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Abstract

We propose a nonparametric approach to multiple calibration of numerical
general equilibrium models, where counterfactual equilibria are solutions to the
Walrasian inequalities. We present efficient approximation schemes for deciding
the solvability of Walrasian inequalities.
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1 Introduction

Numerical specifications of applied general equilibrium models are inherently indeter-
minate. Simply put, there are more unknowns (parameters) than equations (general
equilibrium restrictions). Calibration of parameterized numerical general equilibrium
models resolves this indeterminacy using market data from a “benchmark year”; pa-
rameter values gleaned from the empirical literature on production functions and
demand functions; and the general equilibrium restrictions. The calibrated model al-
lows the simulation and evaluation of alternative policy prescriptions, such as changes
in the tax structure, by using Scarf’s algorithm or one of its variants to compute coun-
terfactual equilibria. Not surprisingly, the legitimacy of calibration as a methodology
for specifying numerical general equilibrium models is the subject of an ongoing de-
bate within the profession, ably surveyed by Dawkins et al. (2002). In their survey,
they briefly discuss multiple calibration. That is, choosing parameter values for nu-
merical general equilibrium models consistent with market data for two or more years.
It is the implications of this notion that we explore in this paper.
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Our approach derives from Varian’s unique insight that nonparametric analysis
of demand or production data admits extrapolation, i.e., “given observed behavior
in some economic environments, we can forecast behavior in other environments,”
Varian (1982, 1984). The forecast behavior in applied general equilibrium analysis is
the set of counterfactual equilibria. We extend the analyses of Brown and Matzkin
(1996) and Brown and Shannon (2000), where the Walrasian and dual Walrasian in-
equalities are derived, to encompass the computation and evaluation of counterfactual
equilibria.

Here is an example inspired by the discussion of extrapolation in Varian (1982),
illustrating the nonparametric formulation of decideable counterfactual propositions
in demand analysis. Suppose we observe a consumer chosing a finite number of
consumption bundles z; at market prices p;, i.e., (p1,11), (P2, ¥2), ..., (Pn, Tn). If the
demand data is consistent with utility maximization subject to a budget constraint,
i.e., satisfies GARP, the generalized axiom of revealed preference, then there exists a
solution of the Afriat inequalities, U, that rationalizes the data, i.e., if p; - x < p; - ;
then U(x;) > U(x) for i = 1,2, ...,n, where U is concave, continuous, monotone and
nonsatiated (Afriat, 1967; Varian, 1983). Hence we may pose the following question
for any two unobserved consumption bundles = and z: Will Z be revealed preferred
to = for every solution of the Afriat inequalities? An equivalent formulation is the
counterfactual proposition: Z is not revealed preferred to z for some price vector p
and some utility function U, a solution of the Afriat inequalities.

This proposition can be expressed in terms of the solution set for the following
family of polynomial inequalities: The Afriat inequalities for the augmented data set
(p1, 1), (P2, 2), -y (Pny 1), (p, T) and the inequality p-T > p-Z, where p is unobserved.
If these inequalities are solvable, then the stated counterfactual proposition is true.
If not, then the answer to our original question is yes. Notice that n of the Afriat
inequalities are quadratic in the unobservables, i.e., the product of the marginal utility
of income at & and the price vector p.

Brown and Matzkin (1996) characterized the Walrasian model of competitive mar-
ket economies for data sets consisting of a finite number of observations on market
prices, income distributions and aggregate demand. The Walrasian inequalities, as
they are called here, are defined by the Afriat inequalities for individual demand and
budget constraints for each consumer; the Afriat inequalities for profit maximization
over a convex aggregate technology; and the aggregation conditions that observed ag-
gregate demand is the sum of unobserved individual demands. The Brown—Matzkin
theorem states that market data is consistent with the Walrasian model if and only
if the Walrasian inequalities are solvable for the unobserved utility levels, marginal
utilities of income and individual demands. Since individual demands are unobserv-
able, the Afriat inequalities for each consumer are quadratic in the unobservables,
i.e., the product of the marginal utilities of income and individual demands.

A decision method for this system of Walrasian inequalities constitutes a spec-
ification test for multiple calibration of numerical general equilibrium models, i.e.,



the market data is consistent with the Walrasian model if and only if the Walrasian
inequalities are solvable. In our section on algorithms, we give an effective determin-
istic algorithm for this decision problem. If the system of Walrasian inequalities are
solvable, then for every ¢ > 0, the algorithm computes a finite e-net of solutions.
The algorithm is based on the following observation: There is a finite set of candi-
date marginal utilities of income (one per agent per observation) such that every set
of consumption bundles admitting a solution of the Afriat inequalities with strictly
quadratically concave utilities, actually admits a solution with strictly concave util-
ities with one of our candidate marginal utilities of income. Moreover, this solution
is the solution of a linear program.

An important point is that this set of candidates has cardinality (1/¢)¥T where
g > 0 is a parameter, N is the number of observations and 7' the number of agents.
Hence the algorithm will run in time bounded by a function which is polynomial
in the number of commodities and exponential only in N and 7. In situations
involving a large number of commodities and a small N, T', this is very efficient. Note
that trade between countries observed over a small number of periods is an example.

A more challenging problem is the computation of counterfactual equilibria. For-
tunately, a common restriction in applied general equilibrium analysis is the assump-
tion that consumers are maximizing homothetic utility functions subject to their
budget constraints. Afriat (1981) and subsequently Varian (1983) derived a family
of inequalities in terms of utility levels, market prices and incomes that characterize
consumer’s demands under this assumption. We shall refer to these inequalities as
the homothetic Afriat inequalities. Brown and Lovész in Brown (1995) observed that
the homothetic Afriat inequalities can be expressed as a finite family of quadratic
polynomial inequalities over the exponential reals, i.e., the real number field with ex-
ponentiation. Wilke in 1991, published in Wilke (1996) proved that the exponential
reals in an 0-minimal structure on the field of real numbers — see Van den Dries
(1996) for a brief overview of 0-minimal structures, including the exponential reals.
The importance of 0-minimal structures for this paper is the deep and surprising
theorem of Laskowski (1992) that O-minimal structures admit a uniform law of large
numbers due to Vapnik and Cerovenkis (1971). We use this law of large numbers to
construct an efficient randomized approximation scheme for deciding the solvability
of a definable system of Walrasian inequalities. Here definable simply means that the
Walrasian inequalities can be expressed as a finite family of polynomial inequalities
over the exponential reals (or more generally a 0-minimal structure on the field of
real numbers).

The intuition underlying our random decision method is simple. First, we rewrite
the Walrasian inequalities as a finite family of strict polynomial inequalities over the
exponential reals by substituting the budget constraints and aggregation conditions
into the Afriat inequalities. If the solution set is not empty then it is open and
therefore a set of positive Lebesgue measure. If we can compute a lower bound v
on the measure of a nonempty solution set, then by randomly “guessing” possible



solutions to the Walrasian inequalities, we estimate u, the measure of the solution
set. If with high probability p < v then we decide that the given system of Walrasian
inequalities are not solvable. It is here that we invoke the Vapnik-Cerovenkis uniform
law of large numbers.

As an application of our approach, we revisit the Harberger tax-model as it is
exposited in Shoven and Walley (1992). We discuss the simulation and evaluation of
a change in the taxation of capital in a two-sector model, assuming the market data
available in multiple calibration of a numerical general equilibrium model.

Finally a much discussed criticism of calibration in Dawkins et al. (2002) is the
absence of statistical analysis in calibrated general equilibrium models, e.g., the effect
of random shocks to tastes or technology. Recently Brown and Calsamiglia (2003)
considered a class of random quasilinear utility functions. They showed if the shocks
to tastes have compact support, then utility maximization of random quasilinear util-
ity functions subject to a budget constraint has refutable implications on finite data
sets. In effect, they extended Afriat’s analysis to random quasilinear utility functions.
Here the quasilinear Afriat inequalities are quadratic in the unobservables, i.e., the
product of the random shocks and individual consumptions. In Brown and Kannan
(2003) we rebut the econometric claim given above by extending our specification
test to the case where the quasilinear Afriat inequalities are random.

The remainder of the paper is organized as follows: the second section contains
the economic models. Then we have a section where we discuss our decision methods.
The Harberger tax-model discussion is the final section of the paper.

2 Economic Models

We consider an economy with L commodities and 7' consumers. Each agent has
RJLr as her consumption set. We restrict attention to strictly positive market prices
S={peRi : Zle pi = 1}. The Walrasian model assumes that consumers have
utility functions u, : RY — R, income [, and that aggregate demand z = Zthl Ty,
where
u(zy) = S.g}.g}gih u(z).
x>0

Suppose we observe a finite number N of profiles of income distributions {I7}_,,
market prices p” and aggregate demand z", where r = 1,2,..., N, but we do not
observe the utility functions or demands of individual consumers. When are these
data consistent with the Walrasian model of aggregate demand? The answer to this
question is given by the following two theorems of Brown and Matzkin (1996).

Theorem 1 (Brown and Matzkin) There ezist nonsatiated, continuous, strictly
concave, monotone utility functions {u,}/_, and {7 }[_,, such that u,(x]) = max,r.,<r w ()



and Y1 ar = T, where r = 1,2,..., N, if and only if 3 {a}, {\'} and {z7} for
r=1,...,.N;t=1,..,T such that

ay < +Np°-(af —xf) (r#s=1,.,N; t=1,...,T) (1)
Af >0, 4 >0and 2} >0 (r=1,...,N; t=1,...7T) (2)
plray =1 (r=1,..,.N; t=1,..,T) (3)

d ap=1"(r=1,.,N) (4)

(1) and (2) constitute the strict Afriat inequalities; (3) defines the budget constraints
for each consumer; and (4) is the aggregation condition that observed aggregate
demand is the sum of unobserved individual consumer demand. This family of con-
dition is called here the (strict) Walrasian inequalities.? The observable variables in
this system of inequalities are the I, p" and z", hence this is a nonlinear family of
polynomial inequalities in unobservable utility levels @}, marginal utilities of income
A; and individual consumer demands x}.

Theorem 2 (Brown and Matzkin) There exist nonsatiated, continuous, strictly
concave homothetic monotone utility functions {u;}L , and {x;}L_, such that uy(x}) =
max,r.<r U () and S @) =T, where r = 1,2,..., N if and only if 3{a}} and
{z}} forr=1,...N; t=1,..,T such that

i <ol T (r ks =1, N;t=1,..T) (5)
Py
u, >0and 2" >0 (r=1,..N; t=1,..T) (6)
pr I::]Z ( =1, 7N7 t=1, 7T) (7)
T
szz‘fz (T—l, 7N)
t=1

(5) and (6) constitute the strict Afriat inequalities for homothetic utility functions.

Following Brown and Lévasz in Brown (1995), we make the change of variables
@7 = e* and rewrite (5) and (6):

r
. xt
S

It

i P

(r#s=1,..,N; t=1,..T) (8)

SER (r=1,..,N; t=1,..,T). 9)

!Brown and Matzkin call them the equilibrium inequalities, but there are other plausible notions
of equilibrium in market economies — see Brown and Calsamiglia (2003) for a discussion.



The observable variables in this system of inequalities are the I}, p" and z", hence
this is a family of polynomial inequalities over the exponential reals in unobservable
utlity levels Z] and individual demands x}. In addition, this is a family of smooth
convex inequalities, where feasibility can be decided in polynomial time.

We now turn to the case of random quasilinear utility functions of the form con-
sidered by Brown and Calsamiglia (2003), i.e., v(x, xo,€) = u(z) + € - & + xy, where
gy < e < g, and prices are normalized such that xy is the numeraire good.

Theorem 3 (Brown and Calsamiglia) There exist nonsatiated continuous strictly
concave utility functions {u,}_,, {x]}_, and {e{}, such that u,(&}])+e] 1] +1f, =
maxgr {u(x]) +ef - o} —p" - af + I} and ST al =T, where r = 1,2,..., N, if and
only if 3{a;}, {e}} and {z}} for r=1,..,N;t=1,..,T such that

ay <uy+(p°—¢)-(v) —xj) (r#s=1.,N;t=1..,T) (10)
u; > 0,8, <e <gandz; >0 (r=1,..,N; t=1,..,7) (11)
plrxp =1 (r=1,.,N;t=1..,T)
T
fong (r=1,...,N)
=1

Brown and Shannon (2000) proposed a family of polynomial inequalities in terms
of the dual strict Afriat inequalities which we find more useful for our analysis.
The dual strict Afriat inequalities for each consumer ¢ can be expressed as follows:

0> 08— NI (?— - ];—) (r£s=1..N;t=1,..T) (12)
t t
Ay >0and z} >0 (r=1,..,N; t=1,...7T) (13)

Theorem 4 (Brown and Shannon) There exist numbers 0y, \; and vectors x} for
(r=1,...,N;t=1,..,T) satisfying the dual strict Afriat inequalities (12) and (13)
if and only if there exist numbers uy, \; and vectors z for (r=1,..,N;t=1,..,T)
satisfying the strict Afriat inequalities (1) and (2).

Hence we define the dual Walrasian inequalities as (3), (4), (12) and (13) where
now the data is consistent with the Walrasian model of aggregate demand if and only
if the dual Walrasian inequalities are solvable.

Brown and Shannon (2000) in their Lemma 1 also show that any solution of
the dual strict Afriat inequalities gives rise to C* functions w, : RY™ — R where
wy(p, I) is convex in (p/I), strictly increasing in I and strictly decreasing in p such
that w,(pj, I7) = o] and Dy rwy(pf,I]) = =N Ija} for (r = 1,..,N;t =1,..,T).
Shannon and Zame (2002) define a smooth convex function w; : R7 — R as (strictly)
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quadratically convex on a convex subset Y C ]R;Ir if there is a constant k; > 0 such
that for each x,y € Y, where z # y:

wi(y) > wi(x) + Dwy(z) - (y — x) + kel lw =y (14)

They point out that any smooth strictly convex function on a compact convex sub-
set Y C R’ is (strictly) quadratically convex. Their observation follows from the
second order Taylor expansion of w;(x) and the fact that D?w,(z) is positive def-
inite on R’, for all z € Y. Let A\ypu(z) = minimum eigenvalue of D?w;(z), then
ky = mingey Apin(2).

We extend their result to families of smooth strictly convex functions on a compact
convex subset Y C R, by restricting attention to families that are compact in the
C2-topology. In this case, we can choose one constant k& > 0 for all the functions in
the family.

Both the Brown-Matzkin and Brown-Shannon analyses extend to production
economies, if social endowments € are observed in each period and firms are price-
taking profit maximizers. We simply add the restriction: p" - §° < p" - 4" for r,s =
1,..., N, where §y" =x" — €.

3 Algorithms

A Monte Carlo algorithm is a randomized algorithm which produces the correct
solution with high probability. Solvability of the Walrasian inequalities is a decision
problem, i.e.; in each instance the answer is yes or no. The Monte Carlo algorithm for
the Walrasian decision problem has non-zero probability that it errs only when the
output is no, i.e., it has a one-sided error. Our algorithm derives from the celebrated
result of Vapnik—Cerovenkis (1971) on the uniform deviations of relative frequencies
from probabilities over a VC class.

A collection C of subsets of some space X’ picks out a certain subset E of a finite
set {z1,..,xn} C X if E = {1,...,2,} N A for some A € C. C is said to shatter
{z1,...,x,} if C picks out each of its 2" subsets. The VC dimension of C, denoted
V(C), is the smallest n for which no set of size n is shattered by C. A collection C of
measurable sets is called a VC class if its dimension V' (C) is finite.

We construct a VC class of sets from the Walrasian inequalities as follows. Con-
sider the Walrasian inequalities as a parameterized family of strict linear inequalities,
where the parameter set is the family of possible assignments of utility levels and de-
mands to consumers satisfying the budget constraints and the aggregation conditions
in the Walrasian inequalities. This is a compact convex subset of RY ., which we call
the state space and denote as Q. Let A C RY_ be the set of possible assignments of
marginal utilities of income to each consumer in each observation, then w.o.l.o.g. we
can assume A C [0,1]7 since the Walrasian inequalities are homogeneous of degree
one in utility levels and marginal utilities of income, where J = T'N. Let I'(w) be the



set of 6 € A such that (w,0) satisfy the Walrasian inequalities, where w = {0}, x} }.
A deep and surprising result of Laskowski (1992) is that {I'(w)},cq has finite VC
dimension. Since I'(w) is open for all w € Q, {I'(w) },eq is a VC class.

Invoking an inequality of Shannon and Zame (2002) on C?-compact families of
smooth concave utility functions, we derive a uniform lower bound v on A\(I'(w)), for
['(w) # ¢, where X is Lebesgue measure on R’. That is, infueq rw)zo A(D(w)) > v.

Returning to the dual strict Afriat inequalities and assuming they were generated
by utilities belonging to a C*-compact family of smooth strictly convex utilities on a
compact cube containing z" in its interior for r = 1,2, ..., N:

2

w§>wf—)\§lfa:§~<%—%)+k %—% (rs=1,.,N; t=1,...T) (15)
t t t t
Ay >0andz} >0 (r=1,..,N; t=1,..,7). (16)

Suppose these inequalities have a solution 5\: for given w] and z}, recall that we
observe the p” and I]. We wish to construct e-balls around )\Z such that V(\}) €

B.(),), they solve the strict dual Afriat inequalities given in (12) and (13). To this
end let

: A
0 = min k|7 — =
N VA
1<r,s<N
1<t<T
T
L pr ps .
n = max |T' -|— — = ]| X max I} and
rets I L 1<Sr<N =
1<r,s<N -
I<t<r
) .
e = minq< —, min (w;, \})
N’ 1<r<N
1<ZT
Then
‘s S 7 S
AT ~S 387s, .8 p p p p
wy > w; — NI — == |+ k|-
t t tht e T s T s
Iy Iy I
‘s S
p p




That is,
@ > @ — (A — ) [t - (% - %) .

Hence if we know k, then we can compute a uniform ball around any solution of
the strict dual Afriat inequalities for given w; and x} and observed p” and I; for
r=1,..,Nandt =1,..,T. The volume of this ball, call it v, defines a binomial
distribution on the unit cube [0,1]”/, given the uniform distribution on [0, 1]7. That
is, v gives a lower bound on the probability that a random draw from [0,1]” is a
J-tuple of marginal utilities of income such that the given data w; and zj satisfy the
dual Walrasian inequalities.

The classical inequality of Vapnik and Cerovenkis (1971) on uniform deviations of
relative frequencies from probabilities over a VC class can now be used to estimate the
probability 1 —§ that the solution set for the given Walrasian inequalities has measure
less than v as a function of the the number of Monte Carlo iterations m, v and d, the
VC dimension of {I'(w)},ecq. We randomly draw points from the unit cube, [0,1]”,
endowed with the uniform distribution. Given this random assignment of marginal
utilities of income to consumers in each observation, we can decide in polynomial
time if the family of linear inequalities derived from the Walrasian inequalities has
a solution. If the answer is yes, then the algorithm terminates. If the answer is no,
we continue drawing samples until we find a solution to the derived family of linear
inequalities or the sample size is m.

If the sample size is m and we have not found a solution to the Walrasian inequali-
ties then by the VC inequality we know with probability 1—¢ that the solution set has
measure less than v. In this case we decide that the given Walrasian inequalities are
not solvable. The running time of our randomized approximation scheme is polyno-
mial in 1/v, log1/6 and m, hence efficient in the family of randomized approximation
schemes. Motwani and Raghavan (1995) discuss efficient randomized algorithms for
decision problems in Chapter 11. Now, we give the details.

Let P be an arbitrary probability measure on the Borel field F on R and suppose
U1, ..., Uy, are drawn independently from P. Then @ = (ug, ..., u,,) has probability
distribution P, the m-fold product measure defined by P. P,,; is the empirical
probability measure defined by @, i.e., P,,.,(E) = fraction of u; which lie in E, for
each F-measurable, given triplet (R’ F P), i.e., E € F, subset E C R’/. We assume
that C is a VC class of subsets, C' C F measurable with respect to P, with VC-
dimension d. Define p(@) = supgee ||Prm;a(S) — P(S)]].

Theorem (Blumer, et al., 1989) Assuming that p(u) is F-measurable and for
fized 6,v > 0 if

4 2 8d 13
m > max { —log, =, —log, — ¢ then
v 0w v

P ({(uny ey ) = @ 2 p(Un, ..oy Um) > v}) < 0.



Since P"{(u1,....;un) = w : 35S € C st. P(S) > v and P,4(S) = 0} <
P { (w1, .oy ) = p(us, ..., Um) > v} < 6 for sufficiently large m, we see that P ({ (u, ...
35 € C s.t. P(S) > v and P,,,.4,(S) = 0}) < 9.

Let

A = {(ug, ..., ) :35 € Cs.t. P(S) > v and P,,,.5(S) = 0}
B = {(uy,...,uy)=1u:p(u) > v} and
C = {(u1,.yum) =1u: (VS € C)Pp.a(S) =0}

|
IS

N

If D=BNC, then D C A. Hence P™(D) < P™(A) and
P™({(u1, ... ) = :3S € Cs.t. P(S) > v and (VS € C)Pp(S) =0}) < (17)

To bound the confidence level that the Walrasian inequalities are not solvable, given
that a sample of size m does not produce a solution, we compute a lower bound on
P™(C). For any sample point « € [0, 1]7 with the property that for some r, s and ¢,
where r £ s; 1 <r,s< Nand1<t<T:

i o _ U0
.Z'tI . ( T) — I < S
t It t )\t

violates the corresponding dual strict Afriat inequality:

s S

. N p p
vy > 0] — NIy - (I_{ — ]—ts)

for all 0 <« z; < z;. This is an open condition, hence the set of such « is a set of
positive Lebesgue measure, say . Hence the confidence level P (B|C) < 6/¢. That
is,

P™{(uy, ..., uy) : 3S € C s.t. P(S) > v|(VS € C)Ppa(S) = 0} < 6/6  (18)

Our algorithm is defined by (18), where C = {I'(w)}weq and P = A, Lebesgue
measure on R/, Given the data and k, we can compute v. Then \(T'(w)) > v for
all w € Q. The VC-dimension of {I'(w) }weq, d, is s(J + 2), i.e., for fixed w the dual
Walrasian inequalities are linear in the unknown marginal utilities of income, where s
is the number of dual Walrasian inequalities after substituting the budget constraints
and aggregation conditions into the (strict) dual Afriat inequalities. Here we use the
well-known result on the VC dimension of the family of half spaces on R’ and the VC
dimension of intersections of VC classes — see exercise 14 in Section 2.6 in Van der
Vaart and Wellner (1996) for discussion. We choose § € (0, 1) and draws from [0, 1]7
endowed with the uniform distribution, where m > max{2log, 2, %¢log, 13}. For
each draw we use an interior-point polynomial time linear programming algorithm to
see if there is a solution to the dual Walrasian inequalities for the chosen marginal
utilities of income. We continue drawing samples until we find a solution or we have
drawn m samples and found no solution. In this case P,,;(I'(w)) = 0 for all w € Q,

10
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where @ = (uq, ..., uy,) is the realized sample, and we decide with confidence level
1 — 0/& that the Walrasian inequalities are not solvable for the given data set. This
algorithm is efficient, i.e., polynomial in 1/v and log1/0.

In this relatively simple case, we can do better. In fact, we now give a deterministic
decision method suggested by our random decision scheme. The random scheme is
necessary for deciding the existence of counterfactual equilibria as discussed below in
Section 3.2.

3.1 A Deterministic Decision Method

In this section, we describe a deterministic algorithm to find solutions of the dual strict
inequalities. We do so by simply showing that there is a finite set of “candidate” \’s
- marginal utilities of income (one for each agent for each observation)- such that
for every solution of x ’s (individual consumption bundles), one of the candidate
A ’s works with the x. First we assume here that the observables p™,z", I], r =
1,2,...N,t=1,2,...T are given and further, we assume that

>e1,Vr#s wheree; >0 (19)

This assumption is reasonable; indeed if p", p® as vectors make a small angle, then p"
is nearly a scalar multiple of p® and the observation r» may be discarded.We also let

o T
N =max ;.
rt

If the dual strict Afriat inequalities have a solution, we may scale the w, A so that
after scaling, we may assume that all A are between 0 and 1. Similarly, for the strictly
quadratically convex Afriat inequalities (15), (16), we may scale the w, A as well as
the k so that after scaling, we may assume that the solution satisfies A} € [0, 1]. We
will make this assumption.

Lemma 1 Suppose w; ,5\2 € [0,1],2% solve the strictly quadratically convex dual
Afriat inequalities (15), (16), (3), (4). Then for any A with

ar or k 2
AN <A+ —L v,
n

we have that W}, \j, &} satisfy the strict dual Afriat inequalities — (12), (13), (3),

(4).

11



Proof

s spsas (PTD°
wy — NI T (I_tr - [_ts)
~8 T s . ps s
< wp = ALy % + AN ;= since A, <Ay and 37 p'/1] 2 0
t t
s T s 35 ]{352 '
< wy — )\tftsi"i% + A\ tlsp + —1[f using (3)
t t n

7 S

p p

< wy — /A\:—Ifff (F — F) + ke? < ] by hypothesis.
t t

Now define
ke? ke?
S = {)\ : A{ is an integer multiple of =g <N <1+ (ﬁ> } .
n
Then, by the lemma it follows that

Lemma 2 For any wy, ;\: € [0,1], 2} solving the strictly quadratically convex dual
Afriat inequalities (15), (16), (3), (4), there exists a A € S such that W}, A\, &} satisfy
the strict dual Afriat inequalities — (12), (13), (3), (4).

This immediately yields an algorithm: we enumerate the set S and then for each
candidate A € S, we now solve a linear program to see if the inequalities (12), (13),
(3) and (4) have a solution. If there is no solution for any A, then we conclude that
the system (15), (16), (3), (4) has no solution with this k. Otherwise, we would have
found a solution to (12), (13), (3), (4). Note that

(Lt (hd/m)¥ 1
R/ " (ke

which is only exponential in NT' and independent of L, the number of commodities.
For each candidate )\, we solve a linear program where the computational time is
bounded above by a polynomial in N, T', L. Thus, when the number of observations
and number of agents are small compared to the number of commodities, this is a
very efficient algorithm.

15| <

3.2 Applications

In multiple calibration, two or more years of market data together with empirical
studies on demand and production functions and the general equilibrium restrictions
are used to specify numerical general equilibrium models. The maintained assumption
is that the market data in each year is consistent with the Walrasian model of market
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economies. This assumption which is crucial to the calibration approach is never
tested, as noted in Dawkins et al. (2002).

The assumption of Walrasian equilibrium in the observed markets is testable,
under a variety of assumptions on consumer’s tastes, using the necessary and sufficient
conditions stated in Theorems 1, 2, and 3 and the market data available in multiple
calibration. In particular, Theorem 2 can be used as a specification test for the
numerical general equilibrium models discussed in Shoven and Whalley (1992), where
it is typically assumed that utility functions are homothetic.

Following Varian, we can extrapolate from the observed market data available
in multiple calibration to unobserved market configurations. We simply augment
the equilibrium inequalities defined by the observed data with additional polynomial
inequalities characterizing possible but unobserved market configurations of utility
levels, marginal utilities of income, individual demands, aggregate demands, income
distributions and equilibrium prices. Counterfactual equilibria are defined as solutions
to this augmented family of equilibrium inequalities.

In general, the Afriat inequalities in this system will be cubic in the product
of unobserved marginal utilities of income, the unobserved equilibrium prices and
unobserved individual demands. This is to be contrasted with observations that
include the market prices where the Afriat inequalities are only quadratic in the
product of the unobserved marginal utility of income and individual demand. It is
here that we need the random decision methods.

4 The Harberger Tax-Model

We begin by recalling the two-sector model of the US economy. In this model there
are two types of households or consumers; two types of firms or producers; two goods;
and two factors of production, labor and capital. We assume that consumers have
homothetic utility functions and are endowed with the factors of production. Firms
have production functions that are homogeneous of degree one, hence make zero
profits in equilibrium. Following Harberger, we assume that factors are inelastically
supplied.

Assuming there are two years of data available, as is the case in a typical multiple
calibration exercise, the Walrasian inequalities for the two-sector model constitute
a specification test for the Harberger tax-model. In both years we observe: aggre-
gate demand for the two goods; social endowments of capital and labor; the income
distributions of households; and market prices of goods and factors, where labor is
the numeraire good. We can now state the Walrasian inequalities for the two-sector
model.

Households:

S T

N Ap'xt
u§<u§8 p
DTy

(r#s=1,2; t=1,2) (20)
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Firms: .
fre I (rts=1,2t=12) (24)
qt "~ Yz
fr>0andy >0 (r=1,2; t=1,2) (25)
@ -y =J (r=121t=12) (26)
T
S yi=7y (r=12) (27)
t=1
where

xy is consumer t’s demand for goods in period r

@y is consumer t’s utility level in period r

I is consumer t’s income in period r

p" is the price vector for goods in period r

z" is the aggregate demand for goods in period r
and

y; is firm t’s demand for factors in period r

ftr is firm t’s output level in period r

J{ is firm t’s revenue in period r

q; is the price vector for factor demands by firm ¢ in period r

y" is the aggregate supply of factors in period r

r

If we now impose a per unit tax 7" on the use of capital by firm 1 then counterfactual
equilibria are solutions to the equilibrium inequalities for the two-sector model, aug-
mented in the following manner: The range of 7 in the equilibrium inequalities is now
{1,2,3} where ¢ = (1,7 +T), ¢ = (1,7) and 7 > 0. In addition, we require p* > 0
and consumer’s factor endowments to be the same in periods two and three. In each
counterfactual equilibrium we compute the social loss due to the tax: %TAK 1, where
AK, is the change in demand for capital by firm 1. A decideable family of counter-
factuals in this model are of the form: The augmented equilibrium inequalities and
the inequality %TAK 1 > «a, where « is known and fixed.
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