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1 Introduction

The paradigm of symmetric independent private value (IPV) auctions assumes that each bid-

der’s valuation of an object is independently drawn from an identical distribution (Myerson 1981,

Riley and Samuelson 1981). Each bidder observes her own valuation, and has no information about

her opponent’s valuation except for the distribution from which it is drawn. An important implica-

tion of this assumption is that each bidder’s belief about her opponent’s valuation is independent

of her own valuation and thus it is common knowledge.

In actual auctions, it is probable that bidders may have, or may have incentives to acquire,

information about their opponents’ valuations. Moreover, such information may often be noisy and

privately observed. This point can be made for both private and common value auction environ-

ments. For example, timber firms in the U.S. Forest Service timber auctions can cruise the tract

being auctioned and form estimates of its characteristics (Baldwin, Marshall and Richard 1997).

It is possible that a timber firm can obtain some noisy information about its opponents’ estimates

via insider rumors and industrial espionage. In highway construction procurement auctions, the

capacity constraints of the bidders are an important determinant of their costs (Jofre-Bonet and

Pesendorfer 2002). Even when the actual cost of a firm, say firm A, is its private information, other

firms may still obtain signals of A’s cost based on their noisy observations of how much firm A’s

capacity is stretched. Importantly, each bidder is aware that her opponents may have some signals

about her valuation or cost, but does not actually know the signals observed by her opponents.

In this paper, we assume that bidders have noisy information about opponents’ valuations and

explore its consequences under the first-price (FPA) and second-price (SPA) auction mechanisms.

Specifically, we consider parametric examples of two-bidder private value auctions in which each

bidder’s private valuation of the object is independently drawn from an identical distribution,

and each bidder observes a noisy signal about her opponent’s valuation. Thus, each bidder has

a two-dimensional type that include her own valuation (the valuation type) and the signal about

her opponent’s valuation (the information type). A bidder’s information about her opponents’

valuation is not known by her opponent. In such a multidimensional auction environment, we

show the following results. First, revenue equivalence of standard one-dimensional symmetric IPV

auctions breaks down. However, our examples demonstrate that there is no general revenue ranking

between the FPA and the SPA. Second, the equilibrium allocation of the object could be inefficient

in the FPA but is always efficient in the SPA. Moreover, the revenue and allocative efficiency may

not coincide: on the one hand, an inefficient FPA may generate a higher expected revenue for the

seller; on the other hand, the seller’s expected revenue could be higher in the SPA even when the

object is efficiently allocated in both auctions. The inefficiency in the FPA will typically be non-
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monotonic in the accuracy of information, since with either complete information or no information,

efficiency is obtained in the first price auctions. Third, while the SPA always admits equilibrium

in weakly dominant strategies, the FPA may not have any equilibrium. Finally, we illustrate that

different auction mechanisms provide different incentives for bidders to acquire costly information

about opponents’ private valuations. We illustrate all these results in simple examples that we can

solve explicitly. However, we also argue in each case why the key features of the examples should

be expected to occur more generally.

Our examples add to the list of departures from the standard symmetric IPV auction environ-

ments in which the revenue equivalence between the first and second-price auctions fails. Maskin

and Riley (2000a) consider private value auctions in which bidders are ex ante asymmetric in the

sense that different bidders’ valuations are drawn from different distributions. They show that

the revenue ranking between the first and the second-price auctions is ambiguous even though

the SPA is at least as efficient as the FPA (see also Arozamena and Cantillon 2002 and Cantillon

2003). In their model, bidders’ types are one dimensional and the asymmetry among bidders is

common knowledge. Holt (1980) and Matthews (1987) show that, when bidders are symmetrically

risk averse, the seller’s expected revenue in the FPA is higher than that in the SPA. Che and

Gale (1998) compare the standard auctions with financially constrained bidders, and show that the

seller’s expected revenue in the FPA is higher than that in the SPA. The bidders in their paper are

privately informed of both their valuation of the object and their financial capacity, and thus have

multidimensional types. However, both the bidders’ valuation and financial capacity are assumed

to be independently drawn from identical distributions, hence the common knowledge assumption

is maintained. This paper is related to the affiliated value framework of Wilson (1977) and Milgrom

and Weber (1985) in which they showed that when bidders’ valuations are affiliated, the seller’s

expected revenue is higher in the SPA than in the FPA (more generally, the so-called “linkage

principle”). The main difference between the auction environment studied in this paper and the

affiliated private value (APV) model is as follows: in the APV model, bidder i0s belief about j0s

valuation depends on i0s own private valuation, but does not depend on j0s actual valuation; while

in our model, bidder j0s private valuation influences bidder i0s belief about j0s valuation through

a noisy signal. In other words, in the APV model bidders’ types are one-dimensional (i.e., a bid-

der’s valuation type and her information type coincide), and as a result the standard auctions

are all efficient in the APV model despite their revenue ranking. A closely related paper is Kim

and Che (2002) which considers private value auction environments in which subgroups of bidders

may perfectly observe the valuations of others within the group but have no information about

bidders outside of the subgroup. They show that the seller’s expected revenue is higher in the SPA
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than that in the FPA and the FPA is allocatively inefficient with positive probability. While their

model is more general, our paper is different from theirs in assuming that bidders’ signals about

opponents’ valuations are noisy and private. Che and Gale (2002) propose a general methodology

for comparing the seller’s expected revenues from different auction mechanisms in environments

where bidders have multidimensional types. But they assume that bidders’ types are drawn from

independent distributions.

We restrict the seller to two possible mechanisms for allocating the object: first and second price

auctions. With more general mechanisms, in our setting, sellers could fully extract the surplus,

exploiting the correlation between bidders’ multidimensional types, using the type of argument

employed in Cremer and McLean (1985).1 Such mechanisms rely on very strong common knowledge

assumptions among the seller and the bidders and would not work on more realistic type spaces (see

Neeman 2001 and Bergemann and Morris 2003). For this reason, we restrict attention to simple

mechanisms. Our work is an attempt to make a first step at relaxing the standard (but unfortunate)

assumption in auction theory of identifying players’ beliefs with their payoff types.2 An alternative

way of allowing richer beliefs into standard independent private value auctions is to introduce

strategic uncertainty by relaxing the solution concept from equilibrium to rationalizability. This

avenue has been pursued by Battigalli and Siniscalchi (2000) and Dekel and Wolinsky (2003),

for first price auctions, while maintaining the assumption of no private information about others’

values.

The remainder of the paper is structured as follows. Section 2 presents the parametric auction

environment we examine; Section 3 shows the revenue non-equivalence between the first and second-

price auctions in our auction environment; Section 4 shows the possible inefficiency of the FPA;

Section 5 shows that there may exist no equilibrium in the FPA; Section 6 provides examples

that reverse the revenue ranking between the FPA and the SPA and illustrate the incentives of

information acquisition under different auction mechanisms; and Section 7 concludes.

1The literature on general mechanisms with multidimensional types focusses on efficiency questions. Jehiel and

Moldovanu (2001) show that, generically, there are no efficient auction mechanisms when bidders have independent

multidimensional signals and interdependent valuations. McLean and Postlewaite (2003) study situations in which

bidders’ valuations consist of both common and idiosyncratic components. Bidders privately observe their idiosyn-

cratic component of the valuation, and some signal regarding the common component. They show that a modification

of the Vickrey auction is efficient under quite general conditions in their settings.

2See Feinberg and Skrypacz (2002) pursue the same relaxation in the context of models of bargaining under

incomplete information.
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2 The Model

Two bidders, i = 1, 2, compete for an object. Bidders’ valuations of the object are private

and independently drawn from identical distributions. We assume that bidders’ valuation of the

object takes on three possible values {Vl, Vm, Vh} where Vl < Vm < Vh.3 The ex ante probability of
bidder i0s valuation vi taking on value Vk is denoted by pk ∈ [0, 1) where k ∈ {l,m, h} . Of courseP
k∈{l,m,h} pk = 1. To ease exposition, we will refer to bidder 1 as “she” and bidder 2 as “he”, and

refer to a generic bidder as “she” when no confusion shall arise.

As in standard private value auction models, bidder i observes her private valuation vi ∈
{Vl, Vm, Vh} . The novel feature of this paper is as follows: we assume that each bidder also observes
a noisy signal about her opponent’s valuation. For tractability, we assume that the noisy signal

takes on two possible qualitative categories {L,H} . Bidder i0s signal si ∈ {L,H} about j0s valuation
vj is generated as follows. For k ∈ {l,m, h} , and i, j ∈ {1, 2} , i 6= j,

Pr (si = L|vj = Vk) = qk, Pr (si = H|vj = Vk) = 1− qk, (1)

where qk ∈ [0, 1] . We assume that ql ≥ qm ≥ qh. Note that when ql = qm = qh, the signals

are completely uninformative about the opponent’s valuation.4 We assume that bidders’ signals

s1 and s2 are independent. To summarize, each bidder has a two-dimensional type (vi, si) ∈
{Vl, Vm, Vh} × {L,H} where vi is called bidder i0s valuation type and si her information type.

To summarize, the primitives of our model are a tuple of nine parameters as follows:

E =
(
hVk, pk, qkik∈{l,m,h} : Vl < Vm < Vh, pk ∈ [0, 1] ,

X
k

pk = 1, qk ∈ [0, 1]
)
.

Any element e ∈ E is called an auction environment.
We first compare the seller’s expected revenue and the allocative efficiency of the standard

auctions. Since we are in a two-person private value environment, Dutch and English auctions are

strategically equivalent to the FPA and the SPA, respectively. Thus we will only analyze the FPA

and the SPA: Bidders simultaneously submit bids; the high bidder wins the object. In the event

of a tie, we assume that the bidder with higher valuation wins the object if the bidders’ valuations

are different; and the tie-breaking can be arbitrary if the bidders’ valuations are the same.5

3Wang (1991) and Campbell and Levin (2000) studied common value auctions with discrete valuations.

4Because completely uninformative signals are the same as no signals at all, this special case corresponds to the

standard one-dimensional IPV model.

5It is well known now that tie-breaking rules are important in guaranteeing equilibrium existence in first-price

auctions. Notice that this tie-breaking rule is endogenous. Kim and Che (2002) and Maskin and Riley (2000b) used

a similar assumption.
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As usual, we will analyze the auctions as a Bayesian game of incomplete information between

two bidders in which the type space for each bidder is T ≡ {Vl, Vm, Vh}×{L,H} . Bidder i0s generic
type is ti = (vi, si) ∈ T. Given her information type si, bidder i updates her belief about j0s
valuation type vj according to Bayes rule as follows. For si ∈ {L,H} , and k ∈ {l,m, h},

Pr (vj = Vk|si = L) = pkqkP
k0∈{l,m,h} pk0qk0

, Pr (vj = Vk|si = H) = pk (1− qk)P
k0∈{l,m,h} pk0 (1− qk0)

. (2)

Analogously, given her valuation type vi, bidder i updates her belief about j0s information type sj
according to the signal technology specified by (1). For any (t1, t2) = ((v1, s1) , (v2, s2)) ∈ T 2, the
joint probability mass is

Pr (t1, t2) = Pr (v1) Pr (s1|v2)× Pr (v2)Pr (s2|v1) ,

and the conditional probability is

Pr (ti|tj) = Pr (vi|sj) Pr (si|vj) where i 6= j. (3)

3 Seller’s Expected Revenue

We first show that the celebrated revenue equivalence result for the standard one-dimensional

IPV auctions breaks down in our multidimensional setting. To demonstrate this result in the

simplest possible fashion, we consider a special case of the above model:

• pm = 0, pl ∈ (0, 1) , ph ∈ (0, 1) . That is, the bidders’ valuations are only of two possible types,
{Vl, Vh} .

• ql = 1 − qh = q ∈ [1/2, 1] . That is, signal L is equally indicative of value Vl as signal H is

of value Vh. The parameter q measures the accuracy of the signal: when q = 1/2, the signals

are completely uninformative; and when q = 1, the signals are perfectly informative.

3.1 Second-Price Auction

In the SPA, it is routine to show that the unique equilibrium in weakly dominant strategies in

this multidimensional setting is for a bidder of type (vi, si) to bid her private value vi regardless of

her information type. That is, the equilibrium bidding strategy of bidder i in the SPA, denoted by

BSPAi , is:

BSPAi (vi, si) = vi for i = 1, 2, and (vi, si) ∈ {Vl, Vh} × {L,H} . (4)
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In fact, this equilibrium characterization for the SPA is completely general to any private value

auction environment and does not depend on the number of bidders, discrete valuation and signal

types. We thus conclude that the multidimensional SPA is efficient; and the seller’s expected

revenue is independent of accuracy of the signals, hence equal to that in the standard environment

where bidders only observe their own valuations.

3.2 First-Price Auction

Now we analyze the equilibrium of the first-price auction. We will proceed via some intermediate

lemmas and summarize the characterization of the equilibrium of the FPA in Proposition 1.

Lemma 1 In any equilibrium of the FPA, type-(Vl, s) bidders bid Vl in pure strategies for s ∈
{L,H} . That is, for i = 1, 2,

BFPAi (Vl, s) = Vl for s ∈ {L,H} .

Proof. We first argue that bidders with valuation Vl must bid in pure strategies in equilibrium.

Suppose that type-(Vl,H) bidders plays a mixed strategy equilibrium on support
£
b, b̄
¤
with b < b̄.

(The lower limit of the interval may be open, but this is not important for the argument.) Clearly

b̄ ≤ Vl. Since the bid
¡
b+ b̄

¢
/2 wins positive probability, it yields a positive surplus for type-(Vl, H)

bidder. However, bids close to b will win with probability almost zero, hence the expected surplus

will approach zero. A contradiction for the indifference condition required for the mixed strategy.

Hence type-(Vl,H) bidders must bid in pure strategies. Identical arguments show that type-(Vl, L)

bidders must also bid in pure strategy. Now we argue that, if type-(Vl, L) and (Vl,H) bidders must

bid their valuation Vl in pure strategy. To see this, suppose that type-(Vl, L) and (Vl, H) bidder 2

bids less than Vl. Then bidder 1 of these types can deviate by bidding ε more than bidder 2, which

will be a profitable deviation if ε is made arbitrarily close to zero. A contradiction.

Next we show that the following mixed strategies for type-(Vh, L) and (Vh,H) bidders constitute

a symmetric equilibrium. We will later argue that this is the unique equilibrium of the FPA.

Lemma 2 Together with the strategies specified in Lemma 1 for bidders with valuation Vl, the

following constitute a symmetric equilibrium:

1. Type-(Vh, L) bidders play a mixed strategy on
£
Vl, b̄(Vh,L)

¤
according to CDF G(Vh,L) (·) given

by

G(Vh,L) (b) =
plq (b− Vl)

ph (1− q)2 (Vh − b)
, (5)
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where

b̄(Vh,L) =
ph (1− q)2 Vh + plqVl
ph (1− q)2 + plq

; (6)

2. Type-(Vh,H) bidders play a mixed strategy on
£
b̄(Vh,L), b̄(Vh,H)

¤
according to CDF G(Vh,H) (·)

given by

G(Vh,H) (b) =
(pl + phq) (1− q)

¡
b− b̄(Vh,L)

¢
phq2 (Vh − b) , (7)

where

b̄(Vh,H) =
phq

2Vh + (pl + phq) (1− q) b̄(Vh,L)
phq2 + (pl + phq) (1− q) . (8)

Proof. Suppose that bidder 2 bids according to the postulated strategies.

First, consider type-(Vh, L) bidder 1. Her expected payoff from submitting a bid b ∈
£
Vl, b̄(Vh,L)

¤
is

(Vh − b)
(

plq

plq + ph (1− q) +
ph (1− q)2

plq + ph (1− q)G(Vh,L) (b)
)
, (9)

where:

• the term plq/ [plq + ph (1− q)] is the probability that bidder 2 has a valuation type Vl condi-
tional on bidder 1’s own information type L [recall formula (2)]. By Lemma 1, bidder 2 with

valuation type Vl bids Vl with probability one. Thus bidder 1 wins with probability 1 against

such an opponent with any bid in the interval
£
Vl, b̄(Vh,L)

¤
(note that the tie-breaking rule is

applied at the bid Vl);

• the term ph (1− q)2 / [plq + ph (1− q)] is the probability that bidder 2 is of type (Vh, L) con-
ditional on bidder 1’s own type (Vh, L) [recall formula (3)]. Since type-(Vh, L) bidder 2 is

postulated to bid in mixed strategies according to G(Vh,L) (·) , bidder 1’s bid of b wins against
such an opponent with probability G(Vh,L) (b) .

Plugging G(Vh,L) (·) as described by (5) into (9) yields a positive constant, denoted by K(Vh,L), given
by

K(Vh,L) =
plq

ph (1− q) + plq (Vh − Vl) , (10)

which is type-(Vh, L) bidder’s expected surplus. Therefore type-(Vh, L) bidder 1 indeed is indifferent

between any bids in the interval
£
Vl, b̄(Vh,L)

¤
provided that bidder 2 follows the postulated strategy.

Now we check that type-(Vh, L) bidder 1 does not have incentive to deviate to other bids. First,

she clearly does not have incentive to deviate to bids lower than or equal to Vl, since it would
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have yielded her a zero surplus instead of a positive K(Vh,L). Now suppose that she deviates to

b̄(Vh,L) < b ≤ b̄(Vh,H), her expected payoff would be

(Vh − b)
(

plq

plq + ph (1− q) +
ph (1− q)2

plq + ph (1− q) +
ph (1− q) q

plq + ph (1− q)G(Vh,H) (b)
)

(11)

where the term ph (1− q) q/ [ph (1− q) + plq] the probability that bidder 2 is of type (Vh, H)
conditional on bidder 1’s own type (Vh, L) ; and G(Vh,H) (b) is the probability that a bid b ∈¡
b̄(Vh,L), b̄(Vh,H)

¤
wins against such an opponent. Plugging G(Vh,H) (·) as described by (7) into

(11), we obtain

plq + ph (1− q)2
plq + ph (1− q) (Vh − b) +

ph (1− q) q
plq + ph (1− q)

(pl + phq) (1− q)
¡
b− b̄(Vh,L)

¢
phq2

=

nh
plq + ph (1− q)2

i
Vh − (pl + phq) (1− q)2 b̄(Vh,L)

o
+ pl

h
(1− q)2 − q2

i
b/q

plq + ph (1− q)
which is non-increasing in b since q ≥ 1/2. Hence type-(Vh, L) bidder 1 does not have incentive to
deviate to bids in the interval

¡
b̄(Vh,L), b̄(Vh,H)

¤
; which also implies that her expected payoff would

be even smaller if she bids more than b̄(Vh,H).

Now consider type-(Vh,H) bidder 1. Given that bidder 2 plays according to the postulated

strategies, her expected payoff from bidding b ∈ £b̄(Vh,L), b̄(Vh,H)¤ is given by
(VH − b)

½
pl (1− q)

phq + pl (1− q) +
phq (1− q)

phq + pl (1− q) +
phq

2

phq + pl (1− q)G(Vh,H) (b)
¾
, (12)

where:

• the term pl (1− q) / [phq + pl (1− q)] is the probability that bidder 2 has valuation Vl condi-
tional on bidder 1’s signal H; and the term [phq (1− q)] / [phq + pl (1− q)] is the probability
that bidder 2 is of type (Vh, L). In both events, a bid b ∈

£
b̄(Vh,L), b̄(Vh,H)

¤
wins against such

opponents with probability one under the postulated strategies by bidder 2;

• the term phq
2/ [phq + pl (1− q)] is probability that bidder 2 is of type (Vh, H) conditional on

bidder 1’s own type (Vh,H) . In this case, a bid b ∈
£
b̄(Vh,L), b̄(Vh,H)

¤
wins with probability

G(Vh,H) (b) .

Plugging G(Vh,H) (·) as described by (7) into (12), we obtain a positive constant, denoted byK(Vh,H),
given by

K(Vh,H) =
(pl + phq) (1− q)
phq + pl (1− q)

¡
Vh − b̄(Vh,L)

¢
. (13)
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Hence type-(Vh,H) bidder 1 is indeed indifferent between any bids in the interval
£
b̄(Vh,L), b̄(Vh,H)

¤
.

Now we check that type-(Vh,H) bidder 1 does not have incentive to deviate to other bids. First,

she does not have incentive to bid more than b̄(Vh,H), since bidding b̄(Vh,H) strictly dominates any

higher bid given bidder 20s strategies; second, she does not have incentive to bid less than or equal

to Vl since such bids will yield a zero surplus. Now we show that she does not have incentive to

bid in the interval
¡
Vl, b̄(Vh,L)

¢
. Her expected payoff from a bid b ∈ ¡Vl, b̄(Vh,L)¢ is given by

(Vh − b)
½

pl (1− q)
phq + pl (1− q) +

phq (1− q)
phq + pl (1− q)G(Vh,L) (b)

¾
(14)

since such a bid loses to type-(Vh, H) opponent with probability one and win against a type-(Vh, L)

opponent with probability G(Vh,L) (b) . Plugging G (Vh,L) (·) as described by (5) into (14), we get
pl (1− q)

phq + pl (1− q) (Vh − b) +
phq (1− q)

phq + pl (1− q)
plq (b− Vl)
ph (1− q)2

=

h
pl (1− q)2 Vh − plq2Vl

i
+ pl

h
q2 − (1− q)2

i
b

[phq + pl (1− q)] (1− q) ,

which is non-decreasing in b since q ≥ 1/2. Hence type-(Vh,H) bidder 1 does not have incentive to
deviate to bids in the interval

¡
Vl, b̄(Vh,L)

¢
.

Finally, note that the expressions for b̄(Vh,L) and b̄(Vh,H) respectively satisfy G(Vh,L)
¡
b̄(Vh,L)

¢
= 1

andG(Vh,H)
¡
b̄(Vh,H)

¢
= 1. This concludes the proof that the postulated bidding strategies constitute

a symmetric equilibrium.

Now we show that the FPA admits no other symmetric equilibrium.

Lemma 3 The symmetric equilibrium described in Lemma 2 is the unique symmetric equilibrium

of the FPA.

Proof. The argument proceeds in three steps.

Step 1. We show that in any symmetric equilibrium type-(Vh, L) and type-(Vh,H) bidders

must bid in mixed strategies. For example, suppose to the contrary that, say, a type-(Vh, L) bidder

2 bids in pure strategy an amount b̃ < Vh, then type-(Vh, L) bidder 1 can profitably deviate by

bidding b̃ + ε where ε > 0 is arbitrarily small. Such a deviation will provide a discrete positive

jump in type-(Vh, L) bidder 1’s probability of winning, hence it is profitable. The argument for

type-(Vh,H) bidders is analogous.

Step 2. We show that in any symmetric mixed strategy equilibrium, the supports of G(Vh,L) (·)
and G(Vh,H) (·) are contiguous and non-overlapping. That the supports should be contiguous follows
from the same ε-deviation argument as the one to rule out pure strategies. Now suppose that the
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supports of G(Vh,L) (·) and G(Vh,H) (·) overlap in an interval [b1, b2] with b2 > b1. To be consistent
with mixed strategies, it must be the case that, the expected surplus for both types from any bid

b ∈ [b1, b2] is constant. That is, for some constants K̃(Vh,L) and K̃(Vh,H),

(Vh − b)
(

pl (1− q)
phq + pl (1− q) +

phq
2G(Vh,H) (b)

phq + pl (1− q) +
phq (1− q)G(Vh,L) (b)
phq + pl (1− q)

)
= K̃(Vh,H),(15)

(Vh − b)
(

plq

ph (1− q) + plq +
ph (1− q) qG(Vh,H) (b)
ph (1− q) + plq +

ph (1− q)2G(Vh,L) (b)
ph (1− q) + plq

)
= K̃(Vh,L).(16)

Multiplying Eq. (15) by (1− q) [phq + pl (1− q)], and Eq. (16) by q [ph (1− q) + plq] , and summing
up, we obtain:

K̃(Vh,H) (1− q) [phq + pl (1− q)]− K̃(Vh,L)q [ph (1− q) + plq] = (Vh − b) pl
h
(1− q)2 − q2

i
. (17)

Because the left hand side of Eq. (17) is a constant, this equation holds only for a single value

of b unless q = 1/2. Therefore , the supports of the symmetric equilibrium mixed strategies of

type-(Vh, L) and (Vh,H) bidders must be non-overlapping. The same argument also shows that the

supports of the symmetric equilibrium mixed strategies of type-(Vh, L) and type-(Vh, H) bidders

can not overlap at more than one point.

Step 3. We show that the support of type-(Vh, L) bidders’ mixed strategy must be lower than

that of type-(Vh,H) bidders. Suppose to the contrary. Let
h
Vl, b̃

i
be the support of type-(Vh, H)

bidder and
h
b̃, b̂
i
be the support of type-(Vh, L) bidder, for some b̂ > b̃. For type-(Vh, L) bidders to

randomize on
h
b̃, b̂
i
, it must be the case that

(Vh − b)
(

plq

ph (1− q) + plq +
ph (1− q) q

ph (1− q) + plq +
ph (1− q)2

ph (1− q) + plq G̃(Vh,L) (b)
)

=
³
Vh − b̃

´ plq + phq (1− q)
ph (1− q) + plq ,

from which, after solving for G̃(Vh,L) (b) , we obtain

G̃(Vh,L) (b) =
q (1− phq)

³
b− b̃

´
ph (1− q)2 (Vh − b)

. (18)

Suppose that type-(Vh, H) bidder 2 mixes over
h
Vl, b̃

i
, and type-(Vh, L) bidder 2 mixes over

h
b̃, b̂
i

according to G̃(Vh,L) (·) as described by (18). Then the expected surplus for type-(Vh, H) bidder 1

10



from bidding b ∈
³
b̃, b̂
´
is given by

(Vh − b)
½

pl (1− q)
phq + pl (1− q) +

phq
2

phq + pl (1− q) +
phq (1− q)

phq + pl (1− q)G̃(Vh,L) (b)
¾

=
(1− q) £pl (1− q) + phq2¤Vh − q2 (1− phq) b̃+ pl hq2 − (1− q)2i b

(1− q) [phq + pl (1− q)]
which is non-decreasing in b. Therefore, type-(Vh, H) bidder will have an incentive to bid higher

than b̃ if her opponent follows the prescribed strategies, a contradiction.

Combining Steps 1-3 and Lemma 1, we know that the equilibrium described in Lemma 2 is the

only symmetric equilibrium.

Lastly, we show that there is no asymmetric equilibrium.

Lemma 4 There is no asymmetric equilibrium.

Proof. First, arguments similar to step 3 in the proof of Lemma 3 can be used to show that in an

asymmetric equilibrium, the support of type-(Vh, L) bidders must be lower than that of type-(Vh, H)

bidders.

Now suppose that type-(Vh, L) bidder 1 and bidder 2 respectively play a mixed strategy on the

support
h
Vl, b̃1

i
and

h
Vl, b̃2

i
, and without loss of generality, suppose that b̃1 > b̃2. Since type-(Vh, L)

bidder 1 must be indifferent between any bids in (Vl, b̃2], type-(Vh, L) bidder 2’s mixed strategy,

denoted by G̃2(Vh,L), must satisfy

(Vh − b)
½

plq

plq + ph (1− q) +
ph (1− q)

plq + ph (1− q)G̃2(Vh,L) (b)
¾
= (Vh − Vl) plq

plq + ph (1− q)

from which we obtain that b̃2 = b̄(Vh,L) where b̄(Vh,L) is specified by formula (6). Now since type-

(Vh, L) bidder 2 is indifferent between any bids in
h
Vl, b̃2

i
, type-(Vh, L) bidder 1’s mixed strategy

CDF, denoted by G̃1(Vh,L), in the interval
h
Vl, b̃2

i
must satisfy

(Vh − b)
½

plq

plq + ph (1− q) +
ph (1− q)

plq + ph (1− q)G̃1(Vh,L) (b)
¾
= (Vh − Vl) plq

plq + ph (1− q)
from which we obtain that

G̃1(Vh,L) (b) =
plq (b− Vl)

ph (1− q)2 (Vh − b)
.

But then G̃1(Vh,L)

³
b̃2

´
= G̃1(Vh,L)

¡
b̄(Vh,L)

¢
= 1. Hence b̃1 = b̃2, a contradiction.

The following proposition summarizes Lemma 1-4:

11



Proposition 1 If pm = 0, ql = 1− qh = q ∈ [1/2, 1] , then the unique equilibrium of the first-price

auction is symmetric and is described as follows: for i = 1, 2,

1. BFPAi (Vl, s) = Vl for s ∈ {L,H} ;

2. Type-(Vh, L) bidder i mixes over
£
Vl, b̄(Vh,L)

¤
according to CDF G(Vh,L) (·) specified by (5)

where b̄(Vh,L) is given by (6);

3. Type-(Vh,H) bidder i mixes over
£
b̄(Vh,L), b̄(Vh,H)

¤
according to CDF G(Vh,H) (·) specified by

(7) where b̄(Vh,H) is given by (8).

3.3 Revenue Non-Equivalence

Now we compare the seller’s expected revenue from the SPA and the FPA. Because bidders

bid their own private valuations in the SPA, the seller receives Vh if and only if both bidders have

valuation type Vh (an event that occurs with probability p
2
h) and the seller receives Vl otherwise.

Hence the seller’s expected revenue from the SPA, denoted by RSPA, is

RSPA =
¡
1− p2h

¢
Vl + p

2
hVh. (19)

Since in the SPA a bidder obtains positive surplus (Vh − Vl) only when her valuation is Vh and
her opponent’s valuation is Vl, an event that occurs with probability phpl, each bidder’s ex ante

expected surplus from the SPA, denoted by MSPA, is

MSPA = phpl (Vh − Vl) , (20)

In the unique equilibrium of the FPA characterized in Proposition 1, the object is always

efficiently allocated. Thus, the expected social welfare is p2l Vl+
¡
1− p2l

¢
Vh. In equilibrium, bidders

with valuation type Vl obtains zero expected surplus; and type-(Vh, L) and type-(Vh,H) bidders

respectively obtain expected surplus K(Vh,L) and K(Vh,H) as described by (10) and (13). The ex

ante probabilities that bidder i is of type (Vh, L) and (Vh,H) are, respectively, Pr [ti = (Vh, L)] =

ph [ph (1− q) + plq] and Pr [ti = (Vh, H)] = ph [phq + pl (1− q)]. Thus, the ex ante expected surplus
of each bidder from the FPA, denoted by MFPA, is

MFPA (q) = Pr [ti = (Vh, L)]K(Vh,L) +Pr [ti = (Vh,H)]K(Vh,H)

=
phq (1− q) + plq
ph (1− q)2 + plq

phpl (Vh − Vl) .

We have the following observations. First, MFPA depends on q and MSPA is independent of q. The

intuition is simply that bidders strategically use their information about opponent’s valuation only

12



in the FPA. Second, MFPA (q) > MSPA for all q ∈ (1/2, 1) and MFPA (1/2) = MFPA (1) = MSPA.

That is, a bidder’s expected surplus is strictly higher in the FPA than that in the SPA except for

the completely uninformative and completely informative signal cases. When q = 1/2, the signals

are completely uninformative, and bidders would simply disregard their information type. We can

see from Lemma 1 that the probability densities of G(Vh,L) and G(Vh,H) can be smoothly pasted at

b̄(Vh,L) when q = 1/2, which implies that effectively, when q = 1/2, bidders of valuation type Vh

are simply playing a mixed strategy on the whole support of
£
Vl, b̄(Vh,H)

¤
. When q = 1, the FPA

becomes a complete information auction, and it is well known that it is revenue equivalent to the

SPA.

The seller’s expected revenue in the FPA, denoted by RFPA, is simply the difference between

the expected social welfare and the sum of the bidders’ expected surplus. That is,

RFPA (q) =
£
p2l Vl +

¡
1− p2l

¢
Vh
¤− 2MFPA (q)

=
¡
1− p2h

¢
Vl + p

2
hVh −

2p2hpl (2q − 1) (1− q)
ph (1− q)2 + plq

(Vh − Vl)

= RSPA − 2p
2
hpl (2q − 1) (1− q)
ph (1− q)2 + plq

(Vh − Vl) . (21)

The following proposition summarizes the comparison between RFPA (q) and RSPA :

Proposition 2 (Revenue Non-Equivalence) For any q ∈ (1/2, 1) , RFPA (q) < RSPA; and

RFPA (1/2) = RFPA (1) = RSPA; moreover, RFPA (q) has a unique minimizer.

That RFPA (q) has a unique minimizer in q follows from simple algebra. Figure 1 depicts the

seller’s expected revenues as a function of q ∈ [1/2, 1] from the two auction mechanisms for an

example where ph = 0.75, Vl = 0, Vh = 1.

Now we explain why the standard revenue equivalence theorem (see, for example, Mas-Colell

et. al., p. 890) breaks down in our multidimensional auction environment. An important condition

for the revenue equivalence theorem is that the equilibrium winning probability for every possible

bidder type must be equal in the two auction mechanisms. In our setting, however, this condition

is violated. For example, the probability of winning is the same bidder types (Vh, L) and (Vh, H)

in the SPA because both bid Vh in equilibrium. In the FPA, however, the probability of winning

is strictly higher for type-(Vh,H) bidder because, as characterized in Proposition 1, the support of

the equilibrium mixed strategy for type-(Vh, H) bidder is strictly higher than that of type-(Vh, L)

bidder.

We also note that in this two-valuation example (since pm = 0), the SPA generates a higher

expected seller revenue than the FPA despite the fact that both auction mechanisms are allocatively

13
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Figure 1: Seller’s expected revenues in the SPA and FPA: ph = 0.75, Vh = 1, Vl = 0.

efficient. This is similar to the one-dimensional APV auctions: the objects are allocated efficiently

in both the first and second-price APV auctions, but the SPA generates higher expected revenue

for the seller (Milgrom and Weber 1982).

4 Efficiency

While the SPA is always allocatively efficient in equilibrium, we argue in this section that the

allocative efficiency of the FPA in Section 3 is an artifact of the two-valuation example. When we

make all three valuations occur with positive probability, i.e., pk > 0 for k ∈ {l,m, h} , the unique
symmetric equilibrium of the FPA may be allocatively inefficient. Allocative inefficiency may arise

in the FPA if a type-(Vm,H) bidder may infer that her opponent is mostly likely of valuation type

Vh and hence bid more aggressively than a type-(Vh, L) bidder, who perceives her opponent to be

weak and is willing to sacrifice the probability of winning to exchange for a bigger surplus when

winning against an opponent with valuation Vl. The subtle point is that this intuition works only

if the following conditions are met: (1) Type-(Vm,H) bidder’s posterior belief about her opponent

puts a small weight on (Vh, L) , and big weight on (Vh, H) . This requires that qm be sufficiently

small and Pr (vj = Vh|si = H) be sufficiently large; (2). Type-(Vh, L) bidder’s posterior belief about
her opponent puts a big weight on Vl. This requires that ql be sufficiently large; (3). Vh can not be

too large relative to Vm since otherwise, type-(Vh, L) bidder is not willing to lower her probability

14



of winning by bidding conservatively.

Arguments similar to those in Section 3 can be used to establish that, first, in any symmetric

equilibrium of the FPA, bidders with valuation Vl must bid Vl in pure strategy regardless of their

information type; second, other types of bidders must bid in mixed strategies with contiguous and

non-overlapping supports; third, the support of type-(Vm, L) bidder’s mixed strategy must be lower

than that of type-(Vm,H); the support of type-(Vh, L) bidder’s mixed strategy must be lower than

that of type-(Vh,H) ; the support of type-(Vm,H) bidder’s mixed strategy must be lower than that

of type-(Vh, H), and the support of type-(Vm, L) bidder’s mixed strategy must be lower than that

of type-(Vh, L) . Thus the symmetric equilibrium of the FPA in this section takes only two possible

forms depending on the order of the mixed strategy supports of type-(Vm, H) and type-(Vh, L)

bidders. A symmetric equilibrium is efficient if the equilibrium mixed strategy support of type-

(Vm,H) bidder is lower than that of type-(Vh, L) bidder; and it is inefficient if the equilibrium

mixed strategy support of type-(Vh, L) bidder is lower than that of type-(Vm, H) bidder. We first

show the following result:

Proposition 3 (Efficient and Inefficient Equilibria Can not Coexist in the FPA) Any

auction environment e ∈ E can not simultaneously have both an efficient and an inefficient sym-
metric equilibrium in the FPA.

Proof. Suppose to the contrary that there is an auction environment that admits both types of

symmetric equilibrium in the FPA. First, since the support of type-(Vm, L) bidders must be lower

than those of type-(Vm,H) , (Vh, L) , and (Vh,H) bidders in both equilibria, the upper limit of

type-(Vm, L) bidders’ mixed strategies in both equilibria must be the same, which we denote by

b̄(Vm,L).

Let b̄eff(Vh,L) be the upper limit of the mixed strategy support of type-(Vh, L) bidder in the efficient

equilibrium and let b̄ineff(Vm,H)
be the upper limit of the mixed strategy support of type-(Vm,H) bidder

in the inefficient equilibrium. We then consider two possible cases:

Case 1: b̄eff(Vh,L) ≥ b̄ineff(Vm,H)
. This case is illustrated in Figure 2. Since in the inefficient

equilibrium type-(Vh, L) bidder is indifferent between any bids in
h
b̄(Vm,L), b̄

ineff
(Vh,L)

i
, her expected

surplus in the inefficient equilibrium is the same as that when she bids b̄(Vm,L) (recall our tie-breaking

rule), which is simply:

Z1 =
¡
Vh − b̄(Vm,L)

¢( plqlP
k∈{l,m,h} pkqk

+
pmqm (1− qh)P
k∈{l,m,h} pkqk

)
, (22)

where the term in the bracket is the expected probability of winning against bidders with Vl

valuation and type-(Vm, L) bidders. Given that her opponent follows the prescribed strategy in the
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Figure 2: Case 1 in the Proof of Proposition 3.

inefficient equilibrium, her expected payoff from deviating to a bid of b̄ineff(Vm,H)
is

Z2 =
³
Vh − b̄ineff(Vm,H)

´( plqlP
k∈{l,m,h} pkqk

+
pmqmP

k∈{l,m,h} pkqk
+

phqh (1− qh)P
k∈{l,m,h} pkqk

)
, (23)

where the term in the bracket is the expected probability of winning against bidders with Vl and

Vm valuations and type-(Vh, L) bidders. By the requirement of the inefficient equilibrium, we have

Z1 > Z2.6 Moreover, since in this case Vh > b̄
eff
(Vh,L)

≥ b̄ineff(Vm,H)
by assumption, we immediately have:

Z2 ≥
³
Vh − b̄eff(Vh,L)

´( plqlP
k∈{l,m,h} pkqk

+
pmqmP

k∈{l,m,h} pkqk
+

phqh (1− qh)P
k∈{l,m,h} pkqk

)
(24)

But the right hand side of inequality (24) is exactly type-(Vh, L) bidder’s expected surplus in the

efficient equilibrium, which by the definition of the efficient equilibrium is required to be larger

than Z1 [as given by expression (22)]. This is so because Z1 is also type-(Vh, L) bidder’s expected

surplus from deviating to a bid of b̄(Vm,L) in the efficient equilibrium. Thus we have Z2 ≥ Z1, which
is a contradiction to our earlier conclusion that Z1 > Z2.

Case 2: b̄eff(Vh,L) < b̄ineff(Vm,H)
. A contradiction can be derived for type-(Vm,H) bidder using

arguments analogous to Case 1.

Our next result shows that, in contrast to the SPA, the FPA may be allocatively inefficient.

Proposition 4 (Inefficiency of First-Price Auction) There exists an open set of auction

environments in E in which the unique symmetric equilibrium of the FPA is inefficient.

6The strict, rather than the usual weak, inequality, is valid because, tedious algebra shows that the deviation

surplus function is strictly decreasing in the whole interval
£
b̄ineff(Vh,L)

, b̄ineff(Vm,H)

¤
in order to be consistent with the

inefficient equilibrium.
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Proof. The proof of this Proposition is completely constructive, and we proceed by providing

an explicit auction environment with an inefficient symmetric equilibrium. Proposition 3 then

guarantees that it does not admit any efficient symmetric equilibrium. That there is an open set

of auction environments in E with inefficient equilibrium in the FPA follows from continuity.

Consider an example of the model presented in Section 2 as follows:

• Vl = 0, Vm = 1 and Vh = 2. We can set Vl = 0 and Vm = 1 by normalization and scaling with
no loss of generality. For the inefficient equilibrium described below to exist, Vh can not be

too high relative to Vm.

• pl = pm = ph = 1/3. That is, ex ante bidders’ valuations of the object take on the three

values with equal probability. This assumption is purely for computational ease in Bayesian

updating;

• ql = 0.9, qm = 0.1, qh = 0.05. As we described in the beginning of this section, the intuition
for inefficient equilibrium requires that ql be big, qm to be small, and qh even smaller.

As in the example in Section 3, we know that bidders with valuation type Vl will bid Vl regardless

of their information types. Now we show that the following mixed strategies for the other types of

bidders constitute the unique symmetric equilibrium:

• Type-(Vm, L) bidders bid according to a mixed strategy on the support
£
Vl, b̄(Vm,L)

¤
with CDF

G(Vm,L) (·) where

b̄(Vm,L) =
q2mVm + qlVl
ql + q2m

,

G(Vm,L) (b) =
ql
q2m

µ
b− Vl
Vm − b

¶
;

• Type-(Vh, L) bidders bid according to a mixed strategy on the support
£
b̄(Vm,L), b̄(Vh,L)

¤
with

CDF G(Vh,L) (·) where

b̄(Vh,L) =
[ql + qmqh] b̄(Vm,L) + q

2
hVh

ql + qmqh + q2h
,

G(Vh,L) (b) =
ql + qmqh

q2h

b− b̄(Vm,L)
Vh − b ;

• Type-(Vm,H) bidders bid according to a mixed strategy on the support
£
b̄(Vh,L), b̄(Vm,H)

¤
with
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CDF G(Vm,H) (·) where

b̄(Vm,H) =
[1− ql + (1− qm) qm + (1− qh) qm] b̄(Vh,L) + (1− qm)2 Vm

1− ql + (1− qm) qm + (1− qh) qm + (1− qm)2
,

G(Vm,H) (b) =
1− ql + (1− qm) qm + (1− qh) qm

(1− qm)2
b− b̄(Vh,L)
Vm − b ;

• Type-(Vh, H) bidders bid according to a mixed strategy on the support
£
b̄(Vm,H), b̄(Vh,H)

¤
with

CDF G(Vh,H) (·) where

b̄(Vh,H) =
(1− qh)2 Vh +

h
3− ql − qm − qh − (1− qh)2

i
b̄(Vm,H)

3− ql − qm − qh ,

G(Vh,H) (b) =

"
3− ql − qm − qh − (1− qh)2

(1− qh)2
#
b− b̄(Vm,H)
Vh − b .

Under the above parameterization,

b̄(Vh,H) ≈ 1.32531 > b̄(Vm,H) ≈ 0.744012
> b̄(Vh,L) ≈ 0.0164684 > b̄(Vm,L) ≈ 0.010989 > Vl = 0.

To show that the above strategy profile constitutes an equilibrium, we need to demonstrate that,

given that the opponent follows the postulated strategies, each type-(v, s) bidder, where v ∈
{Vm, Vh} and s ∈ {L,H} , obtains a constant expected surplus from any bids in the support of

the CDF G(v,s) (·), which is in turn higher than the expected surplus from any other deviation bids.
The details of the verifications are straightforward but arithmetically tedious, thus relegated to

Appendix A. Figures 4-9 in Appendix A depict the expected surplus for each type of bidders from

different bids, and it is clear that no type has incentive to deviate from the prescribed strategies.

Our model has an interesting implication regarding the impact of more information on effi-

ciency. The probability of the object being inefficiently allocated in an inefficient equilibrium is the

probability that the two bidders’ types are (Vm, H) and (Vh, L) respectively, which is given by

2Pr {ti = (Vm,H) , tj = (Vh, L) , i 6= j}
= 2pmph (1− qh) qm.

That is, the probability of inefficient allocation in the FPA is increasing in 1− qh locally in the set
of auction environments with inefficient equilibrium. Recall that 1− qh is the probability of bidder
i obtaining si = H when her opponent’s valuation vj = Vh. Thus the higher 1 − qh is, the more
informative the signal H is about Vh, and also of course, the more informative the signal L is about

Vl. Thus we have shown that:
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Corollary 1 The probability of inefficient allocation may be increasing in the informativeness of

the signals.

Finally, it can also be verified that the seller’s expected revenue in the inefficient equilibrium in

the FPA is again smaller than that in the SPA except for some knife-edge cases with measure zero.

The key observations of this section would clearly continue to hold in more general settings.

For example, suppose that bidders’ private values were independently drawn from a continuous

distribution and each bidder observed a continuous signal, correlated with the value of the other

bidder. In a continuous setting, efficiency would require that each bidder’s strategy depend only

on his valuation and not his signal. This would be impossible if the signal was informative. The

probability of inefficiency would therefore always be non-monotonic, since we have inefficiency with

intermediate informativeness of signals, but we have efficiency with either no information about

others’ values (efficiency is a well known property of the FPA with symmetric distributions and

independent private values) or full information about others’ values (there is efficiency in the FPA

with complete information).

5 Equilibrium Existence

Up to now, we have assumed that bidders’ information about the opponent’s private valuation

is of the same accuracy. In this section, we show that the existence of equilibrium in the FPA is con-

tingent on this assumption in our model. For this purpose, we consider again the example we used

in Section 3, with the exception that the accuracy of bidder i0s signal regarding bidder j0s valuation

is qi ∈ [1/2, 1) and we let q1 > q2. Recall that qi = Pr (si = L|vj = Vl) = Pr (si = H|vj = Vh) . Our
main result in this section can be stated as follows.

Proposition 5 If pm = 0 and 1 ≥ q1 > q2 ≥ 1/2, then generically the FPA does not admit any

equilibrium.

Proof. Using standard ε-deviation arguments, we can show that (1). bidders with valuation Vl

must bid Vl in pure strategy in any equilibrium; (2). each bidder of type-(Vh, L) and type-(Vh, H)

must bid in mixed strategies with bids higher than Vl; (3). the highest bid that may be submitted

by each bidder must be the same; (4). there is no gap in the bids submitted in equilibrium. We

denote the mixed strategy CDF of type-(Vh, L) and type-(Vh,H) bidder i by Gi(Vh,L) and Gi(Vh,H)

respectively, where i = 1, 2.

Next, we show that for each bidder i, the supports of Gi(Vh,L) and Gi(Vh,H) can not overlap at

more than one point. Without loss of generality, consider bidder 1. Let B1 be the set of points
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in which the supports of Gi(Vh,L) and Gi(Vh,H) overlap. For any overlap bid b ∈ B1, the following
must be true:

(Vh − b)
·

plq1
plq1 + ph (1− q1) +

ph (1− q1) (1− q2)G2(Vh,L) (b)
plq1 + ph (1− q1) +

ph (1− q1) q2G2(Vh,H) (b)
plq1 + ph (1− q1)

¸
= K̃1(Vh,L)

(Vh − b)
·

pl (1− q1)
pl (1− q1) + phq1 +

phq1 (1− q2)G2(Vh,L) (b)
pl (1− q1) + phq1 +

phq1q2G2(Vh,H) (b)

pl (1− q1) + phq1

¸
= K̃1(Vh,H)

Similar to the arguments in step 2 of the proof of Lemma 3, the above system equations can hold

for at most one value of b.

Therefore, we are left with four possible cases to consider depending on the order of the supports

of type-(Vh, L) and (Vh, H) mixed strategies for each bidder. We will derive a contradiction for one

of the cases, and the other cases can be dealt with analogously.

We consider the following case: The support of Gi(Vh,L) is
£
Vl, b̄i(Vh,L)

¤
and the support of

Gi(Vh,H) is [b̄i(Vh,L), b̄i(Vh,H)]. From discussions above, b̄1(Vh,H) = b̄2(Vh,H) = b̄(Vh,H).

Step 1: Simple calculation shows that it must be the case that b̄1(Vh,L) > b̄2(Vh,L).

Step 2: From the necessary indifference condition of type-(Vh, L) bidder 1 in the interval£
Vl, b̄2(Vh,L)

¤
, we can obtain G2(Vh,L):

(Vh − b)
·

plq1
plq1 + ph (1− q1) +

ph (1− q1) (1− q2)G2(Vh,L) (b)
plq1 + ph (1− q1)

¸
= (Vh − Vl) plq1

plq1 + ph (1− q1)
⇒ G2(Vh,L) (b) =

plq1
ph (1− q1) (1− q2)

b− Vl
Vh − b

b̄2(Vh,L) =
ph (1− q1) (1− q2)Vh + plq1Vl
ph (1− q1) (1− q2) + plq1

Step 3: The indifference condition for type-(Vh, L) bidder 2 requires that G1(Vh,L) (b) must

satisfy, for b ∈ £Vl, b̄2(Vh,L)¤ ,
(Vh − b)

·
plq2

plq2 + ph (1− q2) +
ph (1− q2) (1− q1)G1(Vh,L) (b)

plq1 + ph (1− q2)
¸
= (Vh − Vl) plq2

plq2 + ph (1− q2) ,

from which we can obtain G1(Vh,L) (b) for b ∈ (Vl, b̄2(Vh,L)] as

G1(Vh,L) (b) =
plq2

ph (1− q1) (1− q2)
b− Vl
Vh − b.

Step 4: To obtain the G1(Vh,L) (b) for b ∈
£
b̄2(Vh,L), b̄1(Vh,L)

¤
, we make use of the indifference

condition of type-(Vh, H) bidder 2, which is given by

(Vh − b)
·

pl (1− q2)
pl (1− q2) + phq2 +

phq2 (1− q1)
pl (1− q2) + phq2G1(Vh,L) (b)

¸
=

¡
Vh − b̄2(Vh,L)

¢ · pl (1− q2)
pl (1− q2) + phq2 +

phq2 (1− q1)
pl (1− q2) + phq2G1(Vh,L)

¡
b̄2(Vh,L)

¢¸
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hence, for b ∈ £b̄2(Vh,L), b̄1(Vh,L)¤
G1(Vh,L) (b) =

pl (1− q2)
£
b− b̄2(Vh,L)

¤
+ phq2 (1− q1)G1(Vh,L)

¡
b̄2(Vh,L)

¢ £
Vh − b̄2(Vh,L)

¤
phq2 (1− q1) (Vh − b) .

Setting G1(Vh,L) (b) = 1, we obtain

b̄1(Vh,L) =
phq2 (1− q1)

©£
1−G1(Vh,L)

¡
b̄2(Vh,L)

¢¤
Vh +G1(Vh,L)

¡
b̄2(Vh,L)

¢
b̄2(Vh,L)

ª
+ pl (1− q2) b̄2(Vh,L)

phq2 (1− q1) + pl (1− q2)

Step 5: The indifference condition of type-(Vh, L) bidder 1 for the bids in the interval
£
b̄2(Vh,L), b̄1(Vh,L)

¤
requires that G2(Vh,H) (b) for b ∈

£
b̄2(Vh,L), b̄1(Vh,L)

¤
must satisfy

(Vh − b)
·

plq1
plq1 + ph (1− q1) +

ph (1− q1) (1− q2)
plq1 + ph (1− q1) +

ph (1− q1) q2
plq1 + ph (1− q1)G2(Vh,H) (b)

¸
= (Vh − Vl) plq1

plq1 + ph (1− q1)
thus,

G2(Vh,H) (b) =
b− Vl
Vh − b

plq1
ph (1− q1) q2 −

ph (1− q1) (1− q2)
ph (1− q1) q2

from which can obtain G2(Vh,H)
¡
b̄1(Vh,L)

¢
.

Step 6: The indifference condition of type-(Vh, H) bidder 2 requires that G1(Vh,H) (b) satisfy

(Vh − b)
·

pl (1− q2)
pl (1− q2) + phq2 +

phq2 (1− q1)
pl (1− q2) + phq2 +

phq2q1
pl (1− q2) + phq2G1(Vh,H) (b)

¸
=

¡
Vh − b̄2(Vh,L)

¢ · pl (1− q2)
pl (1− q2) + phq2 +

phq2 (1− q1)
pl (1− q2) + phq2G1(Vh,L)

¡
b̄2(Vh,L)

¢¸
which implies a value for b̄1(Vh,H).

Step 7: Likewise, the indifference condition of type-(Vh,H) bidder 1 requires that G2(Vh,H) (b)

satisfy, for b ∈ £b̄1(Vh,L), b̄2(Vh,H)¤ ,
(Vh − b)

·
pl (1− q1)

pl (1− q1) + phq1 +
phq1

pl (1− q1) + phq1G2(Vh,H) (b)
¸

=
¡
Vh − b̄1(Vh,L)

¢ · pl (1− q1)
pl (1− q1) + phq1 +

phq1
pl (1− q1) + phq1G2(Vh,H)

¡
b̄1(Vh,L)

¢¸
which implies a value for b̄2(Vh,H).

Step 8: Generically, b̄1(Vh,H) and b̄2(Vh,H) are not equal, which contradicts the equilibrium

requirement by the standard ε-deviation argument. (see Figure 3 for a graphic illustration of the

above steps)
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Vl b2(Vh,L) b2(Vh,H)

Vl b1(Vh,L) b1(Vh,H)

Bidder 1

Bidder 2

Figure 3: A Graphic Illustration of the Proof of Proposition 5.

Examples of non-existence of equilibrium with multidimensional types are also presented in

Jackson (1999) in the context of auctions with both private and common value components, and

the example of this section has a similar flavor.

The non-existence problem is surely not an artifact of the discrete type assumption. Consider

again the case where bidders’ private values were independently drawn from a continuous distribu-

tion and each bidder observed a continuous signal, correlated with the value of the other bidder.

Even with strong assumptions of the signals (e.g., the monotone likelihood ratio property), if bidder

1 knows that bidder 2 is following a strategy that is monotonic in his valuation and his signal of

bidder 1’s valuation, bidder 1 will not have a best response that is monotonic (in the same sense).

To see why, suppose that bidder 1 has a bimodal distribution on bidder 2’s valuation, and thus

on bidder 2’s bid. Suppose that improvements in bidder 1’s signal translate up bidder 1’s beliefs

about bidder 2’s bids. For low values of the signal, it will be optimal for bidder 1 to bid such that

he wins against both modal bids. However, as his signal improves, there will be a point where he

will give up on winning against 2’s high modal bid and his bid will jump down to just above the

2’s low modal bid. Thus his bid will jump downwards as his signal improves. It is hard to think

of a primitive assumption on the signal structure that will prevent this type of non-monotonicity.

This monotonicity implies that the existence arguments such as those of Athey (2001) and Reny

and Zamir (2002) will not help in this problem.

6 Discussion: Revenue and Information Acquisition

In this section, we first present two examples of multidimensional private value auctions in

which the revenue ranking of the FPA and the SPA are reversed; and then discuss the incentives

of information acquisition.
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6.1 Revenue

We have observed that the SPA is efficient and the FPA is not in general. This may suggest the

possibility that the SPA will generate more revenue (as suggested by the three valuation example

of section 4). We have also seen an example where the seller’s revenue in the SPA is higher than in

the FPA, even though the there is efficient allocation of the object under both auctions (the two

valuation example in section 3). What can be said in general about the revenue ranking?

There is an easy way to see that a general revenue ranking is not possible. For some special

information structures, each bidder will know what private signal the other bidder has observed.

This will be true if each bidder observes a partition of the other bidder’s valuations. Now even

though we start with a model that is completely symmetric across bidders, conditional on the

observed signals, bidders are playing in an independent private values environment with asymmetric

distributions. But from the work of Maskin and Riley (2000), we already know that revenue ranking

may go either way. We can use this insight to construct the following example where revenue in

the FPA is higher than in the SPA. Presumably, this revenue ranking would continue to hold in

nearby models where private signals were not common knowledge among the players.

Example 1 Consider a private value auction with two bidders, i = 1, 2. Suppose that v1 and v2 are

independent and both drawn from Uniform [0, 1] . Bidders also observe a noisy signal about their

opponent’s valuation. Suppose that the signal is generated as follows: for i 6= j,

si =

(
L if vj ∈

£
0, 12

¤
H if vj ∈

¡
1
2 , 1
¤
.

That is, a bidder observes a signal that tells her if her opponent’s value is higher or lower than 1/2;

and this information structure is common knowledge.

In the equilibrium of the SPA for the auction environment described in Example 1, each bidder

will bid their own private valuation. In the FPA, however, we have to consider three cases: (i)

vi ∈ [0, 1/2] for i = 1, 2; (ii) vi ∈ (1/2, 1] for i = 1, 2; and (iii) vi ∈ [0, 1/2] and vj ∈ (1/2, 1] where
i 6= j. In case (i), both bidders effectively compete in an auction environment in which it is common
knowledge that the valuations are both drawn from Uniform [0, 1/2] distributions. In case (ii), both

bidders effectively compete in an auction environment in which it is common knowledge that the

valuations are both drawn from Uniform [1/2, 1] distributions. In case (iii), however, the bidders

are asymmetric in their valuation distributions and it is common knowledge. Clearly the FPA and

the SPA are revenue equivalent in case (i) and (ii) events. In case (iii) events, however, the bidder

asymmetry breaks the revenue equivalence. It can be easily verified that case (iii) events satisfy the
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conditions for a theorem of Maskin and Riley (2000a, Proposition 4.3) which shows that the FPA

would generate a higher expected revenue for the seller than the SPA under this type of asymmetry.

Thus, we reach the conclusion that overall in this example, the seller’s expected revenue is higher in

the FPA than that in the SPA. It can also be numerically verified that in case (iii) events, the FPA

may be allocatively inefficient. Thus we have an example that the FPA generates higher expected

revenue for the seller than the SPA despite its possible allocative inefficiency relative to the SPA.

6.2 Information Acquisition

So far we have assumed that bidder’s information about her opponent’s valuation or valuation

distribution is provided by nature without incurring any cost. In reality, of course, such information

is be costly to acquire.7 Now we argue that if bidders have to costly acquire such information, then

different auction mechanisms provide vastly different incentives for such information acquisition.

This, together with the difference in revenue and allocative efficiency between the FPA and the SPA

we documented earlier, provides yet another reason for the auction designer to prefer one auction

mechanism over another even in private value auction environments.

In the SPA, bidders do not strategically use information about their opponents’ valuation, thus

there is no incentives at all to acquire such information if it is costly. This observation is completely

general for any private value auction environments. The lack of incentives to acquire information

about one’s opponents in the SPA is related to the fact that bidding one’s private valuation is an

ex post equilibrium in the SPA.

In the FPA, however, information about the opponent’s valuation does have strategic conse-

quences in the bidding, thus bidders do have incentives to acquire such information if the cost is

sufficiently small. We illustrate such incentives using an extension of Example 1 above. Suppose

that bidder i can, at a cost ci > 0, purchase a signal about her opponent’s valuation that reveals

whether her opponent’s valuation is below or above 1/2. Assume that a bidder’s signal purchase

decision is observable to her opponent. Suppose that the timing of the game is as follows: first,

bidders decide whether to purchase such a signal technology at cost ci; second, nature draws private

valuations from Uniform [0, 1] for each bidder; third, a bidder observes whether her opponent’s pri-

vate valuation is below or above 1/2 if and only if she purchased the signal technology; and finally,

bidders compete for the object in the FPA.

The equilibrium bidding strategies in the FPA depend on the signal purchase decisions:

7Most of the existing literature in information acquisition in auctions are concerned with common value auctions

(for example, Matthews 1984, and Persico 2000).
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• If neither bidder purchased the signal technology in stage 1, then both bidders will play the
symmetric FPA in which the opponent’s valuation is drawn from Uniform [0, 1] distribution.

Thus bidders bid v/2 and the expected surplus for each bidder is given by
³R 1
0 v

2dv
´
/2 =

1/6 ≈ 0.16667.

• If both bidders purchase the signal technology, then bidder i0s ex ante expected surplus from
the subsequent FPA is calculated as follows. (1). With probability 1/4, both bidder valuations

will be below 1/2. In this case, bidders will bid v/2 in equilibrium and the expected surplus

for each bidder is
³R 1/2
0 v2dv

´
/2 = 1/48. (2). With probability 1/4, both valuations will be

above 1/2. In this case, bidders will bid v/2 again in equilibrium and the expected surplus for

each bidder is
³R 1
1/2 v

2dv
´
/2 = 7/48. (3). With probability 1/4, bidder i0s valuation is below

1/2 and bidder j0s valuation is above 1/2, where j 6= i. (4). With probability 1/4, bidder i0s
valuation is above 1/2 and bidder j0s valuation is below 1/2. The equilibria of the FPA in

the events of case (3) and (4) can not be analytically solved, but numerical calculation shows

that bidder i0s expected surplus in case (3) and (4) are 0.01848 and 0.34808 respectively.8

Thus bidder i0s ex ante expected surplus if both bidders purchased the signal technology is

1/48 + 7/48 + 0.01848 + 0.34808

4
≈ 0.13331.

• If bidder i does not purchases the signal technology but bidder j does, then bidder i and
j0s ex ante expected surplus from the subsequent FPA can be calculated as follows. (1).

With probability 1/2, bidder i0s valuation is below 1/2. In this case, bidder i0s belief about j0s

valuation is Uniform [0, 1] while bidder j0s belief about i0s valuation is Uniform [0, 1/2] and this

is common knowledge. Hence, bidder i0s expected surplus is that of a “weak” bidder (in the

terminology of Maskin and Riley 2000a) with Uniform [0, 1/2] valuation distribution against

a “strong” bidder with Uniform [0, 1] distribution in the FPA, which can be analytically

calculated to be approximately 0.0242334.9 Likewise, bidder j (the “strong” bidder in this

case)’s ex ante expected payoff is approximately 0.253449. (2). With probability 1/2, bidder i0s
8John Riley and Estelle Cantillon graciously provided various versions of BIDCOMP2 fortran codes that are used

in calculating the bidders’ ex ante expected payoffs in the asymmetric auctions.

9The unique equilibrium of a two-bidder asymmetric FPA with valuation distributions Uniform [0, h1] and Uniform

[0, h2] respectively where h1 > 0, h2 > 0 and h1 6= h2 are given by

b1 (v) =

√
1 +mv2 − 1

mv
, b2 (v) =

1−√1−mv2
mv

where m =
¡
h21 − h22

¢
/ (h1h2)

2 is a constant. Appendix B provides an elementary derivation of the above equilibrium.

See also Griesmer, Levitan and Shubik (1967) and Plum (1992).
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bidder iÂbidder j No Purchase Purchase

No Purchase 0.16667, 0.166 67 0.12135, 0.17878− cj
Purchase 0.17878− ci, 0.12135 0.13331− ci, 0.13331− cj

Table 1: The expected payoff matrix.

valuation is above 1/2. In this case, bidder i0s belief about bidder j0s valuation is Uniform [0, 1]

while bidder j0s belief about i0s valuation is Uniform [1/2, 1] and this is common knowledge.

Hence, bidder i0s expected surplus is that of a “strong” bidder with Uniform [1/2, 1] valuation

distribution against a “weak” bidder with Uniform [0, 1] distribution in the FPA, which can

be numerically calculated to be 0.218465. Likewise, bidder j (the “weak” bidder in this

case)’s expected surplus is approximately 0.104104. Thus bidder i (the non-purchaser)’s ex

ante expected payoff is approximately

0.0242334 + 0.218465

2
= 0.12135;

and bidder j (the purchaser)’s ex ante expected payoff is approximately

0.253449 + 0.104104

2
= 0.17878.

Table 1 lists the ex ante expected payoff matrix for the two bidders taking into account the

information acquisition cost ci and cj .When ci and cj are sufficiently small, the unique equilibrium

in the information acquisition stage is that both bidders purchase the signals. Both bidders are

made worse off through two channels. First, they incur the information acquisition cost; second,

in the subsequent FPA, they will be engaged in more fierce competition and the seller will be

able to extract a higher revenue. The social welfare is also decreased for two reasons. First, the

information acquisition cost is dissipative; second, the object will be allocated inefficiently with

positive probability.

This example also illustrates the possibility that a decrease in the cost of information acquisition

may increase allocative inefficiency in the first price auctions. Imagine that initially the information

acquisition cost ci are sufficiently high that in equilibrium neither bidder purchases the signal

technology. Thus we know that the subsequent FPA is allocatively efficient. However, as ci is

sufficiently low, both bidders will purchase information in equilibrium and the subsequent FPA is

allocatively inefficient with positive probability.
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7 Conclusion

This paper presents examples of two-bidder private value auctions in which each bidder observes

her own private valuation as well as noisy signals about her opponent’s private valuation. This de-

parts from the one-dimensional symmetric IPV paradigm and relaxes the assumption that bidder’s

belief regarding her opponents is common knowledge. We partially characterize the equilibrium of

the FPA when each bidder’s signal about her opponent’s valuation is drawn from the same dis-

tribution, and show that the revenue-equivalence between standard auctions fails. Our examples

demonstrate that, first, the revenue ranking between the FPA and the SPA is ambiguous; second,

the equilibrium allocation of the object could be inefficient in the FPA but is always efficient in the

SPA, but the revenue and allocative efficiency may not coincide: an inefficient FPA may generate

a higher expected revenue for the seller; but it is also possible that the seller’s expected revenue is

higher in the SPA even when the object is efficiently allocated in both auctions. We also show that

the equilibrium existence of the FPA may be problematic in multidimensional type environments.

Finally, we illustrate that different auction mechanisms provide different incentives for bidders to

acquire cost information about opponents’ private valuations. We also provide examples that the

allocative inefficiency in the FPA may increase as the signal becomes more informative; and the

allocative inefficiency may increase in the FPA as the information acquisition costs are decreased.

While the results in our paper are derived in examples, we have explained how the underlying

intuitions are general.
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Appendix A: Details of the Inefficient Equilibrium.

In this appendix, we provide details of the inefficient equilibrium in the proof of Proposition 4.

As described in the text, bidders with valuation Vl will bid Vl in pure strategy in any equilibrium.

In an inefficient symmetric equilibrium, type-(Vm, L) bidder bids in mixed strategies on the support

(Vl, b̄(Vm,L)] according to CDF G(Vm,L), type-(Vh, L) bidder bids according to G(Vh,L) on the support£
b̄(Vm,L), b̄(Vh,L)

¤
, type-(Vm,H) bidder bids according to G(Vm,H) on the support

£
b̄(Vh,L), b̄(Vm,H)

¤
,

and finally type-(Vh,H) bidder bids according to G(Vh,H) on the support
£
b̄(Vm,H), b̄(Vh,H)

¤
where

Vl < b̄(Vm,L) < b̄(Vh,L) < b̄(Vm,H) < b̄(Vh,H).

A1. Deriving the Candidate Inefficient Equilibrium Strategies.

We first derive the four CDFs and four thresholds from the bidders’ indifference conditions.

Suppose that bidder 2 plays according to the above prescribed strategies.

Type-(Vm, L) bidder 1. Type-(Vm, L) bidder 1’s indifference condition on the support
£
Vl, b̄(Vm,L)

¤
is:

(Vm − b)
·
plqlP
pkqk

+
pmqmP
pkqk

× qmG(Vm,H) (b)
¸
= (Vm − Vl) plqlP

pkqk
.

Thus,

G(Vm,H) (b) =
plql
pmq2m

µ
b− Vl
Vm − b

¶
,

b̄(Vm,L) =
plqlVl + pmq

2
mVm

plql + pmq2m
.

Type-(Vh, L) bidder 1. Type-(Vh, L) bidder 1’s indifference condition on the support
£
b̄(Vm,L), b̄(Vh,L)

¤
is:

(Vh − b)
·
plqlP
pkqk

+
pmqmP
pkqk

qh +
phqhP
pkqk

qhG(Vh,L) (b)

¸
=

¡
Vh − b̄(Vm,L)

¢µ plqlP
pkqk

+
pmqmP
pkqk

qh

¶
.

Thus,

G(Vh,L) (b) =
plql + pmqmqh

phq
2
h

b− b̄(Vm,L)
Vh − b ,

b̄(Vh,L) =
phq

2
hVh + (plql + pmqmqh) b̄(Vm,L)

phq
2
h + plql + pmqmqh

.
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Type-(Vm,H) bidder 1. Type-(Vm, H) bidder 1’s indifference condition on the support
£
b̄(Vh,L), b̄(Vm,H)

¤
is:

(Vm − b)
"
pl (1− ql)P
pk (1− qk) +

pm (1− qm) qmP
pk (1− qk) +

ph (1− qh) qmP
pk (1− qk) +

pm (1− qm)2P
pk (1− qk)G(Vm,H) (b)

#

=
¡
Vm − b̄(Vh,L)

¢ · pl (1− ql)P
pk (1− qk) +

pm (1− qm) qmP
pk (1− qk) +

ph (1− qh) qmP
pk (1− qk)

¸
.

Thus,

G(Vm,H) (b) =
pl (1− ql) + pm (1− qm) qm + ph (1− qh) qm

pm (1− qm)2
b− b̄(Vh,L)
Vm − b ,

b̄(Vm,H) =
[pl (1− ql) + pm (1− qm) qm + ph (1− qh) qm] b̄(Vh,L) + pm (1− qm)2 Vm

pl (1− ql) + pm (1− qm) qm + ph (1− qh) qm + pm (1− qm)2
.

Type-(Vh,H) bidder 1. Type-(Vh,H) bidder 1’s indifference condition on the support
£
b̄(Vm,H), b̄(Vh,H)

¤
is:

(Vh − b)
"
pl (1− ql)P
pk (1− qk) +

pm (1− qm)P
pk (1− qk) +

ph (1− qh) qhP
pk (1− qk) +

ph (1− qh)2P
pk (1− qk)G(Vh,H) (b)

#

=
¡
Vh − b̄(Vm,H)

¢ · pl (1− ql)P
pk (1− qk) +

pm (1− qm)P
pk (1− qk) +

ph (1− qh) qhP
pk (1− qk)

¸
.

Thus,

G(Vh,H) (b) =

·
pl (1− ql) + pm (1− qm) + ph (1− qh) qh

ph (1− qh)2
¸
b− b̄(Vm,H)
Vh − b ,

b̄(Vh,H) =
ph (1− qh)2 Vh + [pl (1− ql) + pm (1− qm) + ph (1− qh) qh] b̄(Vm,H)

ph (1− qh)2 + pl (1− ql) + pm (1− qm) + ph (1− qh) qh
.

Clearly, we can obtain the corresponding expressions in the proof of Proposition 4 when we set

pl = pm = ph = 1/3.

A2. Deriving the Expected Surplus from Deviations.

Now we derive the expressions of different types of bidders’ expected surplus from bids in

different regions. In order to verify that the prescribed strategies indeed constitute an inefficient

equilibrium, each bidder type’s expected surplus should be maximized in the support of its prescribe

strategy.
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Type-(Vm, L) bidder 1. Type-(Vm, L) bidder 1’s expected surplus from bid b, denoted byM(Vm,L),

is:

M(Vm,L) (b) =



(Vm − Vl) plqlP
pkqk

, if b ∈ £Vl, b̄(Vm,L)¤
Vm−bP
pkqk

£
plql + pmq

2
m + phqhqmG(Vh,L) (b)

¤
, if b ∈ £b̄(Vm,L), b̄(Vh,L)¤

Vm−bP
pkqk

£
plql + pmq

2
m + phqhqm

+pmqm (1− qm)G(Vm,H) (b)
¤
,
if b ∈ £b̄(Vh,L), b̄(Vm,H)¤

Vm−bP
pkqk

[plql + pmqm + phqhqm

+phqh (1− qh)G(Vh,H) (b)
¤
,
if b ∈ £b̄(Vm,H), b̄(Vh,H)¤

Type-(Vh, L) bidder 1. Type-(Vh, L) bidder 1’s expected surplus from bid b, denoted byM(Vh,L),

is:

M(Vh,L) (b) =



Vh−bP
pkqk

£
plql + pmqmqhG(Vm,L) (b)

¤
, if b ∈ £Vl, b̄(Vm,L)¤

Vh−b̄(Vm,L)P
pkqk

(plql + pmqmqh) , if b ∈
£
b̄(Vm,L), b̄(Vh,L)

¤
Vh−bP
pkqk

£
plql + pmqmqh + phq

2
h

+pmqm (1− qh)G(Vm,H) (b)
¤
,
if b ∈ £b̄(Vh,L), b̄(Vm,H)¤

Vh−bP
pkqk

£
plql + pmqm + phq

2
h

+phqh (1− qh)G(Vh,H) (b)
¤
,
if b ∈ £b̄(Vm,H), b̄(Vh,H)¤

Type-(Vm,H) bidder 1. Type-(Vm, H) bidder 1’s expected surplus from bid b, denoted byM(Vm,H),

is:

M(Vm,H) (b) =



Vm−bP
pk(1−qk)

£
pl (1− ql) + pm (1− qm) qmG(Vm,L) (b)

¤
, if b ∈ £Vl, b̄(Vm,L)¤

Vm−bP
pk(1−qk) [pl (1− ql) + pm (1− qm) qm
+ph (1− qh) qmG(Vh,L) (b)

¤
,

if b ∈ £b̄(Vm,L), b̄(Vh,L)¤
Vm−b̄(Vh,L)P
pk(1−qk) [pl (1− ql) + pm (1− qm) qm + ph (1− qh) qm] , if b ∈

£
b̄(Vh,L), b̄(Vm,H)

¤
Vm−bP
pk(1−qk) [pl (1− ql) + pm (1− qm) + ph (1− qh) qm

+ph (1− qh) (1− qm)G(Vh,H) (b)
¤
,

if b ∈ £b̄(Vm,H), b̄(Vh,H)¤
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Type-(Vh,H) bidder 1. Type-(Vh,H) bidder 1’s expected surplus from bid b, denoted byM(Vh,H),

is:

M(Vh,H) (b) =



Vh−bP
pk(1−qk)

£
pl (1− ql) + pm (1− qm) qhG(Vm,L) (b)

¤
, if b ∈ £Vl, b̄(Vm,L)¤

Vh−bP
pk(1−qk) [pl (1− ql) + pm (1− qm) qh
+ph (1− qh) qhG(Vh,L) (b)

¤
,

if b ∈ £b̄(Vm,L), b̄(Vh,L)¤
Vh−bP
pk(1−qk) [pl (1− ql) + pm (1− qm) qh + ph (1− qh) qh

+pm (1− qm) (1− qh)G(Vm,H) (b)
¤
,

if b ∈ £b̄(Vh,L), b̄(Vm,H)¤
Vh−b̄(Vm,H)P
pk(1−qk) [pl (1− ql) + pm (1− qm) + ph (1− qh) qh] , if b ∈

£
b̄(Vm,H), b̄(Vh,H)

¤
.

A3. The Graphs for the Example in the Proof of Proposition 4.

We collect the graphs for the example in the proof of Proposition 4, i.e., we let Vl = 0, Vm =

1, Vh = 2, and let pk = 1/3 for k ∈ {l,m, h} and ql = 0.9, qm = 0.1, qh = 0.05. The following graphs
show the expected surplus functions for the different types of bidders to show that the candidate

inefficient equilibrium derived in A1 indeed constitute an equilibrium.
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Figure 4: Type-(Vm, L) bidder’s expected surplus when bidding b ∈
£
Vl, b̄(Vh,L)

¤
.
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Figure 5: Type-(Vm, L) bidder’s expected surplus when bidding b ∈
£
b̄(Vh,L), b̄(Vh,H)

¤
.
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Figure 6: Type-(Vh, L) bidder’s expected surplus when bidding b ∈
£
Vl, b̄(Vh,L)

¤
.
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Figure 7: Type-(Vh, L) bidder’s expected surplus when bidding b ∈
£
b̄(Vh,L), b̄(Vh,H)

¤
.
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Figure 8: Type-(Vm,H) bidder’s expected surplus when bidding b ∈
£
Vl, b̄(Vh,H)

¤
.
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Figure 9: Type-(Vh,H) bidder’s expected surplus when bidding b ∈
£
Vl, b̄(Vh,H)

¤
.
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Appendix B.

In this appendix, we provide a detailed and elementary derivation of the equilibrium of the

asymmetric FPA auction discussed in footnote (9).

Suppose that bidder 1 and 20s valuations are drawn independently from Uniform [0, h1] and

[0, h2] respectively where h1 6= h2. Let bi : [0, hi] → R+ be i0s bidding function; and φi ≡ b−1i
bidder i0s inverse bid function. Given φ2 (·), bidder 1 with valuation v solves

max
b≥0

(v − b)φ2 (b)
h2

.

The first order condition is φ2 (b) = (v − b)φ02 (b) , i.e.,

φ02 (b) =
φ2 (b)

φ1 (b)− b
. (25)

Similarly, bidder 2’s first order condition implies

φ01 (b) =
φ1 (b)

φ2 (b)− b
. (26)

Consider the change-of-variable ki (b) ≡ φi (b)− b. We immediately have k0i (b) = φ0i (b)− 1, which
can be used to rewrite the system of differential equations (25) and (26) as£

1+ k02 (b)
¤
k1 (b) = k2 (b) + b, (27)£

1+ k01 (b)
¤
k2 (b) = k1 (b) + b. (28)

Summing up the two equations, we obtain k02 (b) k1 (b)+k01 (b) k2 (b) = 2b. That is, d [k1 (b) k2 (b)] /db =

2b. Together with the initial condition that k1 (0) = k2 (0) = 0, we have

k1 (b)k2 (b) = b
2.

Substitute k2 (b) = b
2/k1 (b) into (28), we obtain

k01 (b) =
[k1 (b) + b] k1 (b)

b2
− 1. (29)

This homogeneous differential equation can be solved as follows. Define u1 (b) ≡ k1 (b) /b. Hence

u01 (b) =
k1 (b)− bk01 (b)

b2
.

The differential equation (29) can be rewritten as the following separable differential equation:

u01 (b)
u1 (b)

2 − 1 =
1

b
,
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which as a unique solution

u1 (b) =
1+mb2

1−mb2 ,

where m is a constant. Therefore,

k1 (b) =
b
¡
1+mb2

¢
1−mb2 ,

and

k2 (b) =
b2

k1 (b)
=
b
¡
1−mb2¢
1+mb2

.

Hence,

φ1 (b) = k1 (b) + b =
2b

1−mb2 ,

φ2 (b) = k2 (b) + b =
2b

1+mb2
.

Solving for φ−1i ≡ bi, we obtain

b1 (v) =

√
1+mv2 − 1
mv

,

b2 (v) =
1−√1−mv2

mv
.

To determine the constant m, we note that b1 (h1) = b2 (h2) in equilibrium (for an argument, see

Maskin and Riley 2000 for example). Solving for m from the equation

b1 (h1) =

p
1+mh21 − 1
mh1

= b2 (h2) =
1−p1−mh22

mh22
,

we obtain a unique solution that

m =
h21 − h22
(h1h2)

2 .
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