair (G;r) where G is an
n-player (monotonic) simple game and r is an n-vector for which r; is the prob-
ability that player i attends a vote. We define a power index for such games,
called the absentee index. We axiomatize the absentee index and provide a
multilinear extension formula for it. Using this analysis we re-derive Myerson’s
(1977, 1980) “balanced contributions” property for the Shapley-Shubik power
index. In fact, we derive a formula which quantitatively gives the amount of the
“balanced contributions” in terms of the coefficients of the multilinear extension
of the game.

Finally, we define the notion of substitutes and complements in simple games.
We compare these concepts with the familiar concepts of dummy player, veto
player, and master player.
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Introduction

Perhaps there is no more appealing use of cooperative game theory than the use of
simple games to model decision-making bodies. A subset of players is a “winning
coalition" if it can enforce its will on the rest of the voters, no matter what those
other voters do; otherwise it is a “losing coalition.” In terms of the characteristic
function V' of a transferable utility game, a winning coalition S has V' (S) = 1, while
V(T) = 0if T is losing.

*The authors thank P. Dubey, G. Owen, F. Sanchez, L. Shapley, A. Taylor, J. Wako, and W.
Zwicker for helpful discussions.



The beauty of this simple model is that one may apply the mathematical theory
of games to derive interesting political insights. In 1954, Shapley and Shubik applied
the Shapley value (Shapley, 1953) to simple games, obtaining the Shapley—Shubik
power index (SSPI). The SSPI is now widely regarded as a measure of players’ power
in a voting system, based solely on the structure of the set of winning coalitions.

In this paper we add absenteeism to the model. It is well-known that often
absenteeism is high in such non-compulsory votes as presidential midterm elections,
corporate shareholder elections or departmental faculty votes. There is clearly a
(generally small) cost to voting which many individuals do not wish to incur. Even if
costless, voters often feel as if their vote won’t make a difference. Finally, an individual
may be too ill to go to the polls, or be away on vacation and have neglected to obtain
an absentee ballot.

At this point we emphasize the difference between absenteeism and abstention.
Abstention is the willful act of attending a vote and then not voting “yea” or “nay.”
There is a small literature in which abstention is modelled. The main idea is that
there are more than two choices when voting on an issue — with “yea" being the
highest level of support and “nay" being the highest level of opposition. Abstention
corresponds to one of the “middle” choices (see, e.g., Felsenthal-Machover (1997,
1998) or Freixas—Zwicker (2002)).

On the other hand, we view absenteeism as the failure to attend a vote. It is
not strategic in any way. However, it can make a difference in two ways. First, if
enough players are absent there will fail to be a quorum present. In the familiar
terminology of simple games, we mean that there is no minimal winning coalition of
players present.! Second, certain players being absent can affect the abilities of those
remaining to form winning coalitions, hence affecting their power. In our analysis
below we attempt to capture both of these effects.

We begin by assuming that each player i (i = 1,...,n) has an independent proba-
bility 7; of being present (= not absent) for a vote. A voting-with-absenteeism game,
then, is defined by the vector r together with an underlying simple game G.

We then define a power index for such games. This index, which we call the
absentee index, is essentially a weighted average of the SSPI’s of all 2™ possible
subgames. The weights are the probabilities that each such subgame will form, given
the vector of absentee probabilities 7.

It then turns out that there is a natural axiomatization for our index, much in
the spirit of Dubey’s (1975) axiomatization of the SSPI. In addition, we prove a
multilinear extension formula for our index, which generalizes Owen’s (1972) formula
for the Shapley value in the special case of simple games.

Finally, we use these results to re-prove an interesting property of the SSPI, first
found by Myerson (1977, 1980). This is the “balanced contributions” property. Take
any simple game G, and consider any two players ¢ and j. Then, the change in i’s
SSPI caused by absenting player j from G is exactly the same as the change in j’s
SSPI caused by absenting player i from G. Myerson proved this result by using a

LOf course we freely admit that a truly realistic model of real world quorums would be much more
complex than this. But we feel this is a start!



symmetry argrument, never giving a formula for the magnitude of the changes in 4
and j’s SSPI. Our proof does give such a formula, in terms of the coefficients of the
multilinear extension of the game.

Put another way, balanced contributions means that i’s valuation of j’s presence
in the game is exactly j’s valuation of i’s presence. If the two players’ valuation of
each other’s presence is positive, we call them complements; if negative they are
substitutes. We close the paper by proving some theorems linking the concepts
of substitutes/complements with the more familiar concepts of master player, veto
player, and dummy player from the theory of simple games.

1 Games, Simple Games, and Multilinear Extensions

A transferable utility (TU) game is a pair G = (N, V) in which N = {1, ...,n} is
the player set and V : 2V — R is the characteristic function. Here 2" denotes
the set of coalitions, i.e., the set of subsets of N. V(S) represents the “worth” of
coalition S, i.e., the maximum total surplus the members of S could generate for
themselves no matter the players of S¢ do. [We will use the notation “S¢” to mean
the complement of coalition S. The notation S/i means the set of players in S except
for i.]

A simple game is a TU game for which

1) The range of V' is contained in the two element set {0, 1},

2) V(S) < V(T') whenever S C T (monotonicity), and

3) V(D) =0.

Note that we do not require that V' (N) = 1. Hence it is possible for V(S) = 0 for all
S C N — we call such a game the zero game and denote it by Z™. Let G" be the
set of all simple games with n players. Also, let G = {Geg":G#2Z"}.

Suppose G = (N, V) € G". A coalition S is winning if V(S) = 1; otherwise (if
V(S) =0) it is losing. Let W be the set of winning coalitions. A member of W is
a minimal winning coalition if each of its proper subsets is losing. Let MW C be
the set of minimal winning coalitions. The reader will note that any element of G"
can be defined by either W or MW ' in lieu of its characteristic function V. Hence
we use the notation “G = (N, W)" or “G = (N, MW (C')” without ambiguity.

Fix G € G". A player i is a dummy player (in G) if V(S U {:}) = V(5) for all
S € 2V: equivalently, 4 is a dummy player if he is a member of no minimal winning
coalition. If V({i}) = 1 we call i a master player, whileif ¢ ¢ S = V(S) = 0 we call
¢ a veto player. Finally, a dictator is any player who is simultaneously a master
player and a veto player.

Suppose G1 and G are elements of G, with characteristic functions V; and
V5 respectively. Then the join of G; and Ga, denoted G1 V Ga, is the element
of G" with characteristic function max(V7,V3). Dually, the meet of G; and G,
denoted G1AGya, is the element of G" with characteristic function min(Vy, V2). Finally,
if G € G" and 7 is a permutation of N, we define 7G € G" as (N,7V), where
7V (S) = V(r=1(S)) VS € 2V.

Suppose G = (N,V) is a TU game. An ordering is any permutation of the



players in N. Given an ordering R and a player ¢, the predecessors of ¢, denoted
Pg(i), is defined as the set of players who precede 7 in R. The Shapley value ¢(G)
(Shapley, 1953) is the n-vector defined by

GG == x 3 V(Pali) Ui} — V(Pr(i).

orderings R

Hence the Shapley value measures the average marginal worth of the players over all
possible orderings of the players.
Again suppose G = (N, V) is a TU game. The multilinear extension of G

(Owen 1972) is the function f : R" — R given by f(z1,...,2n) = Y geon [Licg @i [ Licge (1—

z;) V(S). Owen proved the following formula, which often simplifies the calculation
of the Shapley value:

tof
¥i(G) = |, o
In words: The Shapley value is the integral of the partial derivative of the multilinear
extension, taken along the line from the origin to (1,...,1).

In the special case of simple games, the Shapley value is called the Shapley—
Shubik power index (SSPI). In this setting, 1;(G) measures the power of player
¢ within the voting system where the set of coalitions able to enforce their will is
precisely W. To get a formula for ¢(G), we consider two cases. First, if G is the
zero-game, then the quantity V(Pg(i) U{i}) — V(Pg(¢)) will be zero for all R and i,
and so ¢¥(G) = (0, ...,0). This is an important case in what follows, because it says
that if no winning coalitions can form then there is no payoff for anyone in terms of
power.

Second, if G is not the zero-game, consider any ordering R. Then there will
be precisely one player, called the swing player of R, for whom V(Pr(:) U {i}) —
V(Pgr(7)) = 1; for all other players this quantity is 0. The SSPI for player ¢ (i =
1,...,m) is simply the probability that player ¢ is a swing player, assuming that all
orderings are equiprobable. Mathematically, we have

G (4,8, ..., t)dt. (1.1)

W@ = S (SI- 1S

| SeW:S/igW

Dubey (1975) axiomatized the SSPI, via the theorem below:

Theorem 1.1: The function h: G"* — R™ satisfies the following axioms:
1) If i is a dummy player in G, then h;(G) = 0. [Dummy]
2) S hi(G) =1 for any G € G". [Efficiency]
3) If m is a permutation of N and i € N, then hy;)(7G) = h;i(G). [Symmetry]
4) For any G1,G4 € G,

h(Gl) + h(Gg) = h(Gl V Gg) + h(Gl A Gg). [Additivity} (1.2)

if and only if h(G) = ¥(G) VG € G™.



Remark 1.2: One may easily extend Dubey’s result to the case where the domain
of h is G™, not G". Besides changing all of the “G”s to “G”s, the only change in the
statement of the theorem is to replace the “1” with “V(N)” in the Efficiency Axiom.

For the multilinear extension in the case of simple games, we have

flormmn) = 3 e [0

Sew jeS  jese

SO

g—a{i = Z H ZC]H 1—xj)— Z H:c] H (1— =)

SeW:S3i jeS:j#i  jese SEW:SFi jeS  jeSc:j#i

= > I =wlla-=+ > I & [[0-2)
SeW:531 jeS:j£i  jese SeW:S3i1  jeS:j#i  jese
and S/i¢W and S/ieW

- > = II a-=.

SEW:SFi jeS  jeScjti

The last two terms cancel out here, so we have

g—i: > T = [T -=p. (1.3)

SeW:83i jeS:j#i  jese
and S/i¢W

2 The Model of Absenteeism and the Absentee Index

We now assume that each player has an independent random probability of being
absent from the game. Formally, we define r; to be the probability that ¢ is “present”
in the game (and so 1 — r; is the probability that he is “absent”). A voting-with-
absenteeism game is thus defined by the quantities (G;r), where G € G" is called
the “underlying simple game" and r is an n-vector of probabilities. The class of all
n-player voting-with-absenteeism games is denoted by A™.

Our goal is to define a power index for these games. To this end, suppose we
are given a voting-with-absenteeism game (G;r), in which G = (N, MWC). For
S € 2N let ps = [[;esmi [licge(1 — 7). Thus pg is the probability that the set
of voters present is precisely S. Next, define G° = (N, MW C?), where MW C® =
{T € MWC : T C S}. G° is the game that occurs if the set of voters present is S;
the only minimal winning coalitions are those from the underlying game which are
completely composed of members of S. Note that if S contains no minimal winning
coalitions, then G® is the zero-game.

Proposition 2.1: Suppose G; = (N, MW (1), Go = (N, MW (), and S € 2V,
Then a) (G1 V G2)® = G7 VG5 and b) (G1 A G2)® = GY AG3.



Proof: Before we start, let us define the notation W (G) to mean the set of winning
coalitions of G, and 2° to be the set of subsets of S.

To prove a), we aim to show that W((G1 V G2)°) = W(G; V G5). First suppose
T € W(GY Vv G5). Without loss of generality T € W(G7). This means that 3X C
T:X e MWC;N2% But X € MWCy implies X is winning in (G; V G2), and
X € 2° further implies that X is winning in (G V G2)°. Hence T € W((G1 V G2)®).
Now suppose T' € W(G1 V G2)°. This implies 3X C T : X € W(G; V Go) N 2°. But
this implies X € W(G1) N 2% or X € W(G2) N 2%, which implies X € W(GY) or
X € W(GS). Thus X € W(G{ v G3), which gives T € W(G{ vV G3).

We prove b) similarly. First suppose T € W(G7 A G5). This means 3X,Y C T :
X eW(G1)N2%and Y € W(Gs) N2°. But then X UY is

1) winning in G; and in Gg, hence winning in G; A Ga;

2) an element of 2%; and

3) a subset of T
Hence T € W((G1 A G2)*).

Finally suppose T € W((G1 A G2)®). This means that 3X C T : X € 25
and is a minimal winning coalition of G; A Ga. But because X € W(G1) N 25 we
have T € W(GY). And, since X € W(G2) N2° we have T € W(G5). Hence
T € W(G{ A G3), proving b). [ |

Finally, suppose ¢ represents the SSPI operator. We define the absentee index
¢ by
$(Gr) = psh(GY).
SeaN

Hence the absentee index is simply the weighted average of SSPI’s over all possible
G®’s, where the weights are the probabilities that the set of players present is 5.2

Example 2.2: Suppose N = {1,2,3}, MWC = {{1},{23}}, and r = (3,1,3).
Then

d(Gsr)

Po(G?) + py (G + oy (G + prayw(GB)
+p{12}¢(G{12}) + P{13}¢(G{13}) + P{23}¢(G{23}) + N (G)

= o*(o,o,0)+o*(1,o,0)+g* 0,0,0) + 0 * (0,0, 0)

(
3 1 11 1 211
+§*(1,0,0)+0*(1,0,0)+§*<O,§,§>+—*<— ——)

8 37676
11 1 1
Co\24712°12)°
Straffin (1988) provides an interesting “probability model” interpretation of the SSPI. Every
player is assumed to favor a bill with probability p and to be opposed with probability 1 — p, where
the value of p is drawn from the uniform distribution on [0, 1]. Then 4, is exactly the probability that
©’s vote (either for or against) will be pivotal. Under this framework one may see that our absentee

index measures the exact same probability, with the proviso that absent players are assumed to be
“opposed” with Probability 1.




Remark 2.3: Note that the sum of the payoffs from ¢ is not 1. Instead it is 5/8,
which happens to be the probability that either the minimal winning coalition {1}
or the minimal winning coalition {23} is present.

Remark 2.4: The reader might wonder why ¢ assigns equal amounts of power to
players 2 and 3, because r; > r3. However, upon further thought we realize that
Player 2 is a dummy unless Player 3 is present, and Player 3 is a dummy unless
Player 2 is present. Hence both players’ ability to exert positive power is dependent
on both being present, so their power is the same.

Remark 2.5: The reader will note that voting-with-absenteeism game (G; (1, ..., 1))
is equivalent to the original game G. We have ¢(G; (1, ...,1)) = ¢(G). For the rest of
the paper, we abbreviate the game (G;(1,...,1)) by (G;1). In addition the notation
(G;1;) (i=1,...,n) will refer to the game in which 7; = 0 but r; =1 for all j # i.

3 An Axiomitization

Now consider the following axioms, which we feel are natural for any solution concept
h: A" — R™.

1) NONNEGATIVITY: For any (G;r) € A", h(G;r) > 0.
2) DUMMY: If ¢ is a dummy player in G, then h;(G;r) =0 Vr.

3) EFFICIENCY: Y " h;(G;r) = Prob,(at least one minimal winning coalition has
all members present).

4) SYMMETRY: If 7 is a permutation of N and i € N, then h. (nG;7r) =
hi(Gsr). [mr € R™ is defined by (77); = r7-1().]

5) ADDITIVITY: For any r, G; € G", G2 € G", h(G1;r) + h(Ga;r) = h(G1 V
Go; ’I") + h(Gl VAN GQ;’I").

6) LINEARITY: For any 4,5 € N, hi(G;r1,...,m,) is a linear (affine) function of
Tj-

The nonnegativity axiom is simply a very weak form of individual rationality,
while the dummy axiom says that players who don’t add worth to any coalition
should get payoff zero. The symmetry axiom says that a player’s payoff does not
depend on his identity, only upon his role in the game. In particular, if players ¢ and
j are “role-substitutes” (i.e., 7; = r; and V(SU{i}) = V(SU{j}) VS € N/i,j), then
7 and j should receive the same payoff.

The efficiency axiom should be contrasted with that for the SSPI in simple games
without absenteeism. In those games the sum of players’ payoffs is to be 1. But here
it is also possible for absenteeism to cause there to be no minimal winning coalitions



of players present. If this happens, everybody loses, because in the resulting zero-
game everyone receives zero. Hence the sum of payoffs for the players should be equal
to the probability that at least one minimal winning coalition of players is present.
In a sense we are modelling the possibility that absenteeism can result in a quorum
not being present, with deleterious effects on everyone in terms of power.?4

Finally, the additivity axiom is the natural extension of the Dubey additivity
axiom (1.2), while the linearity axiom requires the simplest functional form for our
index.

Theorem 3.1:  The unique function h which satisfies azioms 1)-6) is ¢.

Proof: First we show that ¢ does indeed satisfy 1)-6). Nonnegativity clearly follows
from the monotonicity of V. Next, if ¢ is a dummy player in G, then 7 is a dummy
player in G° for all S. Hence 9,(G°) = 0 for all S, which gives ¢;,(G;r) = 0.
For Axiom 3), let us define M; = {S € 2V : 3T € MWC with T C S} and
My={S €2V :AT € MWC with T C S}. Then

¢(Gir) = D pst(G) + > psi(GP).

SeMy SeM,

Now note that 1(G®) = (0, ...,0) for all S € My, and that >I' , ¥;(G®) = 1 for
all § € M. Thus Y7, 6(Gir) = Y0y Ysens, p5i(GS) = Ssepy, ps, which is
precisely the probability that a minimal winning coalition forms.

The symmetry axiom follows simply because the process of forming ¢(G;r) (see
Section 2) is “anonymous," i.e., depends only upon the players’ roles in the game and
not upon their identities.

For the additivity axiom, suppose G1, G2 € G". We have

$(Gi;r) +d(Goir) = D ps¥(GT)+ Y psv(G3) = ) ps(¥(GT) +9(G3))

ScoN SecoN Se2N

= Y ps((GTVG3) +4(G NG3)) (by (1.2))
Se2N

= ) ps(¥((G1V G2)®) +9((G1 A G2)®))  (Prop 2.1)
Se2N

= Y psv((G1VG)%) + Y psu((G1AG)®)
Se2N Se2N

= (Z)(Gl V GQ;T) + gb(Gl A GQ; 7").

3Hence we are assuming that if an issue fails because a quorum of players is not present, it is not
possible to immediately go and recruit the players necessary to make a quorum.

1 Another way to look at the efficiency axiom here is if we view the legislature as meeting repeat-
edly. In this case h;(G) represents i’s “average payoff” from a meeting. Then the axiom says that
the sum of the players’ average payoffs should be equal to the proportion of the time that a quorum
is present.



Finally, for linearity, we note that for any i, we have

¢:(Gir) =Y psti(G%) = D [ e J] (1 —ra) (G,

Se2N Sec2N kS keSe

The terms 1;(G°) don’t have any r;’s in them — so the expression for ¢;(G;r) is
linear in any one particular r;.

We have finally showed that the function ¢ satisfies axioms 1)-6). So, to prove
the theorem all we need to do is show that any h satisfying axioms 1) to 6) is unique.

First, we note that in the zero-game all players are dummies. Hence, the assump-
tion that h satisfies the dummy axiom implies h(Z";7) = (0,...,0) for any r. Thus
h(G;r) is uniquely determined in the case where G = Z".

So now our task is to show h(G;r) is uniquely determined for any G € G" and
any r. To do this, define the game G € G" for T C N as the game in which the
only minimal winning coalition is 7.

Lemma 3.2: If h satisfies Axioms 1)-6), h(Gr;r) is uniquely defined for any 7" and
r.

Proof: Without loss of generality, suppose T' = {1, ...,t}. We start with a simple
case.

Proposition 3.3: If r; =0 for at least one i € T', then h(Gr;r) = (0, ...,0).

Proof: If r;, = 0 for some i € T, then the probability that a minimal winning
coalition will form is zero. Hence the Efficiency Axiom gives Y " | hi(Gr;r) =0, and
then applying Nonnegativity gives h(Gr;r) = (0, ...,0). |

Now consider h(Gr;(1,...,1,re41, ..., ). We know

a) hi(Gr;(1,...,1, 1441, ...,m)) = 0 if ¢ > ¢, because of the dummy axiom;
b) Y hi(Gr; (1, ..., 1,741, ..., 7)) = 1 because of the efficiency axiom; and

¢) hi(Gr; (1,..., 1,741, o..yn)) = hi(Gr; (1, ..., 1, 7441, ...y 7)) fOr @, j < t because i
and j are “role substitutes” (symmetry axiom).

Together, a), b), and ¢) imply that
l . .
hl(GTa (1,...,1,7"t+1,...,7°n)): { 6 le¢T :

We also know from Proposition 3.3 that

RGr; (0,1, 1,741, .y m)) = (0, ..., 0);



hence for any r; the linearity axiom (applied separately for each i € T') gives us

1 ep -
zry ifeeT
hi(Gr; (r1,1, oy L reg1, ooy ) :{ 6 1 1 .

Now again by Proposition 3.3, we have
h(GT; (7’1, 0, 1, ceey 1, Tt41y .-+ rn)) = (0, N 0)
So we may again apply linearity to get

1 P
srirg ifieT
hl(GTa (7"1,7"2, 17 LEES) 1,7"t+1, ---;Tn)) = { 6 172 le ¢ T .

Continuing in this way, we finally arrive at, for any r,

1 e
P17, ey Ty f 2 €T
hi(Gr; (T1y ey Tty T4 1y ooy Tn)) :{ 6 172 n figT

This proves Lemma 3.2. |

Finally, using this last equation and the Additivity axiom repeatedly, we may
determine h(G;r) for any G € G*, much in the manner of Dubey (1975) or Dubey-
Shapley (1979). N

4 A Formula for ¢

It is clear from our description that ¢;(G;r) is just the probability that ¢ is a swing
player, given that a) a random order of the players is chosen and, independently, b)
the predecessors of 7 are those players before ¢ in the ordering who are present (i.e.,
not “absent”). Hence we have the following:

6(Cir) = Z ¢ 1s present, and in a random ordering
ne - , the set of present players who precede i is S/i
SCW:53i
and S/i¢W

The only players present are those in S U T, and, in
= Z Z P a random ordering of those players, those in S/i

SCW:S2i TCSe come first, then ¢, and then the players in T'
and S/i¢W

_ (S| =)y

= 22 | M =m) S
SCW:83i TCSe jeSUT je(suT)e
and S/i¢W

_ | @ T, | USE= DT

= Z Z H "i Z (=1) Hrﬂ ST+ 1Dt
SCW:S2i TCSe jeSUT QC(SUT)e JEQ
and S/i¢W

10



We wish to write the above sum in the form » ¢ yvcge ax [[;esux 7, for some
coefficients {ax}. To do this, for each X we need to collect all of the “[[;cq x 75
terms”. There will be 2/XI such terms, one for each T C X. For each such T, Q will
be equal to X/T, and so ax will be equal to

i/ ST =T
2 O s

Hence,

(S| = DYyt
Gi(Giry= > > > (=) IT
ngg/?vzv XCSeTCX (IS1+ 17! jESUX

Next, for each ' C X with |T| =t (t = 0, ..., |X]), the number of such 7”s is (I)t(\);
hence we can rewrite the sum as

X

. L (2
o@n = 3 S S gty (U T
SCW:S3i XCS¢ t= Ot' |X|_t (|S|+t)! jeSUX
and S/i¢W
X
- XX e sy 11

el % ST Xl
andS/’LQW

| 1X]

_ IXptdsi=u! m (151 +1X]

= Z Z (IS + X! Z( 1) m H "3
SCW/S;S}V XCSe jesSux
and S/i

We can now use a well-known combinatorics identity (see e.g. Lovasz (1993), problem
42h) to evaluate Zgz‘o(—l)m(m:;‘x‘); the result is

XS =t |X\(|S|+|X|_1
¢(Gir) = ) Z o v (1) IT =
SCW:S3i XCSe (151 + X)) XS] = 1)t jesux
and S/i¢W

- Z Z |S|+| | H Ty (4.1)

SCW:S3i XCSe jeSuX
and S/i¢W

Example 4.1: Let us calculate ¢;(G;r) using formula (4.1), in the case where G
is the game from Example 2.1 (N = {1,2,3} and MW C = {{1},{23}}).
Note that in this case {S C W :S > 1and S/1 W} = {{1},{12},{13}}, and so

rirz + (—1)3

r+(-1)! rire + (—1)t

rirars

bi(Gir) = (V'

+ (-1)°

1+1
r1ry + (—1)1

1+1 142

1 1
T1TroT
2+0 241 123
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= r]— —TiTaT3.

3

If r = (1/2,1,1/4) this is equal to 11/24, which agrees with our answer from Example
2.1.

5 A Multilinear Extension Formula for ¢

The formula (4.1) is really not meant to be a “stand-alone” result” — instead its
purpose is to be used to prove a generalization of Owen’s formula (1.1).

Theorem 5.1:  Let (G;r) be a voting-with-absenteeism game, and let f be the mul-
tilinear extension of the simple game G. Then, for any i, we have

Jo 0x;

¢;(Gir) =

(r1t, ..., rpt)ridt

In words: The absentee index (with parameter r) is the integral of the partial deriv-
ative of the multilinear extension, taken along the line from the origin to .

Remark 5.2: It is clear that in the case where r = (1, ...,1) we get Owen’s result
(1.1).

Remark 5.3: Again let us revisit Example 2.1/4.1 (where N = {1,2,3} and
MWC = {{1},{23}}). The multilinear extension is f(z1,z2,23) = x1(1 — z2)(1 —
l‘g)—|—$1$2(1—$3)+$1$3(1—$2)+$2$3(1—$1)+$1$2$3 = X1+T2x3—T1T2X3. So g_a{l =
1—x9x3, and aa—mfl(rlt, rot,r3t) = 1—ror3t?. This in turn gives ‘]61 g—xfl(rlt, rot, r3t)ridt =
_fol r1(1 —rorst?)dt = r1 — %7’17’27'3. This agrees with the formula for ¢, (G;r) that we
found in Example 4.1.

Proof of Theorem 5.1: We start by recalling formula (1.3), namely

Loy T wIa-w

SEW:S3i  jeSijAi  jese
and S/i¢W

At z; =rit (i =1,...,n), this is

g—g‘i(rlt,...,rnt) = Z H T ¢lS1-1 H(l—rjt)

SeW:S34 jeS/i jES”C
and S/i¢W

"We are not aware of any discovery of formula (4.1) in the literature, even for the case where
r=(1,..,1).
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= ¥ I DG N | R

SeW:S3i  \jeS/i XCS¢ JjeX
and S/i¢W

D eIl B | I FLERES
SEW:S3i  XCSe JESUX /i
and S/i¢W

Hence %(rlt, .oy Tpt)75 18 equal to

Z Z (—1)|X‘ H T SIHIXI=1 0 and

SEW:531 XCSe JESUX
and S/i¢W

1 fISIHIX|

1 af
(Tlt,...,r t)’l“idt = (_1)‘X| ri | e
Jy s D W ) e
and S/i¢gW
- 2 e T
SeW:53i XCSe JjESUX
and S/i¢W

= ¢(G;r) from formula (4.1)

6 Substitutes and Complements in Simple Games

Consider the following simple example. Let G be the three-player simple game in
which the set of minimal winning coalitions is {{12}, {13}}. The SSPI for this game
is Y(G) = ¢(G;1) =(2/3,1/6,1/6).

Now lets consider the question of whether or not Player 1 views Player 2’s presence
in the game as a good thing. To do this, we note that if Player 2 were to be absent,
the game would reduce to a two-player game (just Players 1 and 3) in which the
sole MWC is {13}. Hence ¢; would decrease, from 2/3 to 1/2. We say Player 2 is
complementary for Player 1, because Player 2’s absence is bad for Player 1 (and
hence his presence is good for Player 1).

Next, lets examine if Player 1 is complementary for Player 2. If Player 1 is absent,
then the game reduces to a two player game (Players 2 and 3) which is a zero-game.
Hence Player 2’s SSPI” would also decrease, from 1/6 to 0. So Player 1 is also

%The following discussion parallels that in Myerson (1991, Section 9.5).

"When we use the term “SSPI” here, we mean the SSPI in the original 3-person-game and in
the resultant two-person subgame of the original game. We alternatively could have used the term
“absentee index” here, meaning the absentee index of the original 3-person-game with » = (1,1,1)
and with » = (0,1,1).
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complementary for Player 2. Since 1 is complementary for 2 and 2 is complementary
for 1, we say simply that Players 1 and 2 are complements.

Next, we can perform the same analysis for Players 2 and 3. If Player 3 were
absent, Player 2’s SSPI would increase, from 1/6 to 1/2. Likewise, if Player 2 were
absent, ¢3 would increase from % to % Hence Players 2 and 3 are substitutes,
because the presence of one of these players is bad for the other.®

It turns out that if one player is complementary (resp. substitutionary) for an-
other, then the second player is also complementary (resp. substitutionary) for the
first player. Hence every pair of players are either a) substitutes; b) complements;
or ¢) neutrals. [Two players are neutrals if the presence or absence of one of them
does not affect the SSPI for the other.]

In fact, one may show more than this. In the above example, we see that Players
1 and 2’s SSPI both decrease by 1/6 if the other doesn’t show up, while Players 2
and 3’s SSPI both increase by 1/3. Indeed, the “balanced contributions” property of
Myerson (1977, 1980) says that for any pair of players i and j, the change in v; caused
by j’s absence is exactly the same as the change in v; caused by i’s absence. Hence
we can order the pairwise relationships in the game, from “strongest complements”
to “strongest substitutes.” This suggests a natural heirarchy of partnership and
opposition within a legislature, based solely on the voting structure of the game.?

We can state and prove Myerson’s property by using the absenteeism terminology
developed earlier:

Theorem 6.1: Let G be a simple game, and let © and j be any two players in the
game. Suppose further that the multilinear extension of G is given by f(x1,...,xy,) =
> seon 65 [ [reg Tk, for some constants {ag}. Then

5(G1) = (G 1) = ,(G 1) —dy(Gi1l) =— 3 ag—.  (61)
Se2N 534,

[Note: for the notation (G; 1) and (Gj; 1), see Remark 2.5.]
Remark 6.2: The first equality in Theorem 6.1 is just Myerson’s property. The
second equality, which gives the “amount” of the balanced contributions, is new. We

comment here that a similar formula, quantifying the balanced contributions for the
Banzhaf index, is proved in Quint (2003).

Proof: Since ¢; is a linear function of r;, the left hand side of (6.1) is equal to

(0—1)x gf; (1,...,1). Similarly, since ¢, is a linear function of r;, the center of (6.1)

8This meaning of “substitutes” is taken from the theory of supply and demand, where two goods
are called substitutes if the presence of one lowers the demand for the other. Also, in the theory
of two-sided matching, Shapley (1962) called two players “substitutes” if the addition of one player
caused a lowering of the core payoffs of the other.

9In Quint (2003), one of us presents a five-player example in which the ten player-pairs in the
game are quantitatively ranked from “strongest complements" to “strongest substitutes."
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is —%(1, ..., 1). Hence the theorem will be proved if we can show

Ob; _ 09, _ 1
arj( 1)_8—7;(1,...,1)_ > as Ty (6.2)

Se2N:53i,5

To show (6.2), we recall from Theorem 5.1 that ¢, = ]01 ng (r1t, ..., rpt)ridt. Here
of

2] _
oz, = ZSEQN:SBi as HkGS/i Tk, SO Q_‘Z‘C(rlta PR ) - ZSGQN:SBi aS(HkGS/i ’r‘k)ﬂs‘ 1'
This gives

/ > as (Hrk> 9 dt = > ag (Hm) Gk

Se2N: 53¢ kesS Se2N:S3i keS
>From here we obtain
(97']‘ o . |S|’
Se2N:854.5 keS/j

from which finally
0o, 1
a;?(l"“’l) = Y asTg (6.3)
J S€2N:53i,j

>From the symmetric nature of the right hand side of (6.3) with regard to the
variables ¢ and j, we see that we must also have

8¢j 1
1,..,1) = —. 6.4
or; ( PEERD) ) Z ' ‘(LS |S| ( )
Se2N:53i.5
But together (6.3) and (6.4) imply (6.2), and so the theorem is proven. [ |

Definition 6.3: Let G be a simple game, and let ¢ and j be any two players in the
game. Then ¢ and j are

a) substitutes if ¢,(G;1) — ¢;,(G; 1;) = ¢,(G;1) — ¢,;(G;1;) <0

b) complements if ¢,(G; 1) — ¢,(G; 1;) = ¢;(G; 1) — ¢,(G; 1;) > 0; and

¢) neutrals if ¢,(G; 1) — ,(G: 1j) = ¢;(G; 1) — ;(G; 1) = 0

We close this section by stating some simple results concerning substitutes and
complements.

Proposition 6.4: Suppose ¢ is a dummy player or a dictator in G, and let j be any
other player. Then ¢ and j are neutrals.

Proof: Ifiis a dummy player in G, his SSPI is zero, and this doesn’t change if any
other player becomes absent. Similarly, if ¢ is a dictator, his SSPI is one and this
doesn’t change if any other player becomes absent. |
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Remark 6.5: It is not true that ¢, j neutral = either ¢ or j is a dummy. For, con-
sider the game G = (N, MW ) in which N = {1,2,3,4} and MW C = {{12},{13},{24}}.
Then ¥(G) = (1/3,1/3,1/6,1/6). If Player 4 is absent we see that we have a three
player game in which the minimal winning coalitions are {12} and {13}, for which
Player 3’s SSPI is again 1/6. Hence Players 3 and 4 are neutrals in G, even though
neither is a dummy player.

>From the above analysis, we see that in any game with dummy players, each
dummy player is neutral with all other players. In addition, none of the comple-
ment /substitute/ neutral relationships between pairs of non-dummy players would
be altered if we simply remove all dummy players from a game. Hence in what
follows we consider games in which all dummy players have been removed.

Proposition 6.6: Suppose G has no dummy players. Then i is a veto player if and
only if 7 is a complement to every other player.

Proof: First, suppose ¢ is a veto player, and let j be any other player. Since j is
not a dummy, ¢; (G;1) > 0. But if i becomes absent, we are left with a zero-game,
s0 ¢;(G;1;) = 0. Hence i and j are complements.

For the converse, consider any non-veto player ¢. Since i is not a dummy, we
have >, #;(G;1) < 1. Now suppose i becomes absent. The fact that ¢ is not a
veto player means the resulting game is not a zero-game; hence » . ; ¢;(G;1;) = 1.
Hence there must be a player j* for whom ¢;. (G;1) < ¢,+(G; 1;), i.e., 7* and 4 are
substitutes. |

Proposition 6.7: Suppose G has no dummy players. If ¢ is a master player in G,
then ¢ is a substitute with every other player.

Proof: Let j be any other player in the game. Consider the games (G;1) and
(G;1;), and take any ordering R. Suppose 7 is the swing player of R in (G;1). Since
i is a master player, this is equivalent to saying that V(Pg(i¢)) = 0. But absenting
player j will not change this; hence in game (G;1;) we still have V(Pg(7)) = 0, and
so ¢ is again the swing player for R. This in turn implies

$:i(G,1) < ¢4(G; 15). (6.5)

To get strict inequality in (6.5), we need to find at least one ordering for which 7 is
not the swing player in (G;1) but is the swing player in (G;1;). To do this, note
that since j is not a dummy player, there must be an ordering R for which j is the
swing player in G. It must be that ¢ comes after j in R; otherwise master player ¢
would be the swing player. But j’s swinging doesn’t not depend on the the order
of players after j in R; hence there is an ordering R’ in which j swings and ¢ comes
immediately after j. This then is the ordering for which 4 is not the swing player in
(G;1) but is the swing player in (G;1;). Thus (6.5) holds with strict inequality, and
so ¢ and j are substitutes. |
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Remark 6.8: The converse of Proposition 6.7 is not necessarily true. For instance,
consider the n-player simple game in which the winning coalitions are those containing
m or more players (1 < m < n). Then each player is a substitute with all others, yet
no player is a master player.

7 An Absentee Banzhaf Index

We remark here that a similar analysis for an “absentee Banzhaf index” has been
carried out. These results will be presented in another paper (Quint, 2003).
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