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Abstract

The mechanism design literature assumes too much common knowledge of the en-

vironment among the players and planner. We relax this assumption by studying im-

plementation on richer type spaces.

We ask when ex post implementation is equivalent to interim (or Bayesian) imple-

mentation for all possible type spaces. The equivalence holds in the case of separable

environments; examples of separable environments arise (1) when the planner is imple-

menting a social choice function (not correspondence); and (2) in a quasilinear envi-

ronment with no restrictions on transfers. The equivalence fails in general, including in

some quasilinear environments with budget balance.

In private value environments, ex post implementation is equivalent to dominant

strategies implementation. The private value versions of our results o¤er new insights

into the relation between dominant strategy implementation and Bayesian implemen-

tation.
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�Game theory has a great advantage in explicitly analyzing the consequences

of trading rules that presumably are really common knowledge; it is de�cient

to the extent it assumes other features to be common knowledge, such as one

player�s probability assessment about another�s preferences or information.

I foresee the progress of game theory as depending on successive reductions in

the base of common knowledge required to conduct useful analyses of practical

problems. Only by repeated weakening of common knowledge assumptions will

the theory approximate reality.�Wilson (1987)

1 Introduction

The theory of mechanism design helps us understand institutions ranging from simple trad-

ing rules to political constitutions. We can understand institutions as the solution to a well

de�ned planner�s problem of achieving some objective or maximizing some utility function

subject to incentive constraints. But a common criticism of mechanism design theory is

that the optimal mechanisms solving the well de�ned planner�s problem seem unreasonably

complicated. Researchers have often therefore restricted attention to mechanisms that are

"more robust", or less sensitive to the assumed structure of the environment.1 However,

if the optimal solution to the planner�s problem is too complicated or sensitive to be used

in practice, it is presumably because the original description of the planner�s problem was

itself �awed. We would like to see if improved modelling of the planner�s problem endoge-

nously generates the "robust" features of mechanisms that researchers have been tempted

to assume.

As suggested by Robert Wilson in the above quote, the problem is that we make too

many implicit common knowledge assumptions in our description of the planner�s problem.2

The modelling strategy must be to �rst make explicit the implicit common knowledge

assumptions, and then weaken them. The approach to modelling incomplete information

introduced by Harsanyi (1967/1968) and formalized by Mertens and Zamir (1985) is ideally

1Discussions of this issue are an old theme in the mechanism design literature. Hurwicz (1972) discussed

the need for "nonparametric" mechanisms (independent of parameters of the model). Wilson (1985) states

that a desirable property of a trading rule is that it �does not rely on features of the agents� common

knowledge, such as their probability assessments.�Dasgupta and Maskin (2000) �seek auction rules that are

independent of the details - such as functional forms or distribution of signals - of any particular application

and that work well in a broad range of circumstances�.
2An important paper of Neeman (2001) shows how rich type spaces can be used to relax implicit common

knowledge assumptions in a mechanism design context. For other approaches to formalizing robust mech-

anism design, see Chung and Ely (2003), Duggan and Roberts (1997), Eliaz (2002), Hagerty and Rogerson

(1987) and Lopomo (1998, 2000).
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suited to this task. In fact, Harsanyi�s work was intended to address the then prevailing

criticism of game theory that the very description of a game embodied common knowledge

assumptions that could never prevail in practise. Harsanyi argued that by allowing an

agent�s type to include his beliefs about the strategic environment, his beliefs about other

agents�beliefs, and so on, any environment of incomplete information could be captured

by a type space. With this su¢ ciently large type space (including all possible beliefs and

higher order beliefs), it is true (tautologically) that there is common knowledge among the

agents of each agent�s set of possible types and each type�s beliefs over the types of other

agents. However, as a practical matter, applied economic analysis tends to assume much

smaller type spaces than the universal type space, and yet maintain the assumption that

there is common knowledge among the agents of each agent�s type space and each type�s

beliefs over the types of other agents. In the small type space case, this is a very substantive

restriction. There has been remarkably little work since Harsanyi checking whether analysis

of incomplete information games in economics is robust to the implicit common knowledge

assumptions built into small type spaces.3 We will investigate the importance of these

implicit common knowledge assumptions in the context of mechanism design.4

Formally, we �x a payo¤ environment, specifying a set of payo¤ types for each agent, a

set of outcomes, utility functions for each agent and a social choice correspondence (SCC)

mapping payo¤ type pro�les into sets of acceptable outcomes. The planner (partially) im-

plements5 the social choice correspondence if there exists a mechanism and an equilibrium

strategy pro�le of that mechanism such that equilibrium outcomes for every payo¤ type

pro�le are acceptable according to the SCC.6 This is sometimes referred to as Bayesian

implementation, but since we do not have a common prior, we will call it interim imple-

mentation.

While holding �xed this environment, we can construct many type spaces, where an

agent�s type speci�es both his payo¤ type and his belief about other agents�types. Crucially,

there may be many types of an agent with the same payo¤ type. The larger the type

space, the harder it will be to implement the social choice correspondence, and so the more

�robust� the resulting mechanism will be. The smallest type space we can work with is

the �payo¤ type space,� where we set the possible types of each agent equal to the set

3Battigalli and Siniscalchi (2003), Morris and Shin (2003).
4Neeman (2001) argued that small type space assumptions are especially important in the full surplus

extraction results of Cremer and McLean (1985).
5"Partial implementation" is sometimes called "truthful implementation" or "incentive compatible im-

plementation." Since we look exclusively at partial implementation in this paper, we will write "implement"

instead of "partially implement".
6 In a companion paper, Bergemann and Morris (2004), we use the framework of this paper to look at full

implementation, i.e., requiring that every equilibrium delivers an outcome consistent with the social choice

correspondence.
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of payo¤ types, and assume a common knowledge prior over this type space. This is the

usual exercise performed in the mechanism design literature. The largest type space we can

work with is the union of all possible type spaces that could have arisen from the payo¤

environment. This is equivalent to working with a �universal type space,� in the sense of

Mertens and Zamir (1985). There are many type spaces in between the payo¤ type space

and the universal type space that are also interesting to study. For example, we can look

at all payo¤ type spaces (so that the agents have common knowledge of a prior over payo¤

types but the mechanism designer does not); and we can look at type spaces where the

common prior assumption holds.

In the face of a planner who does not know about agents�beliefs about others�payo¤

types, a recent literature has looked at mechanisms that implement the SCC in ex post

equilibrium (see references in footnote 9). This requires that in a payo¤ type direct mech-

anism - where each agent is asked to report his payo¤ type - each agent has an incentive

to tell the truth if he expects others to tell the truth, whatever their types turn out to

be. In the special case of private values, ex post implementation is equivalent to dominant

strategies implementation. If an SCC is ex post implementable, then it is clearly interim

implementable on every type space, since the payo¤ type direct mechanism can be used to

implement the SCC.

The converse is not always true. In Examples 1 and 2, ex post implementation is

impossible. Nonetheless, interim implementation is possible on every type space. The gap

arises because the planner may have the equilibrium outcome depend on the agents�higher

order belief types, as well as their realized payo¤ type. The planner has no intrinsic interest

in conditioning on non-payo¤-relevant aspects of agents�types, but he is able to introduce

slack in incentive constraints by doing so.

The main question we address in this paper is when the converse is true. A payo¤ en-

vironment is separable if the outcome space has a common component and a private value

component for each agent. Each agent cares only about the common component and his

own private component. The social choice correspondence picks a unique element from the

common component and has a product structure over all components. In separable envi-

ronments, interim implementation on all common prior payo¤ type spaces implies ex post

implementation.7 Whenever the social choice correspondence is a function, the environment

has a separable representation (since we can make private value components degenerate).

The other leading example of a separable environment is the problem of choosing an al-

location when arbitrary transfers are allowed and agents have quasi-linear utility. If the

allocation choice is a function but the planner does not care about the level and distribu-

7This result extends to all common prior full support type spaces in the quasilinear case and when the

environment is compact.
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tion of transfers, then we have a separable environment.

This result provides a strong foundation for using ex post equilibrium as a solution con-

cept in separable environments. Since ex post implementation implies interim implementa-

tion on all type spaces (with or without the common prior or the payo¤ type restrictions),

we also have equivalence between ex post implementation and interim implementation on

all type spaces.

Thus for separable environments, the restriction to payo¤ type spaces is not important.

But this is not true in general. In Example 3, we report a two agent quasi-linear environment

where we add the balanced budget requirement: transfers must add up to zero. In this

example, ex post implementation and interim implementation on all type spaces are both

impossible, but implementation on all payo¤ type spaces is possible. As a leading example of

an important economic non-separable environment, we look more generally at quasi-linear

environments with budget balance. With two agents, there is an equivalence between ex post

implementation and interim implementation on all type spaces. With at most two payo¤

types for each agent, there is the stronger equivalence between ex post implementation and

interim implementation on all payo¤ type spaces. But with three or more agents with three

or more types, equivalence between ex post implementation and interim implementation on

all type spaces breaks down.

In private values environments, ex post implementation is equivalent to dominant strate-

gies implementation. Our positive and negative results all have counterparts in private val-

ues environments. In particular, we (1) identify conditions when Bayesian implementation

on all type spaces is equivalent to dominant strategies implementation, (2) give examples

where the equivalence does not hold and (3) show how and when the equivalence may de-

pend on type spaces richer than the payo¤ type space. While related questions have long

been discussed in the implementation literature (e.g., Ledyard (1978) and Dasgupta, Ham-

mond and Maskin (1979)) - we discuss the relation in detail in the concluding Section 6 -

our questions have not been addressed even under private values.

The paper is organized as follows. Section 2 provides the setup, introduces the type

spaces and provides the equilibrium notions. In Section 3 we present in some detail three

examples which illustrate the role of type spaces in the implementation problem and point

to the complex relationship between ex post implementation on the payo¤ type space and

interim implementation on larger type spaces. In Section 4 we present equivalence results for

separable social choice environments. The separable environment includes as special cases

all social choice functions and the quasi-linear environment without a balanced budget

requirement. Section 5 investigates the quasi-linear environment with a balanced budget

requirement. We conclude with a discussion of further issues in Section 6.
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2 Setup

2.1 Payo¤ Environment

We consider a �nite set of agents 1; 2; :::; I. Agent i�s payo¤ type is �i 2 �i, where �i is a
�nite set. We write � 2 � = �1 � ::: � �I . There is a set of outcomes Y . Each agent has
utility function ui : Y � � ! R. A social correspondence is a mapping F : � ! 2Y n;. If
the true payo¤ type pro�le is �, the planner would like the outcome to be an element of

F (�).

An important special case - studied in some of our examples and results - is a quasi-linear

environment where the set of outcomes Y has the product structure Y = Y0�Y1�� � ��YI ,
where Y1 = Y2 = :: = YI = R, and a utility function:

ui (y; �) = ui (y0; y1; :::; yI ; �) , vi (y0; �) + yi

which is linear in yi for every agent i. The planner is concerned only about choosing an

"allocation" y0 2 Y0 and does not care about transfers. Thus there is a function f0 : �! Y0

and

F (�) = f(y0; y1; :::; yI) 2 Y : y0 = f0 (�)g .

Throughout the paper, this environment is �xed and informally understood to be com-

mon knowledge. We allow for interdependent types - one agent�s payo¤from a given outcome

depends on other agents�payo¤ types. The payo¤ type pro�le is understood to contain all

information that is relevant to whether the planner achieves his objective or not. For exam-

ple, we do not allow the planner to trade o¤ what happens in one state with what happens

in another state. For the latter reason, this setup is somewhat restrictive. However, it in-

corporates many classic problems such as the e¢ cient allocation of an object or the e¢ cient

provision of a public good.

2.2 Type Spaces

While maintaining that the above payo¤ environment is common knowledge, we want to

allow for agents to have all possible beliefs and higher order beliefs about other agents�

types. A �exible framework for modelling such beliefs and higher order beliefs are type

spaces.

A type space is a collection

T =
�
Ti;b�i; b�i�I

i=1
:

Agent i�s type is ti 2 Ti. A type of agent i must include a description of his payo¤ type.

Thus there is a function b�i : Ti ! �i,
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with b�i (ti) being agent i�s payo¤ type when his type is ti. A type of agent i must also

include a description of his beliefs about the types of the other agent. Write �(Z) for the

space of probability measures on the Borel �eld of a measurable space Z. The belief of type

ti of agent i is a function b�i : Ti ! �(T�i) ,

with b�i (ti) being agent i�s belief type when his type is ti. Thus b�i (ti) [E] is the probability
that type ti of agent i assigns to other agents�types, t�i, being an element of a measurable

set E � T�i. In the special case where each Tj is �nite, we will abuse notation slightly by

writing b�i (ti) [t�i] for the probability that type ti of agent i assigns to other agents having
types t�i.

2.3 Solution Concepts

Fix a payo¤ environment and a type space T . A mechanism speci�es a message set for each
agent and a mapping from message pro�les to outcomes. Social choice correspondence F is

interim implementable if there exists a mechanism and an interim (or Bayesian) equilibrium

of that mechanism such that outcomes are consistent with F . However, by the revelation

principle, we can restrict attention to truth-telling equilibria of direct mechanisms.8 A

direct mechanism is a function f : T ! Y .

De�nition 1 A direct mechanism f : T ! Y is interim incentive compatible on type space

T if Z
t�i2T�i

ui

�
f (ti; t�i) ;b� (ti; t�i)� db�i (ti) � Z

t�i2T�i

ui

�
f
�
t0i; t�i

�
;b� (ti; t�i)� db�i (ti)

for all i, t 2 T and t0i 2 Ti.

The notion of interim incentive compatibility is often referred to as Bayesian incentive

compatibility. We use the former terminology as there need not be a common prior on the

type space.

De�nition 2 A direct mechanism f : T ! Y on T achieves F if

f (t) 2 F
�b� (t)�

for all t 2 T .
8See Myerson (1991), Chapter 6.
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It should be emphasized that a direct mechanism f can prescribe varying allocations

for a given payo¤ pro�le � as di¤erent types, t and t0, may have an identical payo¤ pro�le

� = b� (t) = b� (t0).
De�nition 3 A social choice correspondence F is interim implementable on T if there

exists f : T ! Y such that f is interim incentive compatible on T and f achieves F .

We will be interested in comparing interim implementation with the stronger solution

concept of ex post implementation. Ex post implementation uses the stronger solution con-

cept of ex post equilibrium for incomplete information games.9 By the revelation principle,

it is again enough to verify ex post incentive compatibility.

De�nition 4 A direct mechanism f : � ! Y is ex post incentive compatible if, for all i

and � 2 �,
ui (f (�) ; �) � ui

�
f
�
�0i; ��i

�
; �
�
;

for all �0i 2 �i.

The notion of ex post incentive compatibility requires agent i to prefer truthtelling at

� if all the other agents also report truthfully. In contrast the notion of dominant strategy

implementation requires agent i to prefer truthtelling for all possible reports by the other

agents, truthtelling or not.

De�nition 5 A direct mechanism f : � ! Y is dominant strategies incentive compatible

if, for all i and � 2 �,
ui
�
f
�
�i; �

0
�i
�
; �
�
� ui

�
f
�
�0
�
; �
�
;

for all �0 2 �.

If there are private values (i.e., each ui (y; �) depends on � only through �i), then ex

post incentive compatibility is equivalent to dominant strategies incentive compatibility.

De�nition 6 A social choice correspondence F is ex post implementable if there exists

f : �! Y such that f is ex post incentive compatible and f (�) 2 F (�) for all � 2 �.
9Ex post incentive compatibility was discussed as "uniform incentive compatibility" by Holmstrom and

Myerson (1983). Ex post equilibrium is increasingly studied in game theory (see Kalai (2002)) and is

often used in mechanism design as a more robust solution concept (Cremer and McLean (1985)). A recent

literature on interdependent value environments has obtained positive and negative results using this solution

concept: Dasgupta and Maskin (2000), Bergemann and Valimaki (2002), Perry and Reny (2002), Jehiel and

Moldovanu (2001) and Jehiel et al. (2004).
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2.4 Questions

We are interested in characterizing interim incentive compatibility on di¤erent type spaces.

We �rst introduce some key properties of type spaces. A type space T is a payo¤ type space
if each Ti = �i and each b�i is the identity map. Type space T is �nite if each Ti is �nite.

Finite type space T has full support if b�i (ti) [t�i] > 0 for all i and t. Finite type space T
satis�es the common prior assumption (with prior p) if there exists p 2 �(T ) such thatX

t�i2T�i

p (ti; t�i) > 0 for all i and ti

and b�i (ti) [t�i] = p (ti; t�i)P
t0�i2T�i

p
�
ti; t0�i

� .
The standard approach in the mechanism design literature is to restrict attention to a

common prior payo¤ type space (perhaps with full support). Thus it is assumed that there

is common knowledge among the agents of a common prior over the payo¤ types. A payo¤

type space can be thought of the smallest type space embedding the payo¤ environment

described above. Restricting attention to a full support, common prior, payo¤ type space

is with loss of generality. We want to relax the implicit common knowledge assumptions

embodied in those restrictions by asking the following progressively tougher questions about

interim implementability:

� Is F interim implementable on all full support common prior payo¤ type spaces?

� Is F interim implementable on all common prior payo¤ type spaces?

� Is F interim implementable on all common prior type spaces?

� Is F interim implementable on all type spaces?

By requiring that F be interim implementable on all type spaces, we are asking for a

mechanism that can implement F with no common knowledge assumptions beyond those

in the speci�cation of the payo¤ environment. If we constructed a universal type space for

the payo¤ environment, that universal type space would be an example of a type space and

thus interim implementability on all type spaces would imply interim implementability on

the universal type space. We discuss the relation between our approach and the universal

type space in more detail in Section 6.

We will see that relaxing common knowledge assumptions makes a di¤erence. In par-

ticular, we will show that while the common prior assumption is not important and the full
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support assumption does not play a big role,10 the payo¤type space restriction is important.

In example 3 in the next section, it is possible to interim implement on any payo¤ type space

(with or without the common prior) but not all type spaces. We are especially interested

in the relation between the ex post implementability of F and interim implementability.

In Sections 4 and 5, we provide su¢ cient conditions for ex post implementability to be

equivalent to interim implementability on all type spaces. But Examples 1 and 2 in the

next section show that it is possible to �nd social choice correspondences that are interim

implementable on any type space but not ex post implementable.

3 Examples

This section presents three examples illustrating the relationship between interim imple-

mentation on di¤erent type spaces and ex post implementation.

The �rst two examples exhibit social choice correspondences that are interim imple-

mentable on all type spaces, but are not ex post implementable. The �rst example is very

simple, but relies on (i) a restriction to deterministic allocations, (ii) a social choice cor-

respondence that depends on only one agent�s payo¤ type; and (iii) interdependent types.

In the second example, we show how to dispense with all three features. Since this second

example has private values, we thus have an example where dominant strategies implemen-

tation is impossible but interim implementation is possible on any type space.

The third example exhibits a social choice correspondence that is interim implementable

on all payo¤ type spaces (with or without the common prior) but is not interim imple-

mentable on all type spaces. The social choice correspondence represents e¢ cient alloca-

tions in a quasi-linear environment with a balanced budget requirement. As such it also

illustrates some of the results presented in later in Section 5 on social choice problems with

a balanced budget.

3.1 F is Interim Implementable on All Type Spaces but not Ex Post
Implementable

Example 1 There are two agents. Each agent has two possible types: �1 =
�
�1; �

0
1

	
and

�2 =
�
�2; �

0
2

	
. There are three possible allocations: Y = fa; b; cg. The payo¤s of the two

agents are given by the following tables (each box describes agent 1�s payo¤, then agent 2�s

10However, di¤erent type space assumptions will be important for di¤erent questions. The full support

assumption is crucial when we look at full implementation (see Bergemann and Morris (2004)) and the

common prior assumption is important when we look at revenue maximization (see Bergemann, Morris and

Segal (2004)).
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payo¤):
a �2 �02
�1 1; 0 �1; 2
�01 0; 0 0; 0

b �2 �02
�1 �1; 2 1; 0

�01 0; 0 0; 0

c �2 �02
�1 0; 0 0; 0

�01 1; 1 1; 1

The social choice correspondence is given by

F �2 �02
�1 fa; bg fa; bg
�01 fcg fcg

These choices are maximizers of the sum of agents�utility. The key feature of this example

is that the agents agree about the optimal choice when agent 1 is type �01; when agent 1 is

type �1, they agree that it is optimal to choose either a or b. But each agent has strict and

opposite preferences over outcomes a and b: 1 strictly prefers a when 2�s type is �2, while

2 strictly prefers a when his type is �02.

We now show - by contradiction - that this correspondence is not ex post implementable.

If F was implementable, we would have to have c chosen at pro�les
�
�01; �2

�
and

�
�01; �

0
2

�
;

and either a or b chosen at pro�les (�1; �2) and
�
�1; �

0
2

�
. But in order for type �1 to have an

incentive to tell the truth when he is sure that agent 2 is type �2, we must have a chosen

at pro�le (�1; �2); and in order for type �1 to have incentive to tell the truth when he is

sure that agent 2 is type �02, we must have b chosen at pro�le
�
�1; �

0
2

�
. But if a is chosen

at pro�le (�1; �2) and b is chosen at pro�le
�
�1; �

0
2

�
, then both types of agent 2 will have an

incentive to misreport their types when they are sure that agent 1 is type �1.

However, the correspondence is interim implementable on any type space using the very

simple mechanism of letting agent 1 pick the outcome. There is always an equilibrium of

this mechanism where agent 1 will pick outcome a if his type is �1 and he assigns probability

at least 1
2 to the other agent being type �2; agent 1 will pick outcome b if his type is �1

and he assigns probability less than 1
2 to the other agent being type �2; and agent 1 will

pick outcome c if his type is �01. By allowing the mechanism to depend on agent 1�s beliefs

about agent 2�s type (something the planner does not care about intrinsically), the planner

is able to relax incentive constraints that he cares about.

The failure of ex post implementation in this example relied on the assumption that only

pure outcomes were chosen. This restriction can easily be dropped at the expense of adding

a third payo¤ type for agent 1, so that the binding ex post incentive constraint for agent 1

is with a di¤erent type and outcome depending on 2�s type. Example 1 also had the social

choice correspondence depending only on agent 1�s payo¤ type and had interdependent

values. We can mechanically change these two assumptions by letting the planner want
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di¤erent outcomes depending on agent 2�s type. Now instead of having agent 1�s utility

depend on agent 2�s type, it can depend on the planner�s re�ned choice.

Example 2 There are two agents. Agent 1 has three possible types, �1 =
�
�1; �

0
1; �

00
1

	
,

and agent 2 has two possible types, �2 =
�
�2; �

0
2

	
. There are eight possible pure allo-

cations, fa; b; c; d; a0; b0; c0; d0g, and lotteries are allowed, so Y = �(fa; b; c; d; a0; b0; c0; d0g).
The private value payo¤s of agent 1 are given by the following table:

u1 a b c d a0 b0 c0 d0

�1 1 �1 1
2 �1 �1 1 �1 1

2

�01 0 0 1 0 0 0 1 0

�001 0 0 0 1 0 0 0 1

The private value payo¤s of agent 2 are given by the following table:

u2 a b c d a0 b0 c0 d0

�2 0 1 0 0 0 1 �1 �1
�02 1 0 �1 �1 1 0 0 0

The social choice correspondence F is described by the following table.11

�2 �02
�1 fa; bg fa0; b0g
�01 fcg fc0g
�001 fdg fd0g

We now show - by contradiction - that this correspondence is not ex post implementable.

Let q be the probability that a is chosen at pro�le (�1; �2) and let q0 be the probability that

a0 is chosen at pro�le
�
�1; �

0
2

�
. In order for type �1 to have an incentive to tell the truth

(and not report himself to be type �01) when he is sure that agent 2 is type �2, we must have

q � (1� q) � 1

2
, q � 3

4
. (1)

In order for type �1 to have an incentive to tell the truth (and not report himself to be type

�001) when he is sure that agent 2 is type �
0
2, we must have

�q0 +
�
1� q0

�
� 1

2
, q0 � 1

4
. (2)

11The SCC F in this example is not ex post Pareto e¢ cient at (�1; �2) and (�1; �02), as b
0 and a, respectively,

Pareto dominate b and a0, respectively. We choose this example for the simplicity of its payo¤s. Yet, we

have constructed examples with the same number of agents, states and allocations such that the SCC F is

ex ante Pareto e¢ cient and interim implementable on all type spaces, but not ex post, and a fortiori, not

dominant strategy implementable.
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But in order for agent 2 to have an incentive to tell the truth when he is type �2 and he is

sure that agent 1 is type �1, we must have

1� q � 1� q0;

thus

q0 � q. (3)

However, (1), (2) and (3) generate a contradiction, so ex post implementation is not possible.

But it is straightforward to implement on any interim type space. Consider the following

indirect mechanism for any arbitrary type space where individual 1 chooses a message m1 2�
m1
1;m

2
1;m

3
1;m

4
1

	
and individual 2 chooses a message m2 2

�
m1
2;m

2
2

	
and let outcomes be

chosen as follows:
m1
2 m2

2

m1
1 a a0

m2
1 b b0

m3
1 c c0

m4
1 d d0

There is always an equilibrium where type �1 of agent 1 sends message m1
1 if he believes

agent 2 is type �2 with probability at least 12 and message m
2
1 if he believes agent 2 is type

�2 with probability less than 1
2 ; type �

0
1 always sends message m

3
1; and type �

00
1 always sends

message m4
1. Type �2 of agent 2 sends message m

1
2 and type �

0
2 sends message m

2
2, and this

strategy is a dominant strategy for agent 2.

This private values example has the feature that dominant strategies implementation is

impossible but interim implementation is possible on any type space, and seems to be the

�rst example in the literature noting this possibility.12

As we will see in the next section, a necessary feature of the example is that we have

a social choice correspondence (not function) that we are trying to implement. In the

example, it was further key that there were aspects of the allocation that the planner did

not care about but the agents did. In the example, this may look a little contrived but

note that this a natural feature of quasi-linear environments where the planner wants to

maximize the total welfare of agents. We will next present a quasi-linear utility example

that exploits this feature.

12 It is often noted that in public good problems with budget balance, dominant strategies implementation

is impossible while Bayesian implementation is possible. However, the positive Bayesian implementation

results (d�Aspremont and Gerard-Varet (1979) and d�Aspremont, Cremer and Gerard-Varet (1995, 2002))

hold only for "generic" priors on a �xed type space, not for all type spaces in our sense. They provide

examples showing that Bayesian implementation fails for some type spaces.
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3.2 F is Interim Implementable on All Naive Type Spaces but not Interim
Implementable on All Type Spaces

Example 3 This example has two agents, denoted by 1 and 2. Agent 1 has three possible

payo¤ types, �1 =
�
�1; �

0
1; �

00
1

	
, and agent 2 has two possible payo¤ types, �2 =

�
�2; �

0
2

	
.

The set of feasible "allocations" is given by:

Y0 = fa; b; c; dg .

The agents� gross utilities from the allocations, v1 (y0; �) and v2 (y0; �), respectively, are

given by:

a �2 �02
�1 0; 2 0; 2

�01 �4; 0 1; 0

�001 �4; 0 �4; 0

b �2 �02
�1 0; 0 0; 0

�01 0; 2 0; 0

�001 �4; 0 0; 0

c �2 �02
�1 0; 0 �4; 0
�01 0; 0 0; 2

�001 0; 0 0; 0

d �2 �02
�1 �4; 0 �4; 0
�01 1; 0 �4; 0
�001 0; 2 0; 2

The planner wants the allocation y0 2 Y0 to maximize the sum of the agents�utilities at

every type pro�le �; thus he wants the allocation to depend to depend on type pro�le �

according to the function f0 described in the following table:

f0 �2 �02
�1 a a

�01 b c

�001 d d

(4)

In addition, balanced budget transfers are possible. Thus the planner must choose (y0; y1; y2) 2
Y0 � R2, with y1 + y2 = 0. Each agent has quasi-linear utility, so agent i�s utility from

(y0; y1; y2) in payo¤ pro�le � is vi (y0; �) + yi. The planner maximizes the sum of utilities

and so does not care about transfers; thus

F (�) =
�
(y0; y1; y2) 2 Y0 � R2 : y0 = f0 (�) and y2 = �y1

	
:

We �rst make a few observations regarding the ex post incentive constraints for truthtelling

with zero transfers. Agent 1 always values the e¢ cient alternatives at 0. The critical type

for agent 1 is �01, where he values an ine¢ cient alternative, either d or a (depending on the

payo¤ type of agent 2 being �2 or �02), at 1, and thus higher than the e¢ cient alternative

at that type pro�le. The remaining negative entries, �4, for agent 1 simply ensure that no
other incentive constraints become relevant. Agent 2 always values the e¢ cient allocation

at 2, and every ine¢ cient allocation at 0.
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It is straightforward to establish that ex post implementation with balanced transfers

is not feasible. Writing fi (�) for the transfer received by i at payo¤ type pro�le �, we have

the following ex post incentive constraints for agent 1:

v1 (f0 (�1; �2) ; (�1; �2)) + f1 (�1; �2) � v1
�
f0
�
�01; �2

�
; (�1; �2)

�
+ f1

�
�01; �2

�
;

v1
�
f0
�
�01; �2

�
;
�
�01; �2

��
+ f1

�
�01; �2

�
� v1

�
f0
�
�001; �2

�
;
�
�01; �2

��
+ f1

�
�001; �2

�
;

and

v1
�
f0
�
�001; �

0
2

�
;
�
�001; �

0
2

��
+ f1

�
�001; �

0
2

�
� v1

�
f0
�
�01; �

0
2

�
;
�
�001; �

0
2

��
+ f1

�
�01; �

0
2

�
;

v1
�
f0
�
�01; �

0
2

�
;
�
�01; �

0
2

��
+ f1

�
�01; �

0
2

�
� v1

�
f0
�
�1; �

0
2

�
;
�
�01; �

0
2

��
+ f1

�
�1; �

0
2

�
;

Inserting the gross utilities v1 (�; �), we can write the above set of inequalities as follows

f1 (�1; �2) � f1
�
�01; �2

�
� f1

�
�001; �2

�
+ 1; (5)

and

f1
�
�001; �

0
2

�
� f1

�
�01; �

0
2

�
� f1

�
�1; �

0
2

�
+ 1: (6)

Next we consider the ex post incentive constraints for agent 2, at �1 and �001, respectively.

Here the social choice mapping prescribes allocations constant in the reported type pro�le

of agent 2 and ex post incentive compatibility hence requires constant transfers as well, or

f2 (�1; �2) = f2
�
�1; �

0
2

�
and f2

�
�001; �2

�
= f2

�
�001; �

0
2

�
. Using the balanced budget requirement

by writing f2 (�) = �f1 (�), we thus obtain

f1 (�1; �2) = f1
�
�1; �

0
2

�
;

and

f1
�
�001; �2

�
= f1

�
�001; �

0
2

�
;

which leads to a contradiction with the inequalities (5) and (6).

Despite the failure of ex post implementation, we now show that we can satisfy the

interim incentive compatibility conditions for every prior on the payo¤ type space. The

sole determinant of the appropriate transfers is the belief of agent 1 with payo¤ type �01. If

type �01 assigns probability at least
1
2 to agent 2 being of payo¤ type �2, then the following

transfers to agent 1 (and corresponding balanced budget transfers for agent 2) are interim

incentive compatible:
f1 (�1; �2) = 0 f1

�
�1; �

0
2

�
= 0

f1
�
�01; �2

�
= 0 f1

�
�01; �

0
2

�
= �1

f1
�
�001; �2

�
= �1 f1

�
�001; �

0
2

�
= �1

(7)
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Conversely, if type �01 assigns probability less than
1
2 to the other agent being of payo¤ type

�2, then the following transfers to agent 1 are interim incentive compatible:

f1 (�1; �2) = �1 f1
�
�1; �

0
2

�
= �1

f1
�
�01; �2

�
= �1 f1

�
�01; �

0
2

�
= 0

f1
�
�001; �2

�
= 0 f1

�
�001; �

0
2

�
= 0

(8)

By symmetry of the payo¤s, it will su¢ ce to verify the incentive compatibility conditions

for the �rst case. We �rst observe that all the ex post incentive constraints hold except for

agent 1 at type pro�le �01�
0
2, where he has a pro�table deviation by misreporting himself

to be of type �1. Suppose then that type �01 assigns probability p to the other agent being

type �2. His expected payo¤ to truth-telling is

p (0 + 0) + (1� p) (0� 1) = � (1� p)

while his expected payo¤ to mis-reporting type �1 is

p (�4 + 0) + (1� p) (1 + 0) = 1� 5p;

and his expected payo¤ to mis-reporting type �001 is given by

p (1� 1) + (1� p) (�4� 1) = �5 (1� p) :

Thus truth-telling is optimal as long as

� (1� p) � 1� 5p , p � 1

3
: (9)

The second set of transfers, described in (8), o¤er interim incentive compatibility for

agent 1 provided that p � 2
3 . As either of the above transfer schemes satis�es the ex post

incentive constraints of agent 2, it follows for every belief p by type �01, we can �nd interim

incentive compatible transfers and hence F is interim implementable for all payo¤ type

spaces.

However, on richer type spaces than the payo¤ type space, there may be many types

with payo¤ type �01, some of whom are sure that the other agent is type �2 while others

are sure that he is type �02. That is the idea behind the following example of a �complete

information�type space where F cannot be interim implemented. We consider the following
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type space:
t12 t22 t32 t42 t52 t62

t11
1
6 0 0 0 0 0 �1

t21 0 1
6 0 0 0 0 �01

t31 0 0 1
6 0 0 0 �001

t41 0 0 0 1
6 0 0 �001

t51 0 0 0 0 1
6 0 �01

t61 0 0 0 0 0 1
6 �1

�2 �2 �2 �02 �02 �02

Thus there are six types for each agent, tk1 and t
l
2. The entries in the cell describe the

probabilities of the common prior, which puts all probability mass on the diagonal. The

payo¤ type corresponding to each type appears at the end of the row/column corresponding

to that type. Thus, for example, type t31 of agent 1 has payo¤ type �
00
1 and believes that agent

2 has a payo¤ type �2 with probability one. It is in this sense, that we speak of complete

information. We require that F is implemented even at �impossible�(zero probability) type

pro�les, but we could clearly adapt the example to have small probabilities o¤ the diagonal.

Our impossibility argument will depend only on what happens at twelve critical type

pro�les: the diagonal pro�les and the type pro�les where agent 1 with type tk1 claims to be

one type higher, or tk+11 , and agent 2 with type tl2 claims to be one type lower, or t
l�1
1 . In

the next table, we note which allocation must occur at these twelve pro�les if F is to be

implemented.
t12 t22 t32 t42 t52 t62

t11 a a �1

t21 b b �01
t31 d d �001
t41 d d �001
t51 c c �01
t61 a a �1

�2 �2 �2 �02 �02 �02

We observe that the incentive constraints for agent 1 and agent 2 form jointly a cycle

through the type space. We write ykl for the transfer of agent 1 when the type pro�le is

t =
�
tk1; t

l
2

�
. The incentive constraints corresponding to types tk1 mis-reporting to be type
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tk+11 (modulo 6) imply (for k = 1; 2; ::; 6 respectively):

0 + y11 � 0 + y21
0 + y22 � 1 + y32
0 + y33 � 0 + y43 (10)

0 + y44 � 0 + y54
0 + y55 � 1 + y65
0 + y66 � 0 + y16

The incentive constraints corresponding to types tl2 mis-reporting to be type t
l�1
2 imply,

using the balanced budget to write the transfers to agent 2 as the negatives of agent 1, (for

l = 1; 2; ::; 6 respectively):

2� y11 � 2� y16
2� y22 � 2� y21
2� y33 � 2� y32 (11)

2� y44 � 2� y43
2� y55 � 2� y54
2� y66 � 2� y65

The inequalities (10) and (11) have a very simply structure. With very few exceptions, the

payo¤s appearing on the lhs and rhs of the inequalities are identical and only the transfers

di¤er. These inequalities are generated either by true and misreported types which induce

only di¤erent transfer decisions but identical allocational decisions. The exceptions are the

second and �fth inequality of agent 1, where a misreported type also leads to a di¤erent

allocational decision. Re-arranging the inequalities, we obtain

0 � y21 � y11; 0 � y11 � y16
�1 � y32 � y22; 0 � y22 � y21
0 � y43 � y33; 0 � y33 � y32
0 � y54 � y44; 0 � y44 � y43
�1 � y65 � y55; 0 � y55 � y54
0 � y16 � y66; 0 � y66 � y65

When we sum these twelve constraints, the transfers on the right hand side of the inequal-

ities cancel out and we are left with the desired contradiction for any arbitrary choice of

probabilities, namely �2 � 0. The transfers cancelled out because the set of incentive

constraints for agent 1 and agent 2 formed jointly a cycle through the type space.
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4 Separable Environments

We now present general results about the relationship between ex post implementability

and interim implementability on di¤erent type spaces. The �rst result is an immediate

implication from the de�nition of ex post equilibrium.

Proposition 1 If F is ex post implementable, then F is interim implementable on any type
space.

PROOF: If F is ex post implementable, then by hypothesis there exists f� : � ! Y with

f� (�) 2 F (�) for all �, such that for all i, all � and all �0i:

ui (f
� (�) ; �) � ui

�
f�
�
�0i; ��i

�
; �
�

Consider then an arbitrary type space T and the direct mechanism f : T ! Y with

f (t) = f�
�b� (t)�. Incentive compatibility now requires

ti 2 argmax
t0i2Ti

Z
t�i2T�i

ui

�
f
�
t0i; t�i

�
;
�b�i (ti) ;b��i (t�i)�� db�i (ti)

= argmax
t0i2Ti

Z
t�i2T�i

ui

�
f�
�b�i �t0i� ;b��i (t�i)� ;�b�i (ti) ;b��i (t�i)�� db�i (ti) .

This requires that

b�i (ti) = argmax
�i2�i

Z
t�i2T�i

ui

�
f�
�
�i;b��i (t�i)� ;�b�i (ti) ;b��i (t�i)�� db�i (ti)

= argmax
�i2�i

X
��i2��i

 Z
ft�i:b��i(t�i)=��ig db�i (ti)

!
ui

�
f� (�i; ��i) ;

�b�i (ti) ; ��i�� .
But by hypothesis of ex post implementability, truthtelling is a best response for every

possible pro�le ��i, and thus it remains a best response for arbitrary expectations over

��i. �

The converse does not always hold, as shown by Examples 1 and 2 in the previous

section. But we can identify important classes of problems for which the equivalence can

be established.

4.1 Separable Environments

A social choice environment is separable if the outcome space has a common component and

a private value component for each agent. Each agent cares only about the common compo-

nent and his own private value component. The social choice correspondence picks a unique

element from the common component, and has a product structure over all components.
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Thus the environment and SCC can be represented in the following way:

Y = Y0 � Y1 � :::� YI ;

there exists eui : Y0 � Yi ��! R such that

ui ((y0; y1; :::; yI) ; �) = eui (y0; yi; �)
for all i, y 2 Y and � 2 �; and there exist a function f0 : � ! Y0 and, for each agent i, a

non-empty valued correspondence Fi : �! 2Yi
�
? such that

F (�) = f0 (�)� F1 (�)� :::� FI (�) .

We observe that the private component for agent i, determined by Fi (�), is allowed to

depend on the payo¤ type pro�le � of all agents. The common component is determined

by a function, whereas the private components are allowed to be correspondences. The

strength of the separability condition, represented by the product structure, is that the set

of permissible private components for agent i does not depend on the choice of the private

component for the remaining agents.

There are two subsets of separable environments that we are particularly interested

in.13 First, there is the case of the single-valued private component where Yi = fyig is a
single allocation for all i. In this case, there exists a representation of the utility functioneui : Y0 � � ! R such that eui depends only on the common component y0 and the payo¤
type pro�le �. Thus any social choice function is separable. Second, there is the case of

the classic quasi-linear environment (described in Section 2). In this case, we set, for each

agent i,

Yi = R,eui (y0; yi; �) = vi (y0; �) + yi.

and Fi (�) = Yi.

In the quasi-linear environment, the common component f0 (�) will often represent the

problem of implementing an e¢ cient allocation, so that

f0 (�) = argmax
y02Y0

vi (y0; �) .

As the designer is only interested in maximizing the social surplus and the utilities are

quasi-linear, there are no further restriction on the private components, here the monetary

13We would like to thank an anonymuous referee for suggesting that we incorporate these two special cases

in the uni�ed language of a separable environment.
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transfers, o¤ered to the agents. In contrast, in the next section, we shall investigate the

quasi-linear environment with a balanced budget requirement as a canonical example of a

non-separable environment. By requiring a balanced budget, the SCC contains an element

of interdependence in the choice of the private components as the transfers have to add up

to zero.

Proposition 2 In separable environments, if F is interim implementable on every common
prior payo¤ type space T , then F is ex post implementable.

PROOF: Suppose that F can be interim implemented on all type spaces. Then, in particu-

lar, it must be possible to interim implement F on the type space where agents other than

i have type pro�le ��i. Thus for each i and ��i 2 ��i, there must exist gi;��i : �i ! Y

such that i has an incentive to truthfully report his type:

ui

�
gi;��i (�i) ; (�i; ��i)

�
� ui

�
gi;��i

�
�0i
�
; (�i; ��i)

�
(12)

for all �i; �0i 2 �i; and such that F is implemented, so that

gi;��i (�i) 2 F (�) . (13)

If we have a separable environment, condition (13) can be re-written as

g
i;��i
0 (�i) = f0 (�i; ��i)

and gi;��ij (�i) 2 Fj (�i; ��i) for all j = 1; ::; I;

condition (12) can be re-written as

ui

�
f0 (�i; ��i) ; g

i;��i
i (�i) ; (�i; ��i)

�
� ui

�
f0
�
�0i; ��i

�
; g
i;��i
i

�
�0i
�
; (�i; ��i)

�
(14)

for all �i; �0i 2 �i.
But these conditions ensure ex post implementation, by letting

f (�) =
�
f0 (�) ; g

1;��1
1 (�1) ; :::; g

i;��i
i (�i) ; :::; g

I;��I
I (�I)

�
,

which completes the proof. �

Proposition 2 immediately implies the following strong equivalence result for a separable

environment.

Corollary 1 In separable environments, the following are equivalent:

1. F is interim implementable on all type spaces;
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2. F is interim implementable on all common prior type spaces;

3. F is interim implementable on all payo¤ type spaces;

4. F is interim implementable on all common prior payo¤ type spaces;

5. F is ex post implementable.

PROOF. (1)) (2), (3) and (4) follow by de�nition as we are asking for interim implemen-

tation on a smaller collection of type spaces. By Proposition 2, (4)) (5). By Proposition

1, (5)) (1). �
Given Proposition 1, whenever we can show that interim implementability on a class of

type spaces implies ex post implementability, it follows that there is equivalence between ex

post implementation and interim implementation on any collection of type spaces including

that class. In the remainder of the paper, we do not report these immediate corollaries.

Our two leading examples of separable environments are (1) when the social choice

correspondence is single-valued; and (2) when the environment is quasi-linear. A recent

literature has established positive and negative results concerning ex post implementation

in quasi-linear environments (see footnote 9), motivating the ex post solution concept as

re�ecting the planner�s ignorance about the true prior. Proposition 2 provides a foundation

for the solution concept. In particular, it shows that the impossibility results in Jehiel

and Moldovanu (2001) and Jehiel et al. (2004) for ex post implementation with multi-

dimensional signals extend to interim implementation.

Proposition 2 and Corollary 1 would be true even without the restriction to separa-

ble environments if attention was restricted to truth-telling payo¤ type direct mechanisms,

where outcomes depend only on the reported payo¤ types. This would just be the interde-

pendent value analogue of the classic private values observation that direct implementation

for all priors implies dominant strategy implementation (Ledyard (1978) and Dasgupta,

Hammond and Maskin (1979)). If the social choice correspondence is single valued, then

any implementing mechanism can only depend on payo¤ types, so the direct mechanism

restriction is without loss of generality. But the assumption is not usually without loss of

generality - as Examples 1 and 2 showed.

The proof of Proposition 2 used the fact that the class of all common prior payo¤ type

spaces contains as a special case priors where there is only uncertainty about the payo¤

pro�le of agent i, but no uncertainty about the payo¤ pro�le, ��i 2 ��i, of the remaining
agents. Thus a necessary condition of implementation on all type spaces is that, for every i

and every ��i 2 ��i, it is possible to solve the agent i single agent implementation problem,
when the payo¤ type pro�le of the remaining agents is known to be ��i. The separable

condition is then enough to ensure that these necessary conditions spliced together replicate
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the ex post implementation problem for all agents (this is where the proof would break down

in the cases of Examples 1 and 2). But, by construction, the priors used in this proof were

not full support common priors. We will see in the next section the extent to which the

equivalence result can be strengthened to full support common priors.

4.2 Full Support Conditions

One obvious supplementary condition to the separable environment is to introduce com-

pactness. Thus we say that the environment is compact if each eui (y0; yi; �) is continuous
with respect to yi and each Fi (�) is a compact subset of Yi. We observe that in the quasi-

linear environment, the private component is given by Fi (�) = R for all � 2 � and hence

F (�) is not compact. For this reason, we will separately prove the equivalence result for

the compact environment and the quasi-linear environment.

Proposition 3 In a compact separable environment, if F is interim implementable on every
full support common prior payo¤ type space T , then F is ex post implementable.

PROOF. Suppose that F is interim implementable on every common prior full support

payo¤ type space. Then, for every p 2 �++ (�), there exists for each i, gpi : � ! Yi such

that gpi (�) 2 Fi (�) for all � andP
��i

p (�i; ��i) eui (f0 (�i; ��i) ; gpi (�i; ��i) ; (�i; ��i))
�
P
��i

p (�i; ��i) eui �f0 ��0i; ��i� ; gpi ��0i; ��i� ; (�i; ��i)� (15)

for all �i and �0i. Consider a sequence of priors with pn ! p� where p� (��i) = 1. By

compactness of each Fi (�), we can choose a convergent subsequence of gp
n

i . Writing g
��i
i for

the limit of that subsequence, we have

eui �f0 (�i; ��i) ; g��ii (�i; ��i) ; (�i; ��i)
�

� eui �f0 ��0i; ��i� ; g��ii

�
�0i; ��i

�
; (�i; ��i)

�
,

(16)

for all i, �, �0i, which ensures ex post incentive compatibility.�

Consider next the quasi-linear environment in which the social choice correspondence is

unbounded in the private component. With quasi-linear utilities, it is useful to express the

ex post incentive constraints as a set of linear constraints. The only data of the problem

that interests us is the incentive of a payo¤ type �i to manipulate the choice of y0 2 Y0 by
mis-reporting his payo¤ type. His ex post gain to reporting himself to be type �0i when he

is type �i and he is sure that others have type pro�le ��i is:

�i
�
�0i j�i; ��i

�
, vi

�
f0
�
�0i; ��i

�
; �
�
� vi (f0 (�i; ��i) ; �) . (17)
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A set of transfer functions f = (f1; :::; fI), each fi : � ! R, then satisfy ex post incentive
compatibility if

fi (�i; ��i)� fi
�
�0i; ��i

�
� �i

�
�0i j�i; ��i

�
for all i, �i, �0i and ��i.

Proposition 4 In a quasi-linear environment, if F is interim implementable on every full

support common prior payo¤ type space T , then F is ex post implementable.

PROOF. We �rst show that a solution to the following maxmin problem exists for any �xed

��i:

max
fi:�i!R

�
min

(�i;�
0
i)2�i��i

�
fi (�i)� fi

�
�0i
�
� �i

�
�0i j�i; ��i

�	�
. (18)

To show this, let M be the maximal gain or loss from misreporting of types,

M , max
(�i;�

0
i)2�i��i

���i ��0i j�i; ��i ��� ,
let F i be the set of transfer rules bounded by [�2M; 2M ],

F i = ffi : �i ! [�2M; 2M ]g ,

and write �i (fi) for the lowest incentive to tell the truth under transfer rule fi,

�i (fi) , min
(�i;�

0
i)2�i��i

n
fi (�i)� fi

�
�0i
�
� �i

�
�0i

����i;b��i�o .
Now observe that for all fi 2 Fi, there exists f i 2 F i with �i (fi) � �i

�
f i
�
. To see this,

let f0i (�i) = 0 for all �i; note that f
0
i 2 F i and �i

�
f0i
�
� �M . If

max
(�i;�

0
i)2�i��i

��fi (�i)� fi ��0i��� > 2M
then �i (fi) < �M � �i

�
f0i
�
. If

max
(�i;�

0
i)2�i��i

��fi (�i)� fi ��0i��� � 2M ,
�x any �i and let efi (�i) = fi (�i)� fi

�
�i
�
. Now efi 2 F i and �i (fi) � �i � efi�. But now we

have that the maximum in expression (18) is attained on a compact subset, so the maxmin

exists.

Now suppose that ex post implementation is infeasible. Then there exists j and b��j
such that, for every fj : �j ! R,

fj

�
�j ;b��j�� fi ��0j ; ��j� < �i

�
�0j

����j ;b��j �
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for some �j , �0j . Since we have shown that a solution to

max
fj :�j!R

(
min

(�j ;�0j)2�j��j

n
fj (�j)� fj

�
�0j
�
� �j

�
�0j

����j ;b��j �o) (19)

exists, there exists � > 0 such that, for every fj : �j ! R,

min
(�j ;�0j)2�j��j

n
fj (�j)� fj

�
�0j
�
� �j

�
�0j

����j ;b��j �o � ��. (20)

Now suppose that F is interim equilibrium implementable on the payo¤ type space for

all priors p 2 �(�). Consequently, for every p there must exist a set of transfers functions,
fpi : �! R, and associated interim payments:

fpi (�i) ,
X

��i2��i

fpi (�i; ��i) p (��ij�i) ;

such that 8i;8�i; �0i:

fpi (�i)� f
p
i

�
�0i
�
�

X
��i2��i

�i
�
�0i j�i; ��i

�
p (��ij�i) . (21)

Let

� (p) = sup
fj :�j!R

8<: min
(�j ;�0j)2�j��j

8<:fpj (�j)� fpj ��0j�� X
��j2��j

�j
�
�0j j�j ; ��j

�
p (��j j�j)

9=;
9=; .

For all full support p, we have

� (p) � �� + p
�b��j j�j�M

by (20) and

� (p) � 0

by (21). This yields a contradiction if we choose p with p
�b��j j�j� su¢ ciently close to 1.

�
The argument is straightforward, but distinct from the argument in Proposition 3. It

proceeds by contrapositive and relies on the linearity in monetary transfers fi in two crucial

steps. First, we can show that the problem of maximizing the minimal ex post bene�ts

from truthtelling over all pro�les and all agents is well-de�ned and admits a �nite solution,

even though the set of feasible transfers and utilities is unbounded. This allows us to

conclude that if ex post implementation is infeasible, then the social choice function which

maximizes the minimal bene�ts of ex post truthtelling (i.e. solves (18)) leads to a strictly

negative solution. Second, we use the linearity to separate in the incentive constraints the
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contribution of the utility from the allocation vi (y0; �) and the monetary transfer fi (�i; ��i).

The monetary transfer has the further property that the value of the transfer for agent i

does neither depend on the allocation y0 nor on his own true payo¤ pro�le. This allows

us to evaluate the value of transfers in expectations, thereby eliminating the payo¤ types

of the other agents, exclusively on the basis of the reported type, b�i, of agent i. But then
we are back at the ex post incentive constraints, from which know from the �rst step, that

they have a strict gap, and hence so do interim incentive constraints for distributions close

by.

While a similar argument will apply under some weakenings of the quasi-linear assump-

tion, there is not a lot of slack. Suppose each agent�s utility takes the form ui (y0; �) +

vi (yi; �i), where each vi is supermodular in (yi; �i), strictly increasing in �i and has range

R+. Now each agent�s bene�t from his transfer is allowed to depend on his own type only.

This seems like a minimal weakening of the quasi-linear assumption, yet we have constructed

a simple example where interim implementation on all full support payo¤ type spaces is

possible, even though ex post implementation is impossible. We report this example in the

appendix, along with an elaborate set of su¢ cient conditions that do extend the quasi-linear

result.

5 The Quasi-Linear Environment with Budget Balance

We now consider the quasi-linear environment with budget balance as a canonical example

of a nonseparable environment. There are three reasons for studying this case.

First, we are able to establish some more limited ex post equivalence results in this case.

We show that if either there are only two agents or, for an arbitrary number of agents, the

payo¤ space of each agent is binary then the equivalence between ex post implementation

and interim implementation on all type spaces holds.

Second, unlike in the case of separable environments of the previous section, we are

able to identify an important class of economic environments when there is a gap between

interim implementation on all type spaces and interim implementation on all payo¤ type

spaces: in the two agent case, we show that ex post implementation is equivalent to the

former but not to the latter. This con�rms that our concern with the richness of the type

space is not misplaced.

Finally, we know that our results are tight: once there are more than two agents and

at least one agent has at least three types, we can show that there is no longer equivalence

between ex post implementation and interim implementation on all type spaces. Thus within

the budget balanced quasi-linear environments of this section, we are able to establish the

limits to ex post equivalence.
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Formally, the budget balance requirement is introduced in the quasi-linear environment

by imposing budget balance on the private components. Thus we take the de�nition of a

quasi-linear environment in Section 2.1 but let

Y =

(
(y0; y1; :::; yI) 2 Y0 � RI :

IX
i=1

yi = 0

)
.

Example 3 was an example of a quasi-linear environment with budget balance.

We exploit a dual characterization of when ex post implementation is possible. The

dual approach builds on the classic work of d�Aspremont and Gerard-Varet (1979) and the

more recent works of d�Aspremont, Cremer and Gerard-Varet (1995, 2002). In contrast

to these works, we use the ex post rather than the interim dual. The dual variables of

our characterization will be the multipliers of the budget balance constraints, �, and the

multipliers of the incentive constraints, �.

Our �rst result concerns the two agent case. The critical type space in the argument

will be the complete information type space. We used a subset of this type space earlier in

Example 3 and describe it now more precisely. Let each Ti = � and hence a type of agent

i will be written as ti = �i 2 �, where �i =
�
�i1; ::::; �

i
I

�
. We also write �i�i for the vector �

i

excluding �ii. We assume that b�i ��i� = �ii and b�i satis�es
b�i ��i� [t�i] = ( 1, if tj = �i for all j 6= i

0, otherwise
.

Thus we require that for each �, there is a type of agent i who has payo¤ type �i and assigns

probability 1 to his opponents each having type �. The complete information type space is

T = �Ii=1Ti =
�
�Ii=1�i

�I
.

Recall from (17) that we write �i
�
�0i j�

�
for the ex post incentive of agent i to misreport

himself to be type �0i when the true type pro�le is �. With two agents, the ex-post incentive

constraints are given by:

f1 (�)� f1 (r1; �2) � �1 (r1 j� ) ; 8r1;
f2 (�)� f2 (�1; r2) � �2 (r2 j� ) ; 8r2:

(22)

We can use the budget balance condition, f1 (�)+f2 (�) = 0; or f1 (�) = �f2 (�), to combine
the ex post incentive constraints (22) and observe that ex post implementation with budget

balance exists if and only if there exists f1 (�) such that:

f1 (�1; r2)� f1 (r1; �2) � �1 (r1 j� ) + �2 (r2 j� ) ;8�;8r: (23)

Proposition 5 (Equivalence with Budget Balance: I = 2)
If I = 2 and F is interim implementable on all complete information type spaces, then F

is ex post implementable.
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PROOF: We argue by contrapositive and thus suppose that F is not ex post implementable.

Then, by Farkas�Lemma, there exists a nonnegative vector (� (�; r))(�;r)2�2 such that for

every � 2 � : X
r

� ((�1; r2) ; (r1; �2)) =
X
r

� ((r1; �2) ; (�1; r2)) ; (24)

and X
�;r

� (�; r) [�1 (r1 j� ) + �2 (r2 j� )] > 0. (25)

Let � (�) denote the common value of the lhs and rhs term in (24).

For (�; r) 2 �2, we de�ne q (�; r) as follows:

q (�; r) ,
P
r0 � ((�1; �2) ; (r1; r

0
2))� ((r1; r2) ; (r

0
1; �2))

� (r1; �2)
. (26)

Therefore, by (24), X
r2

q ((�1; �2) ; (r1; r2)) =
X
r2

� ((�1; �2) ; (r1; r2)) ; (27)

and X
r1

q ((r1; r2) ; (�1; �2)) =
X
r1

� ((�1; �2) ; (r1; r2)) ; (28)

so that X
r

q (�; r) =
X
r

q (r; �) . (29)

We now show that F is not implementable under the complete information common

prior. In contradiction, suppose that
�
f1
�
�; �0

�
; f2
�
�; �0

��
(�;�0)2�2 is a budget balanced

vector of transfers in the complete information setting and interim implements the social

choice problem, i.e. for all � 2 � :

f1 (�; �)� f1 (r; �) � �1 (r1 j� ) ; 8r 2 �; (30)

and

f2 (�; �)� f2 (�; r) � �2 (r2 j� ) ; 8r 2 �: (31)

It follows that with positive weights q (�; r) and q (r; �), as de�ned in (26), we can sum the

inequalities (30) and (31), and obtain:X
�;r

q (�; r) [f1 (�; �)� f1 (r; �)� �1 (r1 j� )] +X
�;r

q (r; �) [f2 (�; �)� f2 (�; r)� �2 (r2 j� )] � 0:
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Using the budget balance requirement, we can write the above inequality asX
�;r

q (�; r) [f1 (�; �)� f1 (r; �)� �1 (r1 j� )] + (32)

X
�;r

q (r; �) [f1 (�; r)� f1 (�; �)� �2 (r2 j� )] � 0.

Regarding the transfers, (29) implies that:X
r

q (�; r) f1 (�; �) =
X
r

q (r; �) f1 (�; �) ; 8�;

and the remaining transfer terms cancel as well as:

�
X
�;r

q (�; r) f1 (r; �) +
X
�;r

q (r; �) f1 (�; r) = 0,

The remaining terms in the inequality (32) can be written as:X
�;r1

�1 (r1 j�1; �2 )
X
r2

q ((�1; �2) ; (r1; r2)) +
X
�;r2

�2 (r2 j�1; �2 )
X
r1

q ((r1; r2) ; (�1; �2)) : (33)

Using (27) and (28), we can rewrite (33) as:X
�;r1

�1 (r1 j�1; �2 )
X
r2

� ((�1; �2) ; (r1; r2)) +
X
�;r2

�2 (r2 j(�1; �2))
X
r1

� ((�1; �2) ; (r1; r2)) . (34)

Now (32) implies that expression (34) is less than or equal to zero, contradicting a property

of the ex post dual solution (25). �
Since the equivalence holds for all complete information type spaces, it must also hold for

all type spaces. Example 3 considered a balanced budget problem with two agents. It already

indicated the crucial role of the type space for the interim implementation result. The main

feature of the example was that ex post implementation and interim implementation on

all type spaces was impossible, yet interim implementation on all payo¤ type spaces was

possible. This illustrates that the equivalence result for I = 2 does not hold if all complete

information type spaces is replaced with all payo¤ type spaces.

For I = 2 we directly used the budget balance to combine the ex post incentive con-

straints for agent 1 and agent 2 at a true payo¤ type pro�le � against reports r1 and r2,

respectively, into a single constraint for the true state � and pair of misreports r = (r1; r2).

The resulting dual variable � (�; r) of the ex post constraint has the same dimension as

the interim incentive constraints of the complete information type space with true type

pro�le � and report r. We then directly used the existence of � (�; r) to prove that interim

implementation on the complete information type space is impossible.14

14We would like to thank an anonymous referee for suggesting the direct argument presented here.
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With more than two agents we have to consider the ex post incentive constraints of each

agent separately and then link them through the additional budget balance constraints:

fi
�
�0i; ��i

�
� fi (�i; ��i) + �i

�
�0i j�i; ��i

�
� 0; 8i;8�; (35)

and the balanced budget constraint

IX
i=1

fi (�) = 0; 8�: (36)

The dual problem to (35) and (36) with the multipliers �i : �i � �i � ��i ! R+ and

� : �! R is given the ex post �ow condition (EF):

� (�) =
X
�0i2�i

�i
�
�0i; �i; ��i

�
�
X
�0i2�i

�i
�
�i; �

0
i; ��i

�
(37)

for all � 2 � and all i; and the ex post weighting condition (EW):

IX
i=1

X
�2�

X
�0i2�i

�i
�
�0i; �i; ��i

�
�i
�
�0i j�i; ��i

�
> 0. (38)

Thus ex post implementation is impossible if and only if there exist (�; �) satisfying EF

and EW. In the case where each agent has exactly two types, we can use this ex post

dual characterization to show the impossibility of interim implementation on all payo¤ type

spaces. In particular, if ex post implementation fails, we can construct a payo¤ type spaces

where interim implementation fails: wheneverX
��i

�i
�
�i; �

0
i; ��i

�
> 0

for some �i 6= �0i, let type �i assign probability

�i
�
�i; �

0
i; ��i

�P
��i

�i
�
�i; �

0
i; �

0
�i
� (39)

to his opponents type pro�le ��i (this construction is well de�ned exactly because there is

only one possible �0i 6= �i). Now summing interim incentive compatibility constraints will

give a contradiction.

We will show the stronger result that ex post implementation is equivalent to interim

implementation on all common prior payo¤ type spaces. For this, it is necessary to establish

properties of the ex post multipliers; we will show that any solution to EF and EW takes a

simple form. Given a dual solution to the ex post program, we refer to �i
�
�0i; �i; ��i

�
> 0 as
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an out�ow from (�i; ��i) and correspondingly as an in�ow into
�
�0i; ��i

�
. Consistent with

this language, we refer to the pro�le (�i; ��i) as a source if there are only out�ows:X
�0i2�i

�i
�
�0i; �i; ��i

�
> 0 and

X
�0i2�i

�i
�
�i; �

0
i; ��i

�
= 0;

and refer to (�i; ��i) as a sink if there are only in�ows:X
�0i2�i

�i
�
�0i; �i; ��i

�
= 0 and

X
�0i2�i

�i
�
�i; �

0
i; ��i

�
> 0:

In the simple solution, every payo¤ pro�le � is either a sink or source, the ex post incentive

multipliers, �i
�
�0i; �i; ��i

�
, are either 0 or 1, and the budget balance multipliers, � (�), are

either �1 or +1. In graph-theoretic terms, the multipliers (�; �) form the unique solution

to the two-coloring problem, which we illustrate below for the case of I = 3.

Insert Figure 1 Here

Given this simple structure of the ex post dual, the �ow equality ensures that the

posteriors can be generated from a common prior. In fact the resulting common prior p (�)
puts uniform probability on all sources and zero probability on all the sinks as illustrated

in the above �gure. The resulting type space is a common prior payo¤ type space with

correlation. Finally, when we add up all the interim incentive constraints under these

posteriors, due to the 0; 1 property of the posteriors and the balanced budget postulate,

all the transfers cancel out and we are exactly left with the sum appearing in the ex post

weighting inequality. By the hypothesis of the ex post dual the sum is positive and hence

the interim incentive constraints cannot be satis�ed either.15

15The dual argument for the hypercube encompasses the cubical array lemma in Walker (1980) which

establishes necessary and su¢ cient conditions for dominant strategy implementation with budget balance

in a private value model. Walker considers dominant strategy implementation when the set of possible

preferences is given by the class of all utility functions on a given set of allocations. This allows him to

assert that the only dominant strategy incentive compatible transfer functions (without regard to budget

balance) are the exact Groves schemes. As the Groves schemes represent the marginal contributions of each

agent at each type pro�le, budget balance can be translated into an equality constraint on the sum of the

di¤erences of the social valuations at the true pro�les on the hypercube. Generically, the social values will

not satisfy the equality. In the current model, we are only considering a �nite set of preferences for each

agent, and hence the set of dominant strategy incentive compatible transfers (without regard to budget

balance) is larger then the set of exact Groves schemes. For the hypercube, this implies that the sum of

di¤erences in Walker is always strictly larger than our weighting inequality, and thus if budget balance fails

on the hypercube and the weighting inequality is positive, then the Groves schemes will necessarily fail as

well.
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Proposition 6 (Equivalence with Budget Balance: I > 2)
If #�i � 2 for all i, and F is interim implementable on all payo¤ type spaces, then F is ex

post implementable.

PROOF: We �rst note that if any agent has only one type, then a well known argument

establishes that budget balance has no bite, since the single type can absorb the budget

surpluses or de�cit (see Mas-Collel et al. (1995), p.881). Thus suppose that #�i = 2

for all i. The proof is by contradiction. Thus suppose F is not ex post implementable and

hence there does not exist a solution to the ex post incentive constraints and budget balance

constraints, (35) and (36). By Farkas�Lemma with equality constraints, it then follows that

there must exist a solution to the dual problem (37) and (38) satisfying �i
�
�0i; �i; ��i

�
� 0,

8i; 8�.
Next we show that if a solution

�
v (�) ; �i

�
�0i; �i; ��i

�	
exists, then there also exists a

solution such that for all i; �; and �0i :

v (�) 2 f�1; 1g ; �i
�
�0i; �i; ��i

�
2 f0; 1g ; �i

�
�0i; �i; ��i

�
+ �i

�
�i; �

0
i; ��i

�
= 1: (40)

The binary payo¤ type space implies that for a given �i, payo¤ type �0i 6= �i, is uniquely

determined. We �rst observe that a necessary condition for interim (and ex post) incentive

compatibility on all payo¤ type spaces is that for all i and all ��i :

fi
�
�0i; ��i

�
� fi (�i; ��i) + �i

�
�0i j�i; ��i

�
� 0;

and

fi (�i; ��i)� fi
�
�0i; ��i

�
+ �i

�
�i
���0i; ��i � � 0:

By summing up the two inequalities we obtain that for all i and all ��i:

�i
�
�0i j�i; ��i

�
+ �i

�
�i
���0i; ��i � � 0: (41)

Based on the given solution
�
v (�) ; �i

�
�0i; �i; ��i

�	
, we then propose a new solution

n
v (�) ; b�i ��0i; �i; ��i�o

de�ned by: b�i ��0i; �i; ��i� , max��i ��0i; �i; ��i�� �i ��i; �0i; ��i� ; 0	 ;
and correspondingly

b�i ��i; �0i; ��i� , max��i ��i; �0i; ��i�� �i ��0i; �i; ��i� ; 0	 :
By construction the new solution satis�es the equality constraints (37) under the original

values � (�) and by (41) weakly increases the right side of the inequality constraint (38).

Accordingly, the equalities (37) simplify to either

v (�) = b�i ��0i; �i; ��i� , 8i; (42)
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or

v (�) = �b�i ��i; �0i; ��i� , 8i: (43)

Due to the binary property of the type space �i and the fact that the above equalities,

(42) and (43) have to hold for all agents simultaneously, we obtain a bipartition of the type

space � into subsets, �0 and �00 (in graph-theoretic terms they form the unique solution to

the two-coloring problem) such that for all � 2 �0; v (�) > 0 and for all � 2 �00, v (�) < 0.
We can �nally normalize v (�) and b�i ��0i; �i; ��i� by dividing through jv (�)j to obtain a
solution, denoted by

�
v� (�) ; ��i

�
�0i; �i; ��i

�	
, with the desired properties described in (40).

The inequality (38) now reads:

IX
i=1

X
�2�0

�i
�
�0i j�i; ��i

�
> 0: (44)

We obtain a contradiction to (44) by considering the interim implementation for the payo¤

prior which puts uniform probability on all � 2 �0 and zero probability on all � 2 �00. By
hypothesis of interim implementability, the interim incentive constraints for every i and

every �i: X
(�i;��i)2�0

�
fi
�
�0i; ��i

�
� fi (�i; ��i) + �i

�
�0i j�i; ��i

��
p (��i j�i ) � 0;

can be satis�ed with a balanced budget transfer scheme. By summing up the interim in-

centive constraints over all agents and omitting the constant (on �0) probability, p (��i j�i ),
we get:

IX
i=1

X
(�i;��i)2�0

�
fi
�
�0i; ��i

�
� fi (�i; ��i) + �i

�
�0i j�i; ��i

��
� 0;

and by the balanced budget stipulation, the transfers drop out, and we are left with:

IX
i=1

X
(�i;��i)2�0

�i
�
�0i j�i; ��i

�
� 0;

which provides the desired contradiction to (44). �

In an earlier version of this paper, Bergemann and Morris (2003), we demonstrated, by

means of an example, the tightness of the ex post equivalence results obtained in Proposition

5 and 6. Example 4 consisted of three agents in which the �rst agent had three payo¤ types,

and the remaining two agents had binary payo¤type spaces. With this minimal relaxation of

either of the above su¢ cient conditions, we have an example where ex post implementation

is impossible while interim implementation (using a single mechanism) is possible on all

type spaces. We conjecture that ex post equivalence results may again be obtained in a

general environment with I > 2 and #�i > 2 only after imposing suitable restrictions on

the environment such as single crossing or supermodularity conditions.
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6 Discussion and Conclusion

6.1 The Universal Type Space

We wanted to address the following question. Suppose that the planner knows that the

payo¤ environment is common knowledge, but the planner knows nothing else about agents�

types; in particular, he knows nothing about their beliefs and higher order beliefs about

other types. Can the planner implement the social choice correspondence? We formalized

this question by requiring the planner to implement the social choice correspondence on

any type space (consistent with the payo¤ environment).

An alternative approach to formalizing this question is to work with a universal type

space about the payo¤ environment, maintaining the assumption that agents know their

own payo¤ types. Thus there is a (known own payo¤ type) universal type space

T � =
�
T �i ;b��i ; b��i�I

i=1
,

with the properties that the range of
�b��i ; b��i� is �i � � �T ��i�. The existence of such

a universal type space can be shown by a slight adaption of the standard arguments of

Mertens and Zamir (1985) and Brandenburger and Dekel (1993); in fact, the universal type

space can be explicitly constructed by identifying T �i with all coherent sequences of agents�

beliefs and higher order beliefs about payo¤ types.16

All the positive and negative results reported in this paper would be unchanged if we

replaced "implementable on all type spaces" by "implementable on the (known own payo¤

type) universal type space". Since the universal type space is an example of a type space,

implementability for all type spaces trivially implies implementability on the universal type

space. On the other hand, when we show a failure of implementability for all type spaces,

we do so by constructing a �nite type space where implementability is impossible. But

those �nite type spaces are isomorphic to belief closed subsets of the universal type space.

And if it is not possible to implement on a given type space, it is not possible to implement

on any type space (such as the universal type space) which contains that given type space

as a belief closed subset. Thus whenever implementability is impossible on those �nite type

spaces, it is also impossible on the universal type space.

We emphasize that this equivalence between "all type spaces" and the "universal type

space" holds for the questions we ask in this paper and holds under our maintained as-

sumption that it is common knowledge that agents know their own payo¤ types. For other

questions and other environments, this equivalence may not hold. If we �x a set of payo¤

types, there is sometimes a di¤erence between analyzing strategic behavior on the universal

16See Heifetz and Neeman (2004) for a more detailed discussion of such constructions.
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type space constructed for those payo¤ types and analyzing strategic behavior on all type

spaces.17 The universal type space constructions rely on topological assumptions that might

be problematic for other applications.18

6.2 A Classical Debate

An old debate in the Bayesian implementation literature went as follows. Some scholars

pointed out that - as a practical matter - the planner was unlikely to know the true prior

over the type space. Therefore, it would be desirable to have a mechanism which was going

to work independent of the prior. For a private values environment, Dasgupta, Hammond

and Maskin (1979), Ledyard (1978, 1979) and Groves and Ledyard (1987) observed that if

a direct mechanism was going to implement a social choice correspondence for every prior

on the type space, then there must be dominant strategies implementation. Other scholars

pointed out that if the planner did not know the prior (and the agents do) then we should

not restrict attention to direct mechanisms. Rather, we should allow the mechanism to

elicit reports of the true prior from the agents (since this information is non-exclusive in the

sense of Postlewaite and Schmeidler (1986), this elicitation will not lead to any incentive

problems). A formal application of this folk argument appears in the recent work of Choi

and Kim (1999). How do our results �t into this debate between the "practical designers"

and the "implementation purists"?

Our results allow for interdependent values, but we believe they clarify this debate when

restricted to private values (recall that ex post incentive compatibility implies dominant

strategies incentive compatibility under private values).

� In some environments, even if the designer was allowed to elicit the true prior, imple-
mentation for every prior on the �xed type space implies dominant strategy imple-

mentation. In these environments, the practical designers�conclusion is immune to

the purists�criticism. These environments include separable environments (Proposi-

tion 2) and quasi-linear environments with budget balance but at most two types for

each player (Proposition 6).19

17For example, if each player has only one possible payo¤ type, then he has only one type in the con-

structed universal type space, and equilibrium on the type space implies Nash equilibrium play in the implied

complete information game. But if we look at all possible type spaces consistent with those payo¤ types,

any rationalizable action might be played.
18Heifetz and Samet (1998) provide a non-constructive proof of the existence of a universal type space

without topological restictions.
19Mookerjee and Reichelstein (1992) examine the relation between Bayesian implementation and dominant

strategy implementation in the private value environment. If dominant strategy implementation of an

allocation rule is possible, then it is possible to do so in a way that generates any expected transfer levels

achievable under Bayesian implementation of that allocation rule.
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� In some environments, the purists�criticism binds. That is, dominant strategy im-

plementation is impossible but Bayesian implementation is possible for every prior on

a �xed type space. This was true of Examples 1 and 2 and we can also construct

quasi-linear environments with budget balance where it is true.

� A second practical criticism of the classical Bayesian implementation literature is

that not only may the planner not know the true prior over the payo¤ types, but

the agents may not know the true prior either. We have formalized this criticism by

requiring implementation on type spaces larger than the payo¤ type space. And we

have shown that in some environments, implementation on all type spaces implies

dominant strategies implementation even when interim implementation for all priors

on the payo¤ type space does not (Example 3 and Proposition 5).20

6.3 Genericity

If we restrict attention to "generic" priors on the payo¤ type space (or any �xed �nite type

space), it is possible to obtain very permissive implementation results. Thus arguments in

d�Aspremont, Cremer and Gerard-Varet (1979) and d�Aspremont, Cremer and Gerard-Varet

(1995, 2002) establish that it is possible to implement any allocation rule in a quasi-linear

environment with budget balance for a generic set of priors on all �xed type spaces. This

contrasts with our results showing that implementation in some quasi-linear environments

with budget balance for all priors on (the �xed) payo¤ type space is equivalent to ex post

implementation, which is known to be impossible under quite general conditions.

As emphasized by Neeman (2001), "generic" priors entail some counterintuitive prop-

erties, e.g., that a planner can infer an agent�s valuation of an object from that agent�s

beliefs about other agents� types. In any case, the justi�cation for �xing a set of types,

"generically" picking a prior and then assuming common knowledge of that prior is not

clear. Some current work tries to identify more natural ways of thinking about genericity.21

In this work, we have not discussed any results that rely on genericity notions.22

20Example 3 has interdependent values, but we could mechanically turn it into a private value example

the same way we constructed Example 2 as a private value version of Example 1.
21Morris (2002) and Dekel, Fudenberg and Morris (2004) examine ways of de�ning "strategic topologies"

on types in the universal type space that might suggest useful topological notions of genericity. Heifetz and

Neeman (2004) argue that among common prior belief closed subspaces of the universal type space, the type

spaces often described as generic are not "prevalent" in the sense of Christensen (1974), Hunt et al. (1992)

and Anderson and Zame (2001).
22Genericity issues are discussed at greater length in the working paper version of this paper, Bergemann

and Morris (2003).
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6.4 Augmented Ex Post Equivalance

In non-separable environments, ex post implementability may be a strictly stronger require-

ment than interim implementability on all type spaces. Is there a natural weakening of ex

post implementability that is necessary? Consider an augmented mechanism where each

agent�s report consists of his payo¤ type and a supplemental message. An agent�s strategy

is truthful if he always correctly reports his payo¤ type. A decision rule mapping message

pro�les into outcomes is augmented ex post incentive compatible if an agent who expects

all other agents to report truthfully has a truthful best response. A social choice correspon-

dence F is augmented ex post implementable if there exists an augmented ex post incentive

compatible decision rule that (under truthful strategies) always achieves outcomes in F .

We showed in the working paper version of this paper (Bergemann and Morris (2003)) that

(up to some technical restrictions) augmented ex post incentive compatibility is equivalent

to interim implementability on all type spaces. Now an interesting way to characterize

implementation problems is how many supplemental messages are needed. For separable

environments, no extra messages are needed. In the worst case, the supplemental message

might consist of the agent�s belief over T ��i in the universal type space and we would be

looking at a direct mechanism on the universal type space. An interesting problem for

future research is the characterization of how many supplemental messages are required for

di¤erent classes of problems.
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7 Appendix

In this appendix we provide a set of su¢ cient conditions which encompass the quasilinear

environment. With these conditions, we can generalize the equivalence results presented

in Proposition 4 for common prior full support payo¤ type spaces. The �rst condition re-

places the compactness condition, the second and third condition generalizes the important

features of the quasilinear utility model. The appendix ends with an example which is

meant to illustrate that the conditions, in particular, the condition on bounded allocation

di¤erences, is not easily dispensed with.

We substitute the compactness condition by essential compactness. To this end let

�i (��i; fi) , min
(�i;�

0
i)2�i��i

" eui (f0 (�i; ��i) ; fi (�i; ��i) ; (�i; ��i))
�eui �f0 ��0i; ��i� ; fi ��0i; ��i� ; (�i; ��i)�

#
.

De�nition 7 (Essential compactness).
Each eui (y0; yi; �) is continuous with respect to yi. For each � and i, there is a compact set
F i (�) � Fi (�), such that for each i and ��i, there exists f�i : � ! Yi with f�i (�) 2 F i (�)
such that �i (��i; f�i ) � �i (��i; fi) for all fi : �! Yi with each fi (�) 2 Fi (�).

De�nition 8 (Transferable utility).
For every  2 �(��i) and fi : �! Yi with fi (�) 2 Fi (�) for all �, there exists f i : �i ! Yi

with fi (�) 2 Fi (�) for all � such thatX
��i2��i

 i (��i) eui �f0 ��0i; ��i� ; f i ��0i� ; (�i; ��i)�
=

X
��i2��i

 i (��i) eui �f0 ��0i; ��i� ; fi ��0i; ��i� ; (�i; ��i)�
for all �i and �0i.

De�nition 9 (Bounded Allocation Di¤erences).
There exists M such that��eui (y0; yi; �)� eui �y00; yi; �0��� �M for all i, y0; y00 2 Y0, yi 2 Yi and �, �0 2 �:

Essential compactness ensures that the problem of maximizing the minimal gains from

thruthtelling in the ex post incentive constraints always has a well de�ned solution. Trans-

ferable utility ensures that every utility compensation for agent i can be achieved by as-

signing the private component f i conditionally on the reported payo¤ type �
0
i of agent i

only. A su¢ cient condition for transferable utility is that eui (y0; yi; �) is continuous with
respect to yi and that the utility is positively and negatively unbounded in yi for every y0
and �. Bounded allocation di¤erences ensures that the di¤erences in utilities due to the

public component and the payo¤ type for every given private component is bounded.
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Lemma 1 If F is essentially compact, separable with transferable utility and satis�es bounded
allocation di¤erences and F is interim implementable on every full support common prior

payo¤ type space T , then F is ex post incentive implementable.

PROOF. Suppose F is not ex post compatible. By essential compactness, for each i and

��i, there exists � > 0, such that for all fi : �! Yi,

min
(�i;�

0
i)2�i��i

" eui (f0 (�i; ��i) ; fi (�i; ��i) ; (�i; ��i))
�eui �f0 ��0i; ��i� ; fi ��0i; ��i� ; (�i; ��i)�

#
� ��. (45)

Now suppose that F is interim implementable on every full support common prior payo¤

type space. Then, for every p 2 �++ (�), there exists for each i, fpi : � ! Yi such that

fpi (�) 2 Fi (�) for all � and

min
(�i;�

0
i)2�i��i

264
P

��i2��i
p (�i; ��i) eui (f0 (�i; ��i) ; fpi (�i; ��i) ; (�i; ��i))

�
P

��i2��i
p (�i; ��i) eui �f0 ��0i; ��i� ; fpi ��0i; ��i� ; (�i; ��i)�

375 � 0;
for all �i and �0i. By transferable utility, there exists f

p
i : �i ! Yi such that f

p
i (�) 2 Fi (�)

for all � and

min
(�i;�

0
i)2�i��i

2664
P

��i2��i
p (�i; ��i) eui �f0 (�i; ��i) ; fpi (�i) ; (�i; ��i)�

�
P

��i2��i
p (�i; ��i) eui �f0 ��0i; ��i� ; fpi ��0i� ; (�i; ��i)�

3775 � 0.
By bounded allocation di¤erences, for any ���i 2 ��i,���eui �f0 ��0i; ��i� ; fpi ��0i� ; (�i; ��i)�� eui �f0 ��0i; ���i� ; fpi ��0i� ; ��i; ���i����� �M .

We can express the expected utility under p (�) from f0 andf
p
i asX

��i2��i

p (�i; ��i) eui �f0 ��0i; ��i� ; fpi ��0i� ; (�i; ��i)� =
eui �f0 ��0i; ���i� ; fpi ��0i� ; ��i; ���i��+X
��i 6=���i

p (�i; ��i)
heui �f0 ��0i; ��i� ; fpi ��0i� ; (�i; ��i)�� eui �f0 ��0i; ���i� ; fpi ��0i� ; ��i; ���i��i

So�������
P

��i2��i
p (�i; ��i)

�eui �f0 (�i; ��i) ; fpi (�i) ; (�i; ��i)�� eui �f0 ��0i; ��i� ; fpi ��0i� ; (�i; ��i)��
�
�eui �f0 ��i; ���i� ; fpi (�i) ; ��i; ���i��� eui �f0 ��0i; ���i� ; fpi ��0i� ; ��i; ���i���

�������
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�
�
1� p

�
�i; �

�
�i
��
2M

But consider a sequence of priors with pn ! p� and p�
�
���i
�
= 1. Since

min
(�i;�

0
i)2�i��i

2664
P

��i2��i
pn (�i; ��i) eui �f0 (�i; ��i) ; fpni (�i) ; (�i; ��i)�

�
P

��i2��i
pn (�i; ��i) eui �f0 ��0i; ��i� ; fpni ��0i� ; (�i; ��i)�

3775 � 0
for all n we have that:

min
(�i;�

0
i)2�i��i

24 eui �f0 ��i; ���i� ; fpni (�i) ; ��i; ���i��
�eui �f0 ��0i; ���i� ; fpni ��0i� ; ��i; ���i��

35
tends to 0 as n!1. But this contradicts (45).�

It is immediate that

Lemma 2 Essential compactness, transferable utility and bounded allocation di¤erences are
satis�ed in the quasilinear environment.

PROOF. (1) Essential Compactness. Let

M = max
y0;y00

��vi (y0; �)� vi �y00; ����
and let Fi = ffi : �! Rg and F i = ffi : �! [�2M; 2M ]g. To show essential compactness,
it is enough to show that for all fi 2 Fi and ��i, there exists f i 2 F i with �i (��i; fi) �
�i
�
��i; f i

�
. To see this, let f0i (�i) = 0 for all �i; note that f

0
i 2 F i and �i

�
��i; f0i

�
� �M .

If

max
�i;�

0
i

��fi (�i)� fi ��0i��� > 2M
then �i (��i; fi) < �M � �i

�
��i; f0i

�
. If

max
�i;�

0
i

��fi (�i)� fi ��0i��� � 2M ,
�x any �i and let efi (�i) = fi (�i)� fi

�
�i
�
. Clearly, efi 2 F i and �i (��i; fi) � �i ���i; efi�.

(2) Transferable utility. This is immediate: just set

f i (�i) ,
X

��i2��i

 i (��i) fi (�i; ��i) .

(3) Bounded Allocation Di¤erences. Also immediate: set

M = max
i;�;�0;y0;y00

��vi (y0; �)� vi �y00; �0��� ,
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which completes the proof.�

The following example satis�es essential compactness and transferable utility, but does

not satisfy bounded allocation di¤erences. Yet, it is arguably a very slight departure from

the quasilinear model.

EXAMPLE 4. Consider the following example with two agents, i = 1; 2. The payo¤ type

space of agent 1 is �1 = f1; 2g and of agent 2 it is �2 = f1; 2; 3g. We consider an additive
utility function

ui (y0; �) + vi (yi; �i)

as a minimal extension of the quasilinear utility function. The allocation rule for the

common component is:

f0 �2 = 1 �2 = 2 �2 = 3

�1 = 1 a c d

�1 = 2 b c d

(46)

and the utility from the common component u1 (y0; �) for agent 1 is given by:

u1 (a; �) 1 2 3

1 1 0 0

2 2 0 0

u1 (b; �) 1 2 3

1 2 0 0

2 1 0 0

u1 (c; �) 1 2 3

1 0 1 0

2 0 1 0

u1 (d; �) 1 2 3

1 0 0 1

2 0 0 1

(47)

The social choice correspondence for the private component is Fi = R+ and the utility from
the private component is given by

vi (yi; �i) =

�iX
k=1

yki ; (48)

or

vi (yi; 1) = yi; vi (yi; 2) = yi + y
2
i :

It is easy to verify that the utility function is supermodular in (yi; �i) and thus well behaved

with respect to implementation constraints. We exclusively focus attention on the incentive

problem of agent 1 at �2 = 1 and use the additional payo¤ type of agent 2, �2 = 2; 3; as

conditioning devices in the interim implementation.

By (46) and (47), the SCC F is not ex post incentive compatible for agent 1 at �2 = 1.

The ex post incentive constraints for agent 1 at �2 = 1 are given by:

u1 (f0 (1; 1) ; (1; 1)) + v1 (f1 (1; 1) ; 1) � u1 (f0 (2; 1) ; (1; 1)) + v1 (f1 (2; 1) ; 1)

u1 (f0 (2; 1) ; (2; 1)) + v1 (f1 (2; 1) ; 2) � u1 (f0 (1; 1) ; (2; 1)) + v1 (f1 (1; 1) ; 2)
(49)
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After inserting the payo¤s from the common component, and rearranging the utility from

the private component, we have

v1 (f1 (1; 1) ; 1)� v1 (f1 (2; 1) ; 1) � 1;
v1 (f1 (2; 1) ; 2)� v1 (f1 (1; 1) ; 2) � 1;

but both inequalities cannot be satis�ed simultaneously as it follows from (48) that:

v1 (f1 (2; 1) ; 2)� v1 (f1 (1; 1) ; 2) > 0, v1 (f1 (2; 1) ; 1)� v1 (f1 (1; 1) ; 1) > 0.

However we can interim implement the social choice correspondence F for every full

support prior. It is easiest to demonstrate this with an independent prior:

p1 (�2 = 1 j �) = 1� 2"; p1 (�2 = 2 j �) = p1 (�2 = 3 j �) = "; 8�1 2 �1:

We o¤er di¤erent rewards for each payo¤ type �1 of agent 1 at di¤erent realizations of

�2. We use the fact that v1 (y1; �1) grows at di¤erent rates to obtain interim incentive

compatibility. More precisely, the following rewards as a function of the announced type

accomplish interim implementation for all " satisfying 0 < " < 1
2 .

f1 (1; 1) = 0; f1 (1; 2) =
3

"
; f1 (1; 3) =

5

"
; (50)

and

f1 (2; 1) = 0; f1 (2; 2) =
1

"
; f1 (2; 3) =

6

"
: (51)

(With correlated rather than independent priors, we could use di¤erential probabilities as

well as di¤erential rewards to guarantee interim incentive compatibility.) To verify interim

incentive compatibility, it su¢ ces to establish that for �1 = 1:X
�22�2

p1 (�2) (v1 (f1 (1; �2) ; 1)� v1 (f1 (2; �2) ; 1)) � 1; (52)

and conversely for payo¤ type �1 = 2:X
�22�2

p1 (�2) (v1 (f1 (2; �2) ; 2)� v1 (f1 (1; �2) ; 2)) � 1: (53)

Inserting f1 (�1; �2) from (50) and (51) into (52) and (53), we �nd:

"

��
3

"
+
5

"

�
�
�
1

"
+
6

"

��
� 1;

and

"

  
1

"
+

�
1

"

�2
+
6

"
+

�
6

"

�2!
�
 
3

"
+

�
3

"

�2
+
5

"
+

�
5

"

�2!!
� 1,

and it is easy to verify that both inequalities are satis�ed.
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