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Abstract

Explicit asymptotic bias formulae are given for dynamic panel regression estimators as the cross

section sample size N →∞. The results extend earlier work by Nickell (1981) and later authors in

several directions that are relevant for practical work, including models with unit roots, deterministic

trends, predetermined and exogenous regressors, and errors that may be cross sectionally dependent.

The asymptotic bias is found to be so large when incidental linear trends are fitted and the time

series sample size is small that it changes the sign of the autoregressive coefficient. Another finding

of interest is that, when there is cross section error dependence, the probability limit of the dynamic

panel regression estimator is a random variable rather than a constant, which helps to explain the

substantial variability observed in dynamic panel estimates when there is cross section dependence

even in situations where N is very large. Some proposals for bias correction are suggested and finite

sample performance is analyzed in simulations.
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1 Introduction

In an influential paper, Nickell (1981) showed that in dynamic panel regressions the well known finite
sample autoregressive bias (Orcutt, 1948; Kendall, 1954) in time series models persists asymptotically
in large panels as the cross section sample size dimension N → ∞. Nickell gave analytic formulae for
this bias and found that its magnitude was considerable in many cases relevant to applied research. In
consequence, bias reduction procedures have been proposed for practical implementation with a variety
of dynamic panel estimators (e.g. Kiviet, 1995; Hahn and Kuersteiner, 2000). The literature is reviewed
in Arrelano and Honoré (2000), Baltagi (2001) and Arrelano (2003).
The present paper extends this work in several directions that are relevant for empirical applications.

The cases studied here include dynamic panel models with a unit root, deterministic linear trends,
exogenous regressors, and errors that may be cross sectionally dependent. Many, and sometimes all, of

these elements appear in applied work with dynamic panels. The main contribution of the paper is to
provide new bias/inconsistency formulae for dynamic panel regressions in these cases, focusing on pooled
least squares regression estimates. It is, of course, well known that instrumental variable and GMM
procedures provide consistent estimates of dynamic coefficients in cases where pooled least squares
is inconsistent (see Baltagi, 2001, Hsaio, 2003, and Arrelano, 2003, for recent overviews). However,
these procedures are also known to suffer bias (Hahn, Hausman and Kuersteiner, 2001)) and, more
significantly, weak instrumentation problems (Kruiniger, 2000; Hahn et al., 2001) when the dynamic
coefficient is close to unity, as it often is in practical work. They can therefore be an unsatisfactory
alternative in such cases, even when the time series sample size T is large, because of high variance

(Phillips and Sul, 2003) and slow convergence (Moon and Phillips, 2004) problems. Hahn et al. (2001)
have suggested a long difference estimator to alleviate some of these difficulties, but that estimator is
not investigated here.
Two results of particular interest in the present paper are the size of the bias in models where

incidental trends are extracted and the impact of cross section error dependence on the bias. In the
first case, analytic formulae reveal that the inconsistency as the cross section sample size N →∞ can
be huge when the time series sample size (T ) is small and incidental trends are extracted in panel
regression. For instance, our results show that when T < 8, the inconsistency in the estimate of a panel
unit root is large enough to change the sign of the coefficient from positive to negative. Simulations
confirm that this enormous asymptotic bias also manifests in finite (N) samples.

A second result of interest is the impact of heterogeneity and cross section error dependence on
the bias. While mild heterogeneity has no asymptotic effect, cross section dependence has a major
impact on the inconsistency of dynamic panel regression. Under cross section dependence, it is shown
that the probability limit of the dynamic panel regression estimator is a random variable rather than a
constant (as it is in the cross section independent case). The randomness of this limit as N →∞ helps
to explain the substantial variability of dynamic panel estimates that is known to occur under cross
section dependence even when N is very large (e.g., Phillips and Sul, 2003).
The remainder of the paper is organised as follows. Section 2 describes the panel models that are

studied in the paper. Section 3 provides bias formulae for various cases under cross section independence
and relates these to the existing literature. Section 4 considers the impact of cross section dependence

on dynamic panel regression bias, looking at both stationary and unit root panels. Section 5 considers
some bias reduction methods for both the cross section independent and dependent cases, and reports
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the results of some simulations. Section 6 concludes. The appendix contains derivations of the main
results (Section 7) and a glossary of notation (Section 8).

2 Models

The panel regression models considered here fall into the following categories:

M1: (Fixed Effects)

(
yit = ai + ρyit−1 + εit ρ ∈ (−1, 1)

yit = ai + y0it, y
0
it = ρy0it−1 + εit ρ = 1

M2: (Incidental Linear Trends)

(
yit = ai + bit+ ρyit−1 + εit ρ ∈ (−1, 1)

yit = ai + bit+ y0it, y
0
it = ρy0it−1 + εit ρ = 1

M3: (Exogenous Regressors) ỹit = ρỹit−1 + Z̃ 0itβ + ε̃it, ρ ∈ (−1, 1].

In each case, the index i (i = 1, ...,N) stands for the i’th cross sectional unit and t (t = 1, .., T ) indexes
time series observations. The variables Zit are exogenous. The affix notation on w̃t signifies that the
series wt has been detrended or demeaned and this will be clear from the context. Models M1 and

M2 allow for both stationary (|ρ| < 1) and nonstationary (ρ = 1) cases. In M3, we allow for unit root
and stationary yit but do not consider here cases where Zit may have nonstationary elements (i.e., the
possibly cointegrated regression case). In the unit root cases, the initialization of y0it is taken to be
y0i0 = Op (1) and uncorrelated with {εit}t≥1.
The cases of cross section independence and cross section dependence for the panel regression errors

will be considered separately in Sections 3 and 4. We take first the case where the errors εit in the above
models are independent across i. The following section derives explicit formulae for the asymptotic bias
of the least squares estimates of ρ and β in that case, giving the inconsistency plimN→∞(ρ̂ − ρ) for
each model where ρ̂ is the panel least squares estimate of ρ. Section 4 studies the inconsistency of these
estimates when there is cross section dependence.

3 Models with Cross Section Independence

This section includes three subsections, one for each model, and deals separately with the stationary and
panel unit root cases. Before proceeding, one important difference in autoregressive bias between the
time series AR(1) and panel AR(1) should be mentioned: there is negligible bias when the fixed effect is
known (or zero) in the panel AR(1) model for large N . It is well known that the bias in an autogression
with known mean arises from the asymmetry of the distribution of the least squares estimator ρ̂ and is
a finite sample (T ) phenomenon. A similar phenomenon occurs in panel autoregressions with finite T
and finite N when the mean is known (or, equivalently, set to zero). However, in panel autogressions

with a known mean, the averaging across section eventually removes the asymmetry of the distribution
as N →∞. Hence, for large N the distribution of ρ̂ is close to symmetric about ρ and bias is negligible.
Only when N is small is the bias important in the known fixed effect case.
On the other hand, when the fixed effect is estimated or when there are incidental trends to be

removed, autoregressive bias can be large and it persists even as N → ∞. As Orcutt (1948) pointed
out, the removal of a mean or trend from the data in an autoregression produces an additional source of
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bias arising from the correlation of the error and the lagged dependent variable. In a panel model with
incidental fixed effects and/or trends, this additional source of bias is not diminished as N → ∞, as
is well understood from Neyman and Scott (1948) and Nickell (1981). Interestingly, that inconsistency
persists even as T →∞ when ρ = 1 + c/T and the parameter being estimated is local to unity (Moon
and Phillips, 1999, 2000 & 2004).

3.1 Fixed Effects Model M1

We first consider the stationary case where ρi = ρ, |ρ| < 1, under cross section error independence for
εit and where the initial conditions are in the infinite past. The following explicit error condition is
convenient.

Assumption A1: (error condition) The εit have zero mean, finite 2+2ν moments for some ν > 0,

are independent over i and t with E(ε2it) = σ2i for all t, and limN→∞ 1
N

PN
i=1 σ

2
i = σ2.

Nickell (1981) assumed iid(0, σ2) errors εit but this is easily relaxed to allow for mild heterogeneity
under regularity conditions of the type given in A1. The bias for the pooled least squares estimate of ρ
in large cross section (N) asymptotics follows in the same way as Nickell (1981) and turns out to have
the same form when there are heterogeneous errors. The calculations are straightforward and are not
repeated here.
To illustrate, for the fixed effects model M1 the pooled least squares estimate of ρ has the form

ρ̂ = ρ+

PT
t=1

PN
i=1 ỹit−1ε̃itPT

t=1

PN
i=1 ỹ

2
it−1

= ρ+
ANT

BNT
= ρ+

1
NANT

1
NBNT

. (1)

Calculations analogous to those in Nickell (1981), but using the Markov strong law

1

N

NX
i=1

¡
ε2it − σ2i

¢→a.s. 0,
1

N

NX
i=1

ε2it →a.s. σ
2 (2)

to accommodate cross section heterogeneity in εit, show that the limits of the numerator and denomi-
nator in (1) as N →∞ with T fixed have the same form as those in Nickell’s case, viz.,

plimN→∞
1

N
ANT = −σ

2

T

1

1− ρ

·
T − 1− ρT

1− ρ

¸
:= −σ2A (ρ, T ) , (3)

and

plimN→∞
1

N
BNT = σ2

T − 1
1− ρ2

½
1− 1

T − 1
2ρ

1− ρ

·
1− 1

T

1− ρT

1− ρ

¸¾
:= σ2B (ρ, T ) . (4)

Combining (3) and (4) we have the following simple extension of Nickell’s (1981) bias result.

Proposition 1 (Fixed Effects with |ρ| < 1) For model M1 with |ρ| < 1 and under Assumption A1, the
inconsistency of the pooled least squares estimate of ρ as N →∞ is given by

plimN→∞(ρ̂− ρ) = − 1 + ρ

T − 1
·
1− 1

T

1− ρT

1− ρ

¸½
1− 1

T − 1
2ρ

1− ρ

·
1− 1

T

1− ρT

1− ρ

¸¾−1
(5)

= G (ρ, T ) . (6)
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Figure 1: Asymptotic (N →∞) Bias Function |G(ρ, T )| = −G (ρ, T ) for Model M1.

For large T, the inconsistency has the expansion

G (ρ, T ) = − 1 + ρ

T − 1
£
1 +O(T−1)

¤
. (7)

Formula (5) is the same as that given by Nickell (1981) for the case of homogeneous errors1 . Applying
the third derivative version of l’Hôpital’s rule directly to G (ρ, T ) with respect to ρ we obtain the limit
behavior for the unit root case, viz., limρ→1G (ρ, T ) = − 3

T+1 , and the inconsistency of the pooled least

squares estimate for ρ = 1 follows

plimN→∞(ρ̂− 1) = −
3

T + 1
, (8)

a result that can be confirmed by more tedious direct calculation for the case ρ = 1.
Fig. 1 graphs the modulus of the inconsistency, |G (ρ, T )| = −G (ρ, T ) , against ρ and T. As is clear

from the figure, the magnitude of the asymptotic bias increases with ρ, and of course decreases as T
increases.

1For T = 3, there is a typographical error in Nickell (1981), the correct formula being

plimN→∞(ρ̂− ρ) = − (1 + ρ)(2 + ρ)

2(ρ+ 3)
T = 3.
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3.2 Incidental Linear Trend Model M2

In this case there are heterogenous linear trends and constants as fixed effects. The pooled least squares
estimate of ρ has the form ρ̂ = Cy

NT /DNT , where

Cy
NT =

NX
i=1

"
TX
t=1

(yit − yi·) (yit−1 − yi·−1)−
PT

t=1 [(t− t̄)(yit − yi·)]
PT

t=1 [(t− t̄)(yit−1 − yi·−1)]PT
t=1(t− t̄)2

#
,

and

DNT =
NX
i=1

TX
t=1

"
yit−1 − yi·−1 −

PT
t=1 [(t− t̄)(yit−1 − yi·−1)]PT

t=1(t− t̄)2
(t− t̄)

#2
.

Setting CNT = Cy
NT − ρDNT , the inconsistency as N →∞ with T fixed is

p limN→∞(ρ̂− ρ) =
plimN→∞

1
NCNT

plimN→∞
1
NDNT

,

whose exact form and asymptotic (large T ) representation are given in the following result.

Proposition 2 (Linear Trend Fixed Effects with |ρ| < 1) As N →∞, for model M2 under Assumption
A1, the inconsistency of the pooled least squares estimate for ρ < 1 is given by

plimN→∞ (ρ̂− ρ) = −2 1 + ρ

T − 2
·
1− 1

T − 1
2

1− ρ
C1

¸ ·
1− 1

T − 2
4ρ

1− ρ
D1

¸−1
(9)

= H(ρ, T ), (10)

where

C1 = 1− 1

T + 1

Ã
1 +

1− ρ3

(1− ρ)
3

1

T

!
+

Ã
1

2
+

1

T + 1

"
1 + 2ρ

1− ρ
+

1− ρ3

(1− ρ)
3

1

T

#!
ρT , (11)

D1 = 1− 1

T + 1

2

1− ρ

(
1 +

1

T − 1

"
1− 1− ρ3

T (1− ρ)3
¡
1− ρT

¢
+

µ
3ρ

1− ρ
+

T + 3

2

¶
ρT

#)
. (12)

For large T, the inconsistency has the following expansion

H(ρ, T ) = −2 1 + ρ

T − 2 [1 +O
¡
T−1

¢
]. (13)

Later calculations will extend these formulae to the case where the errors are cross section dependent.
It is then useful to have explicit formulae for the numerator and denominator limits in the ratio (10) in
order to highlight the differences between the two cases. These are as follows:

plimN→∞
1

N
CNT = − σ2

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
:= −σ2C (ρ, T ) , (14)

plimN→∞
1

N
DNT = σ2

T − 2
1− ρ2

·
1− 1

T − 2
4ρ

1− ρ
D1

¸
:= σ2D (ρ, T ) . (15)

From the expansions (13) and (7) for H(ρ, T ) and G(ρ, T ), it is apparent that the bias in the case
of incidental trends is approximately twice that of the simple fixed effects model M1. For small T, the
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Figure 2: Asymptotic (N →∞) Bias Function |H(ρ, T )| = −H (ρ, T ) for Model M2.

magnitude of the bias in the trend model M2 is slightly larger than twice that of the fixed effects model
M1. By direct calculation, the exact bias formula for some cases of small T are

H(ρ, T ) =


−12 ρ

2−3ρ−4
ρ−3 for T = 3

−12 ρ
3−6ρ−5
ρ2−5 for T = 4

−12 2ρ
4+2ρ3−5ρ2−17ρ−12
2ρ3+2ρ2−3ρ−15 for T = 5

. (16)

and the bias differential (M2 - 2 × M1) is
|H(ρ, T )|− 2 |G(ρ, T )| =

2G(ρ, T )−H(ρ, T ) =


1
2ρ

1−ρ2
3−ρ2 > 0 for T = 3

1
2ρ

1−ρ4−3ρ3+ρ
(ρ2−5)(ρ2+3ρ+6) > 0 for T = 4

1
2ρ

2ρ6+8ρ5+13ρ4−3ρ2+12ρ+8
(15−2ρ3−2ρ2+3ρ)(ρ3+3ρ2+6ρ+10) > 0 for T = 5

 for 0 ≤ ρ < 1

Fig. 2 graphs the modulus of the inconsistency, |H (ρ, T )| = −H(ρ, T ), against ρ and T. As is
apparent from the figure, the inconsistency increases sharply in magnitude as ρ increases and as T
decreases.
Applying the fifth derivative version of l’Hôpital’s rule directly to H (ρ, T ) with respect to ρ we

obtain the limit behavior for the unit root case, viz., limρ→1H (ρ, T ) = −7.5/(T +2). Thus, when yit is
a panel unit root process, the inconsistency for the pooled OLS estimator under model M2 is given by

plimN→∞(ρ̂− 1) = −
7.5

T + 2
, (17)

a result that was obtained by direct calculation in Harris and Tzavalis (1999). Comparing (17) with
(8), we see that when ρ = 1 the bias for model M2 is more than twice that in model M1 for all T > 3.
Table 1 shows corroborating results obtained by simulation.
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Perhaps the most striking feature of the autoregressive bias in model M2 is that when T is small,
the pooled least squares estimate of ρ is often negative even when the true autoregressive coefficient ρ is
(near) unity. To illustrate the dramatic nature of these bias effects we show the results of detrending on a
short time series panel. Fig. (3) shows a sample plot of data generated by the true panel relation between
yit and yit−1 for which ai = bi = 0 in M2 and with ρ = 0.9 and T = 4. This sample plot shows a clear

positive relationship between yit and yit−1 (the fitted ρ̂ = 0.907). After detrending the data by removing
incidental trends, the sample plot of the new data is shown in Fig. 4, where the relationship between yit
and yit−1 is now seen to be clearly negative (the fitted ρ̂ = −0.529). The autoregressive bias in this case
is so large that it distorts the correlation into the opposite direction: strongly positive autocorrelation
(ρ = 0.9) becomes strong negative autocorrelation (ρ̄ =plimN→∞ρ̂ = 0.9 − 1.402 = −0.502) in the
detrended sample data. The reason for this distortion is clear. When T is small and there is positive
autoregressive behavior in the panel yit, incidental trend extraction (for each i) can have such a powerful
effect on the configuration of the data that the detrended observations ỹit behave as if they were actually
negatively autocorrelated.

Table 1: Asymptotic Bias in the Estimated Autoregressive Coefficient in the Linear Trend Model M2

Absolute Bias: Model(Simulation)
T ρ =0.1 ρ =0.3 ρ =0.5 ρ =0.7 ρ =0.9 ρ =1.0
3 0.740(0.739) 0.891(0.890) 1.050(1.049) 1.220(1.219) 1.402(1.402) 1.500(1.499)
4 0.561(0.562) 0.690(0.690) 0.829(0.830) 0.982(0.982) 1.154(1.154) 1.250(1.250)

5 0.450(0.450) 0.558(0.558) 0.679(0.678) 0.816(0.815) 0.977(0.977) 1.071(1.071)
6 0.375(0.375) 0.466(0.466) 0.571(0.571) 0.694(0.694) 0.845(0.846) 0.938(0.938)
7 0.321(0.321) 0.399(0.398) 0.490(0.490) 0.601(0.600) 0.743(0.742) 0.833(0.833)
8 0.280(0.280) 0.348(0.348) 0.428(0.428) 0.528(0.528) 0.661(0.661) 0.750(0.750)
9 0.249(0.249) 0.308(0.308) 0.379(0.379) 0.470(0.470) 0.595(0.595) 0.682(0.682)

Note: N = 5, 000, errors are drawn as iid N(0, 1), the number of replications = 500, T = sample size
used in the regression, T + 1 = the total number of observations of the dependent variable.

3.3 Exogenous Regressor Model M3

In many panel model applications, such as the original study by Balestra and Nerlove (1966) on the
demand for natural gas, exogenous variables are included in addition to lagged dependent regressors in
the specification. Another example that is important in ongoing practical work is the panel analysis of
growth convergence, where specific covariates contributing to economic growth are included as well as
dynamic effects. The effect of the presence of such variables can be analyzed in the context of models
like M3.
Stacking cross section data first and then time series observations, model M3 can be written as

ỹt = ρỹt−1 + Z̃0tβ + ε̃t, and ỹ = ρỹ−1 + Z̃β + ε̃, say, (18)
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Figure 3: Sample Data before Detrending (T = 4,N = 1, 000, ρ = 0.9, ρ̂ = 0.90)
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Figure 4: Sample Data after Detrending (T = 4, N = 1, 000; ρ = 0.9, ρ̄ = plimN→∞ρ̂ = −0.502,
ρ̂ = −0.53).
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where the tilde affix on w̃ signifies that the series w has been demeaned or detrended. Setting QZ̃ =

I − Z̃
³
Z̃ 0Z̃

´−1
Z̃ 0, we have

plimN→∞ (ρ̂− ρ) =

½
plimN→∞

1

N
ỹ0−1QZ̃ ỹ−1

¾−1½
plimN→∞

1

N
ỹ0−1QZ̃ ε̃

¾
, (19)

and

plimN→∞
³
β̂ − β

´
= −

½
plimN→∞

³
Z̃0Z̃

´−1 ³
Z̃0ỹ−1

´¾
plimN→∞ (ρ̂− ρ) . (20)

Calculations similar to those in the preceeding section then lead to the following result on the inconsis-
tency of these estimates.

Proposition 3 (Exogenous Variables, Fixed and Trend Effects) As N → ∞, for model M3 under
Assumption A1 and with |ρ| < 1, the inconsistency of the pooled least squares estimate of ρ is given in
the fixed effects case by

plimN→∞ (ρ̂− ρ) = − σ2A (ρ, T )

σ2B (ρ, T ) + β0
h
plimN→∞

1
N Z̃ 0ρ,−1QZ̃Z̃ρ,−1

i
β
, (21)

and in the incidental trends case by

plimN→∞ (ρ̂− ρ) = − σ2C (ρ, T )

σ2D (ρ, T ) + β0
h
plimN→∞

1
N Z̃ 0ρ,−1QZ̃Z̃ρ,−1

i
β
, (22)

where Z̃ρ,−1 =
³
Z̃0ρ,0, ..., Z̃

0
ρ,T−1

´0
with Z̃ρ,t =

³
Z̃1ρ,t, ..., Z̃

N
ρ,t

´0
and Z̃i

ρ,t =
P∞

j=0 ρ
jZ̃it−j . The inconsis-

tency of the pooled estimate of β is

plimN→∞
³
β̂ − β

´
= −

½
plimN→∞

³
Z̃0Z̃

´−1
Z̃0Z̃ρ,−1β

¾
plimN→∞ (ρ̂− ρ) . (23)

These formulae continue to apply in the unit root case ρ = 1 upon replacement of A (ρ, T ) , B (ρ, T ) ,
C (ρ, T ), and D (ρ, T ) with A (T ) , B (T ) , C (T ), and D (T ) , respectively, which are defined in (54) and

(57), and Z̃ρ,−1 by Z̃1,−1 =
³
Z̃01,0, ..., Z̃ 01,T−1

´0
where Z̃1,t =

³
Z̃11,t, ..., Z̃

N
t

´0
and Z̃i

t =
Pt

j=0 Z̃it−j .

Note that when β = 0, the inconsistency (21) and (22) is the same as in the case of models M1 and
M2 with no exogenous variables. When β 6= 0, the inconsistency is clearly smaller in absolute value
than when there are no exogenous variables. Note that this is the opposite conclusion to that reached in
Nickell (1981, p.1424). Nickell argued that the denominator in (19) is smaller than it is in the case of no
exogenous variables because of the effect of the projection operator QZ̃ which reduces the magnitude of
the sum of squares in the sense that ỹ0−1QZ̃ ỹ−1 ≤ ỹ0−1ỹ−1.While this is certainly correct, the argument
neglects the fact that when exogenous variables are present in the model they also affect the variability
of the data ỹt. In particular, when |ρ| < 1 we have

ỹit =
∞P
j=0

ρjZ̃it−jβ +
∞P
j=0

ρj ε̃it := Z̃ρitβ + ỹ0it, say (24)

and, using the stacked notation ỹ = Z̃ρβ + ỹ0 and its lagged variant, we find that

plimN→∞
1

N
ỹ0−1QZ̃ ỹ−1 = β0

·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + plimN→∞

1

N
ỹ00−1ỹ

0
−1 (25)

= β0
·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + σ2B (ρ, T ) .
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It is clear from (25) that we have the reverse inequality ỹ0−1QZ̃ ỹ−1 ≥ ỹ00−1ỹ0−1, the left side being the
denominator for the case where exogenous variables are present in the model and the right side being
the denominator for the case where there are no exogenous variables. Similar effects apply in the case
of models with incidental trends. In short, the presence of exogenous variables reduces the extent of the
inconsistency of ρ̂ whenever these variables have a material effect on data variability, i.e. when β 6= 0.
An exception occurs in the case where the model has the following components form instead of (24):

ỹit = Z̃itβ + ỹ0it. (26)

In this case, the fitted regression model M3 is replaced by

ỹit = ρỹit−1 + Z̃itβ1 + Z̃it−1β2 + ε̃it, with β1 = β and β2 = ρβ. (27)

and then ỹ = ρỹ−1 + Z̃γ + ε̃ with Z̃ comprising a stacked version of (Z̃it, Z̃it−1). It is apparent that
instead of (25) we now have plimN→∞ 1

N ỹ0−1QZ̃ ỹ−1 = σ2B (ρ, T ) and the Proposition continues to hold
but without the second term in the denominator in (21) and (22). In this case, the inconsistency of ρ̂
is unchanged by the presence of exogenous variables and the inconsistency of β is given by

plimN→∞

Ã
β̂1 − β1
β̂2 − β2

!
=

Ã
0

−β {plimN→∞ (ρ̂− ρ)}

!
(28)

in place of (23).

4 Models with Cross Section Dependence

Bai and Ng (2002), Forni, Hallin, Lippi and Reichlin (2000), Moon and Perron (2002), and Phillips
and Sul (2003) provide some recent investigations of panel models with cross section dependence. In
all these studies, the parametric form of dependence is based on a factor analytic structure. Broadly
speaking, two types of factor models have been employed, the distinction resting on whether a dynamic
structure is explicit or not. Forni, Lippi and Reichlin (1999), Moon and Perron (2002), and Phillips

and Sul (2003) all use a factor structure where the dynamics are explicit in the system. The following
model is a prototypical first order panel dynamic system

yit = ai + ρiyit−1 + uit, uit =
KX
s=1

δisθst + εit, (29)

where the errors uit depend onK factors {θst : s = 1, ...,K} with factor loadings {δis : s = 1, ...,K}, and
εit is assumed to be iid(0, σ2i ). In this prototypical system, θst and εit are assumed to be independent
of each other and each is assumed to be iid. Also, θst is taken to be cross sectionally independent of

θqt.

The second type of model (e.g., Bai and Ng, 2002) uses a direct factor structure for the data of the
form

yit =
KX
s=1

λisFst +mit. (30)

In (30) there are again K factors and factor loadings {Fst, λis : s = 1, ...,K}, Fst may be correlated with
Fqt and may have its own time series structure, and the residual mit is assumed to be cross sectionally
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independent. When the dynamic factor model (29) has a homogeneous autoregressive coefficient (ρi =
ρ), it can be viewed as a restricted version of the direct model (30) in which a common dynamic factor
can be drawn from each of the individual factors and the error.
The impact of common factors on dynamic panel regression analysis can be illustrated in the simple

case of a single factor with no fixed effects. Suppose ai = 0 and ρi = ρ in (29) for all i. Then, the data

is generated according to yit = ρyit−1+ δiθt+ εit, which we can write in a convenient components form
as

yit = y0it + δizt, y0it = ρy0it−1 + εit, zt = ρzt−1 + θt. (31)

Let limN→∞ 1
N

PN
i=1 δ

2
i = m2

δ be finite. Then, straightforward calculations reveal that the probability
limit of the pooled least squares estimate as N →∞ is

plimN→∞ (ρ̂− ρ) =
plimN→∞

1
N

PN
i=1

PT
t=1 yit−1uit

plimN→∞
1
N

PN
i=1

PT
t=1 y

2
it−1

=
m2
δ

³PT
t=1 zt−1θt

´
T σ2

1−ρ2 +m2
δ

PT
t=1 z

2
t−1

. (32)

Thus, even with no fixed effects, ρ̂ is inconsistent and the inconsistency depends on the degree of cross
section dependence and the variance ratio σ2/m2

δ . Importantly for fixed T, the bias is random and

depends on the process zt and factor θt. Obviously for large T and temporally independent common
shocks T−1

PT
t=1 zt−1θt = op (1) , so that in this case the bias will be small.

WhileK is fixed and generally taken to be very small (typicallyK = 1 or 2 ) in most macro empirical
studies, in microeconometric work it is often reasonable to think of the number of factors that influence
behavior as being potentially large and possible infinite. For instance, in studies of earnings there are
many observable factors in panel data sets such as the PSID and equally many unobservables. Also,
there are often common factors for personal income data, such as region, family, male/female ratio, race
composition, education and age composition, to mention just a few; and the number of these factors
may increase as we collect more cross section observations. The number of factors may further vary
across i and change over time.

Thus, we may, in principle at least, consider cases where K → ∞ as N → ∞ or where K = ∞, in
which there are an infinite number of unobserved factors. In such cases, the component

PK
s=1 δisθst in

(29) can be replaced by an infinite sum
P∞

s=1 δisθst, which may be interpreted as a spatial linear process
and on whose coefficients δis some restrictions (and ordering) must be imposed to ensure convergence.
Another approach is to normalize the coefficients δis by some function of the factor count index K and
require the normalized coefficient δisK to be small enough in mean and variance as K → ∞ to assure
existence of suitable limits of the sample moments of the data. Some recent microeconometric work
utilizing this approach is Altonji, Elder and Taber (2002). In their work, δisK = K−1/2δis and the δis
and θs are taken to be covariance stationary and ergodic zero mean random variates over s for some

given ordering and to satisfy a central limit theorem. If this approach were used above, (31) would be
replaced by

yit = y0it +
KX
s=1

δisKzst, y0it = ρy0it−1 + εit, zst = ρzst−1 + θst. (33)

Without going into details over regularity conditions, we can compare this case with result (32). By
independence over i, we would have

limN→∞
1

N

NP
i=1

δisδip = E (δisδip) = µ (p− s) , say,

12



and by ergodicity

limK→∞
1

K

K−hP
s=1

zst−1θs+h,t = E (zst−1θs+h,t) = γzθ (h)

for each h. If ξst = zst−1θs+h,t − γzθ (h) and K−1/2
PK−h

s=1 ξst = Op (1) , then, taking sequential limits
as N →∞, followed by K →∞, we would have

lim
K→∞

plimN→∞
1

N

NX
i=1

TX
t=1

yit−1uit

= lim
K→∞

1

K

KX
s,p=1

µ (p− s)
TX
t=1

zst−1θpt

=
TX
t=1

lim
K→∞

1

K

K−1X
h=−K+1

µ (h)

K−hI{h>0}X
s=1−hI{h<0}

zst−1θs+h,t

=
TX
t=1

lim
K→∞

K−1X
h=−K+1

µ (h)
1

K

K−hI{h>0}X
s=1−hI{h<0}

(γzθ (h) + ξst)

=
TX
t=1

lim
K→∞

(
1

K

K−1X
h=−K+1

µ (h) γzθ (h) +Op

µ
1√
K

¶)
= 0, (34)

provided
P∞

h=−∞ µ (h) γzθ (h) is finite. Under this set-up, the dynamic panel estimation bias is zero
in contrast to (32). Of course, this type of argument depends on the appropriateness of the weak

dependence conditions, which in turn depends on the existence of some spatial ordering of the factors.
Therefore, the circumstances under which (34) is more appropriate than (32) are complex and involve
many other considerations that will not be pursued here.
In contrast, aggregate data may reasonably be thought of as having relatively fewer common factors

because in the aggregation process, the effect of the micro common factors is averaged out. Moreover,
with aggregate data, N is often considered to be fixed, as in the number of countries in cross country
studies, whereas T continues to increase.
The analysis that follows is based on dynamic panel models of the type (29), where the time series

structure is built explicitly into the system behavior of yit. This facilitates comparisons with the cross

section independent case of Nickell (1981) and corresponds with many models used in the empirical
literature such as the original study by Balestra and Nerlove (1966). We consider first the case where
there are no exogenous variables.

4.1 Fixed Effects

As in (29), the model extends M1 to accommodate cross section dependent errors as follows.

Model M1-CSD: (Fixed Effects)

(
yit = ai + ρyit−1 + uit, ρ ∈ (−1, 1)

yit = a0i + y0it, y
0
it = ρy0it−1 + uit, ρ = 1

We deal first with the stationary case. In the unit root case, the initialization y0i0 is taken to be Op (1).
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Assumption A2: (Cross Section Dependence) The uit have the factor component structure

uit =
KX
s=1

δsiθst + εit = δ0iθt + εit, (35)

where the εit satisfy A1, the factors θt are iid(0,Σθ) over t and the factor loadings δi are
nonrandom parameters satisfying limN→∞ 1

N

PN
i=1 δiδ

0
i =Mδ. When K = 1, we set Σθ = σ2θ and

Mδ = m2
δ.

Under A2, we can develop an asymptotic theory for the pooled least squares estimate, ρ̂, of the
common dynamic coefficient ρ. It is convenient to use a sequential asymptotic argument with N →∞
followed by T → ∞. This approach produces a result for the bias or inconsistency of ρ̂ as N → ∞
and the expression can conveniently be written in an asymptotic format that is valid as T →∞. This
extends the earlier asymptotic expansion results (7) and (13) to the case of cross section dependence.
The main result follows.

Proposition 4 (Fixed Effects with |ρ| < 1) In model M1-CSD with errors uit having the factor
structure (35) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as
N →∞ and

plimN→∞(ρ̂− ρ) = − £σ2A(ρ, T ) + ψAT
¤ £
σ2B(ρ, T ) + ψBT

¤−1
, (36)

where A(ρ, T ) and B(ρ, T ) are defined in (3) and (4),

ψAT = −trace
½

TP
t=1

¡
Zθt−1 − Z̄θ,−1

¢ ¡
θt − θ̄

¢0
Mδ

¾
, Z̄θ,−1 = T−1

TP
t=1

Zθt (37)

ψBT = trace
½

TP
t=1

¡
Zθt−1 − Z̄θ,−1

¢ ¡
Zθt−1 − Z̄θ,−1

¢0
Mδ

¾
, (38)

and Zθt =
P∞

j=0 ρ
jθt−j . In the single factor (K = 1) case, the inconsistency (36) has the following

asymptotic representation as T →∞

plimN→∞(ρ̂− ρ) = −1 + ρ

T
− 2ρ

T

σ2θm
2
δ

σ2 + σ2θm
2
δ

+
σ2θm

2
δ

σ2 + σ2θm
2
δ

(gθT −EgθT ) + op
¡
T−1

¢
, (39)

where

gθT =

PT
t=1 (zθt−1 − z̄θ−1) (θt − θ̄)PT

t=1 (zθt−1 − z̄θ−1)
2

is the centred least squares estimate of the slope coefficient in a regression of zθt on zθt−1 and a constant,
and where E (gθT ) = − 1+3ρT + o

¡
T−1

¢
.

Remark 1 It is apparent from the form of (36) and (39) that the inconsistency of the panel estimate
ρ̂ as N → ∞ is random, as distinct from the nonrandom expression that we normally get for bias
or inconsistency, such as that given by (7) in the cross section independent case. Note, of course,
that when the factor loadings δsi = 0 for all i and s, we have Mδ = 0 and then (36) reduces to
G(ρ, T ) = −A(ρ, T )/B(ρ, T ), and the second term on the right side of (39) is zero. So, in this case, the
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results reduce to those that apply in the cross section independent case, viz. (5) and (7). When δsi 6= 0
and Mδ 6= 0, then the components ψAT and ψBT in (36) are non zero random variables with positive
variance. Likewise, the third term of (39) is nonzero. So the immediate contribution of cross section
dependence is to introduce variability into the inconsistency of ρ̂ and additional bias.

Remark 2 In the single factor model (K = 1), the inconsistency expression (39) involves the regression
coefficient error gθT of zθt, and (39) can be written as

plimN→∞(ρ̂− ρ) = −1 + ρ

T
− σ2θm

2
δ

σ2 + σ2θm
2
δ

·
2ρ

T
+ (EgθT − gθT )

¸
+ op

¡
T−1

¢
.

The second term in this expansion of the inconsistency involves the factor m2
δσ
2
θ/
¡
σ2 +m2

δσ
2
θ

¢
which

is less than unity and whose magnitude decreases as σ2 increases. Hence, as the importance of the
error component εit grows (i.e. as σ2 = limN→∞ 1

N

PN
i=1 σ

2
i increases), then the relative importance

of the random component in the inconsistency (arising from the presence of cross section dependence)
diminishes.

Remark 3 Next consider the case where there is a large number of factors. To simplify, assume
that the factors θkt are iid(0, σ2θ) over both k and t and with finite fourth moments, that Mδ =

diag
¡
m2
1,m

2
2, ...,m

2
K

¢
is diagonal, supkm

4
k < ∞, and that K−1

PK
k=1m

2
k → m2 > 0 as K → ∞. is

large. Then, setting ξkT =
PT

t=1

¡
Zθkt−1 − Z̄θk,−1

¢
θkt and noting that ξkT is iid over k with mean

E (ξkT ) = σ2θA (ρ, T ) and finite variance, we find that

K−1ψAT = −K−1
KP
k=1

m2
k

½
TP
t=1

¡
Zθkt−1 − Z̄θk,−1

¢ ¡
θkt − θ̄k

¢¾
= −K−1

KP
k=1

m2
kξkT

= −K−1
KP
k=1

m2
kE (ξkT )−K−1

KP
k=1

m2
k {ξkT −E (ξkT )}

= m2σ2θA (ρ, T ) + op (1) , as K →∞.

In a similar way,

K−1ψBT = K−1
KP
k=1

m2
k

½
TP
t=1

¡
Zθkt−1 − Z̄θk,−1

¢2¾
= m2σ2θB (ρ, T ) + op (1) , as K →∞.

It follows that

lim
K→∞

plimN→∞ (ρ̂− ρ) = lim
K→∞

plimN→∞
1
NAC

NT

plimN→∞
1
NBC

NT

= lim
K→∞

plimN→∞
1
NANT

plimN→∞
1
NBNT

=
A (ρ, T )

B (ρ, T )
= G (ρ, T ) . (40)

Thus, when there are a large number of independent factors, the dynamic panel bias of the cross section
dependent case becomes less random and as K → ∞ it converges to the bias of the cross section
independent case. Fig. 5 illustrates this effect by showing the bias distribution for various values of K,
against that of the cross section independent case. This result appears to be relevant for micro panel
data situations where large numbers of independent factors are involved.
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Figure 5: Random Bias under cross section dependence: T = 5, ρ = 0.5, δis − iidN (0, 1)

Remark 4 In the unit root case (ρ = 1) , the same limit theory applies. In particular, (36) holds and

plimN→∞(ρ̂− 1) = −
£
σ2A(1, T ) + ψAT

¤ £
σ2B(1, T ) + ψBT

¤−1
,

with A(1, T ) = (T − 1)/2 and B(1, T ) = (T − 1) (T + 1) /6. When K = 1, we then get the expansion

plimN→∞(ρ̂− 1) = −
3

T
− σ2θm

2
δ

σ2 + σ2θm
2
δ

½
3

T
+ gθT

¾
+ op

¡
T−1

¢
in place of (39).

4.2 Incidental Trends

We take M2 and allow for errors uit that satisfy Assumption A2:

Model M2-CSD (Incidental Trends)

(
yit = ai + bit+ ρyit−1 + uit ρ ∈ (−1, 1)

yit = ai + bit+ y0it, y
0
it = ρy0it−1 + uit ρ = 1

It will be convenient to define the following notation to represent the residual from linear detrending
the variable wt :

wτ
t = wt −

(
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

wt

!
− 6

T (T − 1)
TX
t=1

twt

)

−
(
− 6

T (T − 1)
TX
t=1

wt +
12

T (T 2 − 1)
TX
t=1

twt

)
t

= wt − awT − bwT t,
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where

awT =
2 (2T + 1)

T (T − 1)

Ã
TX
t=1

wt

!
− 6

T (T − 1)
TX
t=1

twt, bwT =
12

T (T 2 − 1)
TX
t=1

twt − 6

T (T − 1)
TX
t=1

wt.

Derivations similar to those of proposition 4 provide the following analogue of (36) and (39).

Proposition 5 (Incidental Trends with |ρ| < 1) In model M2-CSD with errors uit having the factor
structure (35) and satisfying assumption A2, the pooled least squares estimate ρ̂ is inconsistent as
N →∞ and

plimN→∞(ρ̂− ρ) = − £σ2C(ρ, T ) + ψCT
¤ £
σ2D(ρ, T ) + ψDT

¤−1
, (41)

where C(ρ, T ) and D(ρ, T ) are defined in (14) and (15),

ψCT = −trace
½

TP
t=1

Zτ
θt−1θ

τ 0
t Mδ

¾
, (42)

ψDT = trace
½

TP
t=1

Zτ
θt−1Z

τ 0
θt−1

¾
, (43)

and where Zθt =
P∞

j=0 ρ
jθt−j and Z̃τ

θt = Zθt− aZθT − bZθT t is detrended Zθt so is θ
τ
t . In the single factor

(K = 1) case, the inconsistency (41) has the following asymptotic representation as T →∞

plimN→∞(ρ̂− ρ) = −21 + ρ

T
− σ2θm

2
δ

σ2 + σ2θm
2
δ

·
2ρ

T
+ (EhθT − hθT )

¸
+ op

¡
T−1

¢
, (44)

where hθT = ψCT /ψDT =
PT

t=1 z
τ
θt−1θ

τ
t /
PT

t=1

¡
zτθt−1

¢2
is the centred least squares estimate of the slope

coefficient in a regression of zτθt on zτθt−1, and where E (hθT ) = −21+2ρT + o
¡
T−1

¢
.

The unit root case for model M2-CSD is handled in a similar way. As in the M1-CSD.model, direct
calculation is needed because it is no longer possible to extract the unit root case by taking the limit

as ρ→ 1, in view of the randomness of the limit functions (42) and (44). The inconsistency of ρ̂ for the
case of unit root is given by

plimN→∞ (ρ̂− 1) =
plimN→∞

1
NCC

NT

plimN→∞
1
NDC

NT

= −7.5
T
− µ2δσ

2
θ

σ2 + µ2δσ
2
θ

·
3

T
+ hθT

¸
+ op

¡
T−1

¢
5 Bias Reduction and Simulations

5.1 Cross Section Independence

Under cross section independence, bias correction is straightforward especially when N is moderately
large, regardless of the value of T. First, consider the bias correction strategy when there are no ex-
ogeneous variables. An unbiased estimator can be obtained through inversion of the mean function,
i.e.,

ρ̂MUE = m−1 (ρ̂) .
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where m−1 is the inverse of the function G for the fixed effects case and H for the case of a model with
incidental trends. This estimator can be obtained by direct numerical calculation and can be called a
“mean unbiased estimator”. Simulations indicate the function m is one-to-one. End corrections can be
implemented at unity, so that in effect

ρ̂MUE = 1 if

(
ρ̂ ≥ 1− 3/T fixed effects case
ρ̂ ≥ 1− 7.5/T linear trend case

When there are exogenous regressors, bias correction is still fairly straightforward. To fix ideas,
consider the case of only two exogenous regressors which affect yit in levels and in quasi-differences as
in .

yit = ai + ρyit−1 + γ1wit + γ2wit−1 + βzit + εit, γ2 = −γ1ρ.
Here wit may be regarded as affecting yit in levels (i.e. after removing the autoregressive transformation)
while zit affects yit in the quasi-difference form yit−ρyit−1. As discussed earlier (c.f. (28)), the estimate
γ̂1 does not suffer from asymptotic bias, while the biases of β̂ and ρ̂ depend on the true values of β and
ρ. To separate the bias of ρ̂ from β, we run a regression of yit on {yit−1, wit, wit−1} with fixed effects,
i.e.,

yit = b̂i + ρ̂−zyit−1 + γ̂1wit + γ̂2wit−1 + υ̂it,

The bias of the estimator ρ̂−z is given by the functions G and H for fixed effects and for linear trends,
respectively. Since plimN→∞

¡
ρ̂−z − ρ

¢
= m (ρ, T ) , asymptotically mean unbiased estimators can be

defined as
ρ̂MUE = m−1

¡
ρ̂−z

¢
, γ̂2,MUE = γ̂2 + γ̂1

¡
ρ̂−z − ρ̂MUE

¢
,

using (28). A bias corrected estimator of β can be obtained by running the following regression

yit − ρ̂MUEyit−1 − γ̂1wit − γ̂2,MUEwit−1 = bi + βzit + εit

The panel least squares estimator in this regression is asymptotically mean unbiased since the asymptotic
bias of ρ̂ and γ̂2 has been removed.

5.2 Cross Section Dependence

We distinguish two general types of panel data. For micro panel data such as the PSID, the number
of factors as well as the number of cross sectional units will often be large while the number of time
periods is small. As shown earlier, when the factors are independent and the number of factors K is
large, the randomness in the bias arising from cross section dependence is attenuated and the bias is
similar to that which applies under cross section independence. In such cases, common time effects or
time dummies is usually recommended and this helps to reduce the efficiciency loss arising from cross
section dependence (Phillips and Sul, 2003).

In contrast, for aggregated panels like regional income and consumption data, the time dimension
may be reasonably long but there may only be one or two common factors. As we have seen, in such cases
the bias is random and depends on the unknown common factors, and pooled OLS has high variability
as well as bias. The practical issue is to reduce bias and variability in estimation. One approach is
to construct a feasible generalized least squares (FGLS) estimator, which can be accomplished either
by using the iterative method of moments procedure in Phillips and Sul (2003) or by using the sample
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covariance matrix of the residuals ûit = ỹit − ρ̂λMUE ỹit−1 where ‘~’ stands for demeaned or detrended
yit and ρ̂λMUE is defined below.
The properties of FGLS depend on the first stage estimator and if this estimator is inconsistent (like

panel OLS), then so is FGLS. The mean unbiased estimator (based on the bias formula that applies
under cross section independence) is also inconsistent under cross section dependence. Its bias for the

case of fixed effects and a single common factor has asymptotic expansion given by

plimN→∞ (ρ̂MUE − ρ) = −
·
2ρ

T
+ (EgθT − gθT )

¸
m2
δσ
2
θ

σ2 +m2
δσ
2
θ

+ op
¡
T−1

¢
, (45)

which is small for large T . The use of common time effects or time dummies in the regression can be
shown to reduce this bias. That is, if the regression model is augmented as

yit = ai + λt + ρyit−1 + uit,

and estimated by pooled OLS with a mean correction based on the cross section independent case
(giving the estimate ρ̂λMUE), then the asymptotic bias of ρ̂

λ
MUE has the following expansion

plimN→∞
³
ρ̂λMUE − ρ

´
= −

·
2ρ

T
+ (EgθT − gθT )

¸ ³
m2
δ − δ̄

2
´
σ2θ

σ2 +
³
m2
δ − δ̄

2
´
σ2θ

+ op
¡
T−1

¢
,

where δ̄ = limN→∞N−1
PN

i=1 δi. Since

m2
δσ
2
θ

σ2 +m2
δσ
2
θ

−
³
m2
δ − δ̄

2
´
σ2θ

σ2 +
³
m2
δ − δ̄

2
´
σ2θ

=
δ̄
2
σ2σ2θ

(σ2 +m2
δσ
2
θ)
³
σ2 +

³
m2
δ − δ̄

2
´
σ2θ

´ ≥ 0,
with equality holding when δ̄ = 0, the mean corrected estimator with common time effects reduces bias
and variation.

An alternative option is to attempt to eliminate the factor loading coefficients δi in the regression.
One approach that has recently been considered in the literature is to project out the factor θt by
including cross sectional averages of yit and yit−1 in the regression (Pesaran, 2002). This can be
accomplished by rewriting the model M1 in the following augmented regression form

yit = a+i + ρyit−1 + c1i

Ã
1

N

NX
i=1

yit

!
+ c2i

Ã
1

N

NX
i=1

yit−1

!
+ εit (46)

c1i =
δi
δ̄
, c2i = −ρδi

δ̄
, a+i = ai − δi

δ̄
(ā+ ε̄.t)

Multiple factors can be treated in a similar way. Let the cross section observations be classified into

groups {Ak : k = 1, ...,K} with counts Nk = # {i ∈ Ak} in each group and suppose Nk/N → rk 6= 0
for all k as N →∞. Further, let δ̄Ak = N−1k

P
i∈Ak δi,define DK =

£
δ̄A1 , ..., δ̄AK

¤
and assume DK is of

full rank K. Set

ȳAkt = N−1k

X
i∈Ak

yit, ȳKt = (ȳA1t, ..., ȳAKt)
0
,

āAk = N−1k

X
i∈Ak

ai, āK = (āA1 , ..., āAK )
0 ,

ε̄A1t = N−1k

X
i∈Ak

εit, ε̄Kt = (ε̄A1t, ..., ε̄AKt)
0 .
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Then,
ȳAkt = āAk + ρȳAkt−1 + δ̄

0
Ak

θt + ε̄Akt,

and
θt = D−1K (ȳKt − āK − ρȳKt−1 − ε̄Kt)

In this case, the augmented regression has the form

yit = a+i + ρyit−1 + δ0iD
−1
K (ȳKt − ρȳKt−1) + εit, (47)

with
a+i = ai − δ0iD

−1
K āK − δ0iD

−1
K ε̄Kt = ai −D−1K āK + op (1)

as N →∞. Again, (47) may be estimated in restricted or unrestricted form and the panel estimate of
ρ may be adjusted for bias just as in the cross section independent case.2

5.3 Monte Carlo Studies

We consider two data generating processes (DGP)s. The first DGP is for the case of exogenous variables
and is given by

yit = ρyit + βzit + εit,

fitting both fixed effects and incidental trends. We consider various values of ρ but report the case of

ρ = 0.9, which is representative, to save the space3. We set β = 1, and generate εit as iid N(0, 1).
Table 2 reports the finite sample performance of pooled least squares and mean unbiased estimators
as described in subsection 5.1. The results in columns B and D of the Table show that the bias of
ρ̂MUE and β̂MUE is small in both cases and these estimates provide a clear improvement over panel least
squares.
The second DGP covers the case of cross section dependence given by

yit = ρyit−1 + δiθt + εit

We set δi ≡ U [1, 4] , εit ≡ iid N(0, 1) and θt ≡ iid N(0, 1). We consider six estimators: the least
squares dummy variable (LSDV) estimator ρ̂ (A); LSDV with common time effects ρ̂λ (B); panel feasible

generalized mean unbiased estimator (FGMUE) based on the residual covariance matrix calculated from
ρ̂ (C); panel FGMUE based on the residual covariance matrix calculated from ρ̂MUE (D); panel FGMUE

2Pesaran (2002) calls the regression in (46) a ‘common correlated regression (CCR)’. Unfortunately, the bias of
the CCR estimator cannot be reduced in a simple way by utilizing a mean bias function. To see this, define
ȳt =

¡
ỹ0·t, ỹ0·t−1

¢0
, My = yt (y0tyt)

−1 y0t, and Qy = I −My where ỹ·t = N−1
PN

i=1

³
yit − T−1

PT
t=1 yit

´
and y·t−1 =

N−1
PN

i=1

³
yit−1 − T−1

PT
t=1 yit−1

´
. The asymptotic bias of the common correlated estimator ρ̂CCR in (46) is given by

plimN→∞ (ρ̂CCR − ρ) =
n
plimN→∞

1
N

PN
i=1 ỹ

0
iQy ỹi

o−1 n
plimN→∞

1
N

PN
i=1 ỹ

0
iQy ε̃i

o
. Note that the numerator term

becomes −σ2εA (ρ, T ) , which is the same as in the case of exogenous regressors. However, the denominator term contains
an additional term. In particular, plimN→∞ 1

N

PN
i=1 ỹ

0
iQy ỹi = plimN→∞ 1

N

PN
i=1 ỹ

0
iỹi − plimN→∞ 1

N

PN
i=1 ỹ

0
iMy ỹi =

σ2εB (ρ, T ) + ψBT−plimN→∞ 1
N

PN
i=1 ỹ

0
iMy ỹi 6= σ2εB (ρ, T ) , where ψBT was defined in (38). The numerator term in

(??) is the same as that without cross section dependence. This is because the ψAT term vanishes by virtue of the
inclusion of cross sectional averages of ȳt and ȳt−1 in (46). At the same time, the inclusion of ȳt and ȳt−1 means that
the denominator includes additional terms, thereby making bias correction more difficult.

3Full Excel formated tables are available requested upon authors.
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based on the residual covariance matrix calculated from ρ̂λMUE (E); and the mean unbiased estimator
after eliminating the factor loading coefficients through Pesaran’s correlated common method (F). The
residual covariance matrices for (C), (D) and (E) are estimated using iterative method of moments
(Phillips and Sul, 2003). We set T = 25, 50, 100, 200 and N = 10, 25, 50, 100, which covers the most
typical data dimensions in empirical studies with macro panel data.

Table 3 shows the results for the fixed effects and incidental trend cases, respectively. The mean
unbiased estimator (E) shows the best performance both in terms of absolute bias and mean square
error ratio. Meanwhile, the mean unbiased estimator based on Pesaran’s estimator (F) is better than
LSDV with common time effects but is inferior in comparison to other FGLS estimators.

6 Conclusion

The results of the present paper focus on dynamic bias in pooled panel regression, showing that the
problem is particularly serious when trends are extracted and is pervasive in a range of cases that
are relevant in applications. When cross section error dependence is present, problems of bias are
confounded with increases in dispersion, which manifests itself even in the limit theory as N → ∞
through a random probability limit.

The specific nature of the panel can play an important role in the bias and the possibility of bias
correction. For micro panels, it is natural to assume that there are a number of common factors in the
panel. In this case, the biases in pooled panel regressions can be corrected by utilizing mean unbiased
functions in a straightforward way. In dynamic panel regressions with such micro panels, the bias
correction methods differ depending on the way exogenous variables figure in the model. The original
empirical study of the demand for natural gas by Balestra and Nerlove (1966) illustrates this point.
Balestra and Nerlove fitted the following panel regression equation to estimate the demand for natual
gas.

Git = αi + ρGit−1 + βpit + γ1∆Mit + γ2Mit−1 + γ3∆Yit + γ4Yit−1 + uit

where Git, pit, Mit, and Yit represent quantity demanded for gas, the relative price of gas, population
and per capita income at time t and for the i’th unit, respectively. This model fits the framework of
model M3. The authors modelled the exogenous variables in such a way that population and per capita
income affected Git in levels but the relative price of gas affected Git in first differences. As a result,
the reported LSDV estimates of β are biased but those of γ1 and γ3 are unbiased.

For macro panel data, modelling cross section dependence is important. As a second illustration,
we consider the study by Frankel and Rose (1996) who used a panel of 45 annual observations over 150
countries to examine the half life of deviations from purchasing power parity (PPP) by running the
following panel regression equation4

qit = ai + ρqit−1 + uit, (48)

where qit is the logarithm of the real exchange rate. From the point estimate ρ̂ = 0.88, they calculated
the half-life of the PPP deviation to be ln(0.5)/ ln(0.88) = 5.4 years. As discussed, such estimates are
biased and can be very inefficient in the presence of cross section dependence. To illustrate the empirical

4See Frankel and Rose (1996, table 3 p. 219). Similar results to those reported were obtained in an equation with
time-specific intercepts.
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effects of taking bias and cross section dependence into account in estimation, we reestimated the half-
life of the PPP deviation from the same model (48) using an updated data set5 involving 51 annual
observations from 21 OECD countries. Table 4 displays the estimation results for all the estimates
discussed earlier in the paper. The LSDV point estimate gives a half-life for PPP deviations of 3.4
years, whereas feasible generalized least squares estimates that adjust for bias and make allowance for

potential cross section dependence in long run PPP deviations are more than twice as great. These
empirical findings confirm that adjustments for dynamic panel bias and allowance for cross section
dependence can have a major impact on estimates of key parameters like the half-life of PPP deviations.

Table 4: Estimation of Half Life of the PPP Deviation

(A) (B) (C) (D) (E) (F)

Coefficient Estimates 0.817 0.858 0.913 0.917 0.919 0.857
Half-Life Estimates 3.419 4.536 7.615 8.000 8.206 4.492

Legend: (A) = LSDV; (B) = LSDV with common time effect; (C) = FGMUE based on residual variance of

LSDV; (D) = FGMUE based on residual variance of MUE with fixed effects; (E) = FGMUE based on residual

variance of MUE with common time effects; (F) = MUE with Pesaran’s correlated common estimator.

5Data for 21 countries over the period 1948-1998 was taken from the International Financial Statistics. The series
involved annual price indices for each country and real exchange rates calculated from the individual national price indices
and the end of the period spot exchange rates. The US dollar was chosen as the numeraire currency.
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7 Appendix

7.1 Proofs of Propositions

Proof of Proposition 2 Write the model in components form as yit = αi + βit + xit, where xit =
ρxit−1 + uit for t = 1, ..., T. Then the panel least squares estimate of ρ is ρ̂ = Cx

NT /D
x
NT , where

Cx
NT =

NX
i=1

"
TX
t=1

(xit − xi·) (xit−1 − xi·−1)−
PT

t=1 [(t− t̄)(xit − xi·)]
PT

t=1 [(t− t̄)(xit−1 − xi·−1)]PT
t=1(t− t̄)2

#
,

Dx
NT =

NX
i=1

 TX
t=1

(xit−1 − xi·−1)
2 −

hPT
t=1(t− t̄)(xit−1 − xi·−1)

i2
PT

t=1(t− t̄)2

 ,
using the sum notation wi· = T−1

PT
t=1 wit, wi·−1 = T−1

PT
t=1wit−1. Expanding the cross product

moments in these expressions and standardizing by N−1, probability limits are taken as N → ∞
with T fixed. A typical term is evaluated in the following manner using a law of large numbers for
heterogeneous sequences. First note that

plimN→∞
1

N

NX
i=1

xitxis = limN→∞
1

N

NX
i=1

E [xitxis] = limN→∞
1

N

NX
i=1

σ2i
ρ|t−s|

1− ρ2
= σ2

ρ|t−s|

1− ρ2
.

Then we have

plimN→∞
1

N

NX
i=1

TX
t=1

xit

Ã
TX
s=1

sxis

!
=

TX
t,s=1

s

Ã
plimN→∞

1

N

NX
i=1

xitxis

!
=

σ2

1− ρ2

TX
t,s=1

sρ|t−s|

= E

(
TX
t=1

xt

TX
s=1

sxs

)
,

thereby writing the limit as a moment of a homogeneous (across i) process xt which follows the stationary
autoregression xt = ρxt−1 + εt where εt is iid

¡
0, σ2

¢
.

Let CNT = Cx
NT − ρDx

NT . Using this approach, we find after some lengthy but routine derivations
using the lemmas in Section 7.2 that the inconsistency as N →∞ with T fixed has the form

p limN→∞(ρ̂− ρ) =
plimN→∞

1
NCNT

plimN→∞
1
NDNT

= −C (ρ, T )
D (ρ, T )

, (49)

where

C (ρ, T ) = − 1

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
, (50)

D(ρ, T ) =
T − 2
1− ρ2

·
1− 1

T − 2
4ρ

1− ρ
D1

¸
, (51)

with

C1 = 1− 1

T + 1

Ã
1 +

1− ρ3

(1− ρ)3
1

T

!
+

Ã
1

2
+

1

T + 1

"
1 + 2ρ

1− ρ
+

1− ρ3

(1− ρ)3
1

T

#!
ρT ,

D1 = 1− 1

T + 1

2

1− ρ

(
1 +

1

T − 1

"
1− 1− ρ3

T (1− ρ)
3

¡
1− ρT

¢
+

µ
3ρ

1− ρ
+

T + 3

2

¶
ρT

#)
.
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Upon further algebraic reduction the rational function limit (49) has the following explicit form in terms
of constituent polynomials in ρ and T :

H(ρ, T ) = −C (ρ, T )

D (ρ, T )
= −2ρ a1T

3 + a2T
2 + a3T + a4

b1T 4 + b2T 3 + b3T 2 + b4T + b5
, (52)

where

a0 = − (1 + ρ) (1− ρ)
3
, a1 = −(1− ρ)a0,

a2 = a0(2 + ρT ), a3 = −a1 − 3ρT (1− ρ2)2,

a4 = 2(1 + ρ)(1− ρ3)(1− ρT ), b1 = ρ(1− ρ)4,

b2 = 2ρa0, b3 = (ρ− 1)2(12ρ2 − ρ (ρ+ 1)2 + 4ρT+2),

b4 = (1− ρ2)((1− ρ)22ρ+ 12ρ2+T ) and b5 = 8ρ
2(ρ2 + ρ+ 1)(ρT − 1).

Adjusting (50)and (51) for dominant terms yields the following approximant:

plimN→∞ (ρ̂− ρ) = −2 1 + ρ

T − 2 +O(T−2).

For the first few values of T, the exact limit formulae work out as follows:

plimN→∞ (ρ̂− ρ) =


−12 ρ

2−3ρ−4
ρ−3 for T = 3

−12 ρ
3−6ρ−5
ρ2−5 for T = 4

−12 2ρ
4+2ρ3−5ρ2−17ρ−12
2ρ3+2ρ2−3ρ−15 for T = 5

The approximate formula, −2(1+ρ)/(T−2) is usually smaller (in absolute value) than the exact formula
when ρ is larger than (around) 0.7.

Proof of Proposition 3 From (19), plimN→∞ (ρ̂− ρ) =
©
plimN→∞

1
N ỹ0−1QZ̃ ỹ−1

ª−1 ©
plimN→∞

1
N ỹ0−1QZ̃ ε̃

ª
,

and by virtue of exogeneity

plimN→∞
1

N
ỹ0−1QZ̃ ε̃ = plimN→∞

1

N
ỹ0−1ε̃− plimN→∞

1

N
ỹ0−1Z̃

³
Z̃0Z̃

´−1
Z̃0ε̃

= plimN→∞
1

N
ỹ0−1ε̃ = −σ2A (ρ, T ) ,

as given in (3). Next, when |ρ| < 1, we have

ỹit =
∞P
j=0

ρjZ̃it−jβ +
∞P
j=0

ρj ε̃it := Z̃ρitβ + ỹ0it,

and, using the stacked notation ỹ = Z̃ρβ + ỹ0 and its lagged variant, we have as in (25)

plimN→∞
1

N
ỹ0−1QZ̃ ỹ−1 = β0

·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + plimN→∞

1

N
ỹ00−1ỹ

0
−1

= β0
·
plimN→∞

1

N
Z̃0ρ,−1QZ̃Z̃ρ,−1

¸
β + σ2B (ρ, T ) ,

where B (ρ, T ) is given in (4). It follows that

plimN→∞ (ρ̂− ρ) = − σ2A (ρ, T )

σ2B (ρ, T ) + β0
h
plimN→∞

1
N Z̃0ρ,−1QZ̃Z̃ρ,−1

i
β
, (53)
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as given in (21). Results (22) and (23) follow in a similar way.
When ρ = 1, we have

limρ→1A (ρ, T ) = A (T ) =
(T − 1)
2

, limρ→1B (ρ, T ) = B (T ) =
(T − 1) (T + 1)

6
, (54)

so that (53) becomes

plimN→∞ (ρ̂− ρ) = − σ2A (T )

σ2B (T ) + β0
h
plimN→∞

1
N Z̃01,−1QZ̃Z̃1,−1

i
β
, (55)

in which Z̃1,−1 =
³
Z̃01,0, ..., Z̃

0
1,T−1

´0
with Z̃1,t =

³
Z̃11,t, ..., Z̃

N
t

´0
and Z̃i

t =
Pt

j=0 Z̃it−j . The correspond-
ing result in the incidental trends case is

plimN→∞ (ρ̂− ρ) = − σ2C (T )

σ2D (T ) + β0
h
plimN→∞

1
N Z̃01,−1QZ̃Z̃1,−1

i
β
, (56)

where
limρ→1C (ρ, T ) = C (T ) =

1

2
(T − 2) , limρ→1D (ρ, T ) = D (T ) =

1

15

¡
T 2 − 4¢ , (57)

as in (??) and (??). Formula (23) for the inconsistency of β̂ continues to apply in the unit root case
upon appropriate substitution of result (55) or (56).

Proof of Proposition 4 It is convenient here to use sequential asymptotics with N → ∞ followed
by T →∞. Write the panel least squares estimate under cross sectional dependence as

ρ̂− ρ =
AC
NT

BC
NT

. (58)

In the one factor (K = 1) case, the model is given by

yit = αi + xit, xit = ρxit−1 + uit, uit = δiθt + εit, (59)

and then

xit = δi

∞X
j=0

ρjθt−j +
∞X
j=0

ρjεit−j := δizθt + x�it, say. (60)

Since yit − 1
T

P
yit = xit − 1

T

P
xit, we have
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¸
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TP
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¸
, (61)

where

σ2A (ρ, T ) = plimN→∞
1
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"
1
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(
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ρjεit−j−1)
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·
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¸
,
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as in (3). Using the fact that limN→∞ 1
N

PN
i=1 δ

2
i = m2

δ, (61) becomes

plimN→∞
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NT = −σ2A (ρ, T )−m2
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TP
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= −σ2A (ρ, T ) +m2
δ

TP
t=1
(zθt−1 − z̄θ−1)

¡
θt − θ̄

¢
. (63)

Dealing with the denominator in a similar fashion, we get

plimN→∞
1

N
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NT = σ2B (ρ, T ) +m2

δ

·
TP
t=1
(zθt−1 − z̄θ−1)

2

¸
.

Note that

σ2B (ρ, T ) = plimN→∞
1
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 TP
t=1
(
∞P
j=0

ρjεit−j−1)2 − 1

T

Ã
TP
t=1
(
∞P
j=0

ρjεit−j−1)
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1− ρ2
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1− 1

T − 1
2ρ
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1− ρT
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¸¾
. (64)

Combining the two results gives

plimN→∞
1
NAC

NT
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,

where

gθT =
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T
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s=1 θsPT
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¢PT
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2
,

which is the centred serial correlation coefficient of zθt, viz., the centred least squares estimate of
the slope coefficient in a regression of zθt on zθt−1 and a constant. The density of gθT is studied in
Phillips(1977) and Tanaka(1983). Its unconditional mean has a large T expansion given by

E (gθT ) = −1 + 3ρ
T

+ o
¡
T−1

¢
.

Letting T →∞ we have
1

T

TP
t=1
(zθt−1 − z̄θ−1)

2 →p E
¡
z2θt
¢
=

σ2θ
1− ρ2

,

and
1

T
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2 =
σ2θ

1− ρ2
+Op

³
T−1/2

´
.

Hence,

plimN→∞
1

N

NP
i=1

δ2i

·
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(zθt−1 − z̄θ−1)

2

¸
= T

·
m2
δ

σ2θ
1− ρ2

+Op

³
T−1/2

´¸
, as T →∞. (65)
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Taking limits as N →∞ followed by an expansion as T →∞, we have

plimN→∞
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In the multi-factor case, we have uit = δ0iθt + εit in (59) where θt is iid (0,Σθ) and Σθ is K ×K.

Then, Zθt =
P∞

j=0 ρ
jθt−j , and ziθt := δ0iZθt =

P∞
j=0 ρ

jδ0iθt−j is first order autoregressive and satisfies
ziθt = ρziθt−1 + θit where θit = δ0iθt is iid

¡
0, δ0iΣθδi

¢
. Then, in place of (60), we have

yit = αi + xit, with xit = ziθt + x�it.

Proceeding as above, we obtain
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¾
,

whereMδ = limN→∞ 1
N

PN
i=1 δiδ

0
i and θt = (θ1, ..., θk) . In a similar manner, we find the following limit

for the denominator
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1

N
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½
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.

It follows that
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NT
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which gives the stated result.
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Proof of Proposition 5 Define

xτit−1 = (xit−1 − xi·−1)
2 − (t− t̄)(xit−1 − xi·−1)PT

t=1(t− t̄)2
,

uτit = (uit − ui·)
2 − (t− t̄)(uit − ui·)PT

t=1(t− t̄)2
.

Then we have

CC
NT =

NX
i=1

xτit−1u
τ
it,

and

DC
NT =

NX
i=1

TX
t=1

¡
xτit−1

¢2
.

We derive an explicit form for the inconsistency

plimN→∞(ρ̂− ρ) = plimN→∞
1
NCC

NT
1
NDC

NT

. (66)

The data are generated by the model

yit = ai + bit+ ρyit−1 + uit, ρ ∈ (−1, 1)

which has the alternate form

yit = a0i + b0i t+ xit, xit = ρxit−1 + uit =
∞P
j=0

ρjuit−j .

Linear detrending the variable xit leads to the residual quantity

xτit = xit −
(
2 (2T + 1)

T (T − 1)
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xit

)
t

= xit − gxiT − hxiT t,

where
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T (T − 1)

Ã
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T (T − 1)
TX
t=1

txit, hxiT =
12

T (T 2 − 1)
TX
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txit − 6

T (T − 1)
TX
t=1

xit, (67)

As in eq. (60), the detrended series when K = 1 can be decomposed as

xτit = δiz
τ
θt + xετit

From the proof of Proposition 2 we have

σ2D (ρ, T ) = plimN→∞
1
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¡
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¢2¸
= σ2
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D1

¸
, (68)
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where D1 is defined in (12). Then
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Letting T →∞ we have
1

T
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t=1
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¢2 →p E
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,

and then
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¸
, as T →∞. (70)

Combining (70) and (68) with (69) yields
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N
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ª
, as T →∞ (71)

Turning to the numerator of (66), we have
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where, from the proof of Proposition 2, we have

σ2C (ρ, T ) = plimN→∞
1

N

NP
i=1

TP
t=1

xετit−1ε
τ
it

=
σ2

T − 1
2

1− ρ

·
(T − 1)− 2

1− ρ
C1

¸
,

and C1 is defined in (11). Since limN→∞ 1
N

PN
i=1 δ

2
i = m2

δ, (72) becomes
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where kθT =
PT

t=1 z
τ
θt−1θ

τ
t . Then, using (71) and (73), we have
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and the single factor (K = 1) version of (42) follows. Extension to the multiple factor case follows in a
straightforward way.
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Phillips and Sul (2001) provide an asymptotic expansion the fitted autoregressive coefficient in an
autoregression with trend. From this work we have
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,

and then, expanding the probability limit (74) as T →∞, we find
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as given in (44).

7.2 Additional Lemmas

The following two lemmas, whose proofs are straightforward and omitted, are used in calculating various
results involving trend regression in the paper. They provide moment formulae for various sample
moments of the (homogeneous) autoregression

xt = ρxt−1 + εt, ρ ∈ (−1, 1], with εt ∼ iid
¡
0, σ2

¢
, (75)

in the stationary case (|ρ| < 1), where σ2x = σ2

1−ρ2 , and the unit root case (ρ = 1), where the initialization
at t = 0 is x0 = 0. The lemmas provide basic formulae from which reduced results can be obtained by
further calculation or by the use of algebraic manipulation software such as Maple. The latter formulae

are lengthy and are not repeated here.
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Lemma 2 ( Unit Root xt ):
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8 Notation
op(1) tends to zero in probability

Op(1) bounded in probabilityR 1
0
f

R 1
0
f(r)dr

[·] integer part

:= definitional equality

CSD Cross Section Dependent

CSI Cross Section Independent
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→d weak convergence

→p convergence in probability, almost surely
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Table 2: Finite Sample Performance of Mean Unbiased Estimator
with an Exogenous Variable: (ρ = 0.9, β = 1)

yit = ai + bit+ ρyit−1 + βzit + uit

Sample Absolute Bias ×T MSE Ratio

(A) (B) (C) (D) A/B C/D

Fixed Effects

T= 5,N=1000 1.293 0.000 0.585 0.001 0.009 0.021
T= 10,N= 500 1.277 0.001 0.496 0.004 0.019 0.092

T= 25,N= 200 1.195 0.007 0.312 0.006 0.056 0.585
T= 50,N= 100 1.107 0.008 0.180 0.012 0.150 0.942
T=100,N= 50 1.047 0.026 0.096 0.024 0.420 0.996

Linear Trend

T= 5,N=1000 3.237 0.010 1.623 0.006 0.022 0.020
T= 10,N= 500 3.087 0.078 1.435 0.032 0.037 0.042
T= 25,N= 200 2.771 0.016 1.027 0.002 0.043 0.145
T= 50,N= 100 2.482 0.011 0.664 0.015 0.068 0.560
T=100,N= 50 2.241 0.021 0.368 0.026 0.158 0.941

Legend: Errors are drawn as iid N(0, 1), the number of replications = 10,000
A= ρ̂ (Pooled OLS), B= ρ̂MUE (Mean unbiased estimator),
C=β̂ (Pooled OLS), D=β̂MUE(Mean unbiased estimator)
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Table 3: Finite Sample Performance of Various Feasible Generalized Mean Unbiased Estimator
Under Cross Section Dependence (ρ = 0.9)

Bias ×T MSE Ratio×10
T N (A) (B) (C) (D) (E) (F) B/A C/A D/A E/A F/A

Fixed Effects
25 10 -3.65 -2.63 -0.65 -0.30 -0.08 -1.57 3.71 1.05 0.91 0.81 2.45
25 25 -3.52 -2.69 -0.53 -0.15 0.03 -1.44 4.34 0.58 0.46 0.39 1.80

25 50 -3.49 -2.63 -0.49 -0.10 0.08 -1.40 4.16 0.38 0.27 0.21 1.55
25 100 -3.53 -2.64 -0.48 -0.09 0.10 -1.38 4.03 0.29 0.19 0.12 1.34
50 10 -3.64 -2.78 -0.45 -0.27 -0.19 -1.41 4.54 0.86 0.83 0.79 1.89
50 25 -3.58 -2.43 -0.34 -0.16 -0.06 -1.27 2.88 0.38 0.35 0.32 1.14
50 50 -3.51 -2.53 -0.29 -0.10 -0.01 -1.22 3.55 0.22 0.20 0.17 0.93
50 100 -3.51 -2.51 -0.27 -0.08 0.01 -1.18 3.42 0.13 0.11 0.09 0.78
100 10 -3.43 -2.51 -0.33 -0.25 -0.21 -1.30 3.84 0.94 0.93 0.92 1.73
100 25 -3.39 -2.45 -0.20 -0.11 -0.07 -1.14 3.45 0.37 0.36 0.35 0.87
100 50 -3.47 -2.40 -0.16 -0.07 -0.03 -1.08 3.06 0.19 0.18 0.18 0.61
100 100 -3.41 -2.40 -0.15 -0.06 -0.02 -1.06 3.13 0.10 0.10 0.09 0.50

200 10 -3.42 -2.47 -0.24 -0.20 -0.18 -1.18 3.67 1.01 1.00 1.00 1.49
200 25 -3.40 -2.47 -0.12 -0.09 -0.07 -1.04 3.70 0.40 0.40 0.40 0.68
200 50 -3.48 -2.44 -0.11 -0.07 -0.05 -1.03 3.18 0.20 0.20 0.20 0.45
200 100 -3.33 -2.32 -0.08 -0.04 -0.02 -1.00 2.95 0.11 0.10 0.10 0.33

Linear Trend

25 10 -6.66 -5.60 -1.25 -0.35 -0.01 -2.15 5.76 1.14 0.89 0.80 1.95
25 25 -6.57 -5.68 -1.18 -0.09 0.25 -2.00 6.28 0.71 0.52 0.47 1.37

25 50 -6.58 -5.64 -1.15 0.01 0.37 -1.95 6.15 0.52 0.35 0.32 1.14
25 100 -6.58 -5.63 -1.17 0.00 0.38 -1.95 6.03 0.43 0.26 0.21 1.00
50 10 -6.43 -5.52 -0.70 -0.24 -0.11 -1.77 6.10 0.83 0.80 0.79 1.50
50 25 -6.40 -5.13 -0.62 -0.14 0.02 -1.63 4.71 0.37 0.33 0.32 0.86
50 50 -6.30 -5.24 -0.58 -0.10 0.04 -1.59 5.38 0.22 0.18 0.16 0.71
50 100 -6.32 -5.22 -0.56 -0.08 0.06 -1.56 5.23 0.14 0.10 0.08 0.59
100 10 -5.97 -4.95 -0.47 -0.28 -0.23 -1.52 5.22 0.73 0.71 0.71 1.28
100 25 -5.88 -4.85 -0.31 -0.11 -0.06 -1.33 4.95 0.30 0.29 0.28 0.65
100 50 -6.00 -4.83 -0.28 -0.08 -0.03 -1.28 4.63 0.15 0.14 0.14 0.45

100 100 -5.87 -4.78 -0.26 -0.06 0.00 -1.26 4.71 0.08 0.07 0.07 0.38
200 10 -5.67 -4.65 -0.30 -0.22 -0.19 -1.28 4.74 0.80 0.79 0.79 1.16
200 25 -5.63 -4.66 -0.18 -0.09 -0.07 -1.14 4.79 0.32 0.31 0.31 0.54
200 50 -5.72 -4.62 -0.17 -0.08 -0.06 -1.13 4.35 0.16 0.16 0.16 0.36
200 100 -5.57 -4.49 -0.13 -0.04 -0.01 -1.09 4.12 0.08 0.08 0.08 0.26

Legend: (A) = LSDV; (B) = LSDV with common time effect; (C) = FGMUE based on residual variance of

LSDV; (D) = FGMUE based on residual variance of MUE with fixed effects; (E) = FGMUE based on residual

variance of MUE with common time effects; (F) = MUE with Pesaran’s correlated common estimator.
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