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Abstract

Traders with short horizons and privately known trading limits inter-
act in a market for a risky asset. Risk-averse, long horizon traders sup-
ply a downward sloping residual demand curve that face the short-horizon
traders. When the price falls close to the trading limits of the short horizon
traders, selling of the risky asset by any trader increases the incentives for
others to sell. Sales become mutually reinforcing among the short term
traders, and payoffs analogous to a bank run are generated. A “liquidity
black hole” is the analogue of the run outcome in a bank run model. Short
horizon traders sell because others sell. Using global game techniques, this
paper solves for the unique trigger point at which the liquidity black hole
comes into existence. Empirical implications include the sharp V-shaped
pattern in prices around the time of the liquidity black hole.

∗This is a much revised version of an earlier paper circulated under the title “Market Risk with
Interdependent Choice”. We thank Guillaume Plantin, Jon Danielsson, Amil Dasgupta, Markus
Brunnermeier, Jean-Pierre Zigrand and Frank Heinemann for comments at various stages of this
project.



1. Introduction

Occasionally, financial markets experience episodes of turbulence of such an ex-

treme kind that it appears to stop functioning. Such episodes are marked by a

heavily one-sided order flow, rapid price changes, and financial distress on the part

of many of the traders. The 1987 stock market crash is perhaps the most glaring

example of such an episode, but there are other, more recent examples such as

the collapse of the dollar against the yen on October 7th, 1998, and instances of

distressed trading in some fixed income markets during the LTCM crisis in the

summer of 1998. Practitioners dub such episodes as “liquidity holes” or, more

dramatically, “liquidity black holes” (Taleb (1997, pp. 68-9), Persaud (2001)).

Liquidity black holes are not simply instances of large price changes. Public

announcements of important macroeconomic statistics, such as the U.S. employ-

ment report or GDP growth estimates, are sometimes marked by large, discrete

price changes at the time of announcement. However, such price changes are

arguably the signs of a smoothly functioning market that is able to incorporate

new information quickly. The market typically finds composure quite rapidly

after such discrete price changes, as shown by Fleming and Remolona (1999) for

the US Treasury securities market.

In contrast, liquidity black holes have the feature that they seem to gather

momentum from the endogenous responses of the market participants themselves.

Rather like a tropical storm, they appear to gather more energy as they develop.

Part of the explanation for the endogenous feedback mechanism lies in the idea

that the incentives facing traders undergo changes when prices change. For

instance, market distress can feed on itself. When asset prices fall, some traders

may get close to their trading limits and are induced to sell. But this selling

pressure sets off further downward pressure on asset prices, which induces a further

2



round of selling, and so on. Portfolio insurance based on delta-hedging rules is

perhaps the best-known example of such feedback, but similar forces will operate

whenever traders face constraints on their behaviour that shorten their decision

horizons. Daily trading limits and other controls on traders’ discretion arise as a

response to agency problems within a financial institution, and are there for good

reason. However, they have the effect of shortening the decision horizons of the

traders.

In what follows, we study traders with short decision horizons who have exoge-

nously given trading limits. Their short decision horizon arises from the threat

that a breach of the trading limit results in dismissal - a bad outcome for the

trader. However, the trading limit of each trader is private information to that

trader. Also, although the trading limits across traders can differ, they are closely

correlated, ex ante. The traders interact in a market for a risky asset, where risk-

averse, long horizon traders supply a downward sloping residual demand curve.

When the price falls close to the trading limits of the short horizon traders, selling

of the risky asset by any trader increases the incentives for others to sell. This is

because sales tend to drive down the market-clearing price, and the probability

of breaching one’s own trading limit increases. This sharpens the incentives for

other traders to sell. In this way, sales become reinforcing between the short term

traders. In particular, the payoffs facing the short horizon traders are analogous

to a bank run game. A “liquidity black hole” is the analogue of the run outcome

in a bank run model. Short horizon traders sell because others sell.

If the trading limits were common knowledge, the payoffs have the potential

to generate multiple equilibria. Traders sell if they believe others sell, but if they

believe that others will hold their nerve and not sell, they will refrain from selling.

Such multiplicity of equilibria is a well-known feature of the bank run model of

Diamond and Dybvig (1983). However, when trading limits are not common
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knowledge, as is more reasonable, the global game techniques of Morris and Shin

(1998, 2003) and Goldstein and Pauzner (2000) can be employed to solve for the

unique trigger point at which the liquidity black hole comes into existence.1

The idea that the residual demand curve facing active traders is not infinitely

elastic was suggested by Grossman and Miller (1988), who posited a role for risk-

averse market makers who accommodate order flows and are compensated with

higher expected return. Campbell, Grossman, and Wang (1993) find evidence

consistent with this hypothesis by showing that returns accompanied by high

volume tend to be reversed more strongly. Pastor and Stambaugh (2002) provide

further evidence for this hypothesis by finding a role for a liquidity factor in an

empirical asset pricing model, based on the idea that price reversals often follow

liquidity shortages. Bernardo and Welch (2001) and Brunnermeier and Pedersen

(2002) have used this device in modelling limited liquidity facing active traders2.

More generally, the limited capacity of the market to absorb sales of assets has

figured prominently in the literature on banking and financial crises (see Allen and

Gale (2001), Gorton and Huang (2003) and Schnabel and Shin (2002)), where the

price repercussions of asset sales have important adverse welfare consequences.

Similarly, the ineffecient liquidation of long assets in Diamond and Rajan (2000)

has an analogous effect. The shortage of aggregate liquidity that such liquidations

bring about can generate contagious failures in the banking system.
1Global game techniques have been in use in economics for some time, but they are less well

established in the finance literature. Some exceptions include Abreu and Brunnermeier (2003),
Plantin (2003) and Bruche (2002).

2Lustig (2001) emphasizes solvency constraints in giving rise to a liquidity-risk factor in
addition to aggregate consumption risk. Acharya and Pedersen (2002) develop a model in
which each asset’s return is net of a stochastic liquidity cost, and expected returns are related
to return covariances with the aggregate liquidity cost (as well as to three other covariances).
Gromb and Vayanos (2002) build on the intuitions of Shleifer and Vishny (1997) and show that
margin constraints have a similar effect in limiting the ability of arbitrageurs to exploit price
differences. Holmström and Tirole (2001) propose a role for a related notion of liquidity arising
from the limited pledgeability of assets held by firms due to agency problems.
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Some market microstructure studies show evidence consistent with an endoge-

nous trading response that magnifies the initial price change. Cohen and Shin

(2001) show that the US Treasury securities market exhibit evidence of positive

feedback trading during periods of rapid price changes and heavy order flow. In-

deed, even for macroeconomic announcements, Evans and Lyons (2003) find that

the foreign exchange market relies on the order flow of the traders in order to

interpret the significance of the macro announcement. Hasbrouck (2000) finds

that a flow of new market orders for a stock are accompanied by the withdrawal of

limit orders on the opposite side. Danielsson and Payne’s (2001) study of foreign

exchange trading on the Reuters 2000 trading system shows how the demand or

supply curve disappears from the market when the price is moving against it, only

to reappear when the market has regained composure. The interpretation that

emerges from these studies is that smaller versions of such liquidity gaps are per-

vasive in active markets - that the market undergoes many “mini liquidity gaps”

several times per day.

The next section presents the model. We then proceed to solve for the equi-

librium in the trading game using global game techniques. We conclude with a

discussion of the empirical implications and the endogenous nature of market risk.

2. Model

An asset is traded at two consecutive dates, and then is liquidated. We index the

two trading dates by 1 and 2. The liquidation value of the asset at date 2 when

viewed from date 0 is given by

v + z (2.1)

where v and z are two independent random variables. z is normally distributed

with mean zero and variance σ2, and is realized after trading at date 2. v is
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realized after trading at date 1. We do not need to impose any assumptions on

the distribution of v. The important feature for our exercise is that, at date 1

(after the realization of v), the liquidation value of the asset is normal with mean

v and variance σ2.

There are two groups of traders in the market, and the realization of v at

date 1 is common knowledge among all of them. There is, first, a continuum

of risk neutral traders of measure 1. Each trader holds 1 unit of the asset.

We may think of them as proprietary traders (e.g. at an investment bank or

hedge fund). They are subject to an incentive contract in which their payoff is

proportional to the final liquidation value of the asset. However, these traders are

also subject to a loss limit at date 1, as will be described in more detail below. If a

trader’s loss between dates 0 and 1 exceeds this limit, then the trader is dismissed.

Dismissal is a bad outcome for the trader, and the trader’s decision reflects the

tradeoff between keeping his trading position open (and reaping the rewards if

the liquidation value of the asset is high), against the risk of dismissal at date 1

if his loss limit is breached at date 1. We do not model explicitly the agency

problems that motivate the loss limit. The loss limit is taken to be exogenous for

our purpose.

Alongside this group of risk-neutral traders is a risk-averse market-making sec-

tor of the economy. Themarket-making sector provides the residual demand curve

facing the risk-neutral traders as a whole, in the manner envisaged by Grossman

and Miller (1988) and Campbell, Grossman and Wang (1993).

We represent the market-making sector by means of a representative trader

with constant absolute risk aversion γ who posts limit buy orders for the asset

at date 1 that coincides with his competitive demand curve. At date 1 (after v

is realized), the liquidation value of the asset is normally distributed with mean

v and variance σ2. From the linearity of demand with Gaussian uncertainty
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and exponential utility, the market-making sector’s limit orders define the linear

residual demand curve:

d =
v − p
γσ2

where p is the price of the asset at date 1. Thus, if the aggregate net supply of

the asset from the risk-neutral traders is s, price at date 1 satisfies

p = v − cs (2.2)

where c is the constant γσ2. Since the market-making sector is risk-averse, it

must be compensated for taking over the risky asset at date 1, so that the price

of the asset falls short of its expected payoff by the amount cs.

2.1. Loss limits

In the absence of any artificial impediments, the efficient allocation is for the risk-

neutral traders to hold all of the risky asset. However, the risk-neutral traders

are subject to a loss limit that constrains their actions. The loss limit is a trigger

price or “stop price” qi for trader i such that if

p < qi

then trader i is dismissed at date 1. Dismissal is a bad outcome for the trader,

and results in a payoff of 0. The loss limits of the traders should be construed

as being determined in part by the overall risk position and portfolio composition

of their employers. Loss limits therefore differ across traders, and information

regarding such limits are closely guarded. Among other things, the loss limits

fail to be common knowledge among the traders. This will be the crucial feature

of our model that drives the main results. We will also assume that, conditional

on being dismissed, the trader prefers to maximize the value of his trading book.

The idea here is that the trader is traded more leniently if the loss is smaller.
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We will model the loss limits as random variables that are closely correlated

across the traders. Trader i’s loss limit qi is given by

qi = θ + ηi (2.3)

where θ is a uniformly distributed random variable with support
£
θ, θ̄
¤
, represent-

ing the common component of all loss limits. The idiosyncratic component of

i’s loss limit is given by the random variable ηi, which is uniformly distributed

with support [−ε, ε], and where ηi and ηj for i 6= j are independent, and ηi is

independent of θ. Crucially, trader i knows only of his own loss limit qi. He

must infer the loss limits of the other traders, based on his knowledge of the joint

distribution of {qj}, and his own loss limit qi.

2.2. Execution of sell orders

The trading at date 1 takes place by matching the sales of the risk-neutral traders

with the limit buy orders posted by the market-making sector. However, the

sequence in which the sell orders are executed is not under the control of the

sellers. We will assume that if the aggregate sale of the asset by the risk-neutral

traders is s, then a seller’s place in the queue for execution is uniformly distributed

in the interval [0, s]. Thus the expected price at which trader i’s sell order is

executed is given by

v − 1
2
cs (2.4)

and depends on the aggregate sale s. This feature of our model captures two

ingredients. The first is the idea that the price received by a seller depends on

the amount sold by other traders. When there is a flood of sell orders (large s),

then the sale price that can be expected is low. The second ingredient is the

departure from the assumption that the transaction price is known with certainty

when a trader decides to sell. Even though traders may have a good indication

8



of the price that they can expect by selling (say, through indicative prices), the

actual execution price cannot be guaranteed, and will depend on the overall selling

pressure in the market. This second feature - the uncertainty of transactions price

- is an important feature of a market under stress, and is emphasized by many

practitioners (see for instance, Kaufman (2000, pp.79-80), Taleb (1997, 68-9)).

The payoff to a seller now depends on whether the execution price is high

enough as not to breach the loss limit. Let us denote by ŝi the largest value of

aggregate sales s that guarantees that trader i can execute his sell order without

breaching the loss limit. That is, ŝi is defined in terms of the equation:

qi = v − cŝi (2.5)

where the expression on the right hand side is the lowest possible price received by

a seller when the aggregate sale is ŝi. Thus, whenever s ≤ ŝi, trader i’s expected
payoff to selling is given by (2.4). However, when s > ŝi, there is a positive

probability that the loss limit is breached, which leads to the bad payoff of 0.

When s > ŝi, trader i’s expected payoff to selling is

ŝi
s

¡
v − 1

2
cŝi
¢

(2.6)

If trader i decides to hold on to the asset, then the payoff is given by the

liquidation value of the asset at date 2 if the loss limit is not breached, and 0 if

it is breached. Thus, the expected payoff to trader i of holding the asset, as a

function of aggregate sales s, is

u (s) =

½
v if s ≤ ŝi
0 if s > ŝi

(2.7)

Bringing together (2.4) and (2.6), we can write the expected payoff of trader i
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from selling the asset as

w (s) =


v − 1

2
cs if s ≤ ŝi

ŝi
s

¡
v − 1

2
cŝi
¢
if s > ŝi

(2.8)

The payoffs are depicted in Figure 2.1. Holding the asset does better when s < ŝi,

but selling the asset does better when s > ŝi. The trader’s optimal action depends

on the density over s. We now solve for equilibrium in this trading game.
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Figure 2.1: Payoffs

3. Equilibrium

At date 1, v is realized, and is common knowledge among all traders. Thus, at

date 1, it is common knowledge that the liquidation value at date 2 has mean v
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and variance σ2. Each trader decides whether to sell or hold the asset on the basis

of the realization of v and his own loss limit. Trader i’s strategy is a function

(v, qi) 7−→ {hold, sell}

that maps realizations of v and qi to a trading decision. When v is either very

high or very low, trader i has a dominant action. When v is very high relative

to qi (so that the realization of v is considerably higher than the loss limit for i),

trader i will prefer to hold. In particular, since the period 1 price p cannot fall

below v − c, trader i’s dominant action is to hold when:

v ≥ qi + c (3.1)

This is because the loss limit for trader i will not be breached even if all other

traders sell. Conversely, when v is so low that

v < qi (3.2)

then the loss limit is breached even if all other traders hold. Given our assumption

that the traders prefers to maximize the value of his trading book conditional

on being dismissed, selling is the dominant action when v < qi. However, for

intermediate values of v where

qi ≤ v < qi + c (3.3)

trader i’s optimal action depends on the incidence of selling by other traders. If

trader i believes that others are selling, he will sell also. If, however, the others

are not selling, then he will hold. If the loss limits were common knowledge,

then such interdependence of actions would lead to multiple equilibria, and an

indeterminacy in the predicted outcome. When the loss limits are not common

knowledge (as in our case), we can largely eliminate the multiplicity of equilibria

through global game techniques.

11



In particular, we will solve for the unique equilibrium in threshold strategies

in which trader i has the threshold v∗ (qi) for v that depends on his own loss limit

qi such that the equilibrium strategy is given by

(v, qi) 7−→
½
hold if v ≥ v∗ (qi)
sell if v < v∗ (qi)

(3.4)

In other words, v∗ (qi) is the trigger level of v for trader i such that he sells if

and only if v falls below this critical level. We will show that there is precisely

one equilibrium of this kind, and proceed to solve for it by solving for the trigger

points {v∗ (qi)}. Our claim can be summarized in terms of the following theorem.

Theorem 1. There is an equilibrium in threshold strategies where the threshold

v∗ (qi) for trader i is given by the unique value of v that solves

v − qi = c exp
½

qi − v
2 (v + qi)

¾
(3.5)

There is no other threshold equilibrium.

The left hand side of (3.5) is increasing in v and passes through the origin,

while the right hand side is decreasing in v and passes through (0, c), so that there

is a unique solution to (3.5). At this solution, we must have v − qi > 0, so that
the trigger point v∗ (qi) is strictly above the loss limit qi. Traders adopt a pre-

emptive selling strategy in which the trigger level leaves a “margin for prudence”.

The intuition here is that a trader anticipates the negative consequences of other

traders selling. Other traders’ pre-emptive selling strategy must be met by a

pre-emptive selling strategy on my part. In equilibrium, every trader adopts an

aggressive, pre-emptive selling strategy because others do so. If the traders have

long decision horizons, they can ignore the short-term fluctuations in price and

hold the asset for its fundamental value. However, traders subject to a loss limit

have a short decision horizon. Even though the fundamentals are good, short term
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price fluctuations can cost him his job. Thus, loss limits inevitably shorten the

decision horizon of the traders. The fact there there is a pre-emptive equilibrium

of this kind is perhaps not so remarkable. However, what is of interest is the fact

that there is no other threshold equilibrium. In particular, the “nice” strategy

in which the traders disarm by collectively lowering their threshold points v∗ (qi)

down to their loss limits qi cannot figure in any equilibrium behaviour.
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Figure 3.1: v∗ as a function of c. qi = 1

Figure 3.1 plots v∗ as a function of the parameter c as given by (3.5), while

fixing qi = 1. Recall that c = γσ2, where γ is the coefficient of absolute risk

aversion. We can see that the critical value v∗ can be substantially higher than

the loss limit (given by 1). When v is very high, so that v − c > qi, holding the
asset is the dominant action. This dominance region is the area above the upward

sloping dashed line in figure 3.1. Conversely when v < qi, the dominant action is

to sell, and this area is indicated as the region below the horizontal dashed line.
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The large “wedge” between these two dominance regions is the region in which

the outcome depends on the resolution of the strategic trading game between the

traders. The equilibrium trigger point v∗ bisects this wedge, and determines

whether trader i holds or sells. The solid line plots the equilibrium trigger point

given by the solution to (3.5).

Technically, the global game analysed here does not conform to the canonical

case discussed in Morris and Shin (2003) in which the payoffs satisfy strategic

complementarity, and uniqueness can be proved by the iterated deletion of domi-

nated strategies. In our game, the payoff difference between holding and selling is

not a monotonic function of s. We can see this best from figure 2.1. The payoff

difference rises initially, but then drops discontinuously, and then rises thereafter,

much like the bank run game of Goldstein and Pauzner (2000). Our argument

for the uniqueness of the threshold equilibrium rests on the interaction between

strategic uncertainty (uncertainty concerning the actions of other traders) and

fundamental uncertainty (uncertainty concerning the fundamentals). Irrespec-

tive of the severity of fundamental uncertainty, the strategic uncertainty persists

in equilibrium, and the pre-emptive action of the traders reflects the optimal re-

sponse to strategic uncertainty. Our solution method below will bring this feature

out explicitly.

3.1. Strategic uncertainty

The payoff difference between holding the asset and selling the asset when ag-

gregate sales are s is given by u (s) − w (s). The expected payoff advantage of

holding the asset over selling it is given byZ 1

0

f (s|v, qi) [u (s)− w (s)] ds
where f (s|v, qi) is the density over the equilibrium value of s (the proportion of

traders who sell) conditional on v and trader i’s own loss limit qi. Trader i will
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hold if the integral is positive, and sell if it is negative. Thus, a direct way to

solve for our equilibrium is to solve for the density f (s|v, qi).
It is convenient to view the trader’s threshold strategy as the choice of a

threshold for qi as a function of v. Thus, let us fix v and suppose that all traders

follow the threshold strategy around q∗, so that trader i sells if qi > q∗ and holds

if qi ≤ q∗. Suppose that trader i’s loss limit qi happens to be exactly q∗. We will
derive trader i’s subjective density over the aggregate sales s. Since the traders

have unit measure, aggregate sales s is given by the proportion of traders who sell.

From trader i’s point of view, s is a random variable with support on the unit

interval [0, 1]. The cumulative distribution function over s viewed from trader i’s

viewpoint can be obtained from the answer to the following question.

“My loss limit is q∗. What is the probability that s is less than z?” (Q)

The answer to this question will yield F (z|q∗) - the probability that the pro-
portion of traders who sell is at most z, conditional on qi = q∗. Since all traders

are hypothesized to be using the threshold strategy around q∗, the proportion

of traders who sell is given by the proportion of traders whose loss limits have

realizations to the right of q∗. When the common element of the loss limits is θ,

the individual loss limits are distributed uniformly over the interval [θ − ε, θ + ε].
The traders who sell are those whose loss limits are above q∗. Hence,

s =
θ + ε− q∗

2ε

When do we have s < z? This happens when θ is low enough, so that the area

under the density to the right of q∗ is squeezed to a size below z. There is a value

of θ at which s is precisely equal to z. This is when θ = θ∗, where

θ∗ = q∗ − ε+ 2εz
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We have s < z if and only if θ < θ∗. Thus, we can answer question (Q) by finding

the posterior probability that θ < θ∗.

For this, we must turn to trader i’s posterior density over θ conditional on

his loss limit being q∗. This posterior density is uniform over the interval

[q∗ − ε, q∗ + ε]. This is because the ex ante distribution over θ is uniform and

the idiosyncratic element of the loss limit is uniformly distributed around θ. The

probability that θ < θ∗ is then the area under the posterior density over θ to the

left of θ∗. This is,

θ∗ − (q∗ − ε)
2ε

(3.6)

=
q∗ − ε+ 2εz − (q∗ − ε)

2ε
= z

In other words, the probability that s < z conditional on loss limit q∗ is exactly

z. The cumulative distribution function F (z|q∗) is the identity function:

F (z|q∗) = z (3.7)

The density over s is then obtained by differentiation.

f (s|q∗) = 1 for all s (3.8)

The density over s is uniform. The noteworthy feature of this result that the

constant ε does not enter into the expression for the density over s. No matter

how small or large is the dispersion of loss limits, s has the uniform density over the

unit interval [0, 1]. In the limit as ε→ 0, every trader’s loss limit converges to θ.

Thus, fundamental uncertainty disappears. Everyone’s loss limit converges to the

common element θ, and everyone knows this fact. And yet, even as fundamental

uncertainty disappears, the strategic uncertainty is unchanged.
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3.2. Solving for Equilibrium Threshold

Having found the conditional density over s at the threshold point q∗, we can now

return to the payoffs of the game. We noted earlier that the expected payoff

advantage to holding the asset is given byZ 1

0

f (s|v, qi) [u (s)− w (s)] ds

At the threshold point q∗, we have just shown that the density f (s|v, qi) is uniform.
In addition, the trader is indifferent between holding and selling. Thus, at the

threshold point, we have Z 1

0

[u (s)− w (s)] ds = 0

From this equation, we can solve for the threshold point. Figure 3.2 illustrates

the argument. The integral of the payoff difference with respect to a uniform

density over s must be equal to zero. This means that the area labelled A in

figure 3.2 must be equal to the area labelled B.

Substituting in the expressions for (2.7) and (2.8), and noting that ŝ = (v − q∗) /c,
we have

1
2
c

Z v−q∗
c

0

sds = (v−q∗)(v+q∗)
2cs

Z 1

v−q∗
c

1

s
ds

which simplifies to

v − q∗ = 2 (v + q∗) log c

v − q∗
Re-arranging this equation gives (3.5) of theorem 1. There is a unique solution

to this equation as already noted, where v > q∗.

So far, we have shown that if all traders follow the threshold strategy around

q∗, then a trader is indifferent between holding and selling given the threshold loss

limit q∗. We must show that if qi > q∗, trader i prefers to sell, and if qi < q∗,

trader i prefers to hold. This step of the argument is presented in the appendix.
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Figure 3.2: Expected Payoffs in Equilibrium

4. Discussion

Liquidity black holes are associated with a sharp V-shaped price path for prices.

The price at date 1 is given by v − cs, while the expected value of the asset at
date 1 is v. Thus, the expected return from date 1 to date 2 is given by v

v−cs . In

the limiting case, where the loss limits are perfectly correlated across traders, s

takes the value 1 below v∗, and takes the value 0 above v∗. Thus, when there is

a liquidity black hole at date 1, the expected return is

v

v − c
which is strictly larger than the actuarially fair rate of 1 for risk-netural traders.

The larger is c, the greater is the likely bounce in price. The parameter c is

given by c = γσ2, where γ is the coefficient of absolute risk aversion and σ2 is
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the variance of the fundamentals. Since c gives the slope of the residual demand

curve facing the active traders, we can interpret c as representing the degree of

illiquidity of the market. The larger is c, the smaller is the capacity to absorb

the selling pressure from the active traders. Thus, when a liquidity black hole

comes into existence, a large c is associated with a sharper decline in prices, and

a commensurate bounce back in prices in the final period.

Another implication of our model is that the trading volume at the time of

the liquidity black hole and its aftermath will be considerable. When the market

strikes the liquidity black hole, the whole of the asset holding in the risky asset

changes hands from the risk-neutral short horizon traders to the risk-averse market

making sector. Although we have not modelled the dynamics, we could envisage

that immediately afterwards, once the loss limits have been adjusted down given

the new price, there will be an immediate reversal of the trades in which the

risky asset ends up back in the hands of the risk neutral traders once more. The

large trading volume that is generated by these reversals will be associated with

the sharp V-shaped price dynamics already noted. The association between

the V-shaped pattern in prices and the large trading volume is consistent with

the evidence found in Campbell, Grossman and Wang (1993) and Pastor and

Stambaugh (2002).

Traders who are aware of their environment take account of limited liquidity in

the market. The equilibrium strategies of the traders therefore also take account

of the degree of illiquidity of the market. The solution for the threshold point

(3.5) shows that when c increases, the gap between v∗ and qi increases also, as

shown in figure 3.1. In other words, the when c is large, a trader’s trigger point v∗

is much higher than his true loss limit qi. The trader bails out at a much higher

price than his loss limit because he is apprehensive about the effect of other traders

bailing out. Just as in the run outcome in a bank run game, the traders in the
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illiquid market bail out more aggressively when they fear the bailing out of other

traders. Since in our model the efficient outcome is for the risk-neutral traders

to hold the risky asset, the increase in c results in a greater welfare loss, ex ante.

This last point raises some thorny questions for regulatory policy. While the

trigger-happy behaviour of the individual traders is optimal from the point of view

of that trader alone, the resulting equilibrium is socially inefficient. In particular

when the loss limit of one trader is raised, this has repercussions beyond that

individual. For other traders in the market, the raising of the loss limit by one

trader imposes an unwelcome negative externality in the form of a more volatile

interim price. The natural response of the other traders would be to raise their

own trading limits to match. The analogy here is with an arms race.

More generally, when the endogenous nature of price fluctuations is taken into

account, the regulatory response to market risk may take on quite a different

flavour from the orthodox approach using value at risk using historical prices.

Danielsson, Shin and Zigrand (2002) and Danielsson and Shin (2002) explore

these issues further.

Appendix.

In this appendix, we complete the argument for theorem 1 by showing that

if qi > q∗, trader i prefers to sell, and if qi < q∗, trader i prefers to hold. For

this step of the argument, we again appeal to the conditional density over s. Let

us consider a variant of question (Q) for a trader whose loss limit exceeds the

threshold point q∗. Thus, consider the following question.

“My loss limit is qi and all others use the threshold strategy around

q∗. What is the probability that s is less than z?”
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The answer to this question will yield F (z|qi, q∗) - the probability that the
proportion of traders who sell is at most z, conditional on qi when all others

use the threshold strategy around q∗. When all traders are using the threshold

strategy around q∗, the proportion of traders who sell is given by the proportion of

traders whose loss limits have realizations to the right of q∗. When the common

element of loss limits is θ, the individual loss limits are distributed uniformly over

the interval [θ − ε, θ + ε]. The traders who sell are those whose loss limits are

above q∗. Hence,

s =
θ + ε− q∗

2ε

When do we have s < z? This happens when θ is low enough, so that the area

under the density to the right of q∗ is squeezed to a size below z. There is a value

of θ at which s is precisely equal to z. This is when θ = θ∗, where

θ∗ = q∗ − ε+ 2εz

We have s < z if and only if θ < θ∗. Thus, we can answer the question posed

above by finding the posterior probability that θ < θ∗.

For this, we must turn to trader i’s posterior density over θ conditional on his

loss limit being qi. This posterior density is uniform over the interval [qi − ε, qi + ε],
since the ex ante distribution over θ is uniform and the idiosyncratic element of

the loss limit is uniformly distributed around θ. The conditional probability that

θ < θ∗ is then the area under the posterior density over θ to the left of θ∗. This

is,

θ∗ − (qi − ε)
2ε

(4.1)

=
q∗ − ε+ 2εz − (qi − ε)

2ε

= z +
q∗ − qi
2ε
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This gives the cumulative distribution function F (z|qi, q∗), which falls under three
cases.

F (z|qi, q∗) =


0 if z + q∗−qi
2ε

< 0

1 if z + q∗−qi
2ε

> 1

z + q∗−qi
2ε

otherwise

Hence, the corresponding density over s will, in general, have an atom at either

s = 0 or s = 1. Thus, let us consider qi where qi > q∗. We show that trader i

does strictly better by selling, than by holding. The conditional density over the

half-open inverval s ∈ [0, 1) is given by

f (s|qi, q∗) =
½
0 if s < qi−q∗

2ε

1 if s ≥ qi−q∗
2ε

and there is an atom at s = 1 with weight qi−q∗
2ε
.

Meanwhile, from (2.7) and (2.8), the expected payoff advantage of holding

relative to selling is given by

u− w =
½

1
2
cs if s ≤ ŝi

− ŝi
s

¡
v − 1

2
cŝi
¢
if s > ŝi

This payoff function satisfies the single-crossing property in that, u − w is non-
negative when s ≤ ŝi, and is negative when s > ŝi. The density f (s|qi, q∗) can
be obtained from the uniform density by transferring weight from the interval£
0, qi−q

∗
2ε

¤
to the atom on point s = 1. Since

R 1
0
(u (s)−w (s)) ds = 0, we must

have Z 1

0

(u (s)− w (s)) f (s|qi, q∗) ds < 0

Thus, the trader with loss limit qi > q∗ strictly prefers to sell. There is an exactly

analogous argument to show that the trader with loss limit qi < q∗ strictly prefers

to hold. This completes the argument for theorem 1.
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