
 

 

 

A BEHAVIORAL MODEL OF BARGAINING WITH ENDOGENOUS TYPES 

 

By 

Dilip Abreu and David Pearce 

 

November 2003 

 

 

 

 

 

 

 

 

 

COWLES FOUNDATION DISCUSSION PAPER NO. 1446 

 

 

 
 

 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY 

Box 208281 

New Haven, Connecticut 06520-8281 

 

http://cowles.econ.yale.edu/ 



A Behavioral Model of Bargaining with Endogenous
Types∗

Dilip Abreu
Princeton University

David Pearce
Yale University

Current Version: November 2003

Abstract

We enrich a simple two-person bargaining model by introducing “behavioral
types” who concede more slowly than does the average person in the economy. The
presence of behavioral types profoundly influences the choices of optimizing types.
In equilibrium, concessions are calculated to induce “reciprocity”: a substantial
concession by player i is followed by a period in which j is much more likely to make
a concession than usual. This favors concessions by i that are neither very small
nor large enough to end the bargaining immediately. A key difference from the
traditional method of perturbing a game is that the actions of our behavioral types
are not specified in absolute terms, but relative to the norm in the population.
Thus their behavior is determined endogenously as part of a social equilibrium.

∗We would like to thank Faruk Gul, Ashvin Rajan, Ennio Stacchetti, and Tim VanZandt for very
helpful comments. We thank Alvaro Bustos, Sofronis Clerides, and Sebastian Ludmer for their assis-
tance. We are indebted to Yuliy Sannikov for exceptionally skillful research assistance. The authors
gratefully acknowledge the support of the National Science Foundation and the Russell Sage Fundation.
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1 Introduction

Strategic posturing appears to be an important part of many bargaining situations. Each
party would like to be perceived as someone who is unlikely to yield ground easily. Iron-
ically, the models of Rubinstein (1982) and Stahl (1972) that transformed economists’
views of bargaining have such strong implications that they leave no room for players
to build reputations for being hard bargainers. Shares of the surplus to be divided are
determined completely by individuals’ valuations and time preferences, a particularly
remarkable fact in Rubinstein’s infinite horizon setting. There are no delays before set-
tlement is attained; players understand what their equilibrium shares are, and agree to
them immediately.
Richer models are required to explain the costly negotiations (strikes during labor

disputes being the most obvious example) that we frequently observe in reality. An
extensive literature1 investigates the kinds of bargaining and inefficiencies that can result
from the value of a player’s discount factor (or other taste or technological parameter)
being unknown to her opponent. For example, player A may hold out for a considerable
time for a favorable settlement, hoping to convince player B that A has a low rate of
time preference (and consequently, a strong bargaining position).
Even in settings in which most relevant information about the bargaining environ-

ment is common knowledge, each side is often concerned about how stubborn the oppo-
nent may be, and about how her own strategic posture is perceived by that opponent.
Abreu and Gul (2000) create a role for such considerations by introducing at least a
small possibility that each player might be a compulsive type who will never settle for
less than, say, two-thirds of the surplus. If you can convince your opponent that you are
such a type, it is rational for her to acquiesce to that demand right away. Thus, there
are incentives for rational players to imitate the compulsive types, and this dominates
the nature of the strategic equilibrium.
Perturbing a dynamic game by introducing “crazy types” with some small probabil-

ity is a device pioneered by Kreps and Wilson (1982) and Milgrom and Roberts (1982).
It has powerful consequences for reputation formation in various contexts, including
entry deterrence, Stackelberg leadership, and self-enforcing cooperative agreements (see
Fudenberg (1992) for an authoritative survey). In the bargaining problem, the particular
perturbation chosen by Abreu and Gul yields both equilibrium uniqueness and robust-
ness to the fine details of how the game is specified (such as the exact timing of offers
and counteroffers), while still allowing a major role for strategic posturing.
Along with its many attractions, the “perturbing with crazy types” methodology

has some drawbacks. Manipulating the kind of perturbation introduced can have a big

1See for instance, Chatterjee and Samuelson (1987), Cho (1990), Cramton (1984), Fudenberg, Levine,
and Tirole (1985), Gul and Sonnenschein (1988) and Hendricks, Weiss, and Wilson (1988).
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impact on what equilibria look like, a point made dramatically by Fudenberg, Kreps and
Levine (1988 ). Further, in some cases the behavior of rational players simply mimics
that of the crazy types in a naive way. For example, in Abreu and Gul (2000) a rational
player always makes exactly the same demand each time she makes an offer; there is
no progress made in bargaining until someone gives in completely to the other person’s
monotonous demand.
We propose a different way of perturbing a game to permit strategic posturing. The

“types” introduced are defined by how their behavior differs from the average behavior
an observer sees in equilibrium. Think of one of these types as having a behavioral
bias of a particular kind. This could involve making smaller concessions than people
typically make in each circumstance, or being less likely to make any given concession,
or waiting longer between improvements in offers, and so on. One can interpret such a
type’s decisions as follows: she is guided by commonly observed features of bargaining in
her community or society, but is subject to a behavioral bias that systematically distorts
her own choices in some direction. More generally, beyond the sphere of bargaining, all
of us encounter behavioral biases in different acquaintances: some are unrealistically
sure of themselves, some overly demanding (while thinking of themselves as reasonable),
some unjustifiably pessimistic, and so on. Experimental psychology offers rich support
for the prevalence of a variety of cognitive and behavioral biases.2

Operationally, what we are suggesting here differs from a traditional perturbation
type in that the strategies of our behavioral types are not known until the social equi-
librium (which includes them) is calculated. Whereas a traditional perturbation type’s
actions in each circumstance are specified exogenously, the behavioral type’s action in
any contingency is endogenous, determined by the logic of equilibrium. To an unbound-
edly rational modeler, the distinction would be of little significance: she would instantly
see the implications of the behavioral bias she specified (in relative terms) for the equi-
librium strategy of the perturbation type she might introduce, and therefore she could
just as well introduce that strategy as an exogenous perturbation in the first place. 3

Not all modelers (or even all economists) are unboundedly rational, however. Many
of us prefer to let information and incentives play as full a role as possible in shaping
the predictions of our model. So it is more revealing to see a subtle pattern of strategic
behavior (for both perturbation and rational types) emerge from some simple behavioral
bias, than to have rational behavior merely mirror the exogenous behavior imposed on
perturbation types by the modeler.
It is also more difficult, generally speaking, to work with endogenous perturbations.

All types’ equilibrium strategies are determined simultaneously in a fixed point calcula-

2For an excellent survey see Rabin (1997).
3The game with “endogenous types” might have multiple equilibria, but whichever one interested

our modeler could be replicated in a game with exogenous perturbations.
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tion, and even the most innocent-looking behavioral bias can lead to complex contingent
plans for each type. In this paper we choose the most tractable behavioral bias that
captures the idea that some people are less likely to make a given concession than others,
after any particular negotiation history. The implications of introducing just one of the
endogenous types (for each player) are worked out in a modest example in which two
bargainers are dividing five homogeneous units of a good.
Section 2 presents the example, and Section 3 develops closed-form solutions for

subgames in which the bargainers are only one unit away from agreement (their demands
sum to six). Sections 4 and 5 use these solutions to study equilibrium in the remaining
subgames.
Our interest in this example lies in determining the essential qualitative features of

how bargaining proceeds. The “one unit from agreement” subgames look very much
like the Abreu and Gul problem: they have unique solutions taking the form of wars of
attrition (each side hoping the other will give in soon).
While this waiting game proceeds, player i is indifferent between holding out for a

concession or giving up. Hence, her expected continuation payoff is just what she has
been offered by j, that is, the residual remaining after j’s demand has been met. In-
terestingly, during wars of attrition in subgames where players are more than one unit
away from agreement, expected payoffs do not always have this residual property. When
the sum of players’ demands exceeds the available five units by three, for example, each
player may (depending on their reputations) be randomizing between conceding two
units, and not conceding at all. Each of these choices may be strictly preferable to
conceding all three contested units. If so, when i makes a two-unit concession, j imme-
diately makes a reciprocal concession (of the remaining unit) with positive probability.
Sections 3 and 4 explain reciprocity in some detail.
The literature contains other examples of one concession provoking another via quite

different mechanisms. Fudenberg and Kreps (1987) consider an incomplete information
war of attrition involving one multi-market firm facing independent competitors in each
market. In the two market case, for example, if at some moment the competitor in
market 1 concedes to the multi-market firm, the competitor in market 2 responds by
giving in immediately as well. Whinston (1988) studies multi-plant oligopolists sequen-
tially exiting a shrinking market. One firm may keep two plants open until a competitor
(irreversibly) closes a plant, at which point the first firm promptly closes one of its own
plants (to save costs and enjoy higher prices).
In our example, it turns out that in some circumstances, a one-unit concession will

not be enough to induce reciprocity, but a two-unit concession will. A rough theory of
optimal concession size emerges: player i should concede enough to enjoy a reciprocal
response, but not so much that the other side has little or nothing left to concede in
return. In our example, in many instances there is exactly one size of concession a player
is willing to make, following a particular history. The timing of concessions is stochastic;
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equilibrium determines a unique distribution of concession times.
Our example is just complicated enough to establish that large, infrequent conces-

sions may serve a bargainer better than would a greater number of concessions of minimal
size. In our model, one often observes bargaining terminating as follows: a substantial
period of mutual obstinacy in which no progress is made is interrupted by a noticeable
improvement in 1’s offer, which causes 2 to reduce her demand enough for agreement to
be reached. The story is familiar to us from observing houses being sold, strikes being
settled and family disputes resolving themselves.
Smith and Stacchetti (2001) examine complete information bargaining problems, re-

stricting attention to equilibria with a Markovian flavor. They demonstrate the existence
of a rich class of solutions in which players make random partial concessions in iterated
wars of attrition. Reciprocity does not arise. Nor does it play a role in Bulow and Klem-
perer (1999), where concessions are all-or-none, but iterated wars of attrition occur as
players drop out one by one.
Section 6 considers bargaining over an arbitrary number of units, allowing for a

broader class of behavioral biases. The results here are less concrete, but among other
things we identify sufficient conditions for the phenomenon of reciprocity to arise. We
also indulge in some speculation about further properties of equilibria in these more
general settings. Section 7 concludes.

2 The Model

We consider a two-player, infinite-horizon bargaining game in continuous time. The
players, indexed by i = 1, 2, must agree on how Q indivisible units of a good are to
be allocated between them. Sections 2 and 3 give partial treatments of games with
arbitrary values of Q; to get full solutions, sections 4 and 5 limit themselves to the case
where Q = 5. Section 6 returns to the general case.
The players have initial demands x0i , where Q ≥ x0i ≥ 1. The initial demands (which

we take to be exogenous4) are incompatible, that is, x01 + x02 > Q. We assume that Q,
x01, and x02 are integers. Bargaining proceeds by the players’ making successive integer
reductions to their initial demands. The game ends at the first time t at which the
players’ outstanding demands xi at t satisfy x1+x2 ≤ Q. If two simultaneous concessions
result in demands x1 and x2 that sum to strictly less than Q, an event that happens
with probability zero in equilibrium, the unclaimed surplus is awarded randomly: the
final division is taken to be (x1, Q− x1) or (Q− x2, x2) with equal probability.

4They might be regarded as having been determined in some larger game that resulted in the game
under study; alternatively one may think of Q− xj0 as the “status-quo” payoff to player i were she to
concede completely and immediately to her opponent’s demands.
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In equilibrium, player 2 sometimes wishes to respond as soon as possible to a conces-
sion by player 1 at time t. In continuous time, this is modeled by allowing for two or more
“consecutive” concessions to occur at the same instant, and for player 2 to condition
her choice of concession at t on player 1’s concession at t. One must nonetheless guard
against familiar pitfalls of continuous time modeling, such as the failure of a strategy
profile to determine a unique path. These difficulties do not arise in our model because
players are allowed to adjust their demands in only one direction, that is, downward.
This spares us scenarios such as: at time t, player 1 reduces her demand from 10 to 9.
Player 2 responds immediately by reducing his demand from 10 to 9, 1 counter-responds
(still at time t!) by increasing her demand to 10 once again, 2 switches back to 10, and
so on. With the monotonicity we impose, there could be a flurry of concessions and
counter-concessions at t, but it would end in a finite number of steps. The formulation
of histories and strategies for the bargaining game given in the Appendix avoids any
continuous time pathologies, while affording the players all the flexibility they need.
The two players are essentially engaged in a war of attrition.5 Each is waiting, at any

point in the bargaining game, for the other side to concede either completely (that is,
reduce her demand enough to end the game) or partially. Behavioral types are less likely
to concede in any given time interval than normal types. Our informal story is that a
social tradition has evolved regarding how bargaining proceeds. Everybody knows, for
example, how likely it is that player 1 will reduce her demand by 3 units, in some
specific time interval after a particular history of bargaining. “Normal,” or optimizing
types, maximize expected utility taking this tradition as given (the usual equilibrium
assumption). Behavioral types have also absorbed the social tradition, and think they
are acting in accordance with it, but their behavioral bias leads them to concede with
lower probability in each circumstance than the social average would dictate. Since
the population is composed of both normal and behavioral types, this bias means that
normal types concede more quickly than the population average, while behavioral types
concede more slowly than that average. We do not attempt to model the evolution of
the social tradition, but limit ourselves to examining its eventual outcome.
We turn now to a more precise description of the game, relegating mathematical

details to the Appendix.
Histories and Strategies. Suppose that at time t, player i reduces her demand.

We call this a “concession episode.” If j responds by reducing her demand immediately
(or later), this is another concession episode. Any history of play can be regarded as
a sequence of concession episodes, indexed by their times (and order)6 of occurrence.
Before any concessions take place, we say players are in the “first round” of the concession

5More precisely, we will see that it is an iterated war of attrition, involving many “layers” of successive
concessions.

6Concession times are not always sufficient for determining the order in which concessions occurred,
because of the possibility of j’s responding immediately to a concession by i.
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game; after k − 1 concessions, they are in the kth round.
A strategy for a particular type (normal or behavioral) of player i is a collection of

“local strategies,” one for each round of concession. The local strategy for the normal
type of player 1 for the nth round, for example, specifies, for each n−1 episode history, a
probability measure that governs i’s concession behavior after that history. It will turn
out that in equilibrium, a player will randomize over her concession time (as one expects
in a war of attrition) and sometimes over the amount she concedes.
Behavioral Types. Each player might be an optimizer (a normal type) or a

behavioral type. The initial probability that i is behavioral is z0i . The superscript
emphasizes that player j’s beliefs about i’s type evolve as play proceeds, starting at z0i .
We often refer to zi as i’s reputation.
Player i’s normal type maximizes expected discounted utility using the discount

factor ri > 0. If agreement is reached at time t with final allocation (x1, x2), player i’s
utility for the game is xie−rit. If agreement is never reached, utility for both players is
zero.
We need to specify the bias of the behavioral types in situations in which concessions

are made according to some density function, and alternatively for concessions made with
positive probability at a particular time t (after a given history). We call these respective
cases “continuous concessions” and “lumpy concessions”: these terms do not refer to the
amounts conceded, which must always be discrete. Our formulation is a tractable way
of expressing the idea that behavioral types tend to take longer to concede, on average,
than optimizing types. Some notation will help make this precise.
In a social equilibrium (a bargaining tradition as described earlier), after a sequence

of concession episodes player i’s next concession time (integrating over different possible
concession amounts and both types of player i) will be governed by some probability
distribution which we call Fi (·) . That is, Fi (t) is the probability (from j’s point of view)
that i will lower her demand before or at time t, conditional upon j’s not conceding
by then.7 Implicitly, Fi is a function of the history of concession episodes, but we
suppress this for notational convenience. The distribution F is a weighted average of
the distributions for normal and behavioral types. We denote the latter distributions Gi

and Hi respectively. That is,

Fi = (1− zi)Gi + ziHi

where zi is the posterior probability that player i is behavioral, after the sequence of
concession episodes in question. When the corresponding density functions are well-
defined, they are denoted by f, g and h.

7To account for the possibility that concession never occurs, F is defined on the extended (non-
negative) reals.
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The Behavioral Bias. We require that a behavioral type is less likely to concede
than is the rational type of player i, by imposing the following condition relating the
concession distribution functions Fi, Hi :

1−Hi(t) = (1− Fi(t))
αi (1)

where αi ∈ (0, 1) is a parameter.
We motivate the assumption by noting that when the corresponding density functions

are well defined (1) implies that the conditional densities satisfy:

hi(t)

1−Hi(t)
= αi

fi(t)

1− Fi(t)
= αiλi(t)

where λi(t) is player i’s conditional density (or hazard rate) of concession. That is, the
behavioral type imitates the population average with the downward proportional bias
αi ∈ (0, 1).
We disregard degenerate solutions in which one of the players gives up with certainty

at time 0, whether she is behavioral or not. Such solutions clearly violate the spirit of
the model, which is that behavioral types are less likely to concede than the population
average.
In equilibrium, in a subgame that might be reached by a behavioral player but not by

normal types, the only strategy consistent with our rule for behavioral players involves
their not conceding at all. Their hazard rate of concession, zero, equals α times the
population concession rate (zero, because they are the whole population).
Bayes’ Rule. Let z1 represent 1’s reputation (the probability 2 attributes to 1’s

being a behavioral type) immediately before a concession, in a region where in equilib-
rium, 1’s concession distribution function is smooth. Upon conceding, 1 loses reputation:
the posterior is αz01 . This formula is a natural extension of Bayes’ rule to the continuous
setting: in a small time interval (t; t+∆), the probability (to first order) that player i
concedes is λi (t)∆ (where λi (t) is the conditional probability of concession by player i
at t) and the corresponding probability for a behavioral type is αiλi (t)∆.
Although Bayes’ Rule does not apply, we deflate player i’s reputation by the factor αi

even if she makes a concession that neither her “normal” nor behavioral type is supposed
to make at that time, in a particular equilibrium. In our example (see Section 4), this
yields a unique bargaining equilibrium. This α rule can be generated exactly by viewing
the game as the limit of a sequence of perturbed games in which optimizing players are
subject to transitory payoff shocks that occur with extremely low probability, but which
lead those players to make concessions of arbitrary sizes. In a bargaining equilibrium,
defined formally in the Appendix, rational players update beliefs using Bayes’ Rule (or,
more generally, the α rule discussed in the previous paragraph). After any history they
play a best response to those updated beliefs. Behavioral players imitate rational players
in every contingency, but with the bias governed by equation 1 above.
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Interpretation. If the bargaining game were played only once, without precedent,
a behavioral player would have no chance to observe “population behavior” in a given
situation, before taking action in that contingency herself. Instead, we assume there
is a tradition governing how the game gets played. A behavioral player, rather than
optimizing, imperfectly imitates this tradition, introducing the bias αi described above.
It is natural to ask what happens if behavioral types are more biased against making

large concessions than against making smaller concessions. This generalization of the
model is explored in section 6.
To sum up, the bargaining gameG is defined by the tuple of parameters

³
Q, (x0i , z

0
i , αi, ri)

2
i=1

´
.

It is best viewed as an iterated war of attrition, in which the number of rounds and the
amount conceded at each round are endogenous.

3 Full Concession

We begin by solving an artificial problem in which after some history h, players find
themselves R units away from agreement, but each player has only two options at any
instant: no concession, or full concession. For example, if four units must be conceded
before agreement is reached, we suppress the possibility that either person might make
a concession of size one, two or three. We will refer to such games as full concession
games. Of course, the full concession game coincides with the actual game of interest for
R = 1, but the solutions for R ≥ 2 are building blocks in the construction of equilibria
of more complex subgames.
Although the details differ, the unique equilibria of full concession subgames look

qualitatively just like the unique equilibria of the Abreu-Gul bargaining game.8 The
bargainers play a war of attrition, each gradually becoming more convinced that her
opponent is behavioral, because the latter concede more slowly. There comes a time,
say T, at which if no concession had yet occurred, player 1 would be sure that 2 is a
behavioral type. At that point, if 1 is “normal,” she strictly prefers to concede immedi-
ately.
It is easy to show (see below) that T must also be the time at which player 2 would be

sure player 1 is a behavioral type. That is, in equilibrium, the two posteriors must reach
1 at the same instant. For this to happen, the players’ reputations zi must stand in the
right relationship to each other at the beginning of the subgame. We call the set of pairs
(z1,z2) that satisfy this relationship “the balanced path.” If instead 1’s reputation z1 is
too low relative to z2, for example, 1 must concede to 2 with positive probability at the
beginning of the subgame. The probability is just high enough so that if (in a particular

8The seminal paper by Kreps and Wilson (1982) analyzes both one-sided and two-sided reputation
formation. The equilibrium of the latter case is identical to the equilibrium obtained in Abreu-Gul in
the subgames following the initial choice of types.
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realization) no concession is made, 1’s reputation for being a behavioral type will be
enhanced by the amount needed for z1 and z2 to stand in the required relationship: z1
jumps so that the new posteriors lie on the balanced path. Thereafter, until T , each
side’s concession hazard rate is constant, at a level that makes the opponent indifferent
between conceding and waiting. As compared with the (standard) war of attrition with
complete information (see, for instance, the seminal work of Maynard Smith (1982), and
Hendricks, Weiss and Wilson (1988) for a rigorous development) equilibrium is unique,
and furthermore, the normal type of either player concedes with probability 1 by some
common finite time T rather than persisting indefinitely. All this is similar to the two-
sided reputation formation analysis of Kreps and Wilson (1982).

A balanced path and positive probability concessions to reach it.
Figure 1.

Let xi be the current demand of player i. The proof of Proposition 3.1 develops an
expression for λi, player i’s constant hazard rate of concession:

λi =
rj(Q− xi)

x1 + x2 −Q

The equation of the “balanced path” alluded to above is shown to be:
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z2 = (z1)
(1−α2)λ2
(1−α1)λ1

Thus, for example, if (1− α2)λ2 > (1− α1)λ1 the balanced path is convex and lies
below the diagonal. This case is illustrated in Figure 1. If initial reputations (z01 , z

0
2)

lie at a point like a below the balanced path, 2 must concede immediately with that
probability which increases her reputation to z+2 (see point b, directly above a on the
balanced path) in the event that no concession is observed. Had initial reputations
instead been given by point c, the horizontal jump to d on the balanced path would
have been accomplished by 1’s conceding with positive probability. If she concedes the
game is over. If she is seen not to concede, her reputation is enhanced just enough to
leave the reputation pair on the balanced path.
Proposition 3.1 Consider a full concession game with initial demands x1 and x2

and prior beliefs z1, z2 ∈ (0, 1). Define γ ≡ (1−α2)λ2
(1−α1)λ1 . There is a unique bargaining

equilibrium. In it,

(i) if z2 = (z1)
γ (this is the equation of the balanced path ) there are no mass points

in the players’ strategies; the average hazard rate of concession by player i, λi, is
constant, and posteriors evolve continuously up the balanced path.

(ii) if z2 > (z1)
γ (we say player 1 is “weak”) player 1’s concession distribution function

has a mass point at time 0, i.e., player 1 concedes at 0 with probability ω1 =

1 −
µ

z1

z
1/γ
2

¶ 1
1−α1

. Conversely, if z2 < (z1)
γ , player 2 concedes with probability

ω2 = 1−
³
z2
zγ1

´ 1
1−α2

In both cases, conditional upon no concession at time zero the pair of posteriors lies
on the balanced path and play proceeds as in (i) above.

Proof. See Appendix.

Some intuition for the form of the balanced path may be useful. In the symmetric
case in which interest rates, the αi factors and the initial demands xi, are the same
for the two players, it is no surprise that the formula reduces to z2 = z1. Balance is
maintained as long as the posteriors are equal.
Consider now a simple departure from symmetry: player 2 has offered 1 more than

1 has offered 2, so 1 has a greater incentive to “cash in now” by conceding. To maintain
indifference (and hence, players’ willingness to randomize), 2 will need to concede with
a higher hazard rate than 1. But then 2’s reputation increases faster than 1’s if no
concessions occur. The only way to have z1 and z2 reach 1 at the same time is, therefore,
to start z1 off higher than z2. The same is true if 2 is more patient than 1; again this
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requires 2 to concede faster than 1. One sees that either of these asymmetries makes λ2
greater than λ1, and the formula

z2 = z
(1−α2)λ2
(1−α1)λ1
1 where λi =

rj (Q− xi)

xj − (Q− xi)

quantifies the degree of convexity this implies for the balanced path. Figure 2 illustrates
the case where everything is symmetric except that 1’s demand is 4 whereas 2’s demand
is 2, and hence λ2

λ1
= 3.

Balanced path in the (4, 2) subgame.
Figure 2.

When play evolves along a balanced path in a full concession game, player i’s ex-
pected payoff is fixed at what j has already offered (accepting this payoff is one of the
alternatives amongst which i is indifferent). But at the beginning of the game, if j is
weak, player i’s expected utility is higher than j’s initial offer, because there is a chance
that j will concede to i immediately. This is critical to the understanding of subgames
in which partial concessions are possible, the subject of the next section.
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4 Partial Concessions

Section 6 will use the results of the last section to give partial characterizations of
bargaining equilibria in the model with an arbitrary number of units to be shared. But
first we study an example that is tractable enough to allow an explicit account of what
happens in each subgame.
In the example there are 5 units to be divided, and each player has initially demanded

4. The players have the same interest rates and their behavioral types are the same:
α1 = α2 = α. If we start them off with the same reputations, that is, z01 = z02 = z0, what
happens in equilibrium? If a war of attrition ensues, is it fought one unit at a time? Or
do partial concessions weaken one’s reputation too much to be profitable?
Any subgame in which 1 and 2 are demanding x and y units, respectively, is called

an (x, y) subgame, or sometimes the (x, y) subgame (with the understanding that it is
parameterized by a pair of initial reputations). By the symmetry of the example, there
is no loss of generality in discussing only those (x, y) subgames where x ≥ y.
Section 3 gives solutions for the (3,3) and (4,2) subgames: in these situations, players

are only one step away from agreement, so any concession is a full concession. The other
subgames are much more complicated. Here we investigate the (4,3) subgame. It has
some intriguing features, and allows us in Section 5 to solve the (4,4) subgame, the game
of ultimate interest.
In the (4,3) subgame, players are two units away from agreement. If player i is going

to make a concession, she can either end the game by conceding two units, or concede
only one. If player 1 chooses the latter option, they move to the (3,3) subgame, whereas
if 2 does so, they move to the (4,2) subgame. How the conceder fares in the new subgame
depends upon whether she is weak or strong, which in turn depends on the posterior
beliefs at that point.
Our plan of attack is as follows. For any reputation pair z, a concession of either

one or two units by player 1 leads to a subgame whose equilibrium payoffs Section 3
has already pinned down. Therefore reputation space can be partitioned (simply, as it
turns out) into those points z for which 1 strictly prefers to concede one unit rather than
two in the (4, 3) subgame, those from which the opposite is true, and those from which
either size of concession is equally attractive. The same can be done for player 2. Now
consider, for example, the region in which both players prefer conceding a single unit. It
is clear what kind of mixed strategy equilibrium to look for there: a war of attrition in
that region must involve each player randomizing between not conceding and conceding
one unit. Thus, one first identifies the relevant regions and then analyzes behavior one
region at a time. We turn now to the details.
Let z1 be player 1’s reputation immediately prior to a concession. Recall from the

discussion in Section 2 that 1’s posterior reputation after conceding is scaled
down to αz1. Since 1 is strong in the (3,3) subgame if and only if the posteriors
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lie to the right of the balanced path z2 = z1, 1 will be strong after conceding if in
the pre-concession subgame z2 < αz1. Player 1 strictly prefers conceding one unit
rather than two: after conceding one unit, there is a positive probability of receiving an
immediate reciprocal concession from 2. Had 1 instead conceded two units, she would
have precluded the possibility of any gain over what 2 had already offered. (Notice this
means, in the terminology introduced in the Introduction, that in the war of attrition
before concession, 1’s expected payoff is not residual : it exceeds what 2 has already
offered.) Conversely, if in the pre-concession subgame, z2 > αz01 , 1 would be weak after
conceding a single unit. In this case, there is no gain to 1 to conceding one unit; if she
concedes at all, she concedes both units, ending the game.9

Player 1 concedes two units from point a, but one unit from point c.
Figure 3.

These observations are illustrated in Figure 3. If initial reputations are given by
point a, for example, a one unit concession by 1 would move her to the (3,3) subgame

9Technically, if 1 were to concede one unit in this circumstance, she would then need to concede
again, with positive probability (so that the game would either end, or the posterior pair would jump
onto the balanced path for the (3,3) subgame. This would yield 1 the same expected payoff as conceding
two units immediately. We ignore this possibility because it has no analog in a discrete-time model,
where the delay in making the second concession would be costly.
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with reputation pair b, which is to the left of z2 = z1, so 1 would be weak. Had
the initial reputations been given by point c, post-concession reputations in the (3,3)
subgame would be the paird, and 1 would be strong. This would require a probabilistic
concession by 2, to end the game or allow the posterior pair to jump up to the balanced
path z2 = z1.
The story for player 2’s concession options is similar. From Section 2 we know that

the balanced path for the (4,2) subgame is z2 = z31. Following a one unit concession
from the (4,3) subgame, 2 will be strong if the posteriors lie above that balanced path.
This will occur if and only if her initial reputation z2 satisfies z2 > (1/α)z31.
Thus, z2 = (1/α) z31 is the critical curve dividing reputation space into points from

which 2 would prefer to concede a single unit, from points from which 2 will concede
fully if at all.

Optimal concession regions in the (4, 3) subgame.
Figure 4.

Figure 4 plots the critical curves for player 1 and player 2, respectively. Each of the
four resulting regions is labelled Rmn, where m is the number of units 1 would like to
concede, and n is the number 2 would like to concede. Each region should be viewed as
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an open set. On the boundaries between regions, some player will not strictly prefer one
concession size to the other.

Full concession to reach the balanced path in R22.
Figure 5.

The most straightforward region is R22. Here, players have no interest in conceding
single units, so the full concession analysis of Section 3 applies. The formula

z2 = (z1)
(1−α2)λ2
(1−α1)λ1

yields z2 = z21 as the balanced path in this region. From any point in R22 below the
balanced path (such as e in Figure 5), player 2 must make an immediate probabilistic
concession to either end the game or let the reputation pair jump vertically to the path.
To the left of z2 = z21 in R22, say, at point f in Figure 5, player 1 must make the
probabilistic concession of two units, to restore balance.
In equilibrium a player can concede with positive probability (at an instant) only if

she is conceding fully at that instant; furthermore, all such lumpy concessions can occur
only at the beginning of a subgame.10

10See Lemmas 4.1, 4.2 and 4.3 in the Appendix. Suppose that in equilibrium a player concedes with
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Application of this principle reveals the solutions for two additional subsets of the
parameter space in the (4,3) subgame. Let E be the point of intersection of the two
critical lines z2 = αz1 and z2 = (1/α)z

3
1 . Let g be an arbitrary point in R12, with first

component greater than E (to the right of the vertical dotted line αE in Figure 6). What
happens if players enter the (4,3) subgame with reputation pair g? Either z2 increases
smoothly to 1, or it jumps at some point. The former would require (z1, z2) to enter R22
somewhere (recall that eventually the reputational pair must reach the point (1,1)), at
which point the solution to the region would require an upward jump to the balanced
path z2 = z21 , a contradiction. So by default, there must be a jump in z2. Because we are
in region R12, z2 could only jump because of a positive probability of 2’s conceding fully
at some point, and this point must be the origin of the subgame (by the argument of the
preceding paragraph). But the only way for z2 to evolve smoothly after an initial jump,
is for 2 to concede fully at the origin with the right probability so that the posterior pair
jumps vertically onto the balanced path z2 = z21 (point h in Figure 6).

Full concession from outside OαEα2.
Figure 6.

positive probability at time t. If the concession were partial, she would care about her post-concession
reputation. By waiting an instant and conceding just after t, she would enjoy a discrete jump in
reputation and be in a stronger position after conceding. Even full concessions can occur only at time
t = 0. Otherwise, player i’s opponent would be unwilling to concede in some interval preceding time t,
in which case it is irrational for i to wait until t to concede.
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The same arguments, with the roles of players reversed, shows that in R21 above the
horizontal dotted line (Figure 6), 1 initially concedes fully with enough probability so
that in the event that the game does not end, the reputation pair jumps rightward onto
the balanced path z2 = z21 (from to m, for example).
What of behavior within the box 0αEα2? The analysis for this region is both in-

triguing and intricate; it is carried out in detail in the appendix. Here we simply report
the nature of the unique equilibrium.

Phase diagram in region R11.
Figure 7.

Referring to Figure 7, consider the path from the origin to E labelled gOE. It has
some of the features of a balanced path: starting at any of its points, reputations evolve
smoothly along gOE to E (unless interrupted by a concession of one unit by one party
or the other).
But from any point j above gOE in the interior of R11, play does not jump rightward

onto that path. Rather, it proceeds smoothly along a steeper path that eventually
intersects the upper boundary of R11, unless interrupted by a concession on either side.
These steeper paths are phase lines for the dynamics of the evolution of reputations
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when each side chooses a density of single-unit concessions that makes the other side
willing to randomize. Once play hits the upper boundary, or if it starts there, player 1
randomizes at each moment between no concession and a single-unit concession, while
2 randomizes over conceding 0, 1 or 2 units. Notice that this is the first occasion in our
analysis in which the amount a player is willing to concede is not determined uniquely.
Similarly, from a point such as k in the interior of R11 below gOE, play evolves via

smooth single-unit randomization along a relatively shallow path that intersects the
lower boundary of R11. Along that boundary, player 1 may concede one or two units (or
more) and player 2 randomizes between not conceding or conceding one unit. It is worth
noting that along the boundaries of R11, the weights given to one or two unit concessions
are changing, resulting in non-stationary wars of attrition that are more complicated
than the wars fought elsewhere in the paper.

Figure 8.

At a point such asm in figure 8, player 1 makes an instantaneous one-unit concession
with sufficient probability that, if no concession is observed, the reputation pair jumps
to n on the upper boundary of R11. Analogously, at p in figure 8, player 2 needs to
concede probabilistically, either moving play to the (4, 2) subgame or, in the absence of
concession, causing the reputation pair to jump vertically to q on the lower boundary of
R11.
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5 The Equilibrium Path

Having solved for equilibrium behavior in the subgames where players are only one or two
steps away from agreement, we can finally address what happens in the full bargaining
game. The players begin in the (4,4) subgame, with some initial reputations z01 = z02 .
From this position, each player has four concession options: three units, two units, one
unit, or none at all. Fortunately, at each value of z, the analysis of Section 4 lets us
eliminate two of these possibilities.
We show in the appendix that equilibrium in the (4,4) subgame is unique. Starting

from any initial reputation pair on the diagonal, the unique equilibrium is symmetric
and entails continuous concession by both players at identical rates. Thus in the absence
of concession, posterior reputations evolve smoothly up the diagonal toward the point
(1,1). We focus here on behavior along the equilibrium path. The discussion below char-
acterizes the optimal amount of concession at different points on the diagonal, building
upon the discussion of the (4,3) and (4,2) subgames presented earlier.

Full concession outside O
√
α bE√α.

Figure 9.

Starting from points on the diagonal (see Figure 9) above (
√
α,
√
α), a player (2, for

specificity) does not wish to concede one unit. If she did, her post-concession reputation
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would lie on the z2 = αz1 line, which is below the balanced path for the (4,3) subgame,
namely z2 = z21. Being weak, 2 would have to (probabilistically) concede two more units
right away. Again appealing to the discrete-time analog of our game (recall footnote
10), we require that 2 should have ended the game by conceding three units in the first
place.
Similarly, above (

√
α,
√
α) on the diagonal, 2 does not want to concede two units.

Such a concession would put her in the (4,2) subgame on the z2 = αz1 line, which, to
the right of z1 =

√
α, lies below the balanced path z2 = z31 for that subgame. As before,

2 would be in a weak position, and should have just ended the game with a three-unit
concession.
Above (

√
α,
√
α), then, one is in a “full concession” subgame, and the formulae of

Section 3 apply. The players engage in a war of attrition, each randomizing between
waiting and conceding fully. The overall hazard rate for concession by either player in
this region is given by the formula

λj (t) =
r (Q− xi)

xi − (Q− xj)

that is,

λ1 (t) =
r

3
= λ2 (t)

Below (
√
α,
√
α) on the diagonal, it turns out that conceding two units is always

better than conceding one. First, look at points to the right of z1 = α, but to
the left of z1 =

√
α. Here, if 2 concedes one unit, she goes to the (4,3) subgame with a

reputation that leaves her weak (because z2 = αz1 lies below the balanced path z2 = z31).
If instead she had conceded two units, she would have arrived in the (4,2) subgame in
a strong position: z2 = αz1 lies above z2 = z31 , the balanced path for the subgame.
Thus, conceding two units is superior to making a minimal concession of a single unit
or a maximal concession of three (the latter would end the game without a chance of a
reciprocal concession).
Finally, what if z1 is less than α? If 2 concedes one unit from the (4,4) subgame,

in this region play proceeds upward along the z2 = αz1 line, by means of simultaneous
randomization by the players. Along that path, one of 2’s optimal strategies is to
concede a single unit. Thus, for the purposes of computing her expected utility in this
circumstance, we may suppose she concedes that additional unit immediately. This
reduces her reputation further by a factor of α. In effect, 2 has ended up in the (4,2)
subgame, with a reputation z2 = α2z02. But she could have reached the same subgame
with higher reputation z2 = αz02 , by simply conceding two units (from (4,4)) in the first
place. The analysis of Section 3 tells us this would afford her a higher expected utility.
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Optimal concession regions in the (4, 4) subgame.
Figure 10.

In any region where both players’ optimal concession is two units,

u2 (t) =

Z
3e−rtdF1 (t) + e−rt (1− F1 (t)) [1 + ω1 (z1 (t) , αz2 (t))]

where ω1(x1, x2) = 1−
h

x1
(αx2)1/3

i1/1−α
. Define u1 (t) symmetrically.

The requirement u0i (t) = 0 yields

(1 + ω1) r = λ1 +
λ2
3
(1− ω1) and (1 + ω2) r = λ2 +

λ1
3
(1− ω2)

⇒ λ1 (t) = λ2 (t) =
3 (1 + ω1) r

(4− ω1)
.

The above gives the equilibrium rates of concession for the two players at points on
the diagonal (z,z) smaller than (

√
α,
√
α).

To summarize, let us consider the possible paths that could be followed by two normal
types facing one another, starting with symmetric reputations. For a time interval of
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random duration, nothing happens in the bargaining game, but their reputations move
continuously up the 45◦ line. At some point one player, say 2, will make a concession.
If this happens when reputations are greater than

√
α, the concession will be complete,

and the game ends. This eventuality is represented by the open circle o on the diagonal
in Figure 9. But if the concession occurs before

√
α is reached, 2’s concession will be

two units, and 1 will respond immediately by making a probabilistic concession of one
unit, which either ends the game, or (if no concession is made) puts them on z2 = z31 ,
the balanced path in the (4, 2) subgame.
The above discussion has focussed on behavior along the diagonal. We now turn

to initial reputational pairs which lie off the diagonal. As in the detailed analysis of
the (4,3) subgame we need to identify regions R̂mn, m, n = 1, 2, 3, in the z1, z2 plane in
which players 1 and 2 optimally concede m and n units, respectively. These regions are
diagrammed in Figure 10. Details of the derivation of these regions are provided in the
Appendix. As in the preceding section, each of these regions should be viewed as an
open set.
Equilibrium behavior is summarized in Figures 11(a) & 11(b).

Equilibrium in the (4, 4) subgame.
Figure 11(a).

Normally it is crucial in a war of attrition for each party to randomize in such a way
as to make the other party indifferent between giving in and holding out. With partial
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concessions and reputational concerns, however, it is conceivable that player i random-
izes between conceding and making a partial concession, while over the same interval of
time, player j simply waits rather than randomizing. What does i gain by waiting, that
offsets her impatience and makes her willing to randomize? As time passes without a
concession, i’s reputation improves (while j’s remains constant). Thus she is stronger
in the post-concession subgame when she delays. We refer to this phenomenon of one
player conceding randomly over on interval while the other waits as solo concession.
If player 1 is making a solo concession, the rate at which she concedes is chosen so

that her reputation increases just quickly enough to keep her indifferent about conceding.
This might be fast enough to make player 2 strictly prefer to wait, or instead be too slow
for 2 to be willing to wait for a concession. In the (4, 4) subgame, the locus of points
at which 2 is exactly indifferent about waiting for 1’s solo concession is labeled L∗2 in
Figure 11(a). To the left of L∗2, player 2 won’t wait (so in that region, solo concession
by 1 cannot occur in equilibrium).
From a point like c in Figure 11(a) player 1 concedes lumpily (and by three units,

i.e. fully) so that conditional upon not conceding, her posterior reputation jumps to
d. Thereafter play evolves along the curve (αz2)1/3 until point e. Both players concede
continuously along this path, player 2 conceding one unit and player 1 randomizing
between conceding two and three units at a rate which is calibrated so that reputations
evolve along the boundary between regions R̂31 and R̂21. At point e, solo concession
by player 1 resumes until point f , after which both players concede continuously, and
reputations evolve along the diagonal.
From a point like a, below the diagonal and outside the box 0

√
αÊ
√
α, player 2 con-

cedes lumpily with probability such that conditional upon not conceding, her posterior
reputation jumps to b. Thereafter both players concede continuously and reputations
evolve along the diagonal.
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Equilibrium in the (4, 4) subgame.
Figure 11(b).

Now refer to figure 11(b). From a point like i to the right of L∗2 and left of the
diagonal, solo concession by player 1 continues until point j on the diagonal, after which
play evolves along the diagonal. Finally from a point like k to the right of (αz2)

1/3 and
to the left of L∗2, both players concede continuously (player 1 by two units and player 2
by one unit) and the path of posterior reputations increases monotonically until either
(depending on the precise location of k) the L∗2 boundary or the (αz2)

1/3 boundary is
reached. In the former case we have solo concession by 1 until the diagonal is reached,
and in the latter, evolution of reputation along (αz2)

1/3 to point e, followed by solo
continuous concession by 1 until the diagonal is reached.
Details of these derivations are in the Appendix.

Limit Results and Comparative Statics

Although our interest lies primarily in uncovering patterns of behavior such as reci-
procity and concessions of intermediate size, a few comparative statics exercises shed
some further light on the model. The propositions below focus on the welfare con-
sequences of changes in reputations and degrees of behavioral bias, and explore the
continuity of the model as z approaches 0 and, respectively, as α approaches 0 or 1.
Proofs are provided in the Appendix.
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The first set of results fix parameters r1 = r2 and α1 = α2 and study the dependence
of player i’s expected payoff vi(z1, z2) on the initial reputations z1 and z2. Limit results
as reputations approach zero are of particular interest because they concern payoffs of
slight perturbations of a standard bargaining model without behavioral biases.
If the bargaining equilibrium were efficient, players’ expected payoffs would sum to 5,

the total units available. Even as the initial probability of behavioral types approaches
0, along the main diagonal, Proposition 5.1 says that v1 (z, z) + v2 (z, z) is only 4. We
expect that the discontinuities implicit in propositions 5.1 and 5.7 are associated with
the discrete nature of this bargaining problem. Our conjecture is that one would have
continuity in a model without indivisibilities.

Proposition 5.1 limz→0 vi (z, z) = 2, i = 1, 2

Interestingly, in the neighborhood of (z1, z2) = 0, bargainers with equally matched
reputations result in the most aggregate inefficiency. When z1 and z2 approach zero
along a ray with z1

z2
= a for some positive number a, player 1’s limiting payoff can range

from 2 to 3 depending on the value of a.

Proposition 5.2 Let (zn1 , zn2 )
∞
n=1 be a sequence of reputational pairs. Suppose

lim
n→∞

zn1 = lim
n→∞

zn2 = 0 and lim
n→∞

zn2
zn1
= a ∈ (0,∞) .

Then if a < 1,

lim
n→∞

v1 (z
n
1 , z

n
2 ) ≥

³
3− (a)1/1−α

´
∈ (2, 3) and lim

n→∞
v2 (z

n
1 , z

n
2 ) = 2.

Conversely, if a > 1,

lim
n→∞

v1 (z
n
1 , z

n
2 ) = 2 and lim

n→∞
v2 (z

n
1 , z

n
2 ) ≥

Ã
3−

µ
1

a

¶1/1−α!
.

By way of contrast to Proposition 5.2, one gets continuity in the limit as (z1, z2)
approaches (1, 1). Payoffs become residual, and the expected aggregate inefficiency is 3.

Proposition 5.3 Let (zn1 , zn2 )
∞
n=1 be a sequence of reputational pairs. Suppose lim zni =

1, i = 1, 2. Then limn→∞ vi (z
n
1 , z

n
2 ) = 1. Both players’ payoffs are residual in the limit.

Intuition suggests that each player would like to have a high reputation (for being
behavioral) and that this advantage comes at the expense of her rival. This is indeed
true, with one interesting exception.

Let ˆ̂R21 represent the region of R̂21 which lies below L∗2 and let
ˆ̂
R12 represent the

corresponding region below the diagonal.
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Proposition 5.4 For all (z1, z2) /∈ ˆ̂R21 ∪ ˆ̂R21,

∂vi(z1, z2)

∂zi
≥ 0 i = 1, 2

∂vi(z1, z2)

∂zj
≤ 0 i 6= j, i = 1, 2

Moreover, these inequalities are strict whenever vi(z1, z2) > 1, that is, when player

i’s payoffs are non-residual. For (z1, z2) ∈ ˆ̂R21, ∂v2(z1,z2)
∂z2

> 0 as above, but ∂v2(z1,z2)
∂z1

> 0.

Conversely for (z1, z2) ∈ ˆ̂R12.
Propositions 5.5 and 5.6 fix z1 = z2 = z and α1 = α2 = α, and investigate v̂i (r1, r2),

player i’s expected utility as a function of the two interest rates. When r1 = r2, the
common value of the interest rate does not matter at all for players’ welfare. Students
of wars of attrition will not be surprised; when players are more patient, concessions
simply occur more slowly, so that waiting long enough to receive a concession with a
given probability is just as costly as it would have been in a world with very impatient
players.

Proposition 5.5 The equilibrium payoff function v̂(r, r) is independent of r > 0:

v̂(r, r) =

½
2− ( z

(αz)1/3
)1/(1−α) for z <

√
α

1 for z ≥ √α

Finally fix z1 = z2, r1 = r2 and consider expected payoff functions ṽi (α1, α2). Let
(αn)∞n=1 be a sequence of behavioral bias parameters. If the biases become arbitrarily
severe, the model asymptotically approaches the Abreu-Gul model with exogenous types
who inflexibly demand 4 units each.

Proposition 5.6 For i = 1, 2 if αn → 0, then limn→∞ ṽi (α
n, αn) = 1.

On the other hand, even with arbitrarily mild biases, bargaining equilibrium is
bounded away from efficiency: in the limit the sum of the expected utilities is 4, whereas
5 units were to be shared.

Proposition 5.7 For i = 1, 2 if αn → 1, then ṽi(α
n, αn) = 2.

6 Extensions

A vivid picture of an iterated war of attrition emerges from the bargaining equilibrium
studied in the preceding two sections. Where possible, a player chooses a partial con-
cession that has a good chance of inducing a reciprocal concession. One is prompted to
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ask how much the observed patterns depend on special features of the class of exam-
ple we chose. In particular, in more general settings will equilibria exhibit reciprocity,
non-residual payoffs and concessions of intermediate size?
This section offers some tentative answers to these questions. The model considered

here is exactly like that of Sections 4 and 5 except in two important respects. First,
as in Section 3, the number of units to be divided, Q, can be any positive integer, and
initial demands x01 and x02 are arbitrary integers less than Q, whose sum exceeds Q.
Secondly, while there is still only one behavioral type for each player, the description of
the type allows some sizes of concession to be avoided more than others (relative to the
population average). For example, it is natural to regard a large concession as a more
convincing signal of “normalcy” than a small concession would have been.
Formally i’s behavioral type is now described by a function αi : {1, ..., Q} → (0, 1),

where αi (k) is the factor by which the behavioral type scales down the probability of
conceding k units after a given history, compared to the population average. For the
same reasons as in Section 2, this means that in a war of attrition situation, if player
i with behavioral type αi makes a k-unit concession, her reputation falls from zi to
αi (k) zi. The bargaining game is defined and denoted exactly as in Section 2, except
that player i’s type αi is now a function. The definition of bargaining equilibrium also
extends in an obvious way.
Two non-exhaustive classes of behavioral types are helpful in understanding what

equilibria look like.

Definition 6.1. The behavioral type αi is log superadditive if for all k, ∈ {1, ..., Q} ,
αi (k + ) > αi (k)αi ( ). When the strict inequality above is reversed, αi is said to be
log subadditive.

Recall that in earlier sections αi (k) was constant, a strong case of log superadditivity.
Suppose player i of type αi wants to concede two units. In the log superadditive case,
she is left with a better reputation if she makes one two-unit concession than she would
were she to make two consecutive concessions each of size 1. The opposite is true in
the log subadditive case. This suggests that log subadditivity favors small concessions
over large, and log superadditivity does the opposite. This intuition is appropriate,
but needs some qualification. If αi (1) is sufficiently small, for example, even in the log
subadditive case small concessions are never made: 1 randomizes between not conceding
and conceding fully.
Proposition 6.1 gives a rough sufficient condition for player i’s payoff to be non-

residual, that is, to exceed strictly the amount left over when her opponent’s demand
is subtracted from Q. A longer argument can establish a tighter sufficient condition for
the log subadditive case.

Proposition 6.1 Fix an equilibrium of the bargaining game and consider any (non-
terminal) history h with players’ outstanding demands and reputations given by the
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vector (x1, x2; z1, z2). Then player i’s payoffs are non-residual after h if

zi > (zj)

(1−αki )rj(xj−1)
(1−α1j)ri(Q−xj) where k = (x1 + x2 −Q− 1) .

This condition will not be hard to satisfy, especially in the early stages of the game.
If Q is large (the integer unit of measurement is small) and if initial demands are close to
Q, then xj−1

Q−xj is large. Absent big differences in the ratio of initial reputations or rates of
impatience for the two players, and if αi (k) is not much smaller than αj(1) (conversely
αj(k) not much smaller than αi(1)) then the above inequality and the corresponding one
for player j will be easily satisfied. The proof of the result is immediate: the inequality
is simply the condition for a player to be strictly strong after conceding almost fully (i.e.
fully less one unit).
To say something about reciprocity, we need to restrict attention to what we call

regular Markov equilibria, defined below. Since we have shown nothing about existence
of regular Markov equilibria11 the proposition that follows might be (we don’t think so!)
vacuous.

Definition 6.2. A Markov bargaining equilibrium is a bargaining equilibrium which
in addition satisfies the requirement that players’ behavior after any history h depends
only on the state after that history, where a state is comprised of the players’ outstand-
ing demands x (h) = (x1 (h) , x2 (h)) and reputations z (h) = (z1 (h) , z2 (h)) after that
history.

One expects that in most circumstances, a stronger reputation will increase a bar-
gainer’s expected payoff, ceteris paribus. But it need not do so strictly: even in our
example of Section 4, we saw that one step away from agreement, it makes no difference
to 1 whether she is weak or very weak: either way, her expected payoff is just what 2
has already offered her.

Definition 6.3. (Regularity of Markov bargaining equilibrium) Fix a Markov bar-
gaining equilibrium σ. Then players’ expected payoffs after any history depend only
on the state (x, z) after that history. Denote player i’s payoff vi (x, z). σ is a regular
Markov bargaining equilibrium if vi is strictly increasing in zi when player i’s payoffs are
non-residual (that is, when vi(x, z) > Q− xj) at (x, z).

Proposition 6.2. (Reciprocity) Suppose σ is a regular Markov bargaining equilibrium
and suppose that player i’s payoff is non-residual at some state (x, z). Then if player
i’s type αi is log superadditive, an equilibrium concession by player i (at state (x, z))
must be followed by a reciprocal response by player j. Conversely if player i’s type is

11See Maskin and Tirole (1997) for the problems in establishing existence of Markov perfect equilib-
rium even in relatively simple finite games.
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log subadditive, player i’s equilibrium concession is the minimal size possible (one unit)
and does not necessarily result in a reciprocal response by player j.

7 Conclusion

This paper is concerned with bargaining theory, on the one hand, and the novel device of
endogenous perturbations, on the other. Introducing endogenous types with behavioral
biases stated in simple, relative terms yields a complex pattern of bargaining dynamics.
The resulting equilibrium is an iterated war of attrition. Along the equilibrium path, one
frequently observes an initial war of attrition ending in a partial concession by player
1, say, followed by another war of attrition. In the initial war, player 1 strictly prefers
not to concede fully. His reward for conceding partially is the chance that he may
receive an immediate reciprocal concession from player 2. This is consistent with what
happens in many bilateral bargaining situations: after a long stalemate, a breakthrough
in negotiations occurs in which both sides soften their stances noticeably in a short
period of time.
In the model, as in the real world, bargaining need be neither a long, slow slide

towards mutual agreement, nor an ”all or none” event taking place in one step. While
some concessions, especially very small ones, would weaken a player’s bargaining po-
sition, a carefully measured change in demand may be rewarded. A rough theory of
optimal concession size emerges. In the family of examples we solve fully, players favor
larger concessions when they are at a noticeable reputational disadvantage relative to
their rivals, or when both reputations are high.
We hope that endogenous perturbations will prove a parsimonious way of capturing

behavioral biases in static models. Perhaps their most powerful applications will be
to dynamic models where, as in the bargaining model here, their introduction provides
reputational reasons for rational players to adopt intricate strategies. Beyond bargaining
models, we think that allowing for perceptual biases in repeated games could be a
tractable way of exploring the inefficiencies that naturally accompany ambiguities in
how the gains from cooperation should be shared.
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8 Appendix

The appendix provides some formal definitions and details of arguments left incomplete
or omitted from the text.

Section 2.

Histories
AnM-episode history is a finite sequence of pairs (tn, xn)Mn=1, where the pair (t

n, xn) ∈
(IR+∪∞)×{1, 2, ..., Q}2 represents a concession “episode” at time tn, and the sequence
satisfies the requirements:

(i) tn ≥ tn−1 n = 1, 2, ...,M

(ii) xni ≤ xn−1i i = 1, 2 with strict inequality for at least one i

(iii) xn1 + xn2 > Q n = 1, 2, ...,M − 1

Condition (i) formalizes the idea that the sequence records concessions in their order
of occurrence, but the weak inequality permits one concession at time t to be followed
instantaneously by another concession at time t. Condition (ii) ensures that at least one
player actually makes a concession and Condition (iii) says that concessions cease when
compatibility of demands has been achieved.
We will refer to anM-episode history for which xM1 +x

M
2 ≤ Q or tM =∞ as a terminal

history and as a non-terminal history otherwise. In the event that the game ends with
simultaneous concessions xMi < xM−1i , i = 1, 2, by the two players the final division
is taken to be

¡
xM1 , Q− xM1

¢
or
¡
Q− xM2 , xM2

¢
with equal probability: the unclaimed

surplus is awarded randomly.

Bargaining Equilibrium
Let h be a T -period history in which a concession has just occurred at T . Let zi(h)

denote the posterior probability that player i is behavioral, immediately following the
concession at T . Let (Fi(. | h), κi(. | h)) govern player i’s concession behavior until the
next concession episode. That is, Fi(t | h) is the probability that player i will make
a new concession in the interval [t, t+ T ], conditional upon j not conceding prior to
t + T, and κi(t | h) is a probability distribution over possible reduced demands (i.e.
concessions), conditional upon player i conceding at t+ T . The discussion in Section 2
implies that if a concession occurs at t+ T (and if Fi(. | h) does not have a mass point
at t) then the posterior probability (call it bzi) that player i is behavioral after observing
concession at T + t, is
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bzi = αizi(h)

(1− Fi(t | h))1−αi
(2)

where

(1−Hi(t | h))
(1− Fi(t | h))

zi(h) =
(1− Fi(t | h))αi
(1− Fi(t | h))

zi(h) (3)

is the posterior probability that player i is behavioral just prior to the concession at
T + t. The same definitions apply when h is the null history (h = ∅) in which case
zi(h = ∅) = z0i is the prior probability, at the start of play, that player i is behavioral.
Note that the function Gi(. | h) governing a normal player i’s concession behavior is

pinned down by:

(1− Fi) = zi(1−Hi) + (1− zi)(1−Gi) = zi(1− Fi)
αi + (1− zi)(1−Gi)

where for transparency we have suppressed the dependence of zi, Fi, etc., on h.
A strategy for player i is a collection of functions (Fi(. | h), κi(. | h))h where h ranges

over all possible non-terminal histories of concession episodes. Since, by assumption,
concessions once made cannot be reversed, any particular history cannot have more than
a finite number of concession episodes (precisely, at most, (x01 + x02 −Q− 1) episodes).
The posterior probabilities that the players are behavioral following a concession are
inductively determined via the formulae (2) and (3) depending upon which applies at
the inductive step in question.
Let xi(h) denote player i’s current demand after history h. Let ψi(t, xi | h) denote the

payoff to a normal player i of conceding at time t to the demand xi < xi(h) conditional
upon the history h, and given that subsequent behavior is governed by (Fl, κl)l=1,2. Let
µi(h) denote the product measure defined by (Gi(. | h), κi(. | h)) and

Ai(h) = {(t, xi) | ψi(t, xi | h) = sup
(t0,x0)

ψi(t
0, x0i | h)}

The pair (Fl, κl)l=1,2 define a bargaining equilibrum if for i = 1, 2 and all non-terminal
histories h,support µi(h) ⊆ Ai(h).

Section 3

Proof of Proposition 3.1

As noted in the text the full concession case turns out to be very similar analytically
(despite a quite different definition of type) to the model analyzed in Abreu-Gul (2000)
- hereafter (A-G). The proof below is adapted from the proof of Proposition 1 in A-G. A
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number of properties of equilibrium distribution functions (continuity, strict monotonic-
ity, differentiability), are in turn familiar from previous analyses and applications of wars
of attrition (e.g. Hendricks, Weiss and Wilson (1988)).
Suppose that σ is a bargaining equilibrium of the full concession game. Let Fi be

the average (equilibrium) distribution function over concession times for player i; let Gi

and Hi be the corresponding functions for normal and behavioral types respectively. Let
Ti = inf {t | Gi (t) = 1}. (If Gi (t) < 1 for all t > 0, set Ti =∞.)

Step 1. Ti > 0 for i = 1, 2.
Proof. Suppose Ti = 0. Then, a profitable deviation is for player i to wait a moment,

instantly convince j that she is behavioral for sure, and in consequence be conceded to
immediately by a normal player j.

Steps 2 and 6 are essentially identical to Steps (a)-(e) of the proof of Proposition 1
of AG. Their proofs are omitted.

Step 2. T1 = T2 ≡ T.

Step 3. Fi is continuous at all t ∈ (0, T ]

Step 4. ∀t00 > t0 ≥ 0, if Fi (t
00) > Fi (t

0) then Fj (t
00) > Fj (t

0)

Step 5. For all t0, t00 such that T > t00 > t0 ≥ 0, Fi (t
00) > Fi (t

0) .

Step 6. (0, T ] ⊆ Ai

Let ui(t) denote the expected payoff to player i from conceding at time t. Then

ui(t) =

Z t

0

e−risxidFj(s) + e−rit(1− Fj(t))(Q− xj) (4)

Let Ai = {t | ui (t) = maxs≥0 ui(s)}
Step 7. It follows that ui is constant, hence differentiable, on (0, T ] ,and therefore Fj is
differentiable on this range also. Differentiating ui,

u0i (t) = 0 = e−rtxifj (t)− re−rt (1− Fj (t)) (Q− xj)− e−rtfj (t) (Q− xj) = 0

⇒ fj (t)

1− Fj (t)
=

r (Q− xj)

xi − (Q− xj)
≡ λj, a constant.

The distribution function Fj has a constant hazard rate λj. This is intuitive, and
indeed very familiar from classical analyses of the war of attrition. Integration yields
Fj (t) = 1 − cje

−λjt, where cj ∈ (0, 1] is a constant of integration uniquely determined
by equilibrium conditions. Player j has no mass point at t = 0 if and only if cj = 1.
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By definition ¡
1− z0j

¢
(1−Gj (t)) + z0j (1−Hj (t)) = 1− Fj (t)

where z0j is the prior probability that player j is behavioral at time zero. By equation
(1) which we rewrite below

1−Hj (t) = (1− Fj (t))
αj

To find the Tj at which the normal type of player j will just finish conceding with
probability 1, we solve¡

1− z0j
¢
· 0 + z0j (1− Fj (Tj))

αj = 1− Fj (Tj)

When player j has no mass point at t = 0 (i.e. cj = 1), this directly yields

Tj =
− log zj
(1− αj)λj

As argued above, in equilibrium T1 = T2.
Hence, if there were no mass points at t = 0 in either player’s concession function,

this would imply that the priors satisfy:

z2 = (z1)
(1−α2)λ2
(1−α1)λ1 ≡ zγ1 , where γ =

(1− α2)λ2
(1− α1)λ1

This is the equation of the balanced path. For t > 0, equilibrium requires that the
posteriors (z1, z2) lie on the path. If the priors at t = 0 do not lie on the path, the
normal type of either 1 or 2 must have a mass point in her concession distribution at
t = 0, so that the game either ends with a concession at 0, or the posterior pair jumps
onto the balanced path at 0. It cannot be the case that both players’ normal types have
mass points at 0, or else 1, for example, should wait an instant to see if she receives a
concession from 2.
Since only one of the probabilities z1and z2 can jump at 0, and that can only be

upward, we see that 1 must have the mass point if an increase in z1 is required to reach
the balanced path (and conversely if z2 needs to increase). Specifically, if initial priors are
z1 and z2 and 1 is “weak”, then player 1’s reputation needs to jump to z+1 = (z2)

1/γ > z1,
in order for the pair

¡
z+1 , z

0
2

¢
to lie on the balanced path. By Bayes’ rule, conditional

upon not conceding player 1’s posterior reputation equals (1−H1(0))z1
1−F1(0) . As we noted in

Section 2, 1−H1 (t) = (1− F1 (t))
α1 where F (t) and H (t) are the distribution functions

over concession times for player i (averaged over normal and behavioral types), and for
a behavioral type of player i, respectively. Let ω1 ≡ F1 (0). Then the preceding formula
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yields 1’s posterior reputation (1−ω1)α1z1
1−ω1 , which must equal z+1 = (z2)

1/γ . This equality

implies 1− ω1 =
³

z1
z+1

´1/1−α1
. Hence, 1 concedes at 0 with probability

ω1 = 1−
Ã

z1

(z2)
1/γ

! 1
1−α1

.

Section 4

Consider any subgame which begins in the interior of the box OαEα2. After the
start of the subgame, lumpy concession by either player is impossible. We study paths of
continuous concession in this region, keeping in mind that, in equilibrium, after possibly
an initial jump, play must evolve along paths. The discussion in section 4 implies that
if the priors lie in 0αEα2, then any equilibrium path of posterior probabilities must
exit this region through point E. Any other exit point must result in a jump by the
player who is weak to point E and we have ruled out jumps except at the beginning of
a subgame.

The following lemmas are useful.

Lemma 4.1 After any history h, if player i concedes with positive probability in
equilibrium at some instant t, then player i’s concession must end the game.
Proof. Let zi be player i’s probability of being behavioral after history h, but prior to an
equilibrium concession with positive probability ωi. It follows from (7) that conditional
upon not conceding, player i’s posterior probability of being behavioral is

z+i =
(1− ωi)

αizi
(1− ωi)

> zi > z−i

where z−i is player i’s posterior reputation conditional upon conceding. If player i’s
equilibrium concession is only one unit, and hence does not end the game, player i
cannot be strictly weak in the full concession game that remains. This is a consequence
of the “discrete limit requirement” (see footnote 10). It follows that a profitable deviation
for player i is to wait for a moment ε > 0, and then concede one unit, entering the final
subgame with reputation αz+i > z−i ; since player i is strong in this final subgame this
deviation yields a strictly higher payoff.

Lemma 4.2. If player i concedes in equilibrium with positive probability at some
time t > 0 after the start of the subgame, then player j 6= i concedes with zero probability
in some ε > 0 time interval (t− ε, t] ⊆ (0, t] .
Proof. For small enough > 0, conditional upon both players not conceding prior to
t− , the payoff to j of conceding at t+ exceeds
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ωixj + (1− ωi)[bωi(xj − 1) + (1− bωi)(xj − 2)]−O( ) (5)

where bωi is the probability of lumpy concession immediately following a one unit con-
cession by j at (t+ ).
On the other hand the payoff to j of conceding at any s ∈ (t− , t] is at most

eωi(xj − 1) + (1− eωi)(xj − 2) +O( ) (6)

where eωi satisfies
(1− ωi)(1− bωi)

α

(1− ωi)(1− bωi)
zi =

(1− eωi)
α

(1− eωi)
zi ≡ z+i

The LHS is (up to O( )) the posterior probability that i is behavioral if i does not
concede at t and does not concede at (t+ ) immediately following j’s one unit concession
at (t + ). The RHS is player i’s posterior probability conditional upon not conceding
following upon a one unit concession by j at s ∈ (t − , t]. And z+i is the uniquely
required posterior probability for players i and j to be on this balanced path of the
(full-concession) (xj, xj − 1)− subgame. It is easy to verify that eωi = ωi + bωi(1 − ωi),
and consequently (5) > (6) for small enough > 0.

Lemma 4.3. Positive probability concession can occur in equilibrium only at the
beginning of a subgame.
Proof. Follows directly from the preceding two lemmas.

We first consider region R11, in which both players concede only partially. The analy-
sis of behavior in R11 is quite involved, because concession by player i leads to further
concession by player j and the probability of the latter depends upon both players’ rep-
utations, which are constantly evolving. Hence the trade-off between conceding now and
conceding later is far more complicated than in the full concession case of Section 3.

Consider (z01 , z
0
2) ∈ R11. Let (F1, F2) define an equilibrium. Let zi (t) be player i’s

posterior probability of being behavioral given z0i and Fi, if neither player has conceded
until time t. Then by Bayes’ rule,12

zi (t) =
(1− Fi (t))

αi z0i
1− Fi (t)

(7)

Define τ 11 = inf {t | z(t) /∈ R11}. Let ui (t) be player i’s utility from conceding at t,
given Fj. Let

Ai =

½
t | ui (t) = max

s≥0
ui(s)

¾
.

12Let A be the event that player i does not concede till time t and B be the event that player i is
behavioral. Then P (B|A) = zi(t) =

P (A|B)P (B)
P (A) =

(1−Fi(t))αiz0i
1−Fi(t)
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We argue below that

(i) F1, F2 are strictly increasing on [0, τ 11].

(ii) [0, τ 11] ⊆ Ai, i = 1, 2. It follows that,

(iii) ui is differentiable on [0, τ 11] , i = 1, 2. Consequently,

(iv) Fi is differentiable on [0, τ 11] , i = 1, 2.

Regarding (iv), no qualification for t = 0 is required. In the interior of region R11
full concession is not optimal; this precludes lumpy concession. This is an implication
of the previous Lemmas.

Step 1. F1, F2 are continuous on (0, τ 00) .
Proof. By definition, in R11 the optimal amount of concession is exactly one unit

for both players. The result now follows directly from Lemma 4.1.

Step 2. ui is continuous on (0, τ 00] .
Proof. Recall the expression for ui in the text. Continuity of F1, F2 implies that

the integral term in the expression for ui is continuous in t and that the reputation pair
(z1 (t) , z2 (t)) evolves continuously in t. The result then follows directly.

Steps 3 - 7 establish that both F1 and F2 are strictly increasing on [0, τ 00] .

Step 3. For any t0, t00 such that τ 00 > t00 > t0 ≥ 0, either F1 (t00) > F1 (t
0) or

F2 (t
00) > F2 (t

0) (or both).
Proof. Suppose not and let

t̂ = inf {t | F1 (t) > F1 (t
0) or F2 (t) > F2 (t

0)}

Suppose player i satisfies Fi (t) > Fi (t
0) for all t > t̂. Then by continuity of Fi, zi

¡
t̂
¢
=

zi (t
0) ; absent concession by j until t0, the payoff to player i from conceding at t̂ is

identical to her payoff from conceding at t0 except that the latter payoff is received
earlier. Hence ui (t0) > ui

¡
t̂
¢
., By continuity of ui, ui (t) < ui (t

0) in a neighborhood of
t̂. But this contradicts the optimality of conceding in a neighborhood of t̂, contradicting
Fi (t) > Fi (t

0) for all t > t̂.

Step 4. Suppose for some t̄ > t ≥ 0, F1 (t̄) = F1 (t) and F1 (t) > F1 (t
0) for all t > t̄.

Then (by the previous step) F2 (t00) > F2 (t
0) all t0, t00 such that t̄ > t00 > t0 ≥ t.

Step 5. Let t, t̄ be as defined in Step 4.As in Steps 6 and 7 of the proof of Proposition
3.1, we may argue that
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a) (t, t̄] ⊆ A2 ≡ {t | u2 (t) = maxs≥0 u2 (s)}

b) u2 (·) is maximal, hence constant, hence differentiable on [t, t̄]

c) F2 is therefore differentiable on this interval also; so too is F1, by virtue of its con-
stancy. It follows that z1 (t) , z2 (t) and ω1, the instantaneous probability with
which player 1 concedes to player 2 following a concession of one unit by player 2,
are differentiable in t.

Step 6. For t ≤ t ≤ t̄, (where t, t̄ are as in Step 4) consider

u2 (t) =

Z t

0

2e−rsdF1 (s) +

Z t

t

2e−rsdF1 (s) + e−rt (1− F1 (t)) [1 + ω1 (z1 (t) , αz2 (t))]

Since F1 (t̄) = F1 (t), the second term drops out.
Setting u02 (t) = 0 yields

λ2 (t) =
f2 (t)

1− F2 (t)
=
3 (1 + ω1) r

1− ω1
.

This term yields the rate of continuous solo concession by player 2. We find below
that this rate of concession does not serve to induce player 1 to delay conceding between
t and t̄.
Since

u1 (t) =

Z t

0

3e−rsdF2 (s) +

Z t

t

3e−rsdF2 (s) + e−rt (1− F2 (t)) [2 + ω2 (αz1 (t) , z2 (t))]

Hence,

u01 (t) = e−rt (1− F2 (t)) {λ2 (t) (1− ω2)− r (2 + ω2) + λ1 (t) (1− ω2)− λ2 (t) (1− ω2)}

where the last two terms reflect

dω2
dt

=
∂ω2
∂z1

ż1 + α
∂ω2
∂z2

ż2 = λ1 (t) (1− ω2)− λ2 (t) (1− ω2) .

Since λ1 (t) = 0,

u01 (t) = e−rt (1− F2 (t)) (−r (2 + ω2)) < 0
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Hence, u1 (t̄) < u1 (t), which together with continuity of u1 contradicts F1 (t) > F1 (t)
all t > t̄, as required by the definition of t̄.

Step 7. Repeating Steps 4-6 with the roles of players 1 and 2 interchanged establishes
that F2 is strictly increasing.

Step 8. The preceding steps establish that both F1 and F2 are strictly increasing on
[0, τ 11] . Repeating and adapting by now familiar arguments, it also follows that for
i = 1, 2, Ai = [0, τ 11], ui is constant, hence differentiable on [0, τ 11] and consequently so
also are Fj, j = 1, 2.

Now, if player 2 concedes, she concedes by one unit and is strong in the subgame
(4,2) which results after the concession. If initial reputations in the (4,2) subgame
are (z1, z2) then player 1 concedes to a strong player 2 with probability ω1 (z1, z2) =

1 −
³

z1
(z2)

1/3

´1/1−α
. Player 1’s utility after a concession by 2 is therefore 3 units, her

“residual” payoff in the (4,2) subgame. Player 2’s post-concession utility, on the other
hand, is 2 units if player 1 concedes immediately after player 2 does and 1 unit otherwise,
where the latter is player 2’s payoff along the balanced path of the (4,2) subgame. The
relevant expression is:

2ω1 (z1 (t) , αz2 (t)) + 1 (1− ω1 (z1 (t) , αz2 (t))) = 1 + ω1 (z1 (t) , αz2 (t))

where (z1 (t) , z2 (t)) are the reputations of the two players just prior to the concession
by player 2 and (z1 (t) , αz2 (t)) are the post-concession reputations.
Conversely, if player 1 concedes, she too concedes by one unit and is the strong player

in the resulting (3,3) subgame. Player 2’s utility after a concession by 1 is therefore 2
units and player 1’s is 2 + ω2 (αz1 (t) , z2 (t)) where (z1 (t) , z2 (t)) are pre-concession
reputations and ω2 is the probability with which player 2 concedes to a strong player 1
in the (3,3) subgame

ω2 (z1, z2) = 1−
µ
z2
z1

¶1/1−α
Thus, using various facts noted above

u1 (t) =

Z t

0

3e−rsdF2 (s) + e−rt (1− F2 (t)) [2 + ω2 (αz1 (t) , z2 (t))] t ∈ [0, τ 11]

Furthermore, by (ii) and (iii), u01 (t) = 0, all t ∈ [0, τ 11] .
Note that
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dω1 (z1 (t) , αz2 (t))

dt
= ∂ω1

∂z1
ż1 + α∂ω1

∂z2
· ż2

= −λ1 (1− ω1 (z1 (t) , αz2 (t))) +
λ2
3
(1− ω1 (z1 (t) , αz2 (t))) .

and

dω2 (αz1 (t) , z2 (t))

dt
= (−λ2 + λ1) (1− ω2 (αz1 (t) , z2 (t))) .

Here we have used the differentiability of F1, F2 and the equation

żi (t) = (1− α)λi (t) zi (t) (8)

The latter follows directly by taking logs and differentiating the formula (7)

zi (t) =
(1− Fi (t))

αi z0i
(1− Fi (t))

introduced above.
Differentiating u1 (t) and setting its derivative to zero yields

λ1(t) =
f1 (t)

1− F1 (t)
=
(2 + ω2)r

(1− ω2)

where for simplicity we suppress the arguments of ω2.
Also,

u2 (t) =

Z t

0

2e−rsdF1 (s) + e−rt (1− F1 (t)) [1 + ω1 (z1 (t) , αz2 (t))] .

Setting u02 (t) = 0 for t ∈ [0, τ 11] yields

λ2 (t) =
f2 (t)

1− F2 (t)
=
3 (1 + ω1) r

(1− ω1)
.

We seek to characterize the path traced by (z1 (t) , z2 (t)) , t ∈ [0, τ 11] conditional
upon neither player conceding until τ 11.
By (8) the slope of this path is

dz2 (z1 (t))

dz1
=

ż2 (t)

ż1 (t)
=

λ2 (t) z2 (t)

λ1 (t) z1 (t)
.

For (z1, z2) ∈ {(z1 (t) , z2 (t)) | t ∈ [0, τ 11]} , direct calculation yields
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dz2
dz1

=
3z2z

1
1−α
2

z1z
1

1−α
1

· 2(αz2)
1

3(1−α) − z
1

1−α
1

3(αz1)
1

1−α − z
1

1−α
2

.

The general form of the phase diagram is shown in Figure 7 above.
The salient features are that only a single path reaches point E; this path starts at

the origin. All paths above this one hit the αz1 boundary and have a steeper slope at the
point of intersection; all paths below hit the z31/α boundary and have slope flatter than
the lower boundary at the relevant point of intersection. If the initial priors lie on the
single path from the origin to E (denote this path (OE)) then there is an equilibrium in
which, conditional upon not conceding, the posteriors evolve along this path to point
E and follow the path defined by z2 = z21 in region R22. Recall that the latter path is
the unique “full concession” path in the subgame (4,3). Of course, in region R22, full
concession is uniquely optimal and the full concession path is the relevant one, though
less than full concession is feasible.
What if priors do not lie on (OE)? Then as discussed above, the equilibrium paths

lead outside the region R11 and it is necessary to analyze equilibrium behavior in regions
R21 and R12 respectively.
Recall that in region R21, player 1’s optimal concession is two units and player 2’s is

one unit. Proceeding as in our analysis of R11 above, we may define

τ 21 = inf {t | z (t) /∈ R21} .

Points (i) - (iv) continue to be valid in R21. Now, for a subgame which begins in this
region, absent lumpy concession at t = 0, for t ∈ [0, τ 21]

u1 (t) =

Z t

0

3e−rsdF2 (s) + e−rt2 (1− F2 (t))

u2 (t) =

Z t

0

3e−rsdF1 (t) + e−rt (1− F1 (t)) (1 + ω1 (z1 (t) , αz2 (t)))

Setting u01 (t) = 0 yields

f2 (t)

1− F2 (t)
= λ2 (t) = 2r.

Since player 1’s utility from conceding is always 2 and her utility when player 2 concedes
to her is always 3, the required likelihood ratio λ2 (t) is independent of z.
This is not the case for player 2 and λ1 (t) .

u02 (t) = 0 ⇒ (1 + ω1) r = λ1 (t) +
λ2
3
(1− ω1) ⇒ λ1(t) =

(1 + 5ω1)r

3
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Again we have dz2
dz1
= ż2

ż1
= λ2z2

λ1z1
, which now yields

dz2
dz1

=
2z2

z1

µ
2− 5

3

³
z1

(αz2)1/3

´1/1−α¶
The phase diagram for this case is sketched in Figure 8. We first consider paths

generated by continuous simultaneous concession by both players.
The important point is that no continuous path of simultaneous concession by both

players which starts at some point in R21 different from E, ever reaches point E. Finally
we consider the possibility of lumpy concession and solo continuous concessions by either
player.
Differentiability of ui, Fi etc., i = 1, 2 can be established by repetition or minor

adaptations of the arguments presented to prove the analogous results in R11. In the
same manner we can show that for any t0, t00 such that τ 21 ≥ t00 > t0 ≥ 0, either
F1 (t

00) > F1 (t
0) or F2 (t00) > F2 (t

0). [See Step 3 above.]
We will argue below that both F1 and F2 are strictly increasing in this range.
By Lemmas 4.1 to 4.3 lumpy concession is possible only at the start of a subgame

originating in R21, and such a concession can only be made by player 1. We now consider
continuous behavior after time zero.
Suppose the hypothesis in Step 4 above. Then proceeding as in Steps 5 and 6, for

u1 and u2 as defined in this region,

u01 (t) = e−rt {λ2 (t)− 2r} (1− F2 (t))

It is evident from this expression that solo non-lumpy concession by player 1 (that
is, λ1(t) > 0 and λ2(t) = 0) is impossible: this would require u01(t) = 0, but λ2 (t) = 0
implies u01 (t) < 0.
What about the possibility of solo continuous concession by player 2? The require-

ment that u02 (t) = 0 (implied by the hypothesis that F2 is strictly increasing on [t, t̄] )
yields

(1 + ω1) r =
λ2 (t)

3
(1− ω1)

(Since λ1 (t) = 0 by hypothesis)
Hence u01 (t) > 0 for all t ∈ [t, t̄], which implies that there exists ε > 0 such that

u1 (t) < u1 (t̄) for all t ∈ [t− ε, t] unless t = 0. Thus t > 0 yields a contradiction (that
is, F1 (t− ε) = F1 (t̄), contradicting the definition of t ).
Hence the only possibility for solo concession by player 2 is at the beginning of the

subgame.
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As explained earlier, no reputation paths in R21 associated with continuous conces-
sion by both players lead to point E; it is also now obvious that no other path consisting
of phases of solo and joint mixing will lead to point E, since the only solo mixing possible
is by player 2 and that too only at the beginning of the subgame.

Phase diagram in the region R12.
Figure 12.

For region R12 (see Figure 12) we obtain:

u2 (t) =

Z t

0

2e−rsdF1 (t) + e−rt (1− F1 (t)) 1

If both players concede continuously it is necessary that:

u02 (t) = 0 ⇒ r = λ1 (t)

and

u1 (t) =

Z t

0

4e−rsdF2 (s) + e−rt (1− F2 (t)) (2 + ω2 (αz1 (t) , z2 (t)))

u01 (t) = 0 ⇒ (2 + ω2) r = λ2 (t) + λ1 (t) (1− ω2)
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for all t ∈ [0, τ 12] where τ 12 = inf {t | z(t) /∈ R12} .
All this yields

dz2
dz1

=

z2

µ
3− 2

³
z2
αz1

´1/1−α¶
z1

Finally, the only possibility for solo continuous concession is by Player 1 and must
occur at the beginning of the subgame. As with region R21, appending an initial phase
of solo concession by 1 does not yield a path that reaches point E.

Equilibrium in the (4, 3) subgame.
Figure 13.

To summarize, in the rectangle OαEα2, we have found only one balanced path to
E, the only way to exit the rectangle in equilibrium. But from a point in OαEα2 not
on that path, it is impossible to jump onto the curve OE, because on the path, both
players’ payoffs are nonresidual. (Recall that in equilibrium, a lumpy concession by
player i must involve full concession, and hence, i’s payoff is residual. See Lemma 4.3
above. Her willingness to concede fully implies that her payoff in the non-concession
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eventuality, that is, upon first reaching the balanced path, must also be residual.) We
seem to have painted ourselves into a corner, as it were.
Escape is afforded by one degree of freedom not yet exploited. Notice that along the

upper boundary of R11, player 1 is indifferent between conceding one unit or two units.
If 1 randomizes in the correct (evolving) proportions among conceding zero, one or two
units, while 2 randomizes between conceding one unit or none, reputations can move up
the αz1 curve to E, as required. Similarly, 2 can randomize among three possibilities
because of the neutrality of her concession preferences along the lower boundary of R11,
so play can progress smoothly along that curve as well. These details are worked out
immediately following the summary below.
Together, the two boundaries of R11 and the path fromO to E (denoted bygOE) serve

as a composite balanced path for the region OαEα2. Figure 13 summarizes the solution.
From a point interior to R11 and above the curve OE, for example, reputations move
up the phase line to αz1 and then up αz1 to E. Below the curve OE in R11, reputations
move up the (shallower) phase line to the lower boundary of R11, and then follow that
boundary up to E. From points to the left of R11, 1 must concede probabilistically, either
ending the game or leaving the reputation pair on the upper boundary of R11 (where 1’s
payoff is “residual”). Similarly, from a point below R11, 2 immediately concedes fully,
probabilistically, so that if play continues, the reputation pair has jumped vertically to
the lower boundary of R11.
As noted earlier, starting from points above the line αz1 (resp. below the curve z31/α)

for zi < α, equilibrium entails reputation evolving along αz1 (resp. z31/α) up to point
E. We show that such an evolution is indeed possible.

Moving along the line αz1
Along the line αz1, ω2 (αz1, z2) = 0
Though we will not always be explicit, the reader should bear in mind that, in

general, λ1, λ2, q, etc., are functions of t.

dz2
dz1

= α =
ż2
ż1
=
(1− α)λ2z2
(1− α)λ1z1

=
λ2
λ1

α ⇒ λ1 = λ2

Now, u01 (t) = 0⇒ λ1 = 2r.
Player 2 obtains expected utility k (t) = 2q (t)+3 (1− q(t)) where q (t) is the proba-

bility with which player 1 concedes one unit (conditional upon conceding); she concedes
fully (i.e. two units) with complementary probability.
We can sustain a reputation path along αz1 if and only if we find that u02 (t) = 0

results for some choice of q (t) ∈ [0, 1] .
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We confirm that this is indeed the case.

u02 (t) = ke−rtf1 (t)− e−rtf1 (t) (1 + ω1)− re−rt (1− F1 (t)) (1 + ω1)

+e−rt (1− F1 (t))

∙
−λ1 (1− ω1) +

λ2
3
(1− ω1)

¸
Substituting λ1 = λ2 = 2r, obtain

0 = e−rt (1− F1 (t))

∙
2rk − 2r (1 + ω1)− r (1 + ω1)− 2r (1− ω1) +

2r

3
(1− ω1)

¸
3 (1 + ω1) +

4

3
(1− ω1) = 2k

13 + 5ω1 = 6k

ω1 ∈ [0, 1]⇔ k ∈ [2, 3]⇔ q ∈ (0, 1) , as required.

Moving along the curve z31
α

dz2
dz1

=
3z21
α
=

z02
z01
=

λ2z2
λ1z1

=
λ2z

3
1

λ1z1α
⇒ λ2 = 3λ1

But u02 (t) = 0⇒ λ2 =
3(1+ω1)r
(1−ω1)

Along z2 =
z31
α
, ω1 (z1, αz2) = 0. Hence λ2 = 3r and λ1 = r.

Now,

u01 (t) = e−rt (1− F2 (t)) {λ2h− r (2 + ω2)− λ2 (2 = ω2) + λ1 (1− ω2)− λ2 (1− ω2)} ,

where h = 3q+4 (1− q) is player 1’s expected payoff when player 2 randomizes between
conceding one and two units with probabilities q and (1− q), respectively.
We need to confirm that h ∈ [3, 4], where h satisfies

3h− 2− ω2 − 6 + 1− ω2 − 3 = 0
3h = 10 + 2ω2

ω2 ∈ [0, 1]⇒ h ∈
∙
3
1

3
, 4

¸
⇔ q ∈ [0, 1] , as required.

Section 5
It is easiest to identify regions in which player i concedes fully in equilibrium. As

noted in Lemma 4.1, (probabilistically) lumpy concessions must be full concessions; we
focus here on continuous concessions. Consider player 2 and suppose z2 <

z31
α
. Then even
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if player 2 concedes two units her post-concession reputation αz2 < z31 is such that she
is (strictly) ‘weak’ in the resultant (4,2) subgame. Were player 2 to concede one unit,
then the two players would find themselves in region R12 of the (4,3) subgame i.e. a
region in which player 2 concedes fully, and in which her payoffs are residual. As argued
in footnote 10, player 2 will concede fully in such a situation. An analogous argument
applies to player 1 when

z1 <
z32
α

i.e. if z2 > (αz1)
1/3 .

The preceding argument may be ‘reversed’; for z2 >
z31
α
it is not optimal for player

2 to concede fully. Along the diagonal we have already noted that player 2’s optimal
concession is two units. Fixing z1 as z2 increases from the diagonal, it may become
optimal for player 2 to concede only one unit. From our preceding analysis of the (4,3)
and (4,2) subgames there is no difficulty, in principle, in computing player two’s payoffs
from conceding two and one units respectively and hence identifying the optimal amount
of concession.
We seek to derive the boundary L2, such that above L2, player 2’s optimal concession

is one unit only and below L2 her optimal concession exceeds one unit.
Consider player 2, and suppose z2 >

z31
α
. If player 2 concedes two units, then her

post-concession payoff is

2−
Ã

z1

(αz2)
1/3

!1/(1−α)
(9)

[Recall that if a player with prior reputation z−1 concedes lumpily with probability

ω1 = 1 −
³
z−

z+

´1/1−α
(where z+ > z−) then her posterior reputation, conditional upon

not conceding, increases precisely to z+1 . Player 2’s post-concession reputation is αz2;
the balanced path in the (4,2) subgame is x2 = x31, so player 1’s reputation needs to
jump from z1 to (αz2)

1/3. We may conveniently represent this sequence as follows:

(z1, z2) 2 ↓ (z1, αz2) 1 →
³
(αz2)

1/3, αz2
´
.]

Now we compute player 2’s payoffs from conceding one unit. There are two subcases
to consider. If z2 > α, then the posterior reputations in the post-concession (4,2)
subgame are in a region where it is optimal for both players to concede fully, the relevant
balanced path being x2 = x21. Thus, (z1, z2) 2 ↓ (z1, αz2) 1 →

³
(αz2)

1/2 , αz2
´
, yielding

player 2 a utility of

3− 2
Ã

z1

(αz2)
1/2

!1/(1−α)
(10)
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Equating (9) and (10) yields the expression for the boundary L2 in the region
where z2 > α. That is,

z1 =

⎛⎜⎜⎝ 1

2

µ³
1

(αz2)
1/2

´1/(1−α)
−
³

1

(αz2)
1/3

´1/(1−α)¶
⎞⎟⎟⎠
1−α

When z2 < α, following player 1’s concession, player 2 concedes lumpily, but condi-
tional upon not conceding in the resultant (4,3) subgame, player 2’s optimal concession
is only one unit, to which player 1 in turn responds with a lumpy concession of one unit.
The sequence is as follows:

(z1, z2) 2 ↓ (z1, αz2) 1 → (z2, αz2) 2 ↓
¡
z2, α

2z2
¢
1 →

³¡
α2z2

¢1/3
, α2z2

´
and player 2’s expected utility may be computed to be

3ω̂1 + (1− ω̂1) (2ω̃1 + (1− ω̃1)) = 1 + 2ω̂ + ω̃ − ω̂ω̃

= 3− 2
³
z1
z2

´1/(1−α)
−
¡
z2
α

¢2/(3−3α)
,

(11)

where ω̂1 (resp. ω̃1) is the lumpy probability with which player 1 concedes after player
2’s first (resp. second) concession.
Equating (9) and (11) yields the expression for L2 when z2 < α:

z1 =

⎛⎜⎝ 1³
1
z2

´1/(1−α)
+
³

1

(α2z2)
1/3

´1/(1−α)
−
³

1

(αz2)
1/3

´1/(1−α)
⎞⎟⎠
1−α

Having identified the regions R̂mn, we need to verify that equilibrium behavior within
these regions is as we have described in Figure 11.
Consider the region R̂33 and the point (

√
α,
√
α) . For any (z1, z2) ∈ R̂33 and below the

diagonal, the unique equilibrium entails player 2 conceding lumpily so that conditional
upon not conceding, her reputation jumps upward to the balanced path z2 = z1. This
fact precludes smooth entry into region R̂33 from strictly below. An analogous argument
precludes smooth entry from the region strictly to the left of R̂33. This implies that
unique behavior outside the box 0

√
αÊ
√
α is as diagrammed in Figure 11.

This argument is analogous to that in section 4 (the (4,3) subgame) for the area
outside the box 0αEα2.
Now consider behavior within the box 0

√
αÊ
√
α. We need to derive the line L∗2

(mentioned in Section 5) such that along L∗2, solo and incentive compatible concession
by player 1 (that is, λ2(t) = 0 and λ1(t) > 0 such that u01(t) = 0) which continues up
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to the diagonal is just incentive compatible for player 2. To the left of this line player
2 strictly prefers to concede right away rather than await continuous solo concession by
player 1, and to then subsequently concede (in the probabilistic event that player 1 does
not concede during her period of solo concession) when player 1’s posterior reputation
equals z2 and the reputational pair reaches the diagonal. To the right of this line player
2 strictly prefers to wait. It may be directly checked that solo incentive compatible
concession by player 1 yields u02 > 0 in R̂22 and u02 < 0 in R̂21. It follows that L∗2 lies
strictly to the left of L2 (See Figure 11). Explicit calculations (we are grateful to Yuliy
Sannikov for performing these) reveal that L∗2 starts at the origin, is continuous and
strictly increasing, and lies to the right of the boundary (αz1)1/3 until L∗2 terminates at
point e on (αz1)1/3, where e lies strictly to the left and below point H, the corresponding
point of intersection of L2 with (αz1)1/3.

We now complete the argument that the behavior described in the text is indeed
equilibrium behavior and turn subsequently to the issue of uniqueness.
The important missing element is establishing that movement along the OH segment

of the (αz1)
1/3 curve is indeed possible. OH lies on the border of R̂31 and R̂21. Hence,

along OH player 1 is indifferent between conceding two and three units; her payoffs are
therefore residual. Her utility as a function of t is

u1 (t) =

Z t

0

2e−rsdF2 (s) + e−rt (1− F2 (t))

Setting u01 (t) = 0 yields

λ2 = r independently of t (12)

On the other hand,

u2 (t) =

Z t

0

ke−rsdF1 (s) + e−rt (1− F1 (t)) (1 + 2ω1)

where k ∈ [3, 4], taking account of the fact that player 1 randomizes between conceding
two and three units, respectively.
Hence,

u02 (t) = e−rt (1− F1 (t))

½
kλ1 − r (1 + 2ω1)− λ1 (1 + 2ω1) + 2 (1− ω1)

µ
−λ1 +

λ2
2

¶¾
Setting u02 (t) = 0 yields

(k − 3)λ1 − r (1 + 2ω1) + λ2 − λ2ω1 = 0 (13)
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The slope of the equilibrium path (z1(t), z2(t)) is

dz2
dz1

¯̄̄̄
z(t)

=
ż2 (t)

ż1 (t)
=
(1− α)λ2 (t) z2 (t)

(1− α)λ1 (t) z1 (t)
=

λ2z2
λ1z1

On the other hand the slope of the OH curve, z2 = (αz1)
1/3, is

dz2
dz1

=
1

3
(αz1)

−2/3 α

Equating these slopes and substituting λ2 = r from (12) above yields

λ1 = 3r

Substituting into (13) and simplifying yields

(k − 3) = ω1,

which in turn implies k ∈ [3, 4]. Hence appropriate randomization by player 1 leads to
an equilibrium path which indeed evolves along OH as required.
Thus, we have established that starting from any reputational pair, there exists an

equilibrium as described in the text.
Now we argue that the paths described are unique.
We know that

i. Outside the box 0
√
αÊ
√
α, unique equilibrium behavior entails the ‘weak’ player

conceding lumpily so that conditional upon non-concession the reputational pair
jumps to the diagonal and thereafter the posteriors evolve along the diagonal with
both players conceding three units (i.e. fully) at identical continuous rates.

ii. Lumpy concession can only occur at the beginning of an equilibrium path (Lemma
4.3).

iii. Hence any equilibrium path which originates within the box can only exit the box
through the point Ê.

We will present the rest of the argument for initial reputational pairs which lie above
the diagonal. A symmetric analysis applies for starting points below the diagonal.
From strictly within the box, exit via Ê can only occur in the following ways:

1) along the diagonal
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2) from within the region R̂22, excluding the diagonal itself

3) along the border of R̂32 and R̂22
³
HÊ

´
or along the corresponding border

³
R̂23 ∩ R̂22

´
below the diagonal.

4) from strictly within the region R̂32 (or R̂23)

We will argue that the last three are impossible.

(2) is impossible. As argued in the text, in R̂22,

λ1 = r
(1 + ω1)− (1 + ω2) (1− ω1) /3

1− (1− ω1) (1− ω2) /9
,

where

ω1 = 1−
Ã

z1

(αz2)
1/3

!1/(1−α)
, andλ2 and ω2 are defined symmetrically.

The slope of the equilibrium path is

dz2
dz1

=
λ2z2
λ1z1

.

Let z2 = bz1 and

ϕ (b) =
dz2
dz1

|z2=bz1

Then clearly ϕ (1) = 1. Tedious calculations reveal that

ϕ0 (b) |b=1 > 1

Hence Ê and indeed any point on the diagonal cannot be approached via a path of
continuous concessions by both players in R̂22.

(3) is impossible.
Recall that HÊ lies on the border of the regions R̂32 and R̂22.

u1 (t) =

Z t

0

3e−rsdF2(s) + e−rt(1− F2(t))

Hence u01 (t) = 0 yields λ2 =
r
2
.

Along HÊ dz2
dz1
= 1

3
(αz1)

−2/3 α
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Equating the above with the slope of the equilibrium path dz2
dz1
= λ2z2

λ1z1
yields

λ1 =
3r

2

Now

u2 (t) =

Z t

0

ke−rsdF1(s) + e−rt(1− F1(t))(1 + ω1),

where k ∈ [3, 4], since player 1 may randomize between conceding 2 and 3 units respec-
tively.
Hence u02 (t) = 0 yields

kλ1 − r (1 + ω1)− λ1 (1 + ω1) + (1− ω)−
µ
λ1 +

λ2
3

¶
= 0

Substituting λ1 = 3r
2
, λ2 =

r
2
yields

3k =
23

3
+
7

3
ω1 g (k − 3) = 7ω1 − 4 ⇒ 7ω1 ≥ 4 ω1 ≥

4

7

But ω1 → 0 as z1 →
√
α, i.e. near Ê.

Thus, close to Ê, equilibrium movement along HÊ is impossible: for the equations
to be satisfied, player 1 would need to concede three units with negative probability.

(4) is impossible.
Along (αz1)

1/3, dz2
dz1

= 1
3
(αz1)

−2/3 α. Near Ê this expression approximately equals
dz2
dz1
|z1=√α = 1/3. On the other hand, in R̂32 the vector field has slope

dz2
dz1

=
z2
z1

6

12− 7
³

z1
(αz2)

1/3

´1/1−α
Near Ê this expression approximately equals

6

12− 7
µ
(α1/2)

2/3

α1/3

¶1/1−α = 6

5
> 1

This implies that approaching Ê from R̂32 is impossible, since this would entail an
equilibrium path with slope not greater than 1/3 near Ê.

Hence the final approach to Ê must be along the diagonal. It remains to argue that
starting from any reputational pair there is a unique way to make this final approach. In
particular, we need to rule out possibilities illustrated in Figure 14 below. The bold line
indicates the unique equilibrium evolution of reputation and the dotted lines, equilibrium
possibilities that we need to rule out.
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(a) (b)

(c)

Equilibrium possibilities that need to be ruled out in the (4, 4) subgame.
Figure 14.

Figure 14: Equilibrium possibilities that need to be ruled out in the (4, 4) subgame.

53



These issues are addressed in points (5)-(9) below.

(5) From an initial point like c in Figure 11, strictly inside the box and above the
curve (αz1)1/3, equilibrium must entail concession by 1 with positive probability so that
conditional upon no concession, player 1’s reputation jumps from c to d as indicated.
This is necessary because in R̂31 and R̂32, continuous solo concession by player 1 is
impossible (1’s payoffs are residual) and simultaneous continuous concession yields

dz2
dz1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z2
z1

1
3(1−( z1

(αz2)
1/2

)1/(1−α))
in R̂31 when z2 > α

z2
z1

−3

(2(
z1
z2
)1/(1−α)−1)(2( z

2/3
2

α2/3
)1/(1−α)−1)

in R̂31 when z2 < α

z2
z1

6
12−7( z1

(αz2)
1/3

)1/(1−α)
in R̂32

which in all cases is strictly greater than the slope of (αz1)1/3 for (z1, z2) near enough
the curve (αz1)1/3.
It follows that once an equilibrium path (of reputational pairs) lies on or below

(αz1)
1/3, it can never go strictly above this curve (See point (ii) above).

(6) Consider the subregion of R̂21 defined by (αz1)1/3 on the left and L∗2 on the right.
In this region both players must concede continuously. Furthermore, setting λ1 = 0,
u02 = 0 yields λ2 such that u

0
1 < 0. On the other hand, λ2 = 0, u02 = 0 yields λ1 such

that u02 < 0. The only possibility is simultaneous continuous concession.
This yields unique equilibrium paths from any initial point which evolve to either

the left or right boundaries of this region. It is easy to check that in R̂21,

dz2
dz1

=
z2
z1
·
3( (αz2)

1/2

z1
)1/(1−α) − 2

6( (αz1)
1/3

z2
)1/(1−α) − 3

when z2 > α and

dz2
dz1

=
z2
z1
·

µ
3−

³
z1
z2

´1/(1−α)
−
³

z1
(α2z2)1/3

´1/(1−α)¶
3

µ
2
³
(αz1)1/3

z2

´1/(1−α)
− 1
¶µ

(z1
z2
)1/(1−α) + 1/3(

z1z
1/3
2

α2/3
)1/(1−α)

¶
when z2 < α.
This slope is steeper than the slope of (αz1)1/3 in a neighborhood of (αz1)1/3 contained

in R̂21.
This means that starting from a point on (αz1)1/3 (and below c), the only equilibrium

possibility is evolution along (αz1)1/3 to point e. Furthermore it is the case that dz2
dz1
is

flatter than L∗2 in a neighborhood of L
∗
2. This implies that L

∗
2 cannot be approached

from below, along an equilibrium path.
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(7) The final approach to the diagonal must be via solo continuous concession by
1, since by the proof of (2) above, dz2/dz1 > 1 for simultaneous concession in a neigh-
borhood of the diagonal. That is, the diagonal cannot be approached along a path of
simultaneous concession in R̂22. At any point along the final approach (i.e., the final
horizontal segment) to the diagonal and strictly to the right of L∗2, player 2 obtains
strictly higher utility from the equilibrium path than from conceding right away. This
precludes the final approach from being preceded by a segment of continuous concession,
unless the final horizontal segment begins on L∗2.
(8) No point on L∗2 can be approached from below L∗2. We have already noted (see

(6) above) that simultaneous concession in R̂21 yields a vector field which is flatter than
L∗2. On the other hand, solo concession by 2 is precluded since

u01 = e−rt(1− F2(t))(2λ2 − r(1 + ω2)− λ2(1 + ω2) + (1− ω2)(−λ2 + λ1/3)),

which is strictly negative when λ1 = 0.
(9) Hence from a point like i to the right of L∗2 and above the diagonal, the only

possibility is solo concession by 1 until the diagonal is reached. 2

Proof of Proposition 5.1. Recall that for (z, z) with z <
√
α, players optimally

concede two units in equilibrium. Player 2’s equilibrium expected payoff is:

v2(z, z) = 1 + ω1(z, αz) = 2−
µ

z

(αz)1/3

¶ 1
1−α

Clearly, limz→0 v2(z, z) = 2.

Proof of Proposition 5.2. Suppose limn→∞
zn2
zn1
= a > 1. Then for large n, the

reputational pair (zn1 , z
n
2 ) lies in region R̂21 of the (4, 4) subgame. We recall the players’

payoffs in this region from the analysis of Section 5 in this appendix.

Player 1’s payoffs in this region are u1 = 1 + ω2 when ω2 = 1 −
³

z
(αz)1/3

´ 1
1−α
. It

follows that u1 → 1 as zn2
zn1
→ a > 1, zni → 0, i = 1, 2.

If a is less than the slope of the line L∗2 at the origin, then

u2 = 1 + 2ω̂1 + ω̃1 − ω̂1ω̃1,

where

ω̂1 = 1−
µ
z1
z2

¶ 1
1−α

and

ω̃1 = 1−
³z2
α

´ 2
3(1−α)
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It follows that u2 → 3−
¡
1
α

¢ 1
1−α .

Finally, if α exceeds the slope of L∗2 at the origin, then

u2 ≥ 1 + 2ω̂1 + ω̃1 − ω̂1ω̃1

and the required inequality follows directly.

Proof of Proposition 5.3. For large n the reputational pair lies in the region R̂22
(see Figures 10 and 11), in which both players’ payoffs are residual: they play a full
concession game with balanced path given by the diagonal. If player 1 is weak then

u1 = 1 and u2 = 4ω1 + (1 − ω1), where ω1 = 1 −
³
z1
z2

´ 1
1−α

. Since ω1 → 0, the result
follows.

Proof of Proposition 5.4. These results may be directly verified by examining the
players’ payoff functions in the various regions.
Outside 0

√
αÊ
√
α, the result is obvious: At a point like a, player 2’s payoff is residual

and player 1’s payoff equals 4ω̄2+(1−ω̄2)·1, where ω2 = 1−
³
z2
z1

´1/(1−α)
is the probability

with which player 2 concedes immediately. The latter probability is obviously increasing
in z1 and decreasing in z2. A symmetric argument applies to points outside the box and
above the diagonal.
Now consider (z1, z2) ∈ 0

√
αÊ
√
α. The above discussion clarifies that from all points

like c at which one player concedes lumpily (hence has residual payoffs), the other player’s
payoff (in the case of point c, player 2) is increasing in her own reputation and decreasing
in the other players.
For points in R̂21 to the left of L∗2, the equilibrium path entails simultaneous conces-

sion by both players. Player 1’s payoff is v1(z1, z2) = 1 + ω2, where

ω2 = 1−
µ

z2
(αz1)1/3

¶1/(1−α)
.

Player 2’s payoff is

⎧⎪⎨⎪⎩
v2(z1, z2) = 1 + 2ω1 when z > α, where ω1 = 1− ( z1

(αz2)1/2
)1/(1−α)

v2(z1, z2) = 1 + 2ω̂1 + ω̃1 − ω̂1ω̃1 when z < α,

where ω̂1 = 1− (z1z2 )
1/(1−α) and ω̃1 = 1− ( z

2/3
2

α2/3
)1/(1−α)

Differentiating these expressions yields the required result.
We may proceed in a similar way to analyze region R̂22.

Finally consider region R̂21. The unexpected result is that
∂v2(z1,z2)

∂z1
> 0 in this

region. This follows directly from the fact that solo concession by player 1 yields u02 < 0
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in region R̂21. (Recall that this is compensated by a period with u02 > 0 for solo incentive
compatible concession by player 1 between L2 and the diagonal).

Proof of Proposition 5.5. Obvious — players’ payoff functions along the diagonal
are precisely as indicated.

Proof of Proposition 5.6. As αn → 0, it may be directly checked that region
R̂33 increases monotonically and approaches the entire unit square. Thus, for any initial
(z1, z2), eventually players’ payoffs are residual, and optimal concessions end the game.
That is, normal players either stick with their initial demands of 4 units, or concede
completely.

Proof of Proposition 5.7. When αn → 1, region R̂33 shrinks to the point (1,1)
and player i’s optimal concession of 2 units yields i a payoff of

ṽ(αn) = 2−
µ

z

(αz)1/3

¶1/(1−αn)
→ 2

as αn → 1.
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