
ON HOUSESWAPPING, THE STRICT CORE,

SEGMENTATION, AND LINEAR PROGRAMMING

By

Thomas Quint and Jun Wako

May 2003

COWLES FOUNDATION DISCUSSION PAPER NO. 1416

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS

YALE UNIVERSITY

Box 208281

New Haven, Connecticut 06520-8281

http://cowles.econ.yale.edu/



ON HOUSESWAPPING, THE STRICT CORE,

SEGMENTATION, AND LINEAR PROGRAMMING

by

Thomas Quint
Dept. of Mathematics, University of Nevada at Reno, Reno, NV 89557 USA

Jun Wako
Dept. of Economics, Gakushuin University, Tokyo 171-8588 JAPAN

Abstract
We consider the n-player houseswapping game of Shapley-Scarf

(1974), with indifferences in preferences allowed. It is well-known that
the strict core of such a game may be empty, single-valued, or multi-
valued.

We define a condition on such games called “segmentability”, which
means that the set of players can be partitioned into a “top trading
segmentation”. It generalizes Gale’s well-known idea of the partition
of players into “top trading cycles” (which is used to find the unique
strict core allocation in the model with no indifference). We prove that
a game has a nonempty strict core if and only if it is segmentable.

We then use this result to devise an O(n3) algorithm which takes
as input any houseswapping game, and returns either a strict core allo-
cation or a report that the strict core is empty. Finally, we are also able
to construct a linear inequality system whose feasible region’s extreme
points precisely correspond to the allocations of the strict core. This last
result parallels the results of Vande Vate (1989) and Rothblum (1991)
for the marriage game of Gale and Shapley (1962).

1. Introduction

One of the most important models in the theory of the trade of indivisible goods was

put forward by Shapley and Scarf (1974). In this game, there are n players (or agents),

each initially endowed with his own single indivisible good, e.g. a house. The houses

are differentiated, meaning that different players may value different houses differently.

Players’ valuations for houses are expressed as complete, transitive preference orderings.

In addition, it is assumed that each player only has use for one house. Hence the only

moves possible for the players in the game are to swap houses amongst themselves, in some

mutually beneficial way.
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The simple market of trade outlined above gives rise to an ordinal preference game,

and Shapley-Scarf’s remarkable result is that this game always has a nonempty core. In

fact, if no indifference is allowed in any of the players’ preferences, it turns out that the

strict core is also nonempty, consisting of a single allocation of the houses (Roth and

Postlewaite, 1977). This allocation can be found using the top trading cycle algorithm

(TTCA). In this procedure, we initially form a directed graph in which there are n vertices,

one for each player. An edge exists from vertex i to vertex j if player i’s most preferred

house is the one originally owned by player j. It is easy to see that this digraph must have

a cycle, and that this cycle defines a “houseswap” among some of the players of the game.

Assign the houses according to this “top trading cycle”, and remove the corresponding

players (and their houses) from consideration. Now do the same thing with the remaining

players: define a digraph in which edge ij exists if and only if i’s most preferred house (out

of the ones remaining in the game) is the one originally owned by j. Again there must

be a top trading cycle, etc. At the end of this process there will be an ordered list of top

trading cycles, and the corresponding assignment is the unique strict core allocation.

However, the above analysis on the strict core breaks down if we allow players to be

indifferent between houses. Indeed, it is easy to construct examples (with indifferences al-

lowed) in which there are no strict core allocations1 or to construct examples with multiple

strict core outcomes. So the question becomes: how can we tell if a houseswapping game

(with indifference allowed) has an empty strict core, singleton strict core, or multi-valued

strict core? This is the main question which concerns us in this paper.2

To answer this question, we define the notion of a top trading segmentation (TTS).

A TTS is an ordered partition {T1, ..., Tm} of the players with the properties that for each

1 Shapley-Scarf give such an example in their 1974 paper. We re-use their example as
Example 4.3 in this paper.

2 Wako (1984) provides a few other results for the model where indifference is allowed.
In particular, he gives an example in which the strict core is a nonempty proper subset of
the set of competitive allocations, and proves that the strict core is in general a subset of
the set of competitive allocations.
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segment Tj , (a) for each player in Tj , all of his most-preferred houses (among the ones

originally owned by members of Tj ∪ Tj+1 ∪ ... ∪ Tm) are originally owned by members

of segment Tj ; (b) no proper subset of Tj satisfies (a); and (c) there is a cyclical swap of

houses within segment Tj such that every player in Tj can actually get one of his “most-

preferred” houses. We note that in the case where there are no indifferences in the players’

preferences, the list of top-trading-cycles generated by the TTCA satisfies the definition

of a TTS.

Our first main result is that in a houseswapping game (with indifference allowed),

the strict core is nonempty if and only if a TTS exists. In addition, the cyclical swaps

associated with the segments in a TTS give a strict core allocation. Hence, we generalize

the previous results for the case where no indifference is allowed.

Second, we use the theory of TTS’s to formulate an O(n3) algorithm which takes as

input a houseswapping game, and outputs either a strict core allocation or else a report

that the strict core is empty.

Third, we use the notion of TTS to re-prove the result of Wako (1991) and Ma (1994)

that strict core outcomes, if they exist, are unique in terms of utility payoffs for the players.

Finally, we formulate a system of linear inequalities, called “CLIS”, whose feasible

region’s extreme points exactly correspond to the strict core allocations of the game. Hence,

in the case where no indifference is allowed (and thus the strict core contains precisely one

allocation), the feasible region is exactly one point; in the cases where the strict core

is empty, CLIS is an infeasible program. Hence we have a natural analogue to linear

systems presented by Vande Vate (1989) and Rothblum (1991) for the marriage game of

Gale-Shapley (1962).

2. Preliminaries in Graph Theory

We begin with some background in the theory of directed graphs. A directed graph,

or digraph for short, is a pair (V, E) where V is a set of vertices and E a set of directed
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edges. A (directed) edge in turn is an ordered pair (i, j) with i, j ∈ V , and thus E is

a subset of {(i, j) | i ∈ V and j ∈ V }. Given a digraph (V, E) and a vertex i ∈ V , we

denote by Γi the set of vertices pointed to by outgoing edges from i, i.e., Γi := {j ∈ N |
(i, j) ∈ E}. In fact, we may alternatively define a digraph by the pair (V, {Γi}i∈V ).

Let G = (V,E) be a digraph. A subgraph of G is any digraph (V ′, E′) with ∅ 6= V ′ ⊆
V and E′ ⊆ E.3 If V ′ is a particular subset of V , then the subgraph of G induced by

V ′ is the subgraph with vertex set V ′ and edge set E′ = {(i, j) ∈ E : i ∈ V ′ and j ∈ V ′}.
A sequence of vertices4 {i1, ..., im} is called a path from i1 to im (or i1im-path) if

(1) m ≥ 1,

(2) i1, . . . , im are distinct (except for possibly i1 = im) elements of V , and

(3) (ik, ik+1) ∈ E for k = 1, . . . , m− 1.

A cycle is a path in which m ≥ 2 and i1 = im.5 Both a path and a cycle can be regarded

as subgraphs (but not necessarily induced subgraphs) of the whole digraph G.

If G = (V, E) is a digraph, we say G is strongly connected if for any i, j ∈ V there

is an ij-path. If V ′ ⊆ V , we say V ′ is strongly connected if the subgraph of G induced

by V ′ is strongly connected. Equivalently, V ′ is strongly connected if for any i, j ∈ V ′

there is an ij-path {i1 = i, ..., im = j} in which ik ∈ V ′ ∀k.6

Proposition 2.1. Let G = (V, E) be a digraph, and suppose V ′ ⊆ V is strongly connected

in G. Let i ∈ V ′. Then there exists a cycle (within V ′) which contains i.

Next, we define a concept which is crucial in Section 4. A minimal self-mapped

set of digraph G = (V, {Γi}i∈V ) is a nonempty subset C of V for which

3 Since a subgraph is a digraph, this implies that all edges of E′ consist of vertex pairs
in V ′.

4 In some texts, a directed path is defined as an alternating sequence of vertices and
edges (see e.g., Roberts (1984)). However, the list of edges is superfluous, and so one may
simply define a path as just a sequence of vertices, as we do here.

5 The m ≥ 2 condition implies that a singleton vertex {i} is not a cycle. But {i, i} is a
cycle if (i, i) ∈ E.

6 Note that this definition does not rule out i = j; hence, in order for a singleton vertex
{i} to be considered as strongly connected, the edge (i, i) must be present.
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(1) C =
⋃

i∈C Γi, and [self-mappedness]

(2) 6 ∃S with ∅ 6= S ⊂ C and S =
⋃

i∈S Γi. [minimality]

Proposition 2.2. Let G = (V, {Γi}i∈V ) be a digraph, and suppose V ′ ⊆ V satisfies a) V ′

is strongly connected and b) Γi ⊆ V ′ for each i ∈ V ′. Then V ′ is a minimal self-mapped

set of G.

Proof. The strong connectedness of V ′ implies that V ′ ⊆ ⋃
i∈V ′ Γi, while condition b)

implies
⋃

i∈V ′ Γi ⊆ V ′; taken together these imply self-mappedness (1). Now suppose

there was a nonempty proper subset of V ′′ of V ′ which was also self-mapped. Then there

would be no path from vertex i ∈ V ′′ to vertex j ∈ V ′ \ V ′′, thereby violating V ′’s strong

connectedness. Hence V ′ also satisfies (2).

Lemma 2.3. Let G = (V, {Γi}i∈V ) be a digraph with Γi 6= ∅ for each i ∈ V. Then G has

at least one minimal self-mapped set.

Proof. We prove the Lemma by presenting an algorithm which takes as input the directed

graph G, and outputs a minimal self-mapped set:

<<Algorithm MSMS >>

Step 0 (Initialization) Given the digraph G = (V, {Γj}j∈V ), with Γj 6= ∅ for all j. Set

L(j) = {j} for each j ∈ V .

Step 1 (Finding a directed cycle)

(1.0) All vertices in V are colored “blue”. Pick any vertex in V and let i1 denote it.

Vertex i1 is now “red”. Set t = 1.

(1.1) If Γit = {it}, then go to Step 3. Otherwise, let it+1 be a vertex in Γit which is

different from it, and set f(it) = it+1.

(1.2) If it+1 is colored “red”, i.e. it+1 = ik for some k ∈ 1, ..., t − 1, trace out the

cycle C = {ik, ..., it} using function f , and go to Step 2. If it+1 is colored “blue”,
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recolor it “red”, then set t = t + 1 and return to Step 1.1.

Step 2 (Contracting the digraph using input cycle C = {ik, ..., it})

(2.1) Set L(ik) =
⋃t

r=k L(ir). For vertices j ∈ V \ C, L(j) remains unchanged.

(2.2) Set Γik
= {ik} ∪

(
(
⋃

j∈C Γj) \ C
)
.

(2.3) For each j ∈ V \ C, if Γj ∩ C 6= ∅, then let Γj = {ik} ∪ (Γj \ C); otherwise, keep

Γj unchanged.

(2.4) Set V = {ik} ∪ (V \ C) and let G = (V, {Γj}j∈V ) denote the newly contracted

digraph.

(2.5) Return to Step 1.

Step 3 (End) The elements of L(it) are the vertices that form a minimal self-mapped

set in the original digraph G. HALT.//

Let us analyze this algorithm. First, note that every time we enter Step 1, it is with

a digraph satisfying Γj 6= ∅ for all j ∈ V (we assume this to be true in the original

digraph; also, the digraph-contraction steps (2.2)-(2.4) do not alter this property). Hence,

if the algorithm does not immediately go to Step 3 to terminate, the “path following”

sub-algorithm (1.1)-(1.2) must yield a cycle. By virtue of the it+1 6= it assumption in

(1.1), this cycle contains at least two vertices – and this in turn implies that at least one

vertex is contracted out of the digraph during each pass through Step 2. Hence, after at

most n− 1 iterations of Steps 1 and 2, we will be down to one vertex and so the algorithm

will terminate.

Now let us consider the outcome of the algorithm produced at Step 3. First we note

that the elements of L(it) comprise either a single cycle or else a concatenation of cycles;

hence L(it) is strongly connected. Next note that in order to move to Step 3 we must have

had Γit = {it} in Step (1.1). Hence L(it) must also satisfy condition b) of Proposition 2.2,

and so is a minimal self-mapped set.
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Lemma 2.4. Let G = (V, {Γi}i∈V ) be a digraph with Γi 6= ∅ for each i ∈ V , and suppose

S is a minimal self-mapped set of G. Then S is strongly connected.7

Proof. Since S is a minimal self-mapped set, it has no subsets which are self-mapped.

Hence, if we consider the subgraph GS of G induced by the vertices in S, then the only

minimal self-mapped set of GS is S itself. This in turn implies that if we run algorithm

MSMS with input digraph GS , it must return S itself.

However, we argued in the proof of Lemma 2.3 that the output of algorithm MSMS
is strongly connected; hence S is strongly connected.

Corollary 2.5. Let G = (V, {Γi}i∈V ) be a digraph with Γi 6= ∅ for each i ∈ V , and

suppose S is a minimal self-mapped set of G. Then for each i ∈ S, there exists a cycle

C ⊆ S with i ∈ C.8

Proof. Follows directly from Lemma 2.4 and Proposition 2.1.

Corollary 2.6. Let G = (V, {Γi}i∈V ) be a digraph with Γi 6= ∅ for each i ∈ V , and

suppose S and T are distinct minimal self-mapped sets in G. Then S ∩ T = ∅.

Proof. Since S 6= T , we may assume without loss of generality that there exists a vertex j

which is an element of S but not T . Now suppose the Corollary was false, i.e. ∃i ∈ S ∩ T .

Since i and j are both in S, Lemma 2.4 implies there is a path from i to j. But i ∈ T and

j 6∈ T ; hence there is an edge along this path connecting a vertex of T to a vertex not in

T . This contradicts T ’s self-mappedness.

Lemma 2.7. The computational complexity of algorithm MSMS is O(|V |2).
7 From this lemma and Proposition 2.2 it is easy to show that the converse of Proposition

2.2 holds.
8 Here C is a cycle and S is a subset of V . Although technically C is an ordered set

of vertices and S is unordered, we shall use the notation C ⊆ S to mean that the set of
vertices in C is a subset of S. This notation comes up again in the “only if” portion of the
proof of Theorem 5.5.
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Proof. Let v = |V |. It is clear that the cycle-building Step 1 is O(v) for each pass through

Step 1; since the algorithm passes through Step 1 no more than n times, the number

of total steps spent in this phase is O(v2). Now let us consider a particular single pass

(say, the qth pass) through Step 2, with “input cycle” Cq. The re-labeling step (2.1) is

O(|Cq|v). Steps (2.2) and (2.3) are also O(|Cq|v), step (2.4) is O(|Cq|), and (2.5) is one

operation. Hence the complexity for the qth pass is O(|Cq|v). This in turn implies that the

total number of operations in Step 2 (summed over all iterations) is O(
∑

q |Cq|v), which

is O(v2). Thus the entire algorithm is O(v2).

3. The Houseswapping Market

We consider a market in which there are n players, each endowed with one indivisible

good, e.g., a house. Let N = {1, ..., n} be the set of players. The indivisible goods are

differentiated, and the endowment of player i is called “house i”. Thus N also denotes the

set of houses in the market.

We assume that each player i wishes to consume exactly one of the houses. His

prefences are expressed as a complete, reflexive, and transitive preference ordering ºi over

the houses in N , with indifference between houses allowed. Let x Âi y indicate that i

strictly prefers house x to house y, x ∼i y indicate that i is indifferent between house

x and house y, and x ºi y indicate either of the two cases. Let º denote the bundle

{º1, ...,ºn} of the preference orderings of the players.

The players each try to engineer “house-swaps” with other players in an effort to

obtain the best possible house in the market. The end result is an allocation, which

is a one-to-one assignment of houses to players. Formally, an allocation is a bijection

π : N −→ N , i.e., a permutation of N . If π(i) = j, this means that in allocation π, player

i receives house j. We refer to the market above as houseswapping market M(N,º),

or briefly, as market M.

A nonempty subset of players S ⊆ N in market M is called a coalition. For each
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coalition S, we define an S−allocation to be any bijection πS : S −→ S. An S-allocation

is a way that the players in coalition S can redistribute their original houses amongst

themselves. For the grand coalition N , we often say “an allocation” instead of “an N -

allocation”. Let ΠS denote the set of all S-allocations for a given S, and so ΠN denotes

the set of allocations of market M.

Suppose µ is an allocation. A coalition S is said to block µ if there exists an S-

allocation πS with πS(i) Âi µ(i) for all i ∈ S. Coalition S weakly blocks µ if there is an

S-allocation πS for which πS(i) ºi µ(i) for all i ∈ S, with πS(i) Âi µ(i) for at least one

i ∈ S. A core allocation is an allocation which is not blocked by any S, while a strict

core allocation is an allocation which is not weakly blocked by any S. The (regular)

core of market M is the set of all core allocations, and the strict core of market M
is the set of all strict core allocations. These are the usual core and strict core solution

concepts from cooperative game theory.

Finally, we note the connection between the concept of S-allocation and those of

digraph and cycle discussed in the last section. For each S-allocation πS , we define the

corresponding digraph to πS to be digraph G = (S, {Γi}i∈S) with Γi = {πS(i)} for

each i ∈ S. This digraph consists solely of vertex disjoint cycles, covering the vertices in

S. If the corresponding digraph to πS consists of exactly one cycle, we call πS a simple

S-allocation. Let Π0
S be the set of simple S-allocations for a given S. Conversely, if digraph

G = (S, {Γi}i∈S) consists only of vertex disjoint cycles, one may define its corresponding

S-allocation to be the S-allocation πS given by {πS(i)} = Γi for all i ∈ S.

4. A Fundamental Concept: The PMSS

Let M(N,º) be a houseswapping market. For each player i ∈ N and each coalition

S ⊆ N , we define Bi(S) to be the set of player i’s most preferred items among those items

in S, formally, Bi(S) := {h ∈ S | h ºi j for each j ∈ S}. A partition of N is a finite

ordered set T = {T1, T2, . . . , Tm} of nonempty disjoint subsets of N , with
⋃m

k=1 Tk = N .
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Let P denote the set of partitions of N .

Definition 4.1. We call a partition T = {T1, T2, . . . , Tm} ∈ P a partition by minimal

self-mapped sets (PMSS) if each Tk ∈ T satisfies the following conditions:

(1) Tk =
⋃

i∈Tk
Bi(N\ ∪k−1

l=1 Tl),

(2) 6 ∃S ⊂ Tk s.t. S =
⋃

i∈S Bi(N\ ∪k−1
l=1 Tl).

In words, a PMSS is a division of the players in the game into ordered groups

T1, T2, . . . , Tm. Condition (1) implies that for any player i in any group, the items he

prefers most among those not in lower-index-numbered groups are all owned by players in

his group. Hence, in this sense, we may regard groups with lower indices as “better” (or

“more desirable”). In addition, the fact that (1) holds with equality implies that i’s own

item is on some member of his group’s “most preferred” list.

Example 4.2. Let N = {1, . . . , 6} be the set of players who have the following preferences:

(1) 2 Â1 3 Â1 5 Â1 4 Â1 1 Â1 6 (2) 1 ∼2 3 Â2 4 Â2 6 Â2 5 Â2 2

(3) 1 Â3 2 Â3 3 Â3 4 Â3 5 Â3 6 (4) 2 Â4 5 Â4 6 Â4 3 Â4 4 Â4 1

(5) 1 ∼5 4 Â5 5 Â5 3 Â5 6 Â5 2 (6) 3 Â6 6 Â6 1 Â6 2 Â6 4 Â6 5.

This example has two PMSS’s:

T = {T1 = {1, 2, 3}, T2 = {4, 5}, T3 = {6}}

T ′ = {T ′1 = {1, 2, 3}, T ′2 = {6}, T ′3 = {4, 5}}

Partition T satisfies condition (1) for a PMSS, because (a) ∪i∈T1Bi(N) = T1 follows from

B1(N) = {2}, B2(N) = {1, 3}, and B3(N) = {1}; (b) ∪i∈T2Bi(N\T1) = T2 follows from

B4({4, 5, 6}) = {5} and B5({4, 5, 6}) = {4}; and (c) ∪i∈T3Bi(N\(T1 ∪ T2)) = T3 follows

from B6({6}) = 6. It is also easy to verify from the listing of these Bi’s that T satisfies

condition (2) for a PMSS. Thus T is a PMSS. A similar argument shows that T ′ is also a

PMSS. These are the only two PMSS’s for this example.
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Example 4.3 (Shapley and Scarf, 1974). Let N = {1, 2, 3} be the set of players who

have the following preferences:

(1) 2 Â1 3 Â1 1

(2) 1 ∼2 3 Â2 2

(3) 2 Â3 1 Â3 3

Here we see that there is only one nonempty set S for which ∪i∈SBi(N) = S, namely

S = N . Hence the only possible “T1” in a PMSS would be T1 = N . Indeed, T = {N} is

the only PMSS in this example.

Proposition 4.4. For every market M, there exists at least one PMSS.

Proof. We prove the Proposition by presenting an algorithm which takes as input any

market M, and returns a PMSS for that market:

<<Algorithm PMSS >>

Step 0 (Initialization) The market M = (N,º) is given. Set V = N and k = 1.

Step 1 (Defining a digraph) For each j ∈ V , find the set Bj(V ) of player i’s most

preferred items in V . Set Γj = Bj(V ) for each j ∈ V and let G be the digraph (V, {Γj}j∈V ).

[Note that Γj 6= ∅ for each j ∈ V .]

Step 2 (Finding a minimal self-mapped set) Find a minimal self-mapped set in digraph

G by using the algorithm MSMS. Let Tk denote the minimal self-mapped set.

Step 3 (Updating)

(3.1) Set V = V \ Tk.

(3.2) If V = ∅, then go to Step 4. Otherwise, set k = k + 1 and return to Step 1.

Step 4 (End) Let T be the ordered set {T1, . . . , Tk∗} of the minimal self-mapped sets

obtained hitherto. Here k∗ is the index number of the last minimal self-mapped set. Then

T is a PMSS for houseswapping market (N,º). HALT.//
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The algorithm must terminate because on each iteration the subraction of the minimal

self mapped set Tk shrinks the vertex set V . Also, note that by definition of V and

Γi = Bi(V ), on iteration k the minimal self-mapped set Tk consists of all of its members’

most preferred items in N \⋃k−1
l=1 Tl. Hence T = {T1, ..., Tk∗} is in fact a PMSS.

Lemma 4.5. Algorithm PMSS has computational complexity O(n3).

Proof. Consider any particular iteration of the algorithm. Step 1 takes O(n2) operations,

while, by Lemma 2.7, running algorithm MSMS in Step 2 is O(n2). Step 3 is O(n). Since

PMSS terminates after no more than n iterations, it must have complexity O(n3).

5. Segmentability of the Market

In this section we state necessary and sufficient conditions for a market to have a

nonempty strict core.

Definition 5.1. i) A top trading segmentation (TTS) of market M is a partition

T = {T1, T2, . . . , Tm} ∈ P that satisfies the following conditions:

(1) for each Tk ∈ T , Bi(N\ ∪k−1
l=1 Tl) ⊆ Tk for all i ∈ Tk,

(2) for each Tk ∈ T , there is no proper subset of Tk which satisfies (1) above.

(3) for each Tk ∈ T , there exists a Tk-allocation πk ∈ ΠTk
with πk(i) ∈ Bi(N\∪k−1

l=1 Tl)

for all i ∈ Tk.

ii) A Tk-allocation in (3) above is called a supporting Tk-allocation for segment Tk.

The reader will note that conditions (1) and (2) above are almost by themselves the

definition of PMSS (see Definition 4.1). In fact, we may more clearly see the relationship

between the two concepts by noting the following:

Lemma 5.2. If T = {T1, T2, . . . , Tm} is a TTS, then we have
⋃

i∈Tk
Bi(N\ ∪k−1

l=1 Tl) = Tk

for each Tk ∈ T .

Proof. From comparing the Lemma’s conclusion with condition (1) for a TTS, it is
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sufficient to show that for each k,
⋃

i∈Tk
Bi(N\ ∪k−1

l=1 Tl) cannot be a proper subset of Tk.

But this follows, due to the presence of the supporting Tk-allocation for segment Tk.

Corollary 5.3. Every TTS is a PMSS. If T is a PMSS, then T is also a TTS if it satisfies

condition (3) in the definition of TTS.

Corollary 5.3 suggests that in order to check whether a given PMSS T is a TTS, all we

need do is see if each of its segments Tk has a supporting Tk-allocation. To do this, define

for each Tk the bipartite graph in which both parts have |Tk| vertices, and an edge from i

in the first part to j in the second part exists if and only if j ∈ Bi(Tk). Now treat this as a

“cardinality matching problem” (Lawler, p. 183,195). If the “maximal matching” contains

|Tk| edges, the edges give the supporting Tk-allocation for segment Tk. If it contains less

than |Tk| edges, there is no supporting Tk-allocation.

It is well-known that if both parts of a bipartite graph have m vertices, there are

algorithms to solve the cardinality matching problem in O(m3) time (Lawler, p. 195).

Hence, we may check if Tk has a supporting Tk-allocation in O(|Tk|3) time. This in turn

implies that we may check if T is a TTS in O(
∑

k |Tk|3) time. But
∑

k |Tk|3 ≤ (
∑

k |Tk|)3 =

n3, so we have

Lemma 5.4. The computational complexity to check if a given PMSS is a TTS is O(n3).

In section 4, we saw that we can think of a PMSS as a partition of players into groups,

with lower-indexed groups being “better”. The same interpretation holds for a TTS. Again,

condition (1) means that for any player in any group, the items he prefers most among

those not in better groups are all owned by players in his group. But in addition, condition

(3) means that every player can get one of his most preferred items (among the items not

in better groups) through a feasible exchange within his own group.

If a TTS exists in a market, then a player i within a certain group in the TTS would

not have an incentive to trade with players in “worse” groups because such players’ houses
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are strictly less preferred to what i can obtain by feasible exchange within his own group.

Nor would i trade with players in better groups because by the same logic, such players

would not want to trade with him. He will thus accomplish a (second) best trade within

his own group. In this sense, the market is segmented into distinct groups.

We should note that in the case where no player exhibits indifference, the partition of

the market into “top trading cycles” fits the definition of a TTS.

At this point it is instructive to revisit Examples 4.2 and 4.3. In Example 4.2, we

see that PMSS T = {T1, T2, T3} is also a TTS, because the supporting Tk-allocations of

segments Tk, k = 1, 2, 3, are those corresponding to the cycles {1, 2, 3, 1}, {4, 5, 4}, and

{6, 6} respectively. Note that in this example, there is exactly one strict core allocation,

namely the N -allocation corresponding to the cycles {1, 2, 3, 1}, {4, 5, 4}, and {6, 6}. In

the proof of Theorem 5.5 we will formalize this connection between strict core allocations

and supporting allocations for TTS’s.

In Example 4.3, we saw that there is only one PMSS, namely T = {N} = {{1, 2, 3}}.
But it is clear that since B1(N) = B3(N) = {2} and B2(N) = {1, 3}, there is no N -

allocation πN with πN (i) ∈ Bi(N) for i = 1, 2, 3. Hence there are is no TTS in this

market. We also remark that Shapley and Scarf pointed out that the strict core is empty

in this example.

In the following, we show that the existence of a TTS, i.e. the segmentability of a

market, is a necessary and sufficient condition for the strict core to be nonempty.

Theorem 5.5. The strict core of market M(N,º) is nonempty if and only if a TTS

exists.

Proof: (If part) We first prove that if a TTS exists, then the strict core is nonempty.

Let T = {T1, T2, . . . , Tm} be a TTS and πk ∈ ΠTk
, k = 1, . . . , m, supporting Tk-
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allocations for the respective segments Tk. Then for each k ∈ {1, . . . , m},
Tk =

⋃

i∈Tk

Bi(N\ ∪k−1
l=1 Tl)

πk(i) ∈ Bi(N\ ∪k−1
l=1 Tl) for each i ∈ Tk.

Let x be the allocation such that for each i ∈ N , x(i) = πk(i) if i ∈ Tk. We claim that x

is a strict core allocation. To prove this claim, we suppose that some coalition S weakly

blocks x via the S-allocation πS . There are two cases: first, if πS maps each member of S

to a house within that member’s “group” of the TTS, then it is clearly impossible for πS

to assign any member of S a better house than he gets from x; second, if πS maps some

member of S to a house from a different group of the TTS, then it must assign to some

member i ∈ S a house from a worse group. But then necessarily x(i) Âi πS(i), so it is

impossible for S to weakly block x via πS after all.

(Only-if part) We suppose that the strict core is nonempty, and show this implies the

existence of a TTS.

Let x be any strict core allocation and T = {T1, T2, . . . , Tm} be a PMSS of the market

(a PMSS exists by virtue of Proposition 4.4). We now make the following claim:

Claim 5.6. For each Tk ∈ T , x(i) ∈ Bi(N\ ∪k−1
l=1 Tl) for each i ∈ Tk.

Proof. To show the Claim, assume on the contrary that there exist k∗ ∈ {1, . . . ,m} and

player i∗ ∈ Tk∗ such that

x(i) ∈ Bi(N\ ∪k−1
l=1 Tl) for each i ∈ Tk with k ∈ {1, . . . , k∗ − 1}, and (3)

x(i∗) 6∈ Bi∗(N\ ∪k∗−1
l=1 Tl). (4)

It follows from condition (1) of Definition 5.1 and (3) that for each k ∈ {1, . . . , k∗ − 1},

x(Tk) =
⋃

i∈Tk

{x(i)} ⊆
⋃

i∈Tk

Bi(N\ ∪k−1
l=1 Tl) ⊆ Tk.

Since x is a permutation of N , it must hold that

x(Tk) = Tk for each k ∈ {1, . . . , k∗ − 1}.
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So, for i ∈ Tk∗ , we have x(i) ∈ ∪m
l=k∗Tl = N\ ∪k∗−1

l=1 Tl. Therefore,

for each i ∈ Tk∗ , b ºi x(i) for b ∈ Bi(N\ ∪k∗−1
l=1 Tl). (5)

Now define a digraph G = (V, {Γi}i∈V ) by V := N\ ∪k∗−1
l=1 Tl and Γi = Bi(V ) for each

i ∈ V . We see that Tk∗ ⊆ V and furthermore that Tk∗ is a minimal self-mapped set of

G. Since each Γi (= Bi(V )), i ∈ V , is nonempty, we can apply Corollary 2.5 to conclude

that there exists a cycle C ⊆ Tk∗ (see Footnote 8 in Section 2) as a subgraph of G, with

i∗ ∈ C. Let S be set of vertices in C, and let πS be the corresponding simple S-allocation

to C (see the discussion in Section 3). We have

πS(i) ∈ Bi(V ) = Bi(N\ ∪k∗−1
l=1 T ) for all i ∈ S, including i = i∗. (6)

It follows now from (4), (5), and (6) that

πS(i∗) Âi∗ x(i∗), and

πS(i) ºi x(i) for each i ∈ S,

namely, strict core allocation x is weakly blocked by coalition S. This is impossible. Thus

the Claim must hold.

From Claim 5.6 and the fact that each Tk ∈ T satisfies condition (1) of Definition 4.1,

we see that for each i ∈ Tk,

x(i) ∈ Bi(N\ ∪k−1
l=1 Tk) ⊆ Tk.

Hence, since x is an allocation, we have x(Tk) = Tk. So, for each Tk, we can use x restricted

to Tk as a supporting Tk-allocation for segment Tk. This, together with the fact that T is

a PMSS, shows that partition T is a TTS. The proof of Theorem 5.5 is complete.

Corollary 5.7. Suppose market M(N,º) has a TTS T = {T1, ..., Tm}, with supporting

Tk-allocations for each segment Tk ∈ T that define an allocation x. Then x is a strict core

allocation of M. Conversely, if x is a strict core allocation of market M(N,º), then each

PMSS is actually a TTS, in which the supporting Tk-allocations are given by x.

Proof. This is clear from the proof of Theorem 5.5.
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Corollary 5.8. Let M(N,º) be a houseswapping market. Then exactly one of the fol-

lowing two conditions must hold:

(1) No PMSS is a TTS.

(2) Every PMSS is a TTS.

Proof. If the strict core of M is empty, Theorem 5.5 tells us that there are no TTS’s, so

no PMSS is a TTS. Alternatively, if the strict core of M is nonempty, then Corollary 5.7

tells us that every PMSS is a TTS.

6. An O(n3) Algorithm for Strict Core Analysis

It is now a simple matter to present an algorithm which takes as input a houseswapping

marketM, and outputs a strict core allocation or else a report that the strict core is empty:

<<Algorithm ST RICT CORE >>

(1) Run algorithm PMSS to generate a PMSS T = {T1, ..., Tm}.
(2) Determine if T is a TTS by checking if every Tk has a supporting Tk-allocation πk.

(A) If “yes”, by Corrolary 5.7 the allocation x defined by the πk’s is in the strict core.

(B) If “no”, then T is not a TTS, Corollary 5.8 implies that there are no TTS’s, and

so the strict core is empty.

Theorem 6.1. The computational complexity of algorithm ST RICT CORE is O(n3).

Proof. It is clear that Step 1 and Step 2 both are O(n3) (Lemmas 4.5 and 5.4), so the

Theorem follows.

7. Another Result regarding PMSS’s

We now state another lemma concerning PMSS’s, which will enable us to indepen-

dently derive a result of Wako (1991) and Ma (1994):

Lemma 7.1. Suppose that T = {T1, . . . , Tm} and T ′ = {T ′1, . . . , T ′m′} are PMSS’s of a

given market M = (N,º). Then
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(1) m = m′,

(2) for each Tk ∈ T , there exists a unique T ′lk ∈ T ′ with Tk = T ′lk .

In short, Lemma 7.1 says that any two PMSS’s must consist of the same sets, with

only the order of those sets possibly being different. This again generalizes what we know

to be true in the no-indifference case, where the listing of top trading cycles is unique,

except possibly for changes in the order of the cycles.

In Example 4.2, it is easy to see that (1) and (2) hold, just from noticing that the

two PMSS’s T = {T1 = {1, 2, 3}, T2 = {4, 5}, T3 = {6}} and T ′ = {T ′1 = {1, 2, 3}, T ′2 =

{6}, T ′3 = {4, 5}} consist of the same three sets.

Proof of Lemma 7.1. Before proceeding with the proof, we need to define a new con-

cept. Suppose M = (N,º) is a houseswapping market, and suppose S ⊆ N . Then the

submarketM−S is the market (N ′,º′), where N ′ = N \S and º′ is formed by restricting

º to the elements of N ′. It is clear that

Proposition 7.2. Suppose T = {T1, ..., Tm} is a PMSS in market M, and suppose k ∈
1, ..., m. Then T \ Tk is a PMSS of submarket M−Tk

.

Now we prove Lemma 7.1 by induction on m. If m = 1, then it is clear that the only

minimal self-mapped set of digraph (V, {Γi}i∈V ) = (N, {Bi(N)}i∈N ) is N itself, and so

the conclusion follows immediately.

So now suppose that the Lemma is true for m ≤ k, and we are given two PMSS’s

T and T ′, with T = {T1, ..., Tk+1}. First suppose T1 = T ′1. Then T \ T1 and T ′ \ T ′1 are

both PMSS’s for market M−T1 , and so by the inductive hypothesis consist of the same

sets (except possibly ordered differently). The conclusion follows.

Now suppose T1 6= T ′1. Then, since T1 and T ′1 are both minimal self-mapped sets

in digraph (N, {Bi(N)}i∈N ), Corollary 2.6 gives T1 ∩ T ′1 = ∅. Thus T ′1 is also a minimal

self-mapped set in digraph (N \ T1, {Bi(N \ T1)}i∈N\T1). This in turn implies that, using
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algorithm PMSS9 we can form a PMSS T ′′ for market M−T1 , with T ′′
1 = T ′

1. On the other

hand, the set T ′′′ = {T2, ..., Tk+1} is also a PMSS for market M−T1 , and T ′′′ consists of k

elements. Hence, by the inductive hypothesis T ′′ and T ′′′ consist of the same sets, except

possibly ordered differently. In particular, T ′
1 is an element of T ′′′.

Since T ′′′ ⊆ T , T ′
1 ∈ T ′′′ implies T ′

1 ∈ T . Hence, by Proposition 7.2 T \ T ′
1 is a PMSS for

market M−T ′1 , and this PMSS contains k elements. But T ′ \ T ′
1 is also a PMSS for M−T ′1 –

so by the inductive hypothesis again the PMSS’s T \T ′
1 and T ′ \T ′

1 must consist of the same

elements. Hence T and T ′ also consist of the same elements.

Definition 7.3. Let T = {T1, . . . , Tm} be a PMSS of market M(N,º). The top prefer-

ence digraph G(M) of M is the digraph given by V := N and Γi := Bi(N \ ∪k−1
l=1 Tl) for

each i ∈ N with i ∈ Tk ∈ T .

We note that the concept of top preference digraph is well-defined due to Proposition 4.4

and Lemma 7.1. The figures below show the top preference digraphs for Examples 4.2 and

4.3:

We also observe that a market has a TTS (or, equivalently, a strict core allocation)

if and only if its top preference digraph contains a subgraph which corresponds to an

9 Actually, we’d be using a modification of algorithm PMSS, where, instead of using
algorithm MSMS to find an arbitrary minimal self-mapped set on the first pass through
Step 2, we’d just take T ′

1.
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N -allocation. Such a subgraph exists in Figure 1, but does not in Figure 2.

Theorem 7.4 (Wako 1991, Ma 1994). Let x and y be two distinct strict core alloca-

tions of market M. Then x(i) ∼i y(i) for all i ∈ N .

Proof. From Corollary 5.7, strict core allocations x and y have their respective TTS’s,

which in turn are PMSS’s. Lemma 7.1 implies these PMSS’s are the same list of sets, say

{T1, ..., Tm}, but not in the same order. Now choose any i ∈ N , and let T i
k be the common

element of the two PMSS’s which contains i. From Claim 5.6, we have x(i) ∈ T i
k and

y(i) ∈ T i
k, and so x(i) ∈ Bi(T i

k) and y(i) ∈ Bi(T i
k). Hence x(i) ∼i y(i).

8. Strict Core and Linear Inequalities

In the study of Gale-Shapley’s (1962) marriage game, some of the most interesting

theoretical results are those which use polyhedral combinatorics to characterize the core.

In particular, given any marriage game G one may define a “marriage polytope” P (G)

whose extreme points exactly correspond (in the natural way) with the elements of the

game’s core (see Vande Vate 1989, Rothblum 1991, Roth-Rothblum-Vande Vate 1993, and

Abeledo-Rothblum 1994).

In this section we extend this idea to the realm of houseswapping games. Specifically,

given a houseswapping market M, we define a “corresponding linear inequality system”

CLIS(M). We show CLIS(M) is feasible if and only if the strict core of M is nonempty.

Furthermore, if CLIS(M) is feasible, the set of extreme points of the feasible set con-

sists entirely of 0-1 integral solutions, and exactly corresponds to the set of strict core

allocations.

Let M(N,º) be a houseswapping market. Denote by 2N the set of nonempty subsets

of N , and recall that Π0
S denotes the set of simple S-allocations for a given S ∈ 2N

(see Section 3). Now define the corresponding linear inequality system for M, or
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CLIS(M), to be the linear inequality system in x = (xij)i∈N,j∈N given by:

∑

i∈S


 ∑

j:jÂiπ(i)

xij +
1
|S|

∑

j:j∼iπ(i)

xij


 ≥ 1 for each S ∈ 2N and π ∈ Π0

S (7a)

∑

i∈N

xij = 1 for each j ∈ N (7b)

∑

j∈N

xij = 1 for each i ∈ N (7c)

xij ≥ 0 for each i, j ∈ N. (7d)

We see that any integer vector x that satisfies (7b), (7c) and (7d) has the following

properties:

(1) xij = 0 or 1 for each (i, j) ∈ N ×N

(2) for each i ∈ N, there is a unique j ∈ N with xij = 1

(3) for each j ∈ N, there is a unique i ∈ N with xij = 1.

These properties show that x can be regarded as the N -allocation that maps each i ∈
N to the unique element j ∈ N with xij = 1. We call the conditions (7b),(7c) and

(7d) the allocation conditions or permutation conditions, and an integer vector

satisfying these conditions an allocation vector or a permutation vector depending

on the context.10 Given a permutation vector x = (xij)i∈N,j∈N , we can write it in function

form by defining each x(i), i ∈ N , to be the element j ∈ N with xij = 1. Conversely, given

x ∈ ΠN , we can represent it in vector form by defining xij := 1 for (i, j) ∈ N × N with

x(i) = j and xij := 0 for (i, j) ∈ N ×N with x(i) 6= j. We use both notations together in

an effort to clarify our exposition.

Lemma 8.1. Suppose that y = (yij)i∈N,j∈N is a strict core allocation vector of a market

M = (N,º). Then y is a feasible solution of CLIS(M).

10 In the economics/game theory context, the term “allocation” is natural because x
represents a way to redistribute the indivisible goods in a market. In a mathematics
context, the term “permutation” is natural because x represents a bijection of the set
N = {1, ..., n} to itself.
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Proof. Since y is an allocation vector, it satisfies the permutation conditions, i.e., (7b),

(7c) and (7d). Thus the proof is complete if we can show that (7a) holds with y. We prove

this by contradiction.

Suppose that there exist a coalition S ∈ 2N and a simple S-allocation π ∈ Π0
S with

∑

i∈S


 ∑

j:jÂiπ(i)

yij +
1
|S|

∑

j:j∼iπ(i)

yij


 < 1. (8)

We see that it is impossible for (8) to hold if there exists i ∈ S, j Âi π(i) with yij = 1.

Hence, since y is a 0-1 vector, we have yij = 0 for all (i, j) for which j Âi π(i). But this

implies that (switching to the function form)

π(i) ºi y(i) for all i ∈ S. (9)

In addition, we note that it is impossible for π(i) ∼i y(i) for all i ∈ S, because in that case

(8) would hold with equality. Hence there must be some i∗ ∈ S for which π(i∗) Âi∗ y(i∗).

But this in combination with (9) implies that coalition S weakly blocks y via S-allocation

π, so we have a contradiction.

Lemma 8.2. Suppose that x is a feasible solution of the CLIS of market M(N,º). Then

x is a convex combination of strict core allocation vectors.

Proof. [1] First, let T = {T1, . . . , Tm} be a PMSS for market M; a PMSS exists by

virtue of Proposition 4.4. Next, since x (even though not necessarily integral) satisfies the

permutation conditions, it follows from the Birkhoff-Von Neumann Theorem (in Birkhoff,

1946) that there exist a finite set of permutation vectors F = {x1, . . . , xK} and a strictly

positive probability vector λ = (λ1, . . . , λK) with x = ΣK
k=1λkxk. The proof will be

complete if we show that each xk ∈ F is a strict core allocation vector.

[2] To show this we suppose that there is some nonempty subset K̂ of {1, ..., K} for which

xk is not a strict core vector if k ∈ K̂, but xk is a strict core vector if k 6∈ K̂. Then, for
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each k ∈ K̂, we claim there exists l∗(k) ∈ {1, ..., m} such that

xk(tk) 6∈ Btk
(N\ ∪l∗(k)−1

h=1 Th) for some tk ∈ Tl∗(k), and

xk(t) ∈ Bt(N\ ∪l−1
h=1 Th) for all l ∈ {1, ..., l∗(k)− 1} and t ∈ Tl

(10)

To see (10), suppose it were not true, i.e.,

xk(t) ∈ Bt(N\ ∪l−1
h=1 Th) for all l ∈ {1, ...,m} and t ∈ Tl. (11)

Since T is a PMSS, we know Bt(N\ ∪l−1
h=1 Th) ⊆ Tl for each l ∈ {1, ...,m} and t ∈ Tl. By

(11), we would have xk(t) ∈ Tl for all l ∈ {1, ...,m} and t ∈ Tl. Hence xk(Tl) = Tl for each

l ∈ {1, ...,m}. But this in combination with (11) would imply that T was a TTS whose

segments are supported by allocation xk. Thus it follows from Corollary 5.7 that xk was

a strict core allocation. This is a contradiction, and so (10) must be true.

[3] Now let k∗ ∈ K̂ be an element with l∗(k∗) = mink∈K̂ l∗(k). Without loss of generality,

suppose k∗ = 1 and denote l∗ := l∗(1) for simplicity. We then see the following:

xk(i) ∈ Bi(N\ ∪l−1
h=1 Th) for each k ∈ {1, ..., K}, l ∈ {1, . . . , l∗ − 1} and i ∈ Tl (12)

x1(i∗) 6∈ Bi∗(N\ ∪l∗−1
l=1 Tl) for some i∗ ∈ Tl∗ (13)

xk(Tl) = Tl for each k ∈ {1, ...,K} and l ∈ {1, . . . , l∗ − 1}. (14)

[(14) holds by essentially applying the argument following (11) above to each k and l.]

[4] It follows from Corollary 2.5 that there exists a set S∗ ⊆ Tl∗ and a simple S∗-allocation

π∗ ∈ Π0
S∗ such that

i∗ ∈ S∗ and π∗(i) ∈ Bi(N\ ∪l∗−1
l=1 Tl) for each i ∈ S∗. (15)

Now (12), (14), and the second statement in (15) together imply that for each xk ∈ F ,

xk
ij = 0 for all i ∈ S∗ and j ∈ N with j Âi π∗(i). (16)
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And, (13), (14), and (16) together imply that

x1
i∗j = 0 for all j ∈ N with j ºi∗ π∗(i∗). (17)

[5] From (16) and the fact that each xk satisfies (7c) and (7d), we obtain the following for

each xk ∈ F = {x1, ..., xK}:
∑

i∈S∗


 ∑

j:jÂiπ∗(i)

xk
ij +

1
|S∗|

∑

j:j∼iπ∗(i)

xk
ij


 =

∑

i∈S∗

1
|S∗|

∑

j:j∼iπ∗(i)

xk
ij

≤
∑

i∈S∗

1
|S∗|

∑

j∈N

xk
ij = 1. (18)

[6] And, using (17) as well, we obtain a strict inequality for x1, i.e.,

∑

i∈S∗


 ∑

j:jÂiπ∗(i)

x1
ij +

1
|S∗|

∑

j:j∼iπ∗(i)

x1
ij


 =

∑

i∈S∗

1
|S∗|

∑

j:j∼iπ∗(i)

x1
ij

=
1
|S∗|


 ∑

j:j∼i∗π∗(i∗)

x1
i∗j +

∑

i∈S∗:i 6=i∗

∑

j:j∼iπ∗(i)

x1
ij




≤ 1
|S∗| (0 + (|S∗| − 1))

< 1. (19)

[7] Since x = ΣK
k=1λkxk, it follows from inequalities (18) and (19) that

∑

i∈S∗


 ∑

j:jÂiπ∗(i)

xij +
1
|S∗|

∑

j:j∼iπ∗(i)

xij


 < 1.

Thus x does not satisfy inequality (7a) with S = S∗ and π = π∗. However, this contradicts

that x is a feasible solution of CLIS(M). The contradiction is due to the assumption that

at least one xk ∈ F is not a strict core allocation vector. Therefore each xk ∈ F must be

a strict core allocation vector. As indicated at the end of [1], this completes the proof.

We should note that the proof for Lemma 8.2 does not assume the existence of a

strict core allocation, but it only assumes the existence of a feasible solution of CLIS(M).

Hence it is clear from Lemma 8.2 that the following corollary holds:
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Corollary 8.3. If the CLIS of a marketM(N,º) is feasible, then the strict core of market

M is nonempty.

Lemmas 8.1 and 8.2 and the corollary above imply the following theorem.

Theorem 8.4. Let M be a houseswapping market. Then

(1) the strict core of M is nonempty if and only if CLIS(M) is feasible;

(2) the feasible set of CLIS(M) is the convex hull of the set of strict core allocation

vectors.

Proof. First, claim (1) follows from Lemma 8.1 and Corollary 8.3. Next we prove claim

(2). Lemma 8.1 implies that the convex hull of the set of strict core allocation vectors is a

subset of the feasible set of the CLIS. The inverse inclusion follows from Lemma 8.2, since

any (fractional) feasible solution of the CLIS can be represented by a convex combination

of strict core allocation vectors. Hence we obtain claim (2).

We remark that feasible (but not necessarily integral) solutions to (7a)-(7d) can be

thought of as “fractional strict core outcomes”, much in the spirit of Roth-Rothblum-Vande

Vate (1993) for marriage games. The idea is that if x is such a solution, we can think of

xij as the percentage of time (in a time-sharing scenario) or the probability (in a lottery)

that i receives house j.11

9. The “Regular” Core

At this point one might wonder whether a result similar to Theorem 8.4 might hold for

the “regular” core (see Section 3 for the definition). For the core of market M, a natural

11 In the Roth-Rothblum-Vande Vate paper, the authors go on to show that under a
suitably defined partial order, the set of fractional (strict) core matchings is a lattice.
This partial order is interesting in the two-sided setup because the players in general rank
different core outcomes differently. However, in our one-sided setup the players each rank
all strict core outcomes the same (Theorem 7.4), so studying such a lattice structure is not
an interesting problem.
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analogue of the CLIS (7a)-(7d) would be the following linear inequality system:

∑

i∈S


 ∑

j:jºiπ(i)

xij


 ≥ 1 for each S ∈ 2N and π ∈ Π0

S (20a)

∑

i∈N

xij = 1 for each j ∈ N (20b)

∑

j∈N

xij = 1 for each i ∈ N (20c)

xij ≥ 0 for each i, j ∈ N. (20d)

Proposition 9.1. A vector y = (yij)i∈N,j∈N corresponds to a core allocation of market

M(N, º) if and only if y is an integral feasible solution of linear inequality system (20a)-

(20d).

Proof. The “if” part is proved by a similar argument to the proof of Lemma 8.1. To prove

the “only-if” part, suppose on the contrary that there exists a integral feasible solution y

to linear inequality system (20a)-(20d) which is not a core allocation vector. Since y is an

integer vector satisfying (20b)-(20d), y is an allocation vector. Since y does not give a core

allocation, however, there must exist a coalition S∗ and a simple S∗-allocation π∗ ∈ ΠS∗

such that (writing in function form) π∗(i) Âi y(i) for all i ∈ S∗. Since y is a permutation

vector, this implies that yij = 0 for all (i, j) ∈ S∗×N with j º π∗(i). However, this means

that y does not satisfy (20a) for S∗ and π∗, namely,
∑

i∈S∗

(∑
j:jºiπ∗(i) yij

)
= 0 < 1. This

is a contradiction. Hence y must be a core allocation vector.

Proposition 9.1 means that each of the core allocation vectors corresponds to an

extreme point of the feasible region of system (20a)-(20d). However, it is not true that all

of the extreme points of the feasible region necessarily correspond to core allocations. We

show this by the following example:

Example 9.2. Let N = {1, 2, 3} be the set of players who have the following preferences:

(1) 3 Â1 2 Â1 1
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(2) 1 Â2 3 Â2 2

(3) 2 Â3 1 Â3 3.

The system (20a)-(20d) in this example turns out to be the allocation conditions plus

the following inequalities:

x11 + x12 + x13 ≥ 1

x21 + x23 + x22 ≥ 1

x32 + x31 + x33 ≥ 1

x12 + x13 + x21 ≥ 1

x13 + x32 + x31 ≥ 1

x21 + x23 + x32 ≥ 1

x13 + x21 + x32 ≥ 1

x13 + x21 + x32 + x12 + x23 + x31 ≥ 1

In this example there is a unique core allocation, which is described by allocation vector

y with y13 = y21 = y32 = 1 and y11 = y12 = y22 = y23 = y31 = y33 = 0. Needless to say,

vector y satisfies the system above. Hence, if there were an exact correspondence between

the extreme points and the core allocations, then y would be the only feasible solution to

the system above. However, we can easily see that isn’t the case, because vectors such as

y11 = y12 = ... = y33 = 1
3 are also feasible.
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