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I delight in talking politics. I talk them all day long. But I can’t bear

listening to them.

- Oscar Wilde, An Ideal Husband.

1 Introduction

Many real world group decisions incorporate a communication phase as part of the decision

making procedure. For example, trial jurors are made to deliberate before casting their

votes, hiring committees meet before making their final hiring recommendations, and top

management teams convene before determining their firm’s investment strategies.

The focus of this paper is the introduction of communication into a mechanism design

problem of collective choice with information acquisition.

We analyze a mechanism design problem involving the choice of one out of two al-

ternatives. We consider a group of homogeneous agents who are capable of investing in

information acquisition. The designer chooses the size, communication system, and voting

rule in order to maximize the (common) expected utility of the collective decision. Our

goal is to characterize the solution of this mechanism design problem.

The characterization of the optimal mechanism yields a few interesting insights: 1. In

order to provide strong incentives for information acquisition, the optimal device does not

necessarily utilize all the information that is reported; 2. The optimal size of the decision

panel is bounded and does not necessarily coincide with the maximal number of agents who

can be induced to purchase information in equilibrium; and 3. The comparative statics of

the optimal mechanism exhibit some regularities and irregularities, e.g., the expected social

value is monotonic in the cost of information and accuracy of private information, but the

optimal panel size is not monotonic in the signals’ accuracy.

Formally, we consider the standard voting setup (see Feddersen and Pesendorfer [1998]

or Persico [2002]). There are two possible states of the world and two alternatives that

need to be matched to the states. All agents have the same utility function and a common
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prior on the state of the world. At the outset of the game, each agent in the chosen panel

can pay a positive cost and receive, in return, a signal of fixed accuracy. Players can

then communicate with one another after which they cast their simultaneous votes. The

model can serve as a parable to the decision making process of a jury (each juror decides

whether to attend the testimonies or not, the jurors then meet to discuss the case, after

which they simultaneously cast their votes), an advisory committee (each member invests

in information and gives advice following conversation with the other committee members),

etc.

We consider a designer with identical preferences to those of the agents in the popu-

lation. The designer chooses the size of the decision panel, the voting rule by which the

collective choice is made, and the protocol according to which panel members communicate.

For any fixed size n of the decision panel, there are many voting rules available for

the designer to choose from. For example, one class of well-known procedures is that

of threshold voting rules, parametrized by r = 1, . . . , n. Under voting rule r, the first

alternative is chosen if and only if at least r agents vote in favor of it. The results in

Gerardi and Yariv [2003] simplify the designer’s problem tremendously by illustrating that

communication renders a large class of voting rules equivalent with respect to the sequential

equilibrium outcomes they yield (see Section 3 for a complete description of the results). For

example, the intermediate threshold voting rules 2, ..., n− 1 are non-dictatorial and hence
yield the same set of sequential equilibrium outcomes. Furthermore, the set of sequential

equilibrium outcomes corresponding to any other voting rule (such as the threshold voting

rules r = 1 and r = n) is included in this set. In our current framework, Gerardi and

Yariv [2003] implies that the designer’s choice of voting rule does not affect the collective

outcomes and that she can concentrate on communication devices that give only unanimous

recommendations.

For any fixed number of agents, the optimal scenario, which we term the first best,

entails all agents purchasing information and reporting truthfully. This information is then
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utilized in a statistically efficient way. That is, for every profile of signals, the optimal

device calculates, using Bayes’ rule, the probability that each state of the world has been

realized and chooses the optimal alternative.

Unfortunately, for large numbers of agents, the marginal contribution of each signal

becomes quite low and, since the cost of information is positive, a free rider problem

disables the first best scenario from constituting an equilibrium.

The benevolent designer faces two options. The mechanism can simply induce a small

number of agents to purchase information and make the best statistical use of it. Alterna-

tively, the designer can alleviate the free rider problem by using an aggregation rule which

is not statistically efficient, thus increasing the incentives to acquire information. This ap-

proach involves a compromise between achieving more information in the population, but

creating intentional distortions in the interpretation of the collective signals.

Our theoretical results indicate that the optimal design employs both approaches. One

can achieve the optimal expected social value by using distortionary mechanisms. These

are devices that induce more players to acquire information than would be possible if the

mechanismwere using statistically efficient rules in creating recommendations. Nonetheless,

the optimal mechanism does not always exhaust the number of agents that can be induced

to purchase information. That is, the optimal size of a panel of decision makers may be

smaller than the maximal number of players who can be made to invest in information in

equilibrium.

The mechanism design problem described so far depends on essentially three parameters:

a preference parameter indicating the relative preference of matching each alternative to

each state (in the terminology of the jury literature, this is the weight each juror puts

on convicting the innocent relative to acquitting the guilty), the accuracy of the private

information, and the cost of private information.

There are a few interesting insights regarding the comparative statics of the mechanism

design problem. As was already mentioned, the expected (common) utility of the optimal
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mechanism is decreasing in the cost of information and increasing in the accuracy of avail-

able signals. It also appears that as the cost of information increases, the optimal decision

panel decreases in size. Finally, the optimal committee size is not monotonic in the signals’

accuracy.

The paper is structured as follows. Section 2 overviews some of the related literature.

Section 3 presents the design problem analyzed in the paper. Section 4 illustrates the

important features of the optimal mechanism, regarding the size of the committee, and

the way the information agents report is aggregated. Section 5 provides some comparative

statics pertaining to the optimal design solution. Section 6 concludes. Most technical

proofs are relegated to the Appendix. Throughout the paper we label the group of decision

makers a decision panel or committee interchangeably.

2 Related Literature

The current paper is linked to a few strands of literature. First, the paper contributes

to the literature on mechanism design with endogenous information. While most of this

literature deals with auction and public good models (see, e.g., Auriol and Gary-Bobo

[1999], Bergemann and Välimäki [2002], and references therein), there are a few exceptions

focusing on collective decision-making.

Persico [2002] is possibly the closest paper to ours. He considers jury decisions and

allows the jurors to acquire information before voting. In contrast to our model, the jurors

are not allowed to communicate. Persico [2002] analyzes the problem of the designer who

can choose the size of the jury and the voting rule. While the tension between giving

incentives to acquire information and aggregating information efficiently comes through

in his framework, the optimal mechanism is very different from ours. In particular, the

distinction between different voting rules plays a crucial role in Persico [2002] but becomes

irrelevant in our context once we allow for communication.

Li [2001] considers a committee of a fixed size and allows each player to invest in the
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precision of her private signal. Information is a public good and, thus, there is an insufficient

effort to gather information. To alleviate this problem, it is optimal to introduce statistical

distortions to the decision rule. In Li [2001] investments as well as signals are publicly

observed and thereby verifiable. As we show below, in our setup verifiability assures that a

non-distortionary rule is optimal when the committee is large enough. It is in environments

in which investment and acquired signals are not transparent (such as in the case of jury

decisions, hiring committee decisions, etc.) that distortionary devices end up being optimal.

Mukhopadhaya [1998] restricts attention to majority rule elections and compares com-

mittees of different sizes. Players decide whether to acquire information or not before

voting (and communication is prohibited). Mukhopadhaya [1998] shows that the quality

of the decision may worsen when the size of the committee increases. Cai [2003] looks

at a continuous framework in which the policy preferences and information structures are

captured by normal random variables. Members exert non-verifiable efforts in gathering

information, report these preferences to the principal, who then uses the mean decision

rule to determine the collective policy. Cai characterizes the optimal committee size in this

setting and shows that it is finite. Furthermore, Cai illustrates that the optimal size is

non-monotonic in the variation of preferences of the committee members.

Our paper is also connected with a few recent attempts to model strategic voting with

communication. Coughlan [2000] adds a straw poll preceding the voting stage. He shows

that voters reveal their information truthfully if and only if their preferences are sufficiently

close. Doraszelski, Gerardi and Squintani [2002] study a two-player model with commu-

nication and voting. Preferences are heterogenous (not necessarily aligned) and private

information. They show that some, but not all, information is transmitted in equilibrium,

and that communication is beneficial. Austen-Smith and Feddersen [2002] analyze a model

in which a deliberative committee of three agents needs to choose one of two alternatives.

Each player has private information on two dimensions: perfect information concerning

her preferences and noisy information concerning the state of the world. Austen-Smith
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and Feddersen model deliberations as a one-round process in which all players simultane-

ously send public messages. They show that when such deliberations precede the voting

stage, majority rule induces more information sharing and fewer decision-making errors

than unanimity.

As mentioned, Gerardi and Yariv [2003] show that communication renders a wide range

of voting rules equivalent with respect to the sequential equilibrium outcomes they produce.

These results are used in our current analysis. They imply that the designer’s choice

of voting rule does not affect the collective outcomes and that she can concentrate on

communication devices that give only unanimous recommendations.

In the political science literature, Habermas [1976] was one of the first to lay foundations

for the deliberative democracy school. He put forward a universal theory of pragmatism and

directed attention to the importance of communication as foundations for social action. His

theory served as a trigger for an entire body of work focusing on the effects of communication

on how institutions function and, consequentially, should be designed (see Elster [1998] for

a good review of the state of the art of the field). The research presented here provides an

initial formal framework to study some of these issues.

3 Mechanism Design with Information Acquisition

In this section we introduce our general setup and some preliminary observations. We con-

centrate on the case replicating the standard committee voting problem (see, e.g., Feddersen

and Pesendorfer [1998] or Persico [2002]). While our setup is germane to many collective

decision environments, the reader may find it useful to trace our modeling choices with a

jury metaphor in mind.

There are two states of the world, I (innocent) and G (guilty), with prior distribution

(P (I) , P (G)) . The alternatives (or decisions) are A (acquittal), and C (conviction). There

is an infinite pool of identical agents. All the agents as well as the mechanism designer

share the same preferences which depend on the state of the world and the final decision.
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Let q be a number in (0, 1) . The common utility is given by:

u (d,ω) =

 −q if d = C and ω = I
− (1− q) if d = A and ω = G
0 otherwise.

where d and ω denote the collective decision and the state of the world, respectively.

To intuit this utility specification, consider a jury decision scenario. Jurors prefer to

make the correct decision, i.e., acquitting the innocent and convicting the guilty (in this

case we normalize the utility to zero). The ratio q
1−q can be thought of as the jurors’

perceived cost of convicting the innocent relative to that of acquitting the guilty.

Each agent can purchase a signal of accuracy p > 1
2
. That is, upon paying the cost

c > 0, the agent receives a signal s ∈ {i, g} satisfying Pr (s = i|I) = Pr (s = g|G) = p.

Using the jury metaphor, each juror has to decide whether to pay attention or not to the

testimonies presented during the trial. These testimonies provide a noisy signal concerning

the guilt of the defendant.

If more than one agent purchases information, we assume their signals are conditionally

independent. Moreover, we only attend to the case in which an agent can buy at most one

signal. While these assumptions may not always be completely realistic, they serve as a

first approximation and make our benchmark model tractable.

Committees make joint decisions by voting. A voting rule specifies a set of actions for

each player and an alternative (A or C) for every profile of actions. A well-known class of

voting procedures consists of threshold voting rules. Consider a committee of size n. Under

the threshold voting rule r = 1, . . . , n, each member can vote for either alternative, A or

C, and the final decision is C if and only if r or more members vote in favor of it. Later on

we will be using the notion of non-dictatorial voting rules. A voting rule is non-dictatorial

if for every alternative, A or C, there exists an action profile that yields that alternative,

and is robust to unilateral deviations (i.e., the alternative is chosen even if a single player

changes her action). For example, in a committee of size n, any threshold voting rule
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r = 2, . . . , n− 1 is non-dictatorial, while the voting rules r = 1 and r = n (the unanimity
rule) are dictatorial.

We allow the members of a committee to communicate before casting their votes. We

therefore add a cheap talk phase to the voting game and consider cheap talk extensions.

A cheap talk extension is a game that consists of one or more communication stages and

a voting stage. In every communication stage, the members exchange messages among

themselves (we assume that an impartial mediator is not available). In the last stage (the

voting stage), the players choose their votes simultaneously. Payoffs depend on the players’

signals and votes, but not on their messages (see Myerson [1991] for a general definition of

cheap talk extensions to arbitrary games).

In our environment there are infinitely many ways to make a collective decision. First,

we can have committees of different sizes. Second, for a committee of a given size we can

choose different voting rules. Finally, we can select different protocols according to which

the members of a committee communicate before casting their votes. Of course, these

variables will affect the agents’ decisions (whether they acquire information or not, as well

as how they communicate and vote) and, therefore, the quality of the final decision. We

now analyze the problem of designing the optimal mechanism. To accomplish this, we

study the following game.

Stage 1 The designer chooses an extended mechanism, i.e., the size of the committee n, the

voting rule, and a cheap talk extension (i.e., how the players can exchange messages

before voting).

Stage 2 All agents observe the designer’s mechanism. Each agent j = 1, ..., n decides

whether to purchase a signal. These choices are made simultaneously, and each

member of the committee does not observe whether other members have acquired

information.1

1Our analysis would, in fact, be tremendously simplified if investments were overt (see Footnote 5).
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Stage 3 All the agents in the committee exchange messages (as specified by the cheap talk

extension) and vote.

Note that the chosen extended mechanism is comprised partly of the size of the decision

panel. This is where we use the assumption that there exists an infinite pool of identical

players free to be selected by the designer as participants in the collective decision making

process.

Stages 2 and 3 constitute an extensive-form game played by the agents 1, ..., n. We re-

strict attention to sequential equilibria in which the players use pure (behavioral) strategies

in Stage 2, and are allowed to randomize in Stage 3. A strategy profile of this game deter-

mines an outcome (i.e., the probabilities that the correct decision is made in state I and in

state G) and therefore, the expected common utility of the decision. The designer chooses

the mechanism to maximize her utility (from the decision). In particular, the designer

does not take into account the cost incurred by the informed agents. There are different

situations in which this assumption is appropriate. The designer may be a principal who

delegates the final decision to a committee. Alternatively, the decision may affect the wel-

fare of every individual in a large society and the designer can be a benevolent planner

(Persico [2002]). In this case, any increase in the utility from the decision can compensate

for the information costs paid by the agents.

The assumption that players can invest in information, thereby endogenizing their types,

which does appear in Persico [2002], is a deviation from some of the prevalent models in

the literature (e.g., Austen-Smith and Banks [1996] and Feddersen and Pesendorfer [1996,

1998]). We find this model particularly appealing both on realistic and theoretical grounds.

Indeed, when thinking about real-life decision panels, players need to decide whether (and

sometimes to what extent) to invest in information acquisition: jurors choose whether to

However, in many situations in which agents engage in information acquisition, investment in information
is indeed covert and signals are non-verifiable. For example, jurors would have a hard time proving they
had attended testimonies, committee members do not check whether their colleagues have gone over the
relevant background information before convening, etc.
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attend or not the testimonies presented to them, hiring committee members decide whether

to carefully go over the candidate’s portfolio or not, etc. Theoretically, this framework

allows us to study mechanism design in situations where there are two forces at play. On

the one hand, the mechanism should use the information available as efficiently as possible.

On the other hand, the mechanism needs to provide agents with incentives to invest in

information.

We denote each agent j’s type in Stage 3 by tj ∈ Tj ≡ {φ, i, g}, where φ stands for

an agent who does not purchase information, and i or g stand for an agent who purchases

information and receives i or g as the realized signals, respectively.

The analysis presented in Gerardi and Yariv [2003] simplifies enormously the designer’s

problem. Indeed, once players decide whether to acquire information or not, and the

appropriate signals are realized, we are in the setup of that paper. Suppose the jury has

at least three members. Consider a voting rule and a communication protocol. A strategy

profile of the corresponding cheap talk extension induces a mapping from the set of types’

profiles into [0, 1] , the set of probability distributions over the alternatives A and C. For

any voting rule ψ, Gerardi and Yariv characterize Γψ, the set of mappings induced by

sequential equilibria of arbitrary cheap talk extensions. We remind the reader of the notion

of non-dictatorial voting rules, introduced earlier, which identifies rules such that for every

alternative, A or C, there exists an action profile that yields that alternative, and is robust

to unilateral deviations. Gerardi and Yariv show that all non-dictatorial voting rules are

equivalent, in the sense that they all implement the same set of mappings (Γψ = Γψ0 for

any pair (ψ,ψ0) of non-dictatorial voting rules). Gerardi and Yariv also show that with

a dictatorial voting rule it is possible to implement only a subset of mappings (if ψ is

non-dictatorial and ψ0 is dictatorial, then Γψ0 ⊆ Γψ). Finally, they demonstrate that any

element of Γψ can be implemented with a sequential equilibrium in which there is always

unanimous consensus at the voting stage.

These results imply that when the size of the committee is n > 2, we can ignore the
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choice of the voting rule. Moreover, we only need to consider mappings from types into

final decisions that give all players an incentive to reveal their private information. To state

formally this simplified problem, we need to introduce some notation. A communication

device in a committee of size n is a mapping γ : T1 × ... × Tn → [0, 1] (recall that Tj =

{φ, i, g}). Given a committee with n members and a communication device γ, consider the
following game. All players simultaneously decide whether to purchase a signal. Then each

player j = 1, ..., n reports her type to the device, and γ (t) denotes the probability that the

defendant is convicted when the vector of reports is t.2 We refer to this game as the game

induced by γ. Let σj define player j’s choice at the information acquisition stage, i.e., σj

specifies whether player j acquires information or not (as already mentioned, we do not

allow for mixed strategies in this stage of the game). Given σj, we let (σj, ∗) define the
strategy under which player j chooses σj at the information acquisition stage and reports

truthfully her type to the device.

It follows from Gerardi and Yariv [2003] that when the designer chooses a commit-

tee of size n > 2, we need only to consider pairs of decision profiles (σ1, . . . ,σn) and

communication devices γ such that the strategy profile ((σ1, ∗) , . . . , (σn, ∗)) constitutes
a (sequential) equilibrium of the game induced by γ.3 This means that the acquisition

strategies (σ1, . . . ,σn) and the communication device γ have to satisfy the following two

constraints. First, given (σ1, . . . ,σn) , the device γ is incentive compatible (i.e., each player

has an incentive to reveal her type truthfully). Second, if all players report their true types
2Although we restrict attention to direct communication, the reader may find it useful to interpret the

device as an exogenous mediator who helps the members of the committee communicate (in Gerardi and
Yariv [2003] we show that there is no difference between mediated and unmediated communication). If the
players report vector t to the mediator, then with probability γ (t) she recommends to every player to vote
in favor of conviction (and with probability 1 − γ (t) the mediator invites all player to vote to acquit). If
the voting rule is non-dictatorial, each player has no incentive to disobey the mediator’s recommendation
provided that all her opponents behave likewise.

3In this paper, we do not assume that the designer is able to commit to a function that maps the
players’ information into final decisions (perfect commitment). One would think that perfect commitment
is beneficial for the designer. Our analysis shows that this is not the case. With communication and
non-dictatorial voting rules it is possible to implement the same outcomes that can be implemented with
perfect commitment.
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to the device γ and player j’s opponents use strategies (σ1, . . . ,σj−1,σj+1, . . . ,σn) then σj

is optimal for player j (where j = 1, . . . , n).

Although this problem is much simpler to analyze than the original one, in order to

characterize the optimal mechanism we still have to consider all possible sizes and, for

each size, all pairs ((σ1, . . . ,σn) , γ) that satisfy the requirements described above.We now

present a number of steps that further simplify the designer’s problem.

Given the committee size n, there are many pairs ((σ1, . . . ,σn) , γ) for which the strategy

profile ((σ1, ∗) , . . . , (σn, ∗)) is an equilibrium of the game induced by γ. In particular, there
are profiles (σ1, . . . ,σn) in which all players acquire information, and profiles (σ1, . . . ,σn) in

which one or more players do not pay the cost c to observe a signal. However, without loss

of generality, we can restrict attention to profiles (σ1, . . . ,σn) in which every member of the

committee buys the signal. Consider an outcome implemented by a pair (((σ1, . . . ,σn) , γ))

in which only players 1, ..., n0 acquire the signal, where n0 < n. It is easy to show that the

same outcome can be implemented with a committee of size n0 and a communication device

γ0 that gives incentives to all members to acquire information and report it truthfully. For

every vector of reports t1, ..., tn0 , let γ0 (t1, ..., tn0) = γ (t1, ..., tn0 ,φ, ...,φ) . Under the original

pair (((σ1, . . . ,σn) , γ)), the first n0 players know that players n0+1, ..., n do not purchase the

signal and report message φ to the device γ (remember that γ induces truthful revelation).

If players 1, ..., n0 decide to acquire information and be sincere under γ then they have

an incentive to do the same under γ0. Therefore, in the remainder of the section we focus

on communication devices that induce all players to acquire information and reveal it

sincerely (provided that her opponents behave likewise). We call these devices admissible.

It is important to note that admissible devices are characterized by two classes of incentive

compatibility constraints. The first is the already introduced truthful revelation constraint.

The second guarantees that each player best responds by acquiring information.

The next step of our analysis is to show that we can ignore what a communication device

specifies when one or more players report the message φ. Consider an admissible device
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γ : {φ, i, g}n → [0, 1]. Let Uj
¡
tj, t

0
j

¢
denote the expected utility (from the decision) of player

j when her type is tj, she reports message t0j and all her opponents acquire information and

are sincere. Truthful revelation holds if and only if:

Uj (tj, tj) > Uj
¡
tj, t

0
j

¢ ∀j = 1, ..., n, ∀ ¡tj, t0j¢ ∈ {φ, i, g}2 . (1)

The expected utility of player j when she does not acquire information can be expressed

as:

Uj (φ,φ) = Pr (i)Uj (i,φ) + Pr (g)Uj (g,φ) ,

where Pr (s) denotes the probability that agent j will observe signal s = i, g if she acquires

information. It follows that agent j will purchase the signal if and only if the following

information acquisition constraint is satisfied:

Pr (i)Uj (i, i) + Pr (g)Uj (g, g)− c > Pr (i)Uj (i,φ) + Pr (g)Uj (g,φ) . (2)

Constraints (1) and (2) imply that a necessary condition for a communication device

to be admissible is that for every player j = 1, ..., n :

Pr (g) (Uj (g, g)− Uj (g, i)) > c, (3)

Pr (i) (Uj (i, i)− Uj (i, g)) > c. (4)

These inequalities guarantee that agent j prefers to buy the signal and be sincere rather

than not buy the signal and always report one of s = i, g (i in the first inequality, g in the

second one).

We now explain in which sense inequalities (3) and (4) are also a sufficient condition for

a device to be admissible. Consider a device γ : {φ, i, g}n → [0, 1] , and suppose inequalities

(3) and (4) hold. This device may not be incentive compatible. In particular, a player may

have an incentive to lie when her type is φ. Consider, however, the outcome induced by γ

when all players acquire information and are sincere. This outcome can be implemented

with the following admissible device γ0. Given γ, consider player j = 1, ..., n and assume
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that all her opponents acquire information and are sincere. Suppose that player j does not

observe a signal and has to choose between message i and message g. Denote by sj the

message that agent j prefers to send. That is, sj ∈ {i, g} and is such that

Pr (i)Uj (i, sj) + Pr (g)Uj (g, sj) > Pr (i)Uj
¡
i, s0j

¢
+Pr (g)Uj

¡
g, s0j

¢
,

where s0j = i, g.

Given the device γ, we construct γ0 as follows:

γ0 (t) =

(
γ (t) if t ∈ {i, g}n

γ (sj, t−j) if t = (φ, t−j) and t−j ∈ {i, g}n−1
,

and we assign an arbitrary value to γ0 (t) when two or more players report message φ.

Intuitively, when each player different from j sends either i or g, the device γ0 interprets

message φ of player j as message sj.

Notice that the expressions in inequalities (3) and (4) do not depend on what the device

specifies when some players report φ.We can, therefore, think of an admissible device as a

mapping γ : {i, g}n → [0, 1] which satisfies conditions (3) and (4).

An admissible device γ is symmetric if for every vector (t1, ..., tn) in {i, g}n and every
permutation ϕ on {1, ..., n}, γ (t1, ..., tn) = γ

³
tϕ(1), ..., tϕ(n)

´
. In a symmetric device, the

probability that the defendant is convicted depends only on the number of messages g (or

i) but not on the identity of the players who send g. We now argue that there is no loss of

generality in considering only symmetric devices. In fact, suppose that γ is an admissible

device and consider a permutation ϕ on {1, ..., n} (let Λn denote the set of such permuta-
tions). Consider the device γϕ, where γϕ (t1, ..., tn) = γ

³
tϕ(1), ..., tϕ(n)

´
for every {t1, ..., tn}

in {i, g}n . Since all players are identical and γ is admissible, the device γϕ is also admis-

sible and outcome equivalent to γ. Of course, convex combinations of admissible devices

are admissible. It follows that the symmetric device γ̃ =
³

1
|Λn|
´P

ϕ∈Λn γϕ =
1
n!

P
ϕ∈Λn γϕ

is admissible and outcome equivalent to the original device γ.

In order to emphasize the points illustrated so far, we recap our discussion as follows:
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Summary Without loss of generality, the designer can restrict attention to mechanisms

in which the following two qualifications pertain:

1. Admissibility - all committee members acquire information and report their signals

truthfully;

2. Symmetry - committee members are anonymous.

A symmetric device can be represented as a mapping γ : {0, 1, ..., n} → [0, 1] , where

γ (k) denotes the probability that the defendant is convicted (alternative C is chosen) when

k players report the guilty signal g (each player can report either i or g). For a symmetric

device γ : {0, 1, ..., n}→ [0, 1] conditions (3) and (4) can be expressed as:

n−1X
k=0

µ
n− 1
k

¶
f (k + 1;n) (γ (k + 1)− γ (k)) > c, (ICi)

n−1X
k=0

µ
n− 1
k

¶
f (k;n) (γ (k)− γ (k + 1)) > c, (ICg)

where f (·;n) : R→ R is defined by:

f (x;n) = −qP (I) (1− p)x pn−x + (1− q)P (G) px (1− p)n−x .

For each n > 2, we look for the optimal admissible device, i.e., the admissible device

that maximizes the expected utility of the decision. This amounts to solving the following

linear programming problem Pn :

max
γ:{0,...,n}→[0,1]

− (1− q)P (G) +
nP
k=0

¡
n
k

¢
f (k;n) γ (k)

s.t. (ICi), (ICg).

We denote by γ̄n the solution to problem Pn (if it exists), and by V (n) the expected

utility of the optimal device. If problem Pn does not have any feasible solution, we set

V (n) = −1.
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To complete the description of all mechanisms, we need to consider committees with less

than three players. We let V (0) = max {−qP (I) ,− (1− q)P (G)} denote the expected
utility of the optimal decision when no information is available.

Suppose n = 1, i.e., the designer delegates the final decision to a single agent. Let V̂ (1)

be the expected utility of the optimal decision of the agent when she acquires information.

Formally,

V̂ (1) = max
γ:{0,1}→[0,1]

− (1− q)P (G) +
1X
k=0

f (k; 1) γ (k) .

If the benefit of buying the signal, V̂ (1)−V (0) , is greater than or equal to the cost c, the
agent will acquire information, and we set V (1) = V̂ (1) . Otherwise, we set V (1) = −1.
Finally, suppose that the designer chooses a committee with two agents. We define

problem P2 in the same way as Pn for n > 2.We let V (2) denote the value of the objective

function at the solution (if it exists). Notice, however, that problem P2 does not guarantee

that V (2) can be achieved by the extended mechanism designer. In fact, when n = 2, a

player can be pivotal at the voting stage and we need to take into account her incentives to

follow the mediator’s recommendation (constrains (ICi) and (ICg) do not capture these

incentives). In other words, V (2) represents an upper bound of the expected utility that

can be achieved with two players. If the problem P2 does not admit any feasible solution,

we set V (2) = −1.
The optimal mechanism consists of the optimal size of the committee n∗, and the optimal

admissible device γ̄n∗ . n
∗ is such that V (n∗) > V (n) , for every nonnegative integer n.4 In

what follows, we will demonstrate that the optimal size of the committee is always finite.

Furthermore, when the cost of acquiring information is sufficiently low, the optimal size n∗

is greater than 2 (see below) and, therefore, the expected utility V (n∗) can be achieved.
4Notice that V (0) > −1, and, thus, n > 1 can be the optimal size only if problem Pn admits a feasible

solution. Similarly, n = 1 can be optimal only if the agent who has to make the final decision acquires
information.
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4 Features of The Optimal Extended Mechanism

The extended mechanism the designer chooses is comprised of the size of the decision panel

as well as the incentive scheme it will operate under. In Subsection 4.1 we tackle the

first aspect of this design problem. Namely, we illustrate that the optimal committee is of

bounded size. In Subsection 4.2 we illustrate some traits of the optimal device the designer

would choose. In particular, we show that imperfectly aggregating the available information

may induce more players to acquire information, thereby yielding a higher overall expected

utility level.

4.1 The Scope of The Committee

Our first result, Proposition 1, shows that the solution to our design problem always exists.

In fact, we show that when the size of the committee is very large it is impossible to give the

incentive to all the members to acquire information. That is, committees with too many

members do not have any admissible device. Intuitively, when there are many agents in the

committee, the marginal contribution of an additional signal is relatively small. Therefore,

each agent has an incentive to save the cost c and benefit from the information acquired

by the other participants. In other words, in large committees there is a severe free rider

problem.

Proposition 1 Fix P (I) , q, p and c. There exists n̄ such that for every n > n̄, problem
Pn does not have any feasible solution.

Proof. See Appendix.

Clearly, it follows from Proposition 1 that the optimal size of the committee n∗ is finite

and smaller than n̄. This, in turn, implies that when information is costly, the probability of

making the wrong decision is bounded away from zero. This observation stands in contrast

to the underlying message of the information aggregation literature (see, e.g., Feddersen
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and Pesendorfer [1996, 1997]) in which a large pool of agents yields complete aggregation

of all of the available information.

It is interesting to note that the fact that Pñ does not have any feasible solution does

not imply that Pn does not have any feasible solution for all n > ñ. For example, for

P (I) = P (G) = 1
2
, p = 0.8, q = 0.7, and c = 0.32, P6 and P7 have feasible solutions, while

P5 does not. In the proof of Proposition 1, we provide a formula for an upper bound beyond

which no feasible solution exists. This is potentially useful for computational reasons.

Indeed, in order to find the optimal n∗, one needs to check for the values produced by the

feasible solutions of Pn. As illustrated, calculating consecutively the solutions for P1, P2, P3,

etc. and arriving at an n for which no feasible solution to Pn exists is no indication that

committees bigger than n are not optimal. Thus, an upper bound is necessary for the

designer to limit her search.

4.2 Optimal Distortionary Devices

The next question is how the optimal device uses the information of the agents. To analyze

this problem, let us first consider the case in which the designer makes the final decision

after observing n free signals. This will give us an upper bound on what the designer can

achieve when she chooses a committee of size n and information is costly.

To find the optimal decision rule, we simply need to maximize the objective function of

problem Pn (without the constraints). We let γBn denote the solution to this maximization

problem. γBn , which we call a Bayesian device, is of the form:

γBn (k) =

½
0 if f (k;n) 6 0
1 if f (k;n) > 0

,

(in fact, when f (k;n) = 0, γBn (k) can be any number in the unit interval).

To interpret this result, notice that f (k;n) is positive (negative) if and only if the cost

of convicting the innocent q is smaller (greater) than the probability that the defendant is

guilty given that k of n signals are g.
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The function f (·;n) is increasing and we let z (n) be defined by f (z (n) ;n) = 0. We
have:

z (n) =
1

2

n+ ln
³

qP (I)
(1−q)P (G)

´
ln
³

p
1−p
´

 .
Another way to express the Bayesian device γBn is:

γBn (k) =

½
0 if k 6 z (n)
1 if k > z (n)

.

For small values of n, z (n) can be negative or greater than n. In the first case, the

optimal decision is always to convict the defendant. In the latter case, the optimal de-

cision is always to acquit. These cases arise when the designer is very concerned with a

particular mistake (acquitting the guilty or convicting the innocent), and the signal is not

very accurate, i.e., p is close to 1/2. In both cases the n signals are of no value. For large

values of n, however, z (n) is positive and smaller than n (z (n) /n converges to 1/2 as n

goes to infinity), and the defendant will be convicted if and only if the designer observes

sufficiently many guilty signals.

We let V̂ (n) denote the expected utility of the Bayesian device:

V̂ (n) = − (1− q)P (G) +
X

k∈{0,..,n}, k>z(n)

µ
n

k

¶
f (k;n) ,

The utility V̂ (n) is nondecreasing in the number of signals n.Moreover, V̂ (n) is strictly

greater than V (0) , the expected utility of the optimal uninformed decision, if and only if

z (n) belongs to (0, n) . If z (n) is not in (0, n) , then V (0) = V̂ (1) = ... = V̂ (n) .

When n becomes unboundedly large, the Bayesian device uses an infinitely increasing

number of i.i.d. signals. The law of large numbers ensures that all uncertainty vanishes

asymptotically. In particular, V̂ (n) converges to zero, the no uncertainty value, when n

goes to infinity.5

5Note that if information acquisition is overt and c < 1, then V̂ (n) is implementable (in Nash equilib-
rium) for sufficiently large n. Indeed, consider the following scenario. The designer selects the Bayesian
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We now return to the original design problem. Clearly, the expected utility of the

optimal admissible device V (n) cannot be greater than V̂ (n) , since the Bayesian device

γBn is the solution to the unconstrained problem. On the other hand, when the Bayesian

device γBn is admissible, we have V (n) = V̂ (n) . In this case the designer is able to give

the incentive to the n agents to acquire the signal and, at the same time, to make the best

use of the available information. Proposition 2 shows that this can happen if and only if

the contribution of the last signal to the utility of a single decision maker is greater than

or equal to its cost.

Proposition 2 For every n > 2, V (n) = V̂ (n) if and only if V̂ (n)− V̂ (n− 1) > c.

Proof. See Appendix.

The following example provides an intuition for Proposition 2. The Bayesian device

γB9 of a committee of size 9 selects conviction if at least 5 players report a guilty signal.

Consider the Bayesian device γB8 for the committee of size 8. There are two cases, depending

on p, q and P (I): (a) the device selects conviction when there are at least 4 guilty signals;

(b) it selects conviction when there are at least 5 guilty signals. Consider the committee

with 9 members and suppose that each opponent of player 1 acquires information and is

sincere. Player 1’s expected utility if she also acquires information and is sincere is equal

to V̂ (9) − c. However, if player 1 does not purchase the signal and reports message g in
case (a) and message i in case (b), she gets V̂ (8) . The proof of Proposition 2 formalizes

this argument.

We assume that there exists at least one integer for which the Bayesian device is ad-

missible. Let nB denote the greatest such integer. That is, V̂
¡
nB
¢ − V̂ ¡nB − 1¢ > c,

device γBn as long as everyone purchases information, and a device γ that makes a choice contrary to
the Bayesian prescription if any agent does not purchase information (i.e., for all k, γ(k) = 1 − γBn (k)).
The strategy profile under which all players acquire information and are always sincere constitutes a Nash
equilibrium. Under this profile, the expected utility of the decision approaches 0. If one player deviates
and does not acquire information, she drives the common utility to a level that approaches −1. Finally,
no agent has an incentive to lie upon acquiring information.
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and V̂ (n) − V̂ (n− 1) < c for every n > nB. The existence of nB is guaranteed by the

fact that the sequence
n
V̂ (1) , ..., V̂ (n) , ....

o
converges (to zero). The designer can induce

more than nB players to acquire information only if she selects a device that aggregates the

available information suboptimally. On the other hand, more information will be available

in larger committees. How should the designer solve this trade-off? Is the optimal size of

the committee equal to or larger than nB? Before answering these questions, let us explain

why we believe they are important.

Suppose n is such that the Bayesian device is admissible. We now show that there

is a very simple mechanism that does not require communication and allows the designer

to obtain utility V̂ (n) . Let kn be the smallest integer greater than z (n) . Notice that kn

belongs to {1, ..., n} since V̂ (n) can be greater than V̂ (n− 1) only if z (n) is in (0, n) .
Consider the following game. Each agent decides whether to buy a signal or not. Then

the players vote, and the defendant is convicted if and only if at least kn agents vote to

convict. This game admits an equilibrium in which each player acquires the signal and

votes sincerely (i.e., she votes to convict if and only if she observes signal g). The expected

utility of the decision when the agents play this equilibrium is, of course, V̂ (n) .

Consider our design problem. If the optimal size of the committee is nB, then commu-

nication is unnecessary and the designer simply needs to select the threshold voting rule

knB (this is the optimal mechanism in Persico [2002] where communication is not allowed).

On the other hand, if the optimal size is larger than nB, then communication may play a

very important role in the solution to the designer’s problem.6 Proposition 3 shows that

this is indeed the case (at least when the cost is sufficiently low).

Before formally stating the result, we need to introduce one technical assumption. We
6As noted by Nicola Persico, our results have an alternative interpretation. Namely, the optimal device

γ described in our analysis could be implemented without communication, but with a probabilistic voting
rule (essentially, a voting rule that determines the final choice to be C with probability γ (k) when k players
vote for that alternative). Since such rules do not seem to be very prevalent (consequentially, they have
received little, if no, attention in the literature), we find our interpretation of communication as the channel
by which aggregate choices are randomized to be more natural.
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say the environment is regular if
ln( qP (I)

(1−q)P (G))
ln( p

1−p)
is not an integer. This implies that for all

n, z(n), the Bayesian threshold value, is not an integer. In a regular environment, if n is

such that V̂ (n) > V (0), then for all n0 > n, V̂ (n0 + 1) > V̂ (n0). Note that assuming the

environment is regular is not restrictive since this is, generically, the case.

Proposition 3 Fix P (I) , q and p and assume the environment is regular. Let n∗ (c)

denote the optimal size of the committee when the cost of acquiring information is c. There

exists c̄ > 0 such that for every c < c̄, V (n∗ (c)) < V̂ (n∗ (c)) .

Proof. See Appendix.

In the proof of Proposition 3, we show that if nB is sufficiently large (or equivalently,

if c is sufficiently low), then there exists a non Bayesian device for a committee of size

nB +1 that is better than the Bayesian device with nB players, i.e., V
¡
nB + 1

¢
> V̂

¡
nB
¢
.

Although we do not have a necessary condition for the optimal size to be greater than nB,

notice that the result in Proposition 3 cannot be extended to all values of c. Consider the

environment P (I) = P (G), p = 0.85, q = 0.52, and c = 0.035 (the environment is regular).

In this case the optimal size n∗ and nB coincide and are equal to three.

4.3 Example

In this section, we provide a simple example illustrating the forces that are at play in

constructing the optimal mechanism. We choose one configuration of parameters that

allows us to focus on a small committee (five members) and show how distorting the

Bayesian device can be beneficial.

Specifically, consider the environment characterized by equally likely states, i.e., P (I) =

P (G) = 1
2
, preference parameter of q = 0.72, and signals of accuracy p = 0.65 available for

the cost c = 0.014.

Without communication, we can concentrate on V̂ (n). A simple calculation yields that

V̂ (1) = −0.14, V̂ (2) = −0.12495, V̂ (3) = −0.1169875, and V̂ (n) − V̂ (n − 1) < c for any
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n > 2, thereby leading to nB = 2. Moreover, the corresponding Bayesian device, γB2 , is

given by:

γB2 (k) =

½
0 if k < 2
1 if k = 2

.

In particular, any one of the two agents is pivotal only when the other receives the g signal,

which occurs with probability 1
2
.

Consider now a group of size n = 5. The corresponding Bayesian device, γB5 , is given

by:

γB5 (k) =

½
0 if k 6 3
1 if k > 3

(using the above notation z(5) = 3.2628). To illustrate how distorting the Bayesian device

can help satisfy the incentive constraints, we now introduce a device γα of the following

form:

γα(k) =

 0 k < 3
α k = 3
1 k > 3

, where α ∈ [0, 1].

Note that γ0 coincides with the Bayesian device γB5 . Given a device γ
α, let us consider

the incentives that a player faces. Without loss of generality, we focus on player 1. Suppose

that players 2, . . . , 5 acquire information and report it truthfully. We let y = 0, . . . , 4 de-

note the number of guilty signals observed by player 1’s opponents. We let Wg (α) denote

the difference between player 1’s expected utility from the decision when she acquires in-

formation and behaves sincerely and her utility when she remains uninformed and reports

message g (Wg (α) does not take into account the cost of information). A necessary condi-

tion for player 1 to acquire information is Wg (α) > c (the other condition is Wi (α) > c,
where Wi (α) is defined in the obvious way with respect to the blind report of i).

In order to compute Wg (α) it will be helpful to consider Table 1. The first column

describes the events in which player 1’s information is relevant, that is, situations in which

she is pivotal. The second column contains the probabilities of these events. In the third

column, we report the change in the probability of conviction between the case in which

player 1 sends message i and the case in which she sends message g (the analysis above
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allows us to ignore the incentives to report φ rather than i or g). Finally, the last column

describes the difference in player 1’s utility between acquittal and conviction.

Relevant events Pr (ω) Pr (y|ω) Pr (i|ω) |γα(y)− γα(y + 1)| Change in utility

ω = I, y = 2, s1 = i
1
2
(0.3105375) (0.65) α 0.72

ω = I, y = 3, s1 = i
1
2
(0.111475) (0.65) 1− α 0.72

ω = G, y = 2, s1 = i
1
2
(0.3105375) (0.35) α −0.28

ω = G, y = 3, s1 = i
1
2
(0.384475) (0.35) 1− α −0.28

Table 1: Expected Benefits of Information Acquisition

Since we are comparing the case in which player 1 invests in information and is sincere

with the case in which she is uninformed and reports message g, it is obvious that player

1’s utility is affected only when she observes an innocent signal. There are four relevant

cases to consider, corresponding to the rows of Table 1:

1. (First Row) Suppose that the state of the world is ω = I, y = 2 and player 1 observes

i. The probability of this event is 1
2
(0.3105375) (0.65) . Since the defendant is innocent,

player 1 will benefit from a decrease in the probability of conviction (the benefit is

equal to q = 0.72). Compare now the case in which player 1 sends message i with

the case in which she sends message g. Since y = 2, the decrease in the probability

of conviction is γα(3)− γα(2) = α.

2. (Second Row) The second row considers the analogous case in which the state is I,

and player 1 and one of her opponents observe an innocent signal. The probability of

this event is 1
2
(0.111475) (0.65) . Again, the state is I and player 1 will benefit from a

decrease in the probability of conviction. By reporting message i instead of message

g, player 1 decreases the probability of conviction by 1−α. Of course, we do not need
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to consider y = 0, 1, 4 because in these cases the final decision does not depend on

player 1’s message (player 1 is not pivotal).

3. (Third Row) Suppose now that the state is ω = G, y = 2 and player 1 observes i (third

row). The probability of this event is 1
2
(0.3105375) (0.35) . The state of the world is

G and, thus, player 1 will suffer from a decrease in the probability of conviction (the

net benefit is − (1− q) = −0.28). By reporting message i instead of message g the
probability of conviction decreases by α.

4. (Fourth Row) Finally, the last case to consider is ω = G and player 1 and one of

her opponents observe an innocent signal (last row). This happens with probability
1
2
(0.384475) (0.35) . A decrease in the probability of conviction will decrease player

1’s utility (since the defendant is guilty). A change from message g to message i

decreases the probability of conviction by 1− α.

Simple calculations yield Wg (α) = 0.0072459 + 0.0502036α. With the Bayesian device

γ0 we have Wg (0) = 0.0072459. When the cost is c = 0.014 the player prefers to remain

uninformed and report message i. From Table 1, when α = 0, information acquisition is

more profitable than the uninformative message g only if the state is I, player 1 observes

i and only one of her opponents observes an innocent signal. Player 1 does not have

an incentive to acquire information since the probability of this event is low (equal to

0.03622 9). As α increases, it will become easier to satisfy the incentive constraint. In fact,

when α is greater than 0, information acquisition is also beneficial in the event in which

ω = I and player 1 and two of her opponents observe an innocent signal. The probability

of this event is 0.100 92 (greater than 0.03622 9).

It is easy to check that Wi (α) = 0.0209412 − 0.0318102α. Thus, by increasing α it

becomes more difficult to satisfy the second constraint. However, notice that for α = 0 we

have Wi (0) > c (i.e., the constraint is not binding). Therefore, we can choose levels of α

greater than 0 such that both constraints are still satisfied.
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Of course, this increase in incentives comes at the cost of information aggregation.

Indeed, ex-post efficiency would require α = 0. We are thus interested in finding the

minimal α such that the incentives to purchase information by all five agents would be

satisfied. A simple calculation yields a solution of α = 0.1345. Moreover, the resulting

expected common value is V (5) = −0.1019 > V̂ (2).
As it turns out, an admissible device exists in a committee of size no greater than

six. However, the cost of inducing a sixth player to acquire information is greater than

the benefit of having more information available. That is, γ0.1345 is the solution of the

extended mechanism design and the optimal committee size in this environment is indeed

n∗ = 5 > nB. A graphical illustration of γ0.1345 appears in the next section.

The possibility of communication has significant effects on the probabilities of the two

type of errors the committee can make. Table 2 summarizes the probabilities arising when

choosing optimal committees with and without communication.

Prob(d = C | ω = I)
(Convicting the Innocent)

Prob(d = A | ω = G)
(Acquitting the Guilty)

Without
Communication

0.1225 0.5775

With
Communication

0.0783868 0.5263371

Table 2: Probabilities of Errors With and Without Communication

Note that in this example both probabilities of error decrease by a significant amount.

We should note that numerous other examples illustrate that this is not a global property.

Introducing communication always decreases at least one of the probabilities of error. The

parameters of the environment determine which of these probabilities decreases.
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5 Comparative Statics

In this section we analyze how the optimal extended mechanism and the quality of the

decision depend on the primitives of the model. We first look at the impact that changes

in the information cost c and in the accuracy of the signal p have on the expected utility of

the designer and on the optimal size of the committee. We then perform the comparative

statics for the agents’ preferences. Finally, we focus on the optimal admissible device.

The Cost of Information

The first, obvious, result is that the expected utility of the optimal mechanism is de-

creasing in the cost of information acquisition. This follows from the fact that for any

given size of the committee, the utility of the optimal devices increases (weakly) when the

cost decreases. In fact, if a device is admissible when the cost is c, then the device is also

admissible when the cost is lower than c.

We now consider how the optimal size is affected by a change in the information cost.

Clearly, given any cost c with optimal size n∗ (c) , we can always find another cost c0,

sufficiently lower than c, such that n∗ (c0) is greater than n∗ (c) . In fact, it is enough to

choose c0 such that the Bayesian device γBn is admissible for some n greater than n
∗ (c) .

Unfortunately, it is less straightforward to perform the comparative statics for small changes

of the information cost. In all the examples we have constructed, the optimal size decreases

when the information cost increases. However, we have not been able to prove that this is

a general result. To illustrate what constitutes a problem, we consider two committees of

size n and n + 1. For any cost c, let us consider the difference between the utility of the

optimal device at n+1 and the utility of the optimal device at n. It is possible to construct

examples such that this difference is positive for low and high values of the cost, but is

negative for intermediate values (in a sense, the utility does not exhibit a single crossing

property).7 In other words, suppose we start with a level of the cost such that size n + 1
7A possible example is the following: P (I) = 1

2 , q = 0.82, p = 0.55 and n = 7.
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is better than size n. In general, we cannot conclude that this relation holds when the

cost becomes smaller. Of course, this discussion does not show that the optimal size may

increase with the cost. It only explains why it could be difficult to obtain analytical results.

But it remains an open question whether the optimal size is indeed always decreasing in

the cost or not.

The Signals’ Accuracy

As one would expect, the utility of optimal extended mechanism increases when the

signal becomes more accurate, i.e. when p increases. In fact, a stronger result holds. For

a committee of a given size n, the utility of the optimal device increases when the quality

of the signal improves. Intuitively, when the signal is more accurate, the device can ignore

some information and replicate an environment with less information. Formally, let γ be

an admissible device when the accuracy of the signal is p. Suppose now the accuracy is

p̂ > p and consider the following device γ̂. The simplest way to describe γ̂ is to imagine

that each player j reports her signal sj = i, g to a mediator. The mediator then generates

a new variable s0j = i, g at random according to the distribution:

Pr
¡
s0j = i|sj = i

¢
= Pr

¡
s0j = g|sj = g

¢
=
p+ p̂− 1
2p̂− 1 .

The variables s01, ..., s
0
n are independent of each other. Finally, the mediator applies

the original device γ to the vector (s01, ..., s
0
n) .

8 Notice that the mediator’s distribution is

appropriately chosen so that Pr
¡
s0j = i|I

¢
= Pr

¡
s0j = g|G

¢
= p. Thus, the expected utility

of the device γ̂ when the accuracy is p̂ coincides with the utility of γ when the accuracy is

p. It is also easy to show that γ̂ is admissible (when the accuracy is p̂). This implies that

for any committee size, the utility of the optimal device is increasing in p.
8That is, for every vector (s1, ..., sn) in {i, g}n ,

γ̂ (s1, ..., sn) =
X

(s01,...,s0n)∈{i,g}n
Pr ((s01, ..., s

0
n) | (s1, ..., sn)) γ (s01, ..., s0n) ,

where Pr ((s01, ..., s0n) | (s1, ..., sn)) denotes the probability that the mediator generates the vector (s01, ..., s0n)
when the vector of reports is (s1, ..., sn) .

28



While in our model the designer always benefits from a more informative signal, this

is not necessarily the case when communication is not possible. For example, in Persico

[2002] the utility of the optimal mechanism can decrease when p increases. When players

are not allowed to communicate, the designer can induce n agents to acquire information if

and only if V̂ (n)− V̂ (n− 1) is greater than the information cost. When the signal is very
informative, V̂ (n) is close to zero for n relatively small, and therefore it is impossible to

induce many players to acquire information. In contrast, when the signal is less accurate,

the difference V̂ (n)−V̂ (n− 1) can be larger than the cost for large values of n. It is possible
for the designer to prefer having many uninformative signals over a few very accurate ones.9

As far as the optimal size of the committee is concerned, several examples indicate that

it is not monotonic in p. Consider, for instance, the case P (I) = 1
2
, q = 0.62, and c = 0.004.

The optimal size is 13 for p = 0.55, 24 for p = 0.65, and 15 for p = 0.75.

The Preference Parameter

The agents and the designer’s preferences are characterized by the parameter q, the cost

of convicting the innocent. We do not have a formal result for the relation between q and

the optimal size of the committee. However, all the examples that we have constructed

suggest that it depends on the comparison between q and P (G) , the probability that the

defendant is guilty. If q is greater than P (G) , the agents (and the designer) are more

concerned with the error of convicting the innocent, and an uninformed agent would acquit

the defendant. In this case, the optimal size of the committee decreases when q increases.

Conversely, if q is smaller than P (G), the optimal uninformed decision is to convict the

defendant. In this case, the optimal size is increasing in q. Our examples also show that

the utility of the optimal mechanism is not monotonic in q (even if we restrict attention

to values of q above or below P (G)). Finally, notice that similar results hold for the prior

distribution, since q and P (I) play an interchangeable role throughout all of our analysis.
9To give a concrete example, let us assume that P (I) = 1

2 , q = 0.82, and c = 0.0013. When p = 0.85,
the optimal size is 10 and the utility is −0.001455 (the voting rule is r = 6). However, when p = 0.95, the
optimal size is 4 and the utility is −0.001459 (the voting rule is r = 3).
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The Optimal Device

As was illustrated in Proposition 3, for certain parameters, the optimal device does

not coincide with the corresponding Bayesian device. It is then natural to compare γ̄n∗

with the Bayesian γBn∗, which is graphically represented as a step function achieving the

value of 0 for any k 6 z(n∗) and the value of 1 for any k > z(n∗). There are three main

observations that may prove significant for future theoretical investigations of the optimal

extended mechanism.
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Figure 1: The Optimal Devices

First, unlike its Bayesian counterpart, γ̄n∗ may be non-monotonic in the number of

guilty signals k. For the sake of illustration, consider the example in which P (I) = 1
2
,
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c = 0.004, p = 0.55, and q = 0.62. In this case, the optimal size of the team is n∗ = 13.

Figure 1a plots γ̄n∗ and the Bayesian threshold z(n
∗) and illustrates that γ̄n∗ may indeed

be non-monotonic.

Second, when γ̄n∗ is monotonic, there is no global regularity in its relation to the

Bayesian incentive scheme. Specifically, it can be above γBn∗ (thereby inducing a higher or

equal probability of conviction for any profile of signals), as illustrated in Figure 1b for

the case of P (I) = 1
2
, c = 0.014, p = 0.65, and q = 0.72. It can be below γBn∗ (thereby

inducing a lower or equal probability of conviction), as illustrated in Figure 1c for the case

of P (I) = 1
2
, c = 0.014, p = 0.95, and q = 0.92 (which corresponds to the example of

Section 4.3). It can also be neither below nor above γBn∗, as illustrated in Figure 1d for the

case of P (I) = 1
2
, c = 0.014, p = 0.85, and q = 0.72.

Third, in cases as described above, an agent is pivotal for more than one value of

guilty signals. Intuitively, increasing an agent’s probability of being pivotal (relative to the

Bayesian device) increases her incentives to purchase information. In such situations, this

effect is stronger than the statistical efficiency loss.

6 Conclusions

A group can be identified as a collection of agents satisfying one or more of the following

three elements: sharing a common goal, having a joint task, or possessing the ability to

communicate and exchange information at no costs. The current paper considers groups

satisfying all three conditions and introduces a model of group decision making under

uncertainty.

Our analysis yielded three key insights. First, the optimal incentive scheme in such

an environment balances a trade-off between inducing players to acquire information and

extracting the maximal amount of information from them. In particular, the optimal

device may aggregate information suboptimally from a statistical point of view. Second,

when members of the group decide whether to acquire costly information or not preceding
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the communication stage, groups producing the optimal collective decisions are bounded

in size. Third, the comparative statics of the optimal mechanism exhibit some regularities

and irregularities, e.g., the expected social value is monotonic in the cost of information

and accuracy of private information, but the optimal panel size is not monotonic in the

signals’ accuracy.

In what follows we outline several avenues in which the current framework can be

extended.

First, it would be interesting to investigate additional extended mechanisms. For in-

stance, one could consider a setup in which the designer is able to subsidize agents’ infor-

mation. One example would be a department chair investing in the creation of a centralized

web-site containing all information pertaining to job candidates. Such an investment would

potentially reduce the cost of studying each candidate’s portfolio for all of the hiring com-

mittee members. Formally, in the extended mechanism the designer has to choose the level

of informational subsidies in addition to the size of the group and the communication pro-

tocol. Selecting a high level of subsidies creates a trade-off between inducing more agents

to acquire information, and internalizing some of this information cost by the designer.

A second interesting extension concerns the homogeneity of the players. So far we have

considered homogenous decision panels, in the sense that all players, including the mech-

anism designer, share the same preferences. Concretely, in our model, both the designer

and all of the players share the same utility parameter q. However, in many situations it is

conceivable that agents have heterogenous preferences. One could then study the extended

mechanism design problem in which, at stage 1, the designer chooses the distribution of

preference parameters of the decision panel members, in addition to choosing the panel’s

size and the device. An analysis of such a scenario would entail defining carefully the

goal of the designer (maximizing her own preferences, as characterized by one given q, or

implementing a point in the Pareto frontier of the equilibria set). We are especially inter-

ested in the optimal composition of the decision panel. In particular, would the designer
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choose a committee comprised of agents with preferences coinciding with her own or would

she choose agents with diverging tastes (as observed, e.g., in the optimal choice of central

banker - see, for example, Alesina and Gatti [1995] and references therein)?

Appendix

Proof of Proposition 1

We prove Proposition 1 by demonstrating that when the size of the committee is sufficiently

large there is no device that satisfies constraint (ICi). The choice of the constraint is

arbitrary since we could prove the same result for constraint (ICg).10

Given a device γ : {0, ..., n}→ [0, 1] , let Hn (γ) denote the left hand side of constraint

(ICi):

Hn (γ) =
n−1X
k=0

µ
n− 1
k

¶
f (k + 1;n) (γ (k + 1)− γ (k)) .

For ease of presentation, we will drop the argument n in f throughout this proof. Hn (γ)

can be expressed as:

Hn (γ) = −f (1) γ (0) +
n−1X
k=1

µ
n− 1
k − 1

¶
(1− p)k pn−k−1 1

k
h (k) γ (k) + f (n) γ (n) ,

where

h (k) = qP (I) (n (1− p)− k) + (1− q)P (G)
µ
1− p
p

¶n−2k−1
(k − np) .

For n sufficiently large, −f (1) > 0 and f (n) > 0. Moreover, h (k) < 0 for k in

[n (1− p) , np] .
Let bn(1 − p)c denote the greatest integer smaller than n (1− p) . For every k =

1, ..., bn(1− p)c− 1, we have:

h (k) > qP (I)− (1− q)P (G)
µ
1− p
p

¶n(2p−1)+1
(np− 1) .

10In this proof, we show how to construct an upper bound on the size of the committees that have
admissible devices. The fact that we do not consider both constraints at the same time implies that our
bound is not tight. Admissible devices may not exist even when the size of the committee is smaller than
our bound.
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Notice that the right hand side of the above inequality is positive when n is sufficiently

large. Similarly, let dnpe be the smallest integer greater than np. For k = dnpe+1, ..., n−1,

h (k) > −qP (I) (np− 1) + (1− q)P (G)
µ

p

1− p
¶n(2p−1)+1

,

and the right hand side is positive for n sufficiently large.

Consider the following maximization problem:

max
γ:{0,...,n}→[0,1]

Hn (γ) ,

and let γ+ denote the solution. Define H̄n = Hn (γ+) . It follows from the analysis above

that when n is sufficiently large, the device γ+ is of the form:

γ+ (k) =

½
1 if k = 0, ..., k0, k00, ..., n
0 if k = k0 + 1, ..., k00 − 1

where k0 is either bn(1− p)c− 1 or bn(1− p)c, and k00 is either dnpe or dnpe+ 1. This, in
turn, implies:

H̄n = −
µ
n− 1
k0

¶
f (k0 + 1) +

µ
n− 1
k00 − 1

¶
f (k00) .

When n is sufficiently large, both −f (k0 + 1) and f (k00) are positive. Furthermore,

−f (k0 + 1) 6 qP (I) (1− p)n(1−p)−1 pnp+1 − (1− q)P (G) pn(1−p)−1 (1− p)np+1

since k0 belongs to [n (1− p)− 2, n (1− p)) , and

f (k00) 6 −qP (I) (1− p)np+2 pn(1−p)−2 + (1− q)P (G) pnp+2 (1− p)n(1−p)−2

since k00 belongs to (np, np+ 2] .

To bound the binomial coefficients in the expression of H̄n, we now introduce Stirling’s

approximation (see Feller [1968]):

l1 (n) =
√
2πnn+

1
2 e−n < n! <

√
2πnn+

1
2 e−n+

1
12n = l2 (n) .
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For every n, the function l2(n)
l1(x)l1(n−x) is increasing for x <

n
2
, and decreasing for x > n

2
.

This and the range of k0 and k00 imply:µ
n− 1
k0

¶
=
n− k0
n

n!

(k0)! (n− k0)! 6
np+ 2

n

l2 (n)

l1 (k0) l1 (n− k0) 6

np+ 2

n

l2 (n)

l1 (n (1− p)) l1 (np) =
np+ 2

n

e
1
12n

√
2πn (1− p)n(1−p)+1

2 pnp+
1
2

.

Similarly,µ
n− 1
k00 − 1

¶
=
k00

n

n!

(k00)! (n− k00)! 6
np+ 2

n

l2 (n)

l1 (k00) l1 (n− k00) 6
np+ 2

n

l2 (n)

l1 (np) l1 (n (1− p)) .

After substituting the above inequalities in the expression of H̄n and performing some

algebraic manipulations, we get:

H̄n 6
np+ 2

n

e
1
12n√
2πn

(qP (I) (1− p) + (1− q)P (G) p) p
1
2

(1− p) 52
.

The right hand side of the above inequality decreases in n and converges to zero as n

goes to infinity. Thus, the claim of Proposition 1 follows.

Proof of Proposition 2

First, suppose that V̂ (n) = V (0) = V̂ (n− 1) . It follows that either γBn (0) = ... = γBn (n) ,

or γBn (0) = 0, f (0;n) = 0 and γBn (1) = ... = γBn (n) = 1. In both cases, the left hand side

of constraint (ICg) is zero.

Thus, we now assume that V̂ (n) > V (0) . This implies that z (n) is in (0, n) and kn,

the smallest integer greater than z (n), belongs to {1, ..., n} . Depending on the distance
between kn and z (n) , there are two cases to consider.

Case (i): 0 < kn − z (n) 6 1
2
. In this case, it is easy to check that:

V̂ (n)− V̂ (n− 1) =
µ
n− 1
kn − 1

¶
f (kn;n) ,

and

−f (kn − 1;n) > f (kn;n) .
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Case (ii): 1
2
< kn − z (n) 6 1. Then we have:

V̂ (n)− V̂ (n− 1) = −
µ
n− 1
kn − 1

¶
f (kn − 1;n) ,

and

−f (kn − 1;n) < f (kn;n) .

The Bayesian device is admissible if it satisfies the following constraints:µ
n− 1
kn − 1

¶
f (kn;n) > c, (5)

−
µ
n− 1
kn − 1

¶
f (kn − 1;n) > c. (6)

Clearly, the two inequalities above hold if and only if V̂ (n)− V̂ (n− 1) > c.

Proof of Proposition 3

For every c, let nB (c) denote the largest integer for which the Bayesian device is admissible.

We show that if nB (c) is sufficiently large then V
¡
nB (c) + 1

¢
> V̂

¡
nB (c)

¢
. This will

complete the proof of Proposition 3 since nB (c) is decreasing in c.

We now fix c and write n for nB (c). We assume 0 < kn − z (n) < 1
2
(the proof for the

case 1
2
< kn − z (n) < 1 is similar and is therefore omitted).11 The Bayesian device γBn is

admissible, and so inequalities (5) and (6) hold.

Consider now a committee of size n+ 1. For every α in the unit interval, let the device

γα : {0, ..., n+ 1} be defined by:

γα (k) =

 0 if k = 0, ..., kn − 1
α if k = kn
1 if k = kn + 1, ..., n+ 1

.

The constraints that the device γα has to satisfy to be admissible can be expressed as:

F (α) =

µ
n

kn

¶
f (kn + 1;n+ 1) + α

·µ
n

kn − 1
¶
f (kn;n+ 1)−

µ
n

kn

¶
f (kn + 1;n+ 1)

¸
> c,
(7)

11Since the environment is regular, kn − z(n) 6= 1
2 , 1.
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L (α) = −
µ
n

kn

¶
f (kn;n+ 1) + α

·µ
n

kn

¶
f (kn;n+ 1)−

µ
n

kn − 1
¶
f (kn − 1;n+ 1)

¸
> c.
(8)

The function F is decreasing in α. We now assume that n is sufficiently large, so that

kn − 1 > n (1− p) and kn 6 np. This implies:

F (0) =

µ
n

kn

¶
f (kn + 1;n+ 1) >

µ
n− 1
kn − 1

¶
f (kn;n) > c,

and that L is an increasing function that satisfies:

L (1) = −
µ

n

kn − 1
¶
f (kn − 1;n+ 1) > −

µ
n− 1
kn − 1

¶
f (kn − 1;n) > c.

We let α̂1 denote the greatest value of α for which the device γα satisfies constraint

(7). Similarly, we let α̂2 denote the smallest value of α for which the device γα satisfies

constraint (8). Notice that −f (kn − 1;n) > f (kn;n) since we are assuming that kn− z (n)
is in

¡
0, 1

2

¢
(see the proof of Proposition 2). Thus, the cost c can be at most

¡
n−1
kn−1

¢
f (kn;n)

since the Bayesian device γBn is admissible. It follows that:

α̂1 >
¡
n
kn

¢
f (kn + 1;n+ 1)−

¡
n−1
kn−1

¢
f (kn;n)¡

n
kn

¢
f (kn + 1;n+ 1)−

¡
n

kn−1
¢
f (kn;n+ 1)

≡ α1,

α̂2 6
¡
n−1
kn−1

¢
f (kn;n) +

¡
n
kn

¢
f (kn;n+ 1)¡

n
kn

¢
f (kn;n+ 1)−

¡
n

kn−1
¢
f (kn − 1;n+ 1)

≡ α2.

With a slight abuse of notation we let V (α) denote the expected utility of the device

γα :

V (α) = − (1− q)P (G) + α

µ
n+ 1

kn

¶
f (kn;n+ 1) +

n+1X
k=kn+1

µ
n+ 1

k

¶
f (k;n+ 1) .

The difference between V (α) and V̂ (n) is equal to:

V (α)− V̂ (n) =
µ
n

kn

¶
f (kn;n+ 1)

µ
n+ 1

n− kn + 1α− 1
¶
.

Let α∗ = n−kn+1
n+1

. Then V (α) is greater than V̂ (n) if and only if α < α∗.
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It remains to be shown that α2 < α∗ and α2 < α1 for sufficiently large values of n. Let

us start with the first inequality. We need to show:

(n− kn + 1)
h¡

n
kn

¢
f (kn;n+ 1)−

¡
n

kn−1
¢
f (kn − 1;n+ 1)

i
>

(n+ 1)
h¡

n−1
kn−1

¢
f (kn;n) +

¡
n
kn

¢
f (kn;n+ 1)

i
which can be rewritten as:

−
µ
n− 1
kn − 1

¶
(nf (kn;n+ 1) + nf (kn − 1;n+ 1) + (n+ 1) f (kn;n)) > 0.

We divide the above the expression by
¡
n−1
kn−1

¢
, and notice that

f (kn;n+ 1) + f (kn − 1;n+ 1) = f (kn − 1;n) .

We obtain:

−nf (kn − 1;n)− (n+ 1) f (kn;n) > 0.

After dividing both sides by qP (I) (1− p)z(n) pn−z(n) and rearranging terms we have:µ
p

1− p
¶1−2λ

>
n+ p

n+ 1− p,

where λ = kn − z (n) . The left hand side is greater than 1 since λ belongs to
¡
0, 1

2

¢
, while

the right hand side is decreasing in n, and converges to 1 as n goes to infinity.

We now compare α1 and α2. We divide both the numerator and the denominator of α1

by
¡
n−1
kn−1

¢
qP (I) (1− p)z(n) pn−z(n), rearrange terms and obtain:

α1 =

³
(1− p)λ p−λ − pλ (1− p)−λ

´
+
³
n
kn

´³
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

´
³
n
kn

´³
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

´
+
³

n
n−kn+1

´³
(1− p)λ p1−λ − pλ (1− p)1−λ

´ .
We now take the limit of α1 as n goes to infinity. Both

³
n
kn

´
and

³
n

n−kn+1
´
converge

to 2 as n grows large. Thus, we have:

ᾱ1 = lim
n→∞

α1 =

1
2

³
(1− p)λ p−λ − pλ (1− p)−λ

´
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

− (1− p)1+λ p−λ + p1+λ (1− p)−λ + (1− p)λ p1−λ − pλ (1− p)1−λ .
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In a similar way we derive:

ᾱ2 = lim
n→∞

α2 =

1
2

³
− (1− p)λ p−λ + pλ (1− p)−λ

´
− (1− p)λ p1−λ + pλ (1− p)1−λ

− (1− p)λ p1−λ + pλ (1− p)1−λ + (1− p)λ−1 p2−λ − pλ−1 (1− p)2−λ .

It is tedious but simple to show that ᾱ2 < ᾱ1 for every p in
¡
1
2
, 1
¢
and every λ in

¡
0, 1

2

¢
.
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