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Abstract

This paper introduces tests for cointegration breakdown that may occur over a
relatively short time period, such as at the end of the sample. The breakdown may
be due to a shift in the cointegrating vector or due to a shift in the errors from being
1(0) to being I(1). Tests are introduced based on the post-breakdown sum of squared
residuals and the post-breakdown sum of squared reverse partial sums of residuals.
Critical values are provided using a parametric subsampling method.

The regressors in the model are taken to be arbitrary linear combinations of deter-
ministic, stationary, and integrated random variables. The tests are asymptotically
valid when the number of observations in the breakdown period, m, is fixed and finite
as the total sample size, T'+ m, goes to infinity. The tests are asymptotically valid
under weak conditions.

Simulation results indicate that the tests work well in the scenarios considered.

Use of the tests is illustrated by testing for interest rate parity breakdown during
the Asian financial crisis of 1997.

Keywords: Cointegration, least squares estimator, model breakdown, parameter
change test, structural change.

JEL Classification Numbers: C12, C52.



1 Introduction

This paper addresses the problem of cointegration breakdown over a short period
of time. We are interested in breakdown due to a shift in the cointegrating parameter
vector and/or a shift in the errors from being stationary to being integrated. The
breakdown period may occur at the end of the sample, the beginning of the sample,
or somewhere in between. For example, one might be interested in whether a recent
event, such as the Asian currency crisis or a possible productivity slowdown, has
caused an end-of-sample breakdown in a cointegrating relationship. Alternatively,
one might be interested in whether some short policy regime shift or a war caused a
middle-of-sample cointegration breakdown.

Tests in the literature for cointegration breakdown assume that the post-breakdown
period is relatively long. These tests rely on asymptotics in which its length goes to
infinity with the sample size. Examples include the tests of Hansen (1992), Quintos
and Phillips (1993), Quintos (1997), and Kim (1999, 2000). Such tests are not appro-
priate for the case considered here in which the post-breakdown period is relatively
short.

In this paper, we introduce tests for cointegration breakdown that are asymptot-
ically valid when the length, m, of the post-breakdown period is fixed as the total
sample size, T'+ m, goes to infinity. The tests rely on a subsampling-like method of
computing critical values that is introduced in Andrews (2002) and described below.
The critical values are easy to compute.

For simplicity, in the remainder of this section and in the bulk of the paper, we
discuss tests for end-of-sample cointegration breakdown. Adjustment of the end-of-
sample tests for breakdown occurring at the beginning or in the middle of the sample
is straightforward.

The first test statistic that we consider, P,, is the sum of squared post-break
residuals evaluated at a pre-break estimator, such as the least squares (LS) estimator.
This test statistic is motivated by the F' statistic for parameter change over a short
period in a regression model with iid normal errors and strictly exogenous regressors.

Simulations indicate that the P, test over-rejects the null hypothesis somewhat
when the null is true in many cases. In consequence, we consider finite sample
adjustments to the test statistic and critical values that yield better finite sample
size. This leads to two tests called the P, and P, tests.

Next, we consider the locally best invariant (LBI) test for a shift in the error
distribution from being iid normal for all observations to being iid normal for the
first T' observations and then a normal unit root process for the last m observations.
The resulting test statistic is given by the sum of squared reverse partial sums of the
post-break residuals. That is, the statistic is of the form

T+m T+m 2
> (xn). o
t=T+1 s=t

where u; is a residual. The form of this statistic is similar to tests considered in Ny-
blom and Makelainen (1983), King and Hillier (1985), Nyblom (1986, 1989), Nabeya



and Tanaka (1988), Leybourne and McCabe (1989), Kwiatkowski, Phillips, Schmidt,
and Shin (1992), Tanaka (1993), and Shin (1994). We introduce three tests, R,
Ry, and R, that are analogous to the tests P,, P,, and P, but rely on a different
quadratic function of the post-break residuals, viz., that given in (1.1).

Critical values for all the tests considered are obtained by a subsampling-like
method that we call parametric sub-sampling. One computes the T' — m + 1 test
statistics that are analogous to the test statistic of interest but are for testing for
cointegration breakdown over the m observations that start at the j-th observation,
rather than for breakdown starting at the (7" + 1)-th observation, for j = 1,...,T —
m+ 1. The 1 — « sample quantile of these statistics is the significance level « critical
value for the end-of-sample breakdown test statistic. Computation of the critical
value is relatively easy. It just requires calculation of T" — m + 1 versions of the
original statistic. p-values are also obtained easily using this method.

The parametric subsampling critical values use subsamples of length m, the num-
ber of post-breakdown observations. There is no arbitrary smoothing parameter or
block length parameter to select. No heteroskedasticity and autocorrelation con-
sistent covariance matrix estimator is required. These critical values are not pure
subsampling critical values because the test statistic for a given value of j depends
on observations other than those indexed by j, ..., 7 +m—1 through the parameter es-
timator that is used to compute the residuals. See Politis, Romano, and Wolf (1999)
regarding pure subsampling methods.

Parametric subsampling is used in Andrews (2002) to obtain critical values for
tests of parameter instability over short time periods in models with stationary ob-
servations. Both linear and nonlinear models are considered. In contrast, this paper
considers linear models only, but allows for nonstationary regressors and, hence,
cointegrating regression models. The test statistics considered in the two papers also
differ.

The tests considered here are not consistent tests because m is fixed as T — oo.
Typically, however, they are asymptotically unbiased. The power of the tests depends
on the magnitude of the breakdown, such as the magnitude of the parameter shift
and/or the magnitude of the unit root error variance, relative to the pre-breakdown
error variance. Power also depends on m. The larger is m, the greater is the power
everything else being equal. Power may be low if m is small or the magnitude of the
breakdown is not large. In consequence, failure to reject the null hypothesis should
not be interpreted as strong evidence in favor of stable cointegration.

The paper presents some Monte Carlo simulations that are designed to assess the
finite sample size and size-corrected power properties of the tests P,-P. and Rq-R..
We consider models with a constant, time trend or no time trend, two or four unit
root regressors, and zero or two stationary regressors. The errors, unit root regressor
differences, and stationary regressors are first-order autoregressive (AR) with the
same AR parameter. The AR parameters considered are p = 0, .4, and .8. The AR
innovations considered are normal, chi-square with two degrees of freedom, t3, and
uniform. The unit root regressor differences are correlated with the errors in some
cases considered. The pre-breakdown sample sizes are T = 100 and 250 and the



post-breakdown sample sizes are m = 10, 5, and 1. We consider power against shifts
in the cointegrating regressor vector, as well as in shifts in the error from being I(0)
to being I(1). These are referred to as parameter shift alternatives and unit root
alternatives, respectively.

The simulation results show that the P, and R, tests tend to over-reject in finite
samples. The sizes of the Py, P., Rp, and R, tests are noticeably better and are quite
good, especially considering that the range of cases considered is wide. For example,
for the nominal 5% P, test, the null rejection rate varies between .040 and .064 over
72 different model/parameter combinations. For 7" = 100, it varies between .028 and
.081 with an average of .052.

The power results indicate that the P and R tests have power against both unit
root alternatives and parameter shift alternatives. In fact, paradoxically, the P tests
are somewhat better than the R tests for unit root alternatives and vice versa for
parameter shift alternatives. The differences between the powers of the Py, P, Rp,
and R, tests typically are not large. The best of these tests in terms of power is the
R, test because it is slightly more powerful than the R;, tests across most cases and
has less variable power across different distributions than the P, and P, tests.

Combining the simulation results for size and power, we find the best two tests
are the P. and R, tests. We have a slight preference for the P, test because its
size properties are somewhat better than those of the R. test. The P, test has
pretty good size and power properties across the wide range of models and parameter
combinations that are considered in the simulations.

The use of the P and R tests is illustrated by testing for breakdown of interest
rate parity during the Asian financial crisis of 1997. Separate results are given for
Thailand, the Philippines, Indonesia, and Singapore. The results indicate that the
end-of-sample tests would have detected cointegration breakdown when the sample
period considered is such that breakdown occurred at the end of the sample. (In this
illustration, the “true” time of breakdown is taken to be the time estimated using a
long time series, which includes the time series upon which the tests are constructed,
and employing the method of Kim (2000).)

The remainder of this paper is organized as follows. All sections of the paper
except Section 5 discuss end-of-sample cointegration breakdown tests. Section 2
introduces the model and hypotheses of interest. Section 3 presents the tests that are
considered. Section 4 states high-level assumptions, provides sufficient conditions for
these assumptions for the case of estimation by LS, and states the main asymptotic
results. Section 5 discusses tests for cointegration breakdown that occurs at the
beginning or in the middle of the sample. Section 6 provides some Monte Carlo
results. Section 7 provides the empirical example. An Appendix contains proofs.

2 Model and Hypotheses

The model is

[ 2By +u fort=1,.,T
T B, fuy fort=T4+1,..,T+m,



where ¥, u; € R and 24, 3y, 3, € R*. Under the maintained hypothesis, the errors for
the first T time periods, {u; : t = 1,...,T'}, are mean zero, stationary, and ergodic.
In addition, under the maintained hypothesis, the regressors for all time periods,
{z¢ : t =1,...,T + m}, are linear combinations of unit root (I(1)) random variables,
stationary random variables, and deterministic variables, such as a constant and a
linear time trend. Precise assumptions are given in Section 4.

The null and alternative hypotheses are

g [ Be=0Fpforallt=T+1,...T +m and
"\ {w:t=1,..,T+m} are stationary and ergodic

B¢ # B for some t =T+ 1,...,T +m and/or
H; : ¢ the distribution of {ug41, ..., Ui} differs from (2.2)
the distribution of {uy, ..., um,}-

Under the null hypothesis, the model is a well-specified cointegrating regression model
for allt = 1,...,T+m. Under the alternative hypothesis, the model is a well-specified
cointegrating regression model for all ¢ = 1,...;T, but for t =T + 1,...,T +m the
cointegrating relationship breaks down.

The breakdown may be due to (i) a shift in the cointegrating vector from [ to
By, (ii) a shift in the distribution of u; from being stationary to being a unit root
random variable, (iii) some other shift in the distribution of {wry1,...,ur4m} from
that of {u1,...,um}, or (iv) some combination of the previous shifts. In the next few
sections, we introduce tests that are designed especially for cases (i) and (ii).

3 Cointegration Breakdown Tests

3.1 P, Test

First , we consider a test statistic that is a quadratic form in the “post-breakdown”
residuals {us : t =T + 1,...,T +m}. The test rejects the null hypothesis if the test
statistic exceeds a critical value that is determined using a parametric subsampling
method.

Forany 1 <r <s<T+m,let

Let

Pi(3,9) = (Y (j+m-1) = Xj(jrm-1)8) UV (j4m—1) =X (j+m—1)0) and
Pi(8) = P5(8, Im).- (3.4)

for j =1,...,T 4+ 1, where () is some nonsingular m x m matrix and I,,, denotes the
m dimensional identity matrix.



Let BT_Sdenote an estimator of 3, based on the observations t = r,...;s for 1 <
r < s <T + m. For example, for the LS estimator,

Br—s = (X;«-er—s)_IX;«_sYr-s (35)

(provided X! X, s is nonsingular). Other estimators can also be considered. Such
estimators include the fully modified estimator of Phillips and Hansen (1990), the ML
estimator, see Johansen (1988, 1991), Ahn and Reinsel (1990), and Phillips (1991),
and the asymptotically efficient estimators of Phillips and Loretan (1991), Saikonen
(1991), Park (1992), and Stock and Watson (1993).

The first test statistic, P,, that we consider is defined by

Py = Pry1(Brr)
T+m R
= > (i —2Bip)” (3.6)

t=T+1

As defined, P, is the post-breakdown sum of squared residuals. The statistic P, is
often referred to as a predictive statistic. The motivation for considering this statistic
is that in a linear regression model with known error variance it is (proportional to)
the F statistic for testing for a one time change in the regression parameter occurring
at time 7'+ 1 when m < k, e.g., see Chow (1960). The F test has well-known optimal
power properties in the (restricted) context in which the errors are iid normal and the
regressors are strictly exogenous, e.g., see Scheffé (1959, Ch. 2).2 Predictive statistics
have been used by Dufour, Ghysels, and Hall (1994) and Andrews (2002) to test for
end-of-sample instability in models with stationary observations.

Under the null hypothesis, the distribution of Pri1(3y) is the same as that of
P;(By) for all j > 1, because P;(8y) = Z]er Y42 and {u; : t > 1} are stationary.

The estimator Bl_T, which appears in the statistic P,, converges in probability to
the true parameter, (3;, under suitable assumptions. Hence, the asymptotic null
distribution of P, is the distribution of P;(f,). This is established rigorously below.

The random variables {P;(8,) : j = 1,...,T —m + 1} are stationary and er-
godic under Hy and H;. In consequence, the empirical distribution function (df)
of {Pj(By) : 7 = 1,..,T —m + 1} is a consistent estimator of the df of P(3).
Hence, we can consistently estimate the df of P;(8,) by using the empirical df of
{P;(B):j=1,..,T—m+1} evaluated at a consistent estimator of 3, (see Theorem
1 below). R

The estimator 3, 7, which appears in the statistic P,, does not depend on the
observations indexed by t =T + 1, ...,T +m that appear in Pr41(3). To mirror this
property in the subsample statlstlcs we evaluate Pj(3) at a “leave-m-out” estimator,
/B(]) that is analogous to /31 - but does not depend on the observations that appear
in Pj(B). By definition, for j =1,....,T —m +1,

B(j) = estimator of 3 using observations indexed by ¢t = 1,...,T with

t#j,.j+m—1. (3.7)



For the types of estimators mentioned above, the estimator B(j) is consistent for (3,
(uniformly over j) under suitable assumptions.

Define R
Pa]' :F)](ﬁ(])) forjzl,,T—m+1 (38)

,

The empirical df of {Py;:5=1,....,T —m+1}is

R T—m~+1
Fr,r(z) = m+1 > (P <w) (3.9)
t=1

This empirical distribution converges in probability (and almost surely) to the df of
P1(By) (under suitable assumptions). In consequence, to obtain a test with asymp-
totic significance level «, we take the critical value for the test statistic P, to be the
1 — a sample quantile, gp, 1—a, of {Psj:j =1,...,7 —m+1}. By definition,

Gp1—a =inf{z € R: Fp,p(x) >1—a}. (3.10)

One rejects Hy if Py > qp, 1—o- Equivalently, one rejects Hy if P, exceeds 100(1 —
a)% of the values {FP,j : j =1,...,T —m+ 1}—that is, if

T m+1
(T—m+1)"" Y 1Pa>Puy)>1-a (3.11)
7j=1
The p-value for the P, test is
T m+1
pop, =(T—m+1)"1 Y 1(Pa< Pay). (3.12)
7j=1

3.2 P, and P, Tests

Simulations indicate that the P, test over-rejects the null hypothesis in many
scenarios. In consequence, we consider two variants of the P, test that are designed
to have better finite-sample properties.

We define the P, and P ; statistics as follows:

Py, = PT+1(B1_(T+(m/21)) and
Py; = Pi(B(y) for j=1,..,T —m+1, (3.13)

where [m/2] denotes the smallest integer that is greater than or equal to m/2. The
estimator Bl_(TJr rm/2]) uses the observations ¢t = 1,...,T + [m/2]. Critical values and
p-values for P, are obtained using {P,; : j = 1,...,T—m+1} as in (3.10)-(3.12) with
a replaced by b.

The motivation for the P, test is as follows. The P, statistic is somewhat less
variable than the P, statistic because the estimator Bl_(T +[my2]) depends on the
observations indexed by t = T'+ 1,...,T + [m/2] and, hence, the residuals indexed



by t = T+ 1,...,T + [m/2] (upon which Pryi(-) depends) are less variable when
computed using (7 /2]y than when computed using 51.;-. We base the critical
values for P, on the same statistics Pj(B(j)) as for the P, statistic. In consequence,
the test P, rejects less frequently under Hy than the P, test does.

Next, we consider a statistic P, that depends on the complete sample estimator

Bl-(T+m) :
P.= PT+1(61_(T+m))- (3.14)

This statistic is less variable than either P, or P, because Bl_(T +m) makes use of the
observations ¢t = T'+ 1,...,T"+ m and, hence, the residuals for these time periods
are less variable when computed using [y (74, than when computed using 3 r

or Bl_(T +m/2))- Simulations show that the test based on the statistic P and the
subsample statistics {Pj(B(j)) :j=1,...,T —m+ 1} tends to under-reject the null
hypothesis in a broad array of cases. Hence, we introduce subsample statistics for
use with P, that are somewhat more variable than {Pj(ﬁ(j)) cj=1..,T—m+1}.

We define the “leave-m/2-out” estimator, BQ( by

i)
BQ(]’) = estimator of 8 using observations indexed by t = 1, ..., T with

for y =1,...,,T —m+ 1. By definition, BQ(]-) is analogous to BT_S, but is based on the
observations indicated above.
We define the P, ; statistics as follows:

Pej :Pj(BQ(j)) forj=1,...,T —m+1. (3.16)

Critical values and p-values for P, are obtained using {P.; : j = 1,...,T—m+1} as in
(3.10)-(3.12) with a replaced by c. The test based on P, and P, j rejects noticeably less
frequently under the null hypothesis than the P, test and somewhat less frequently
than the P, test, see the simulation results of Section 6.

3.3 Tests with Estimated Weight Matrix

The P,, Py, and P, tests are designed for the case where the errors in the regression
model are uncorrelated—although the tests have correct size asymptotically whether
or not the errors are correlated. If the errors are correlated, it might be advantageous
in terms of power to include weights in the statistics based on an estimator of the
error covariance matrix. We considered some tests that do so, but found that they
were somewhat inferior to the P,-P. tests in terms of closeness of nominal and true
size and in terms of size-corrected power across the range of models considered in
Section 6.

We state the definition of these tests here but do not discuss them further. These
tests are the same as P,-P, except that 2 = I, is replaced by

-1
T+1
~ 1

Q1 (r4m) = T+1 Y Ujjem-1Ujjpm 1 |, where
j=1

7



Ujjtm—1 = Yjjtm-1 — Xj jtm-181(14m) (3.17)

The estimator ﬁl_(T +m) 1s an estimator of the inverse of the m x m covariance matrix
of the errors Q! = (EUL,U,,,) "t

3.4 Locally Best Invariant Test for Unit Root Alternatives

The P, tests for v = a, b, and ¢ are motivated by the F’ test for a one time change
in the parameter vector . We now consider the locally best invariant (LBI) test
statistic for the presence of unit root errors from ¢t =7 4+ 1 to t =T + m in a linear
regression model with iid normal errors, known error variance (under the null), and
exogenous regressors. We use the form of this statistic to construct tests that are
asymptotically valid under more general conditions on the errors and regressors.

The model and LBI statistic that we consider is similar to those considered in the
papers listed in the Introduction.

For the purposes of generating the LBI test statistic, the model we consider is

Yy = By +u fort =1,..,T +m,
ur = Py _’_/\1/2%’
Y, ~iid N(0,1) for t =1,....,T + m,

1; o 0 fOI“t:L...,T
Pl Yy e fort=T4+1,.... T +m, and
et ~iid N(0,1) for t =T+ 1,...,T +m, (3.18)

where €¢,, ¥,, and x¢; are independent of each other for all ¢1, 2, and ¢3. The null
and alternative hypotheses of interest are

Ho:A=0and Hy: A> 0. (3.19)

When the regressors are integrated, the null hypothesis consists of cointegration for
the whole sample, whereas the alternative hypothesis consists of cointegration for the
observations ¢t = 1,...,T and lack of cointegration (i.e., spurious regression) for the
observations t =T + 1,....T + m.

Conditional on {z; : t = 1,...,T +m}, we have

Y1 (rtm) ~ NXi(r4m)Bos Ir4m +AV), where
V = Diag{O0r, A, },
[Am]ke = min{k, ¢} for k, 0 =1,...,m, (3.20)

)

and O is a T'x T matrix of zeros. That is, V' is a (T'+m) X (T'+m) matrix consisting
of zeros except in the lower diagonal m x m block, which is given by the m x m matrix
Am.

We consider invariance with respect to the following standard transformations in
a linear model:

Yirim) — Yi@im + X @im)s
Bo — Bo+r- (3.21)



The maximal invariant statistic S for these transformations is defined as follows.
Let J be a (T'+m) x (T + m — k) matrix that satisfies J'J = Iy, ¢ and JJ' =
Ity — X(X'X)71X', where X = Xi-(T4m)- We have

S =JY 1 (14m) ~ N(O, Ippm—i +X'VJ). (3.22)

By Ferguson (1967, p. 235), the rejection region of the LBI test is

d
— log frim(S|A\) > K, (3.23)

where frim,m(S|A) is the density of S evaluated at S and K is a constant. In the
present case,

2L tog Fram(SIN) = —S'-L(Bpim o+ MVI)LS

“ = s’(Ijimk + AV IV I(Irgm—k + AJ'VJ) LS and
QdiA o8 frim(SIN| = §TVIS
= ﬁll-(T+m)Vﬁl-(T+m)
= fJ’(TH)_(Tm)Amﬁ(TH)_(Tm), (3.24)

where
Ui (rmy = IS =TT Y L rim) = Yirim) — Xo(4m) BLs,i(4m) (3.25)

and BLSJ_(T +m) is the LS estimator from the regression of Yy (., on Xy (7im)-
Hence, the LBI test statistic is a quadratic form in the post-change residual vector
with weight matrix A,,.

3.5 Ry,-R, Tests
The LBI test statistic of (3.24) can be written using (3.4) as

PT+1(BLS,1-(T+m) s Am). (3.26)

That is, the LBI test statistic is just like the P,-P, statistics except that it uses the
weight matrix A,, instead of the identity matrix. In this section, we define three tests
Rg-R. that are analogous to the P,-F, tests defined above, but use the weight matrix
A,, instead of I,,.

Define

Ry = Priy(Brr, Am), Raj= PT+1(B(j)7Am)7
Ry = Praa(Bi(rsmy2)), Am), Roj = Pri1(Bj), Am), and
Re = Pry1(Birgm)s Am), Rej = Proa(Bogys Am)- (3.27)



The estimators B(j) and 32(]-) used in the sub-sample statistics Ry j, Ry j, and R ;
are chosen for the same reasons as for the P,-P. tests. Critical values and p-values
for the R,-R. tests are obtained as in (3.10)-(3.12) with P replaced by R and with
a equal to a, b, or c. The estimator 3, ; used with the R,-R. tests could be the LS
estimator or some other estimator.

It turns out that the R, test statistic for v = a, b, or ¢ is a sum of squares of
reverse partial sums of residuals. To see this, let () be the m x m matrix that has
ones on and above the main diagonal and zeros below the main diagonal. Then,
A = Q'Q and R, can be written as

N o o T+m T+m R 2
Ry = Pri1(Brp, Am) = (QU(B11)) QU(BLy) = Z (Z (ys — 95/3/31-T)> .
t=T+1 s=t
R (3.28)
The statistics R, j, Ry, Ry, etc. can be written in the same way with 3, replaced
by the appropriate estimator.
As shown below, the R,-R,. tests are asymptotically valid in a much broader class
of models than the model of (3.18) that generates the LBI test.

4 Asymptotic Results

4.1 Assumptions

To simplify the theoretical analysis of the tests introduced above, we consider a
transformation of the regressor vector, x¢, that separates the unit root and determin-
istic components of x; from its stationary components. This transformation need not
be known by the user of the tests. It is employed only in the theoretical analysis of
the tests. Let

2= Hur = ( L ); Yo=H '8y = ( 10 );
2ot 72,0

Ve = H_lﬁt = < PYIJ ) ’ /'yr—s = H_lﬁr_g - < zl’r_s ) 5
72,t 72,1‘—5

~  _g-1a (710 5 13— 7120)

Vo) = H B < T ) > and Yy = H™ Py < Foal) > > (@)
where H is a non-random nonsingular k X k matrix, zet,Ve,0, Ve Ver-ss Ve () Ve,2(5) €
RFe for ¢ = 1,2, and k = ki + ko. We assume that H is chosen such that the trans-
formed regressor vector zj; contains only unit root and/or deterministic variables
and the transformed regressor vector zo; contains only stationary mean zero random
variables.

The model can be rewritten as

{ 29 +uw fort=1,..,T
t:

2y +ug fort=T+1,....,T +m. (4.2)

10



Let w; denote the vector of errors and stationary regressors:

wy = < Z;t > . (4.3)

In order to determine the behavior of the random critical values defined above
under both Hy and Hj, it is convenient to consider a sequence of random variables
{woyt :t > 1} that are stationary and ergodic under both Hy and H;. Under Hy, w;
equals wo for t =1, ...,T+m. Under Hy, wy = woy for t =1,...,T and wy = wr, for
t=T+1,..,T +m, where {wy; : t =T +1,...,T +m} are some random variables
whose joint distribution may differ from that of {wo; : t = T+ 1,...,T +m}. We
assume that the distribution under Hy of {wr;:t =T +1,...,T+m} is independent
of T. That is, we consider fixed, not local, alternatives. Note that the variables
{(yt,wi,z14) : t =1,...,T +m} are from a triangular array under H,, rather than a
sequence, because the breakdown point T changes as T' — oo.

We make the following assumptions.

Assumption 1. {wg; : t > 1} are mean zero, stationary, and ergodic random vectors
under Hy and H;. The distribution of {21, : ¢t =1,...,T} is the same under Hp and
H,. Under Hi, the distribution of {wy; :t =T 41,...,T 4+ m} does not depend on
T.

Assumption 2. Elu| < oo, E||uiz2,|| < 0o, and E||224||> < oo for t < T.

Assumption 3. maxi<rin ||Br'z14|| = Op(1) for some non-random positive-
definite diagonal k1 x k1 matrices {Bp : T > 1} under Hy and Hj.

Assumption 4. When v = a, |[Br(Yy,1.0 — 71,0l =p 0, (V2,00 = Y20l —p 0,
maxj—1,. .. 7-m+1 || Br(1,i) = Y1,0)ll =p 0, and max;—y 7 mi1 |2, = Y20ll = 0
with m fixed, under Hy and Hy, where By is as in Assumption 3. When v = b, the
same conditions hold but with 7, p replaced by 3,1 (7 [m/2)) for ¢ = 1,2. When
v = ¢, the same conditions hold but with 7 Vo1 and 7, () replaced by 71 (T+m) and
75,2(]), respectively, for £ =1, 2.

Assumption 5. The distribution function of R;(8y) or Pi(f,) is continuous and
increasing at its 1 — a quantile.

By the definition of wy given above and the second condition of Assumption 1, the
joint distribution of all the variables for time periods ¢t = 1,...,7T is the same under
Hy and H;i. This implies that Assumption 5 and the first set of moment conditions
in Assumption 2 hold under both Hy and H;.

Assumption 1 is relatively weak in terms of the restriction it puts on the temporal
dependence of the errors and stationary regressors. For example, ergodicity allows
for long-memory. Assumption 2 imposes mild moment conditions on the errors and
stationary regressors. For example, the errors do not need to have a finite variance.

Assumption 3 requires that the (transformed) unit root and deterministic regres-
sors, z1¢, can be properly normalized. The diagonal element of By that corresponds
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to a unit root variable in 21 ; with mean zero “asymptotically weakly dependent” in-
novations is 7/2.3 Examples of “asymptotically weakly dependent” random variables
include strong mixing random variables, linear processes with absolutely summable
covariances, and near-epoch dependent (NED) processes. The diagonal element is
T2 in this case because T1/2 times a partial sum of mean zero asymptotically
weakly dependent random variables converges weakly to a scaled Brownian motion
by a functional central limit theorem (FCLT) under suitable moment conditions.
There are numerous results in the literature that provide primitive sufficient condi-
tions for this to hold. See Section 4.2 below. Given weak convergence of the partial
sum of the innovations, the continuous mapping theorem (CMT) implies that the
condition in Assumption 3 holds for a unit root element of 2 ;.

The diagonal element of Br that corresponds to a constant in 27, is just one.
Thus, the condition of Assumption 3 holds trivially for a constant term in z;;. The
diagonal element of By that corresponds to a linear time trend, ¢, in 214 is 7. Because
max;<74m(t/T) = 1+ m/T, the condition in Assumption 3 also holds trivially for a
linear time trend.

As an example of a typical By matrix, suppose z1; = (1,t,7;)", where r; is a p
vector of unit root variables with mean zero asymptotically weakly dependent inno-

vations. Then, we have
10 0
Br=1| 0 T 0 . (4.4)
0 0 TY?I,

Assumption 3 also allows for unit root processes with stationary long-memory or
fractional difference innovations. The diagonal element of Bp that corresponds to
a unit root process with stationary innovations that have long-memory or fractional
difference parameter d € (—1/2,1/2) is (1/2) +d. This follows by results for the weak
convergence of the partial sums of such processes, e.g., see Sowell (1990, Thms. 1
and 2).

Assumption 4 concerns the behavior of the transformed estimators 7 p,
V1-(T+[m/2])s V1-(T+m)> V(j)» and Ya(;). The assumptions are not very restrictive. For
example, the estimator of the parameters on stationary regressors just needs to be
consistent and most such estimators are actually 7/2-consistent. The estimator of
the parameters on unit root regressors (based on mean zero asymptotically weakly
dependent innovations) just need to be TY/2_consistent, and most such estimators
are actually T-consistent. Similarly, the conditions on deterministic regressors are
weaker than what most estimators satisfy.

In the following section, we provide sufficient conditions for Assumption 4 when
the LS estimator is used.

Assumption 5 holds if the errors have an absolutely continuous component, which
is not very restrictive.

4.2 Least Squares Estimation

In this section, we give sufficient conditions for Assumption 4 for the case where
the estimator employed is the LS estimator defined in (3.5). The conditions given
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are also sufficient for Assumptions 2 and 3.

We consider weak convergence (denoted =) of a stochastic process, v(-), defined
on [0, 1] to a limit process that has bounded continuous sample paths a.s. The precise
definition of “weak convergence” requires specification of a pseudo-metric on the space
of functions on [0, 1]. We use the uniform metric, as in Pollard (1984).

Let [a] denote the integer part of a.

The following assumption, combined with Assumption 1, is sufficient for Assump-
tions 2-4 when the estimator used in the test statistics is the LS estimator.

Assumption LS. (a) Ezu = 0, Elu '™ < oo, Bllutze||'*® < oo, and
E||z2,4]|**® < oo for some § > 0 for t < T.
(b) vy (-) = v(-) as T — oo, where vp(r) = By'zy iy for r € [0,1], {By : T > 1} are
non-random positive-definite diagonal k1 x k; matrices, and v(-) is some stochastic
process that has bounded and continuous sample paths a.s.
(c) T! Zthl Bflzlyt(uta 254) = op(1).
(d) maxt:T+1,,,,,T+m||B}121,t|| = Op(1) under Hy and H;.
(e) fol v(r)v(r)'dr and Y90 = Ezy2), are positive definite a.s.

All parts of Assumption LS except part (d) involve variables indexed by ¢ < T.
These variables have the same distribution under Hg and H; by the definition of
{wy : t < T} given above and Assumption 1. In consequence, the conditions in
Assumption LS hold under both Hy and H;.

The first condition of Assumption LS(a) specifies that the stationary regressors,
224, are not endogenous. This is needed for the estimators of v, to be consistent.
The remaining conditions of Assumption LS(a) are a slight strengthening of the
moment conditions of Assumption 2 (that is used to obtain uniformity of ﬁ(j) —Y —p
Oover j=1,....,T+m—1).

Assumption LS(b) holds under a variety of different conditions stated in the lit-
erature. We give two examples below—one using strong mixing and the other using
linear process conditions.

Assumption LS(c) is a weaker condition than is often satisfied under common
conditions in the literature. Typically, the random variable in Assumption LS(c)
multiplied by 7%/2 converges in distribution to some random variable and, hence,
Assumption LS(c) holds with O,(7T~1/2) in place of 0,(1). Two examples of sufficient
conditions for Assumption LS(c) are given below.

Assumption LS(d) is not very restrictive because the maximum is over a finite
number, m, of terms. Assumption LS(d) is automatically satisfied if (i) the unit root
and deterministic regressors, z1, come from a sequence, rather than a triangular
array, and (i) B3 Brym = O(1). Condition (i) is innocuous under Hy. Under Hj,
it might be restrictive because one might want to allow the behavior of the unit
root regressors to change after the breakdown point. If so, then Assumption LS(d)
specifies the extent to which the unit root regressors can exhibit different behavior
under H; after the breakpoint. Condition (ii) on By is satisfied in all cases of interest.

The following conditions plus Assumption 1 are sufficient for Assumptions LS(b)-
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(d): Under Hy and Hj,

(1) 21, contains a vector of polynomials in ¢ with non-negative exponents
and/or a unit root random vector z7, that satisfies 27, = 27,1 + v for
t=1,2,..., where 27 = Oy(1),

(ii) sup E||(wp 4, v})[|* < oo for some 3> 2 and & > 0, and
t>1

(i) {(wpy,vy)' st > 1} is a weakly stationary strong mixing sequence

of mean zero random variables with strong mixing numbers that satisfy

o

> a7 (r) < oo (4.5)
r=1

In this case, any element of v(r) (defined in Assumption LS(b)) that corresponds to
a polynomial in ¢, say t* for a > 0, is r® for r € [0,1]. In addition, the sub-vector of
v(r) that corresponds to unit root elements of vp(r) is a vector Brownian motion,
{B(r) : r € [0,1]} with covariance matrix

o0 o
Q' =BG+ ) BGC,+ ) B, where ¢ = (wp, v})' (4.6)
k=2 k=2
Sufficiency of (4.5) for Assumptions LS(b)-(d) follows from Lemma 2.2 and The-
orem 2.6 of Phillips (1988b) when 21 ; contains just a unit root random vector. (The
diagonal elements of By are all T2 in this case.) When z; ¢ contains a polynomial,
say t® for a > 0, we take the corresponding element of B to be T% and the poly-
nomial element of vy (r) converges to the non-random polynomial r* uniformly over
r € [0,1]. Hence, Assumptions LS(b) and (d) hold when polynomials are present.
The elements of 71 Zthl B;lzlyt(ut, z§7t) that correspond to polynomials in z ; are
op(1) because after normalization by B:Fl the polynomials are bounded by one and,
hence, a WLLN for triangular arrays of mean zero L?-bounded strong mixing random
variables gives the desired result (see Andrews (1988, Thm. 2 and Remark 4 of Sec.
3)).
The following conditions plus Assumption 1 are an alternative set of sufficient
conditions for Assumptions LS(b)-(d): Under Hyp and Hy,

(i) condition (i) of (4.5) holds,

o
(i) (wp 4, vp) = Z Cjer—j and {e; : t > 1} are iid with mean
j=—0o0

zero and variance A > 0,

(ii)) D Ol <ooand 3|11 Cille +11 DOl | <o,
k=1 Jj=k Jj=k

j=—00

)

where [|Cj|. = max | > " Cjrel and Cjpe = [Cylr. (4.7)
l
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The limit random vector v(r) that arises in Assumption LS(b) is the same in this case
as defined in the paragraph containing (4.5). Sufficiency of the conditions in (4.7)
follows from the Theorem and its proof in Phillips (1988a) when z; ; contains just a
unit root vector. The extension to the case where 21 ; may also contain polynomials
is as above.

Assumption LS(e) is standard in the literature. It rules out the case where one or
more regressor is redundant. This assumption is not critical because the test statistics
depend on residuals, which depend on the column space spanned by the regressors,
not on the regressors themselves. We utilize this condition because it is not very
restrictive and its elimination would complicate the results and the proofs.

Lemma 1 Assumptions 1 and LS imply that Assumptions 2-4 hold for v = a, b,
and c.

Comment. Analogues of Lemma 1 could be established for other estimators, such as
fully modified, ML, and various other asymptotically efficient estimators mentioned
above. For brevity, we do not do so.

4.3 Asymptotic Results

We now state the asymptotic results that justify the use of the parametric sub-
sample critical values that are introduced above.

Let l?'me(m) denote the empirical df based on {P,; : j = 1,...,7 —m + 1} for
v =a, b, and c. That is,
T—m+1
> 1Py <) (4.8)
=1

J

~ 1
Fror@) =5
Let Fp(x) denote the df of P;(8,) at x. Let gp1_ denote the 1—a quantile of Py ().
Let @p, 1—a denote the 1 —a sample quantile of {P, ; : j =1,...,T —m+1} for v = a,
b, and ¢, as defined in (3.10).

Let Py be a random variable with the same distribution as Pri1(8;). Under
Assumptions 1-5 and Hy, the distribution of Pri1(0,) equals that of Py(5;). Also,
the distribution of Pryi(8,) does not depend on T under either Hy or H;. Under
Hy, this holds by stationarity. Under Hj, this holds because the distribution of
{wri:t=T+1,..,T+m} is assumed to be independent of T', which is appropriate
for fixed alternatives.

Define ﬁRv’T(m), Fr(x), qr,1-a> QR.,1—a, and R analogously with R in place of
P.

The main result of the paper is the following.

Theorem 1 Suppose Assumptions 1-5 hold for v =a, b, or c. Then, as T — oo,
(a) Py —d Poo under Hy and H,

(b) Fp,1(x) —p Fp(x) for all x in a neighborhood of qp1—o under Ho and Hi,
(c) qA Po.l—a —p qP1—a under Hy and Hy, and

(d) Pr(P, > qp,,1-a) — « under Hy.

(e) Parts (a)-(d) hold with R in place of P.
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Comments: 1. The asymptotic distribution of P, under Hy and H; is given in
part (a) of the Theorem.

2. Part (c) of the Theorem shows that the random critical value gp, 1o has the
same asymptotic behavior under H; as under Hy. This is desirable for the power of
the test.

3. Part (d) of the Theorem shows that the asymptotic size of the test is «, as
desired.

4. Part (a) shows that P, does not diverge to infinity as T' — oo under H;. Hence,
P, is not a consistent test. This is due to the assumption that the number, m, of
post-breakdown observations is fixed and does not go to infinity in the asymptotics.
However, if Pry1(8,) is stochastically greater than P;(8;) under Hj, then P, is an
asymptotically unbiased test.

5. Parts (c) and (d) of the Theorem follow easily from part (b). The idea
of the proof of part (b) is to show that (i) the difference between ﬁpv,T(.%') and
a smoothed version of it, say ﬁpv (z, hr), converges in probability to zero, where
hp indexes the amount of smoothing and hy — 0 as T" — oo, (ii) the difference
between Fp (x, hr) and an analogous df with /B (j) OF /BQ(J replaced by (3, converges
in probability to zero, (iii) the difference between the latter and the empirical df of
{P;j(By) : j = 1,..,T —m+ 1)} converges in probability to zero as T" — oo, and
(iv) the difference between the latter and its expectation, Fp(x), is asymptotically
negligible. The reason for considering a smoothed version of F P, () is that it is a
smooth function of P, ; and, hence, result (ii) can be established by taking a mean-
value expansion about P;(8y). Result (iv) holds by the ergodic theorem because
{Pj(By) : j =1,...,T —m+1)} is a finite subset of stationary and ergodic random
variables using Assumption 1.

5 Tests for Breakdown at the Beginning,
or in the Middle, of the Sample

The tests introduced above for detecting cointegration breakdown at the end of
the sample can be altered to detect breakdown occurring at the beginning or in the
middle of the sample. For example, one might be interested in determining the most
suitable starting date for a model. Or, one might be interested in whether a model
behaves differently during a policy regime shift or during war years than in other
years in the sample. Such periods of potential breakdown are often of relatively short
duration, so that asymptotic tests that are based on their length going to infinity
are not appropriate. In such cases, the testing method introduced above is useful
because the length, m, of the time period of potential breakdown is taken to be fixed
and finite in the asymptotics.

We consider testing for cointegration breakdown for the m observations indexed
by t = tg, ...,t0 + m — 1 when the total number of observations is 7"+ m. The null
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and alternative hypotheses are given by

. yr = xifg+w forall t =1,...,T +m and
0"\ {ug:t>1} are stationary and ergodic
yr =0y +ug for allt =1,...,tg — 1, to+m,....,T +m and
yr = x4 3, + up with 8, # (3, for some t = tg, ...,to +m — 1 and/or
the distribution of {u, ..., uty+m—1} differs from that of
error sequences {ug, ..., Us1m s} that do not overlap with it.

H1 : (51)

One can construct tests for these hypotheses by moving the observations {(y,x¢) :
t =to,...,to +m — 1} to the end of the sample and moving the observations after t =
T+m—1 up to fill the gap. The observations originally indexed by ¢t = tg, ..., to+m—1
are subsequently indexed by ¢t = T',...,T'+m and the tests defined above can be used
to test the hypotheses in (5.1).

6 Monte Carlo Experiment

In this section, we describe some Monte Carlo results that are designed to assess
and compare the size and power properties of the tests P,-P, and R4-R..

6.1 Experimental Design

We consider linear regression models estimated by LS. For results under the null
hypothesis, the model we consider is

y =080 +w fort =1,...,T +m (6.1)

with 8y = 0. We consider two values of T 100 and 250. We consider three values of
m: 10, 5, and 1. In the base model that we consider, we take

Yt = Bro T tPa0 + 95'1,t/33,0 + xl2,t/64,0 + U, (6.2)

where 1, is a vector of unit root regressors and xg; is a vector of stationary mean
zero regressors. The errors, ug, the difference of the unit root regressors, Dx1; =
x1¢ — @141, and the stationary regressors, s, are all AR(1) processes with the
same AR(1) parameter p and the same innovation distribution G. We consider three
values of p: 0, .4, and .8. We consider four innovation distributions: (i) standard
normal (N(0,1)), (ii) chi-squared with two degrees of freedom (x3) recentered and
rescaled to have mean zero and variance one, (iii) ¢ with three degrees of freedom (t3)
rescaled to have variance one, and (iv) uniform (U) on [—/12/2,/12/2], which has
mean zero and variance one. The different innovation distributions display standard
behavior (N(0,1)), skewness (x3), excess kurtosis (¢3), and thin tails (U).

The stationary regressors xg; are independent of the errors, the unit root regres-
sors, and each other. The unit root regressors and errors may be correlated with the
correlation between Dz and w; being pp, ,,. This correlation is achieved by taking
each element of Dx; and u; to have a common component.
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The errors, the differences of the unit root regressors, and the stationary regressors
are generated as follows. The innovations to the various AR(1) processes that are
utilized are

{7 & i, a5y st =1,...,T +m}, (6.3)
where ¥}, nf € R, & € R, ry, € R%:> and d,, and dg, denote the dimen-
sions of x1; and wa4, respectively. The innovations are iid across the elements of

(7, & mf, «3,)' and across t. Each element of (¢7,&,nf, 23,)" has distribution G
for G as above. The AR(1) processes based on these innovations are

Yy = py_1 + Uy,
& = p§i—1+ &
My = Ple—1+ My, and
Totr = pr2t—1 + 563715 (6.4)

for t = 1,...,7 4+ m. The elements of the initial conditions (ty,&p, 0,25 0)" are iid
each with distribution G but rescaled to yield a variance stationary AR(1) sequence.
(For example, (1 — p?)/?1), has distribution G.)

The errors and differences of the unit root regressors are

1/2
ut = (1 - pr,u)1/2¢t + pD/xyunt and
1/2
D1y = (1= ppy )26 + o aila, - (6.5)

where 1d11 denotes a d,-vector of ones. As defined, the errors and regressors have
correlation ppg -

The base model that we consider has an intercept, time trend, two unit root
regressors, and two stationary regressors all with standard normal innovations and
no correlation between the unit root regressors and the error:

Base Model:  BC(i). @y = (1,t,27 4,25 ,)" and x1¢, 294 € R%.
BC(ii). ppg. = 0. (6.6)
BC(iii). G = N(0,1).

We consider seven variants of the base model. Models 2-4 differ from the base
model in terms of the distribution of the innovations. Models 5 and 6 differ from
the base model in that pp, , = .4 and pp,, = .8, respectively. Model 7 is the same
as the base model except there are no stationary regressors and there are four unit
root regressors. Model 8 is the same as the base model except there is no time trend.
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Models 2-7 are summarized as follows:

Model 2 (x3 Distn): BC(i) and BC(ii) hold and G = x3.
Model 3 (t3 Distn): BC(i) and BC(ii) hold and G = t3.
Model 4 (U Distn): BC(i) and BC(ii) hold and G = U.
Model 5 (ppy, = -4) BC(i) and BC(iii) hold and pp, , = -4.
Model 6 (ppg, = -8) BC(i) and BC(iii) hold and pp, , = .8. (6.7)
Model 7 (No Stat. Regr.) BC(ii) and BC(iii) hold, z; = (1,¢, 21 ,)’,
and 14 € R

Model 8  (No Time Trend) BC(ii) and BC(iii) hold, z; = (1,2 4,25 ,)’,
and x1¢, 72+ € R2.

For each of the eight models, we consider three values of p, two values of T', and three
values of m.

For each of the eight models, we report the actual rejection rates of the nominal
5% tests Py, By, P., Ry, Ry, and R..

In addition, we report the size-corrected power of the tests for two types of al-
ternatives to the null hypothesis. The first type of alternative is where cointegration
breaks down at time ¢ = T' because the errors are a unit root process for t =T +1 to
t =T + m. These are referred to as unit root alternatives. In this case, the model is
the same as under the null except that for t =T +1,...,T 4+ m, the error is given by

Ut = (1 - po,u)l/th + PDzult
t=T _
+\/§Z[(1 - po,u)1/2¢s + pDz,uﬁsL (68)
s=1

where {(1718,578) : s = 1,...,m} has the same distribution {(¢4,n,) : s = 1,...,m}
and is independent of all other random variables in the model. The multiplicative
factor v/2 is chosen so that the rejection rates of the tests are in an informative range.
One can increase or decrease power to any desired level by altering the multiplicative
factor.

The second type of alternative considered is a parameter shift alternative. In this
case, the model is a cointegrating model for all ¢ = 1, ..., +m, but the cointegrating
vector is different before and after t = T For this alternative, the true distribution
of the data is the same as under the null except that for t =T +1,..., T +m the true
parameter 3, is proportional to a vector of ones with ||3y|| = .25. The value .25 is
chosen so that the rejection rates of the tests are in an informative range. One can
increase or decrease power to any desired level by altering ||5]|-

The power results that we report are for size-corrected tests because we do not
want to confound power differences with size distortions. Size-correction is not as
straightforward with the tests considered here as it is in some situations because the
tests’ critical values are sample quantiles, not constants. We determine by simulation
the significance levels that yield the finite sample null rejection rates to be as close to
the desired test size, .05, as possible for each innovation distribution and each T, m,
p, and pp, ,, value when the observations are generated under the null. (The rejection
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rates cannot be made exactly equal to .05 because the sample quantile functions are
not continuous. But, the differences are fairly small.) These significance levels are
employed when computing the size-corrected power of the nominal .05 tests. Note
that this method of size correction is equivalent to the standard method of adjusting
a test’s critical value for any test that has a non-random critical value.

All the results reported are based on 40,000 simulation repetitions. This yields
simulation standard errors of (approximately) .001 for the simulated null rejection
rates of nominal .05 tests and simulated standard errors in the interval (.0020, .0025)
for the simulated alternative hypothesis rejection rates when these rejection rates are
in the interval (.20, .80).

6.2 Monte Carlo Results
6.2.1 Size

Table I presents the test size results for nominal .05 tests. The first six rows of
Table I give the average rejection rate and the range of the rejection rates over all
eight models and nine (m, p) values for each of the six tests. The remaining rows in
the table give the average and range of the rejection rates over the eight models for
each (m, p) value and each test.

Tables A-I and A-II give the rejection rates for each of the 72 model/(m, p) com-
binations. Some of the results stated below are based on these more detailed tables.

When m = 1, separate results are not given for R,, Ry, R., and P, because
P,=R,and P, = P. = R, = R. when m = 1.

The main results are as follows:

1. The P, and R, tests have the highest rejection rates. They over-reject the null
by a noticeable margin, especially when T' = 100. The remaining four tests have
rejection rates that are much closer to the desired level .05. The P, and R, tests
have higher rejection rates than the P, and R, tests and tend to over-reject the
null by a small margin . The P, and R, tests have the lowest rejection rates.
The R, test, however, under-rejects in many cases. For example, when p = 0
or .4 and m = 10 or 5, its average rejection rates over the eight models are
between .032 and .038 when T" = 100. It appears that the P, test has the best
size performance overall. Its average rejection rate is close to .05 when T = 100
or 250. Its deviation from this value is at most .014 when 7" = 250 over the
wide range of models considered.

2. Not surprisingly, all tests perform noticeably better in terms of size when T =
250 than when 7' = 100. In particular, the range of rejection rates for each test
shrinks considerably when T is increased.

3. For the tests P, and R,, the rejection rates increase as p or m increases. But,
the other tests are not very sensitive to the values of p and m.

4. For the P, and P, tests, the rejection rates are higher for the x3 and t3 dis-
tributions than for the normal and lower for the uniform. For the R, and R,
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tests, there is no clear pattern of variation of the rejection rates with the type
of distribution.

5. For the Py, P, Rp, and R, tests, the rejection rates for pp,, = 0 and .4 are
quite similar. The rejection rates tend to be somewhat higher for pp,, = .8.
But, overall, the sensitivity to pp, ,, is fairly low.

6. For the P,, P., Ry, and R, tests, sensitivity also is low with respect to the
number of stationary regressors versus the number of unit root regressors. That
is, their rejection rates do not change much between the Base Model and the
No Stationary Regressors Model.

7. The results for the No Time Trend Model are somewhat unique. The P, and
P, tests react differently to the elimination of the time trend. The rejection
rate of P, goes down, while that of P. goes up. This is true for both 7" = 100
and T = 250. In consequence, the No Time Trend Model is the only model for
which the rejection rates of P, are higher than those of F,. The same pattern
is observed for the R, and R, tests.

To conclude, we find that the rejection rates of the P, and R, tests are too high,
and these tests are clearly inferior in terms of size compared to the other tests. The
Py, P., Ry, and R. tests have size performances that are similar. But, the P, and
Ry tests tend to reject the null hypothesis somewhat too often compared to the P,
and R, tests. The R, test tends to under-reject the null too often compared to the
P, test. Hence, the P, test has the best overall size properties. Considering the very
wide range of models and (m, p) values considered, which range from ¢z distributions
to ppg . = -8, the size performance of the I test seems quite good. This is especially
true for T" = 250.

6.2.2 Power

Table II provides the size-corrected power results for the unit root and parameter
shift alternatives. Averages of rejection rates are reported for the same models and
(m, p) values as in Table I. Tables A-IIT to A-VT give the rejection rates for each of
the 72 model/(m, p) combinations.

The principle findings are as follows:

1. The power of the P, test is almost always greater than or equal to that of
the P, and P, tests. In many cases, the differences are small, but in some
cases the differences are noticeable. The same pattern holds for the R, test in
comparison with the R, and R, tests. Nevertheless, because the size properties
of the P, and R, tests are poor compared to the other tests, we focus on the
power properties of the other tests.

2. The simulation results indicate that the P tests have considerable power against
unit root alternatives, even though they are designed for parameter shift alter-
natives. Likewise, the R tests have considerable power against parameter shift
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alternatives even though they are designed for unit root alternatives. In fact,
paradoxically, the P tests tend to outperform the R tests for unit root alterna-
tives and vice versa with parameter shift alternatives. But, the differences are
not large.

3. The average power across all cases of the P, and P, tests is the same for unit
root alternatives with 7" = 100 and 250 and for parameter shift alternatives with
T = 250. It differs by only .02 for parameter shift alternatives with T" = 100, in
which case P, has higher power.

4. The R, test has slightly higher power than the Ry test across most cases. The
difference typically is .02 when 7' = 100 and .01 when T = 250.

5. For all tests, power increases sharply with m. This occurs because m determines
the amount of information that is available regarding the post-break time pe-
riod.

6. For all tests, power increases by a small amount (roughly .03) as T' increases
from 100 to 250 for parameter shift alternatives. Power increases by a sub-
stantial amount (roughly .15) as T increases from 100 to 250 for unit root
alternatives.

7. Power of the tests is not very sensitive to changes in pp,,, or to shifts from
the Base Model to the No Time Trend Model. The latter result is somewhat
surprising. The P tests have lower power for the No Stationary Regressors
Model than the Base Model for parameter shift alternatives.

8. Power for the P tests is more sensitive to the distribution than it is for the R
tests. For the P tests, power is lower for the t3 and Y3 distributions than for
the normal and higher for the uniform than the normal.

Overall, the power of the Py, P., Rp, and R, tests is fairly comparable. The Ry
test is dominated by that of the R, test, but only by a small margin. The P, and P
tests have similar power. The P, and P, tests have somewhat higher power than the
R, test against unit root alternatives, but vice versa for parameter shift alternatives.
The R, test tends to have power that is less variable across changes in the model,
such as changes in the distribution, than the P tests. In consequence, the R, test is
deemed to have the best overall power properties among the tests P, P. R, and R,
but by a small margin.

Combining the size and power results, we find that the choice of the best test
among the six tests considered is not clear-cut. The tests P, and R, are clearly
inferior to the other in terms of size. However, the remaining four tests are not as
easy to distinguish. The P, and R} tests tend to reject too often under the null
compared to the P, and R, tests. In addition, the Ry test has slightly lower power
than the R, test. Hence, the P. and R, tests appear to be the best two tests. Of
these two tests, the P, test has somewhat better size properties because the R, test
is somewhat under-sized in a number of cases. On the other hand, the R, test has
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power that is less variable across different distributions than the P, test. On balance,
the P, test seems to be preferable because of its size properties. In consequence, we
recommend using the P, test.

7 An Empirical Example

In this section, we provide an empirical illustration of the P and R tests. We
consider interest rate parity for several Asian countries in a recent period of financial
crisis. We investigate the hypothesis that turbulence in financial markets in the region
led to a breakdown in interest rate parity.

Interest rate parity is written as

¢, —F
t+1 t
+—,

5 (7.1)

it = Z;(
where 7; is the domestic interest rate, i; is the foreign interest rate, F; is the spot
exchange rate, and EY,; is the forward exchange rate. Thus, interest rate parity
says that the domestic interest rate, i;, equals the foreign interest rate, ¢}, plus the
expected rate of depreciation of the domestic currency, (Ef,; — E¢)/E;. The above
relation is an equilibrium condition in the currency market.

If we allow an equilibrium error, u, in the relation, we have

+ Et8+1 — Ey

Et + Ug. (72)

it = Z;(
It is plausible to think that turbulence in the financial market may cause an important
change in the equilibrium error process, i.e., a breakdown in interest rate parity. In
particular, the error process, u;, may change from a stationary process to a unit
root process if the financial crisis causes a breakdown in interest rate parity and the
underlying variables i, i}, Ft, and Ef, | are unit root processes.

The data we consider are daily observations on the domestic interest rate, spot
exchange rate, and forward exchange rate of four East Asian countries: Thailand, the
Philippines, Indonesia, and Singapore. The exchange rates are in US dollars. These
data are taken from the college data bank of the College of Business Administration at
Seoul National University. The foreign interest rate is the three month U.S. treasury
bill rate. The observations are daily (excluding weekends) from December 31, 1996
to July 13, 1998, which yields a total of 400 observations.

Figures 1.1(a), ..., 1.4(a) graph the u; process, as defined in (7.2), for each of
the four countries. In each of these four figures a vertical line indicates an estimated
breakpoint obtained using the method Kim (2000) applied to all 400 observations.
For the four countries the estimated breakpoints occur at the 5/15/97, 7/01/97,
7/10/97, and 10/10/97 dates, respectively. Note that Kim’s method looks for a
breakpoint anywhere in the time period considered not just at the end of the sample.

We use the data to show what would happen if one tested for cointegration break-
down at the end of the sample (with m = 10) for a variety of different sample periods.
To do so, we consider the sample periods that start in December 31, 1996 and include
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91 observations, 92 observations, ..., 400 observations. Because m = 10, the values
of the hypothetical breakpoint, 7', as defined in (2.1), (2.2), and (3.6), are 81, 82,...,
390. For each value of T, we compute the p-value for the P and R tests. Note that
there is no difference between the P,, P, and P, tests because the coeflicients in the
cointegrating relation (7.2) are known, and likewise for the Ry, Ry, and R, tests. The
p-values for the P tests are graphed in Figures 1.1(b), ..., 1.4(b) with the horizontal
axis indexed by T. For example, the p-value at the point 231 is the p-value for the
P-test with T' = 231 and m = 10, which depends on 241 observations. The p-values
for the R tests are graphed in Figures 1.1(c),..., 1.4(c). In each of the (b) and (c)
graphs a horizontal line is drawn at .05. A significance level .05 test rejects the null
hypothesis for samples corresponding to those values of T" for which the p-value graph
lies below the horizontal .05 line.

The purpose of the (b) and (c) figures is not to do some sort of rolling analysis
of the data set of 400 observations. If one had all 400 observations and one did not
know if and when cointegration breakdown has occurred, then the appropriate test
to use would be Kim’s (2000) test or some similar test. Rather, the purpose of these
figures is to show succinctly, for a range of values of T, what would happen if one
had a specific data set with 1"+ m observations and one carried out a P or R test
for end-of-sample cointegration breakdown over the last m = 10 observations. The
estimated breakpoints using Kim’s (2000) method (that uses all 400 observations) can
be used to evaluate the performance of the end-of-sample tests. An end-of-sample
test is designed to have power for breakdowns that occur at time T,...,T + m — 1.
Hence, an end-of-sample test performs well if it rejects the null hypothesis when the
sample considered is such that T, T'+ 1, ..., and/or T'+ 9 equals the Kim estimate of
the breakpoint.

Inspection of the p-value graphs shows that they are below the .05 line for T" values
around the Kim-estimated breakpoints in all eight cases. In particular, for Thailand,
the Kim-estimated breakpoint occurs at 5/15/97 and the p-value graphs for the P
and R tests are below .05 for the periods 5/2/97 - 6/18/97 and 5/7/97 - 6/16/97,
respectively. For the Philippines, the corresponding dates are 7/01/97, 6/20/97 -
7/21/97, and 6/23/97 - 7/17/97. For Indonesia, the corresponding dates are 7/10/97,
6/30/97-7/21/97, and 7/2/97 - 7/17/97. For Singapore, the corresponding dates are
10/10/97, 10/20/97 - 10/31/97, and 10/10/97 - 10/30/97. This illustrates that the
end-of-sample tests have sufficient power in these cases to reject the null hypothesis
when the null is false (at least as indicated by the Kim estimate of the breakpoint).

The p-value graphs all rise above the .05 line for some values of T' larger than the
Kim-estimated breakpoints. This indicates that if one tests for a breakdown at the
end of the sample, but the actual breakdown occurs some time earlier in the sample
period (i.e., before time T'), then the P and R tests do not have high power. This is
as expected.

We also note that the p-value graphs of the P and R tests are quite similar,
especially when one or other graph is near the .05 rejection line. For three of four
countries, the P test detects a break a few days before the R test does. Hence, the
P test slightly out-performs the R test in this example.
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8 Appendix of Proofs

Proof of Theorem 1. The proof is carried out using the transformed parameter
estimators 7;_7, etc. and transformed regressors z, rather than the estimators BLT,
etc. and regressors z; using the fact that zjy,p = x}3,7. Hence, for notational
simplicity, but with some abuse of notation, in the proof we let

Pi(7,2) = (Yigirm 1) = ZjGiem-1)'ES Y j(irm 1)~ Zj-(j+m-1yy) and
Pj(v) = Pj(7,Im), where
Z'r-s = (Zr,...,ZS)/_ (81)

Similarly, in the proof, we take ﬁpa,T(.%') and Fp(z) to be defined with Pj(B(j)) and
Pj(8y) replaced by P;j(7(;)) and Pj(v), respectively.

We start by proving parts (a)-(d) for v = a. First, we bound the difference P;(7)—
Pj(70), where 7 denotes 31 or 7(;). For ¢ > 0, define the set Ly r(c) by

Lir(e) = {HBT(:V\LLT - 71,0)” <e, ||%,1-T - 72,0” <g,
HBT(:Y\L(]') - 71,0)“ <eg, H%,(j) - 72,0” <,
Vi=1,..,T—m+1}. (8.2)

For ¢ > 0, define the set Ly 7(c) by

LgyT(C) = {t%aj(m ||B;1217t|| < C} . (83)

By Assumption 4, there exists a sequence of positive constants {ep : T' > 1} such
that ey — 0 and Pr(Ly p(er)) — 1 as T'— oo. Let {cp : T' > 1} be any sequence
of constants such that ¢p — oo and cper — 0 as T — oo (e.g., cp = 5;1/2). By

Assumption 3, Pr(Ly r(cr)) — 1 as T'— oco. Let
Ly = Ll,T(gT) N L27T(CT). (84)

We have
Pr(Ly) — 1 and Pr(Ly) — 0 as T — oo, (8.5)

where L1 denotes the complement of L.
Now, for ¥ = (7),74)" equal to J;_p or Y and for j =1,...,T +1, we have: on
the set Lp,

1P5() = Pj(70)]

j+m—1 j+m—1
=[-2 Z urzy (7 — 7o) + Z (z(F —70)°
t=j t=j
j+m—1 J+m—1
<2 3 Jud max (1B el 1BrG =0l +2 3 ezl 152 =l
t=j = t=j
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j+m—1 2
s (rnax 1B, 0l - 1By vo)||+||22,t||'H%—voH)
=5

s<T+
j+m—1 j+m—1 J+m—1
<2 > Julerer +2 Y lweailler+ Y (crer + ||z2ller)?
t=j t=j t=j
= gj(er, cr), (8.6)

where the last equality defines g;(e7,cr). Note that gj(er,cr) is identically distrib-
uted for j = 1,...,T —m + 1 under Hy and H;, because wy = wgy for t = 1,..., T is
stationary. Also note that gr,1(e,c) has distribution that is independent of T if &
and ¢ do not depend on T, because the distribution of {w; : t =T +1,...,T + m}
does not depend on T" by Assumption 1.

We prove part (a) first. Let © € R be a continuity point of the df of Prii(7g).
We have

Pr(Pri1(31.r) <)

r({Pry1(31.7) < 2} N L) + Pr({Pry1(31r) <@} N Ly)

r({Pr+1(70) < @+ gjler,er)} N Lr) +o(1)
(
(Poo

{Pr
{Pr

IN

r(Pry1(vg) < ) +0o(1)
<z)+o(1), (8.7)

0 T T o

T

where the inequality holds by (8.5) and (8.6), the second equality holds because
gij(e,c) — 0 as. as (e,ce) — (0,0), Pryi(y9) and g;(e,c) have distributions that
do not depend on T, and x is a continuity point of Pri1(7), and the last equality
holds by the definition of Ps,. Equation (8.7) also holds with > in place of < and
—gj(er, cr) in place of +g;(er, crr). Hence, part (a) is proved.

Next, we prove part (b). We introduce the following notation. For some random
or non-random vectors {7y; : j = 1,...,T—m+1}, let l?'T(x, {7,}) denote the empirical
df based on {P;(v;) : j =1,...,T —m+1}. That is,

T—m+1
Pr(e, () = —— 3 1(Py(y;) <a) (8.8)

T—m+1 <4
j=1

for x € R. Note that ﬁpa,T(.%') = Fr(x, b

We define a smoothed version of the df Fp(x, {7;}) as follows. Let k(-) be a
monotone decreasing, everywhere differentiable, real function on R with bounded
derivative and such that k(xz) = 1 for x € (—o0,0], k(x) € [0,1] for = € (0,1), and
kE(x) = 0 for z € [1,00). For example, one could take k(z) = cos(mx)/2 4 1/2 for
x € (0,1). For {v;} as above, we define the smoothed df

R 1 T—m+1
Frx, b hr) = 7y > k(Pi(vy) —x)/h), (8.9)
i=1
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where {hy : T > 1} is a sequence of positive constants that satisfies hy — 0 and

crer/hr — 0. For example, if ¢p = 5;1/2, then one can take Ay = 51T/4.
We have
4
‘FPa,T(x) - FP(QJ)’ < ZDi7T’ where
i=1

Dy = [Fp, r(x) = Fr(z, (A} hr)l,

Dyx = |Fr(z, {33}, hr) — Pr(@, {o}, hr),

Dy = |Fr(x, {70}, hir) = Fr(x,{70})l, and

Dyg = |Fr(z,{7}) — Fp(z)|. (8.10)

We have Dy —p 0 under Hy and H;y by the ergodic theorem. This holds because
{P1(7¢), - Pr—m+1(7¢) } only depend upon the errors {u1, ..., ur}, which come from
the stationary and ergodic sequence {wg; : t > 1}, and not on the post-breakdown er-
rors {ur41, ..., Wr4+m . Each random variable Pj(7y,) is the same measurable function
of m observations {wpg j, ..., wo j+m—1} for j =1,...,T —m+ 1, where m is fixed and
finite. Hence, {P1(vq),---, Pr—m+1(7¢)} is a finite subsequence of a stationary and
ergodic sequence of random variables that depend on {wg; : t > 1} and the ergodic
theorem applies by Assumption 1.

We have
T—m+1

1 }: 1(P;(75) — = € (0,hr)), (8.11)

Dip<—
|

because ﬁpa,T(.%') and Fr(z, A}, br) only differ when (P;(7(;)) — x)/hr € (0,1).
Now, for all 6 > 0,

Pr (DLT > 6)
< PI({DLT > (5} N LT) + PI(ET)

1 T—m+1

SPrl s ]Zl 1(Pj(v0) — z € (=gjler,cr), hr + gj(er,cr))) > 6

+o(1)
< E1(Pi(vg) — = € (—g1(eT, cr), hr +gi1(er,cr))) /6 +0o(1)

where the second inequality holds using (8.5), (8.6), and (8.11), the third inequality
uses Markov’s inequality and the identical distributions of Pj(v,) for j = 1,...,T—m+
1, and the equality holds by the bounded convergence theorem because g; (e, cr) — 0
a.s. and hy — 0 as T — oo, and Pr(P1(08y) # =) = 1 by Assumption 5. Hence,
Dl,T —>p 0.

An analogous, but simpler, argument shows that D37 —, 0.
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For the proof of part (b) when v = a, it remains to show that Dy —, 0. By
mean-value expansions about Pj(7,), we have: on the set Ly,

T—m+1
1 D o~
Dor = |y D KB —2)/hr)(Pi(G) = i)/
j=1
B T—m—+1
< F—7 2 gilersen)/hr, (8.13)
j=1

where £/(+) denotes the derivative of k(-), ﬁj lies between P;(7(;)) and Pj(vq), B < oo
denotes the bound on the derivative of k(-), and the inequality holds by (8.6).

By the dominated convergence theorem,
Egi(er,cr)/hr — 0 as T — oo, (8.14)

using the moment conditions in Assumption 2 and the fact that cpep/hpy — 0 and
er/hr — 0 by the definitions of hy, ¢, and er.
We now have

Pr (DQyT > 6)
< Pr({Dg,T > 5} N LT) + PI“(ZT)

B T—m+1
<Prlo— 07 E_; gi(er,cr)/hr > 8 | +o(1)
S (SilBEgl(ET, CT)/hT + 0(1)

= o(1), (8.15)

where the second inequality holds by (8.5) and (8.13), the third inequality holds by
Markov’s inequality and the identical distributions of {g;(er,cr) :j=1,...,T —m+
1}, and the equality holds by (8.14). This completes the proof of part (b).

Part (c) is implied by part (b) using Assumption 5. This is a standard result. It
follows from the fact that for all small € > 0, ﬁpayT(qPJ_a —¢) —=p Fp(gpi—a —¢) <
1—aand ﬁPa,T(QP,l—a +¢e) —=p Fp(gpi—a +¢) > 1—a.

Part (d) is implied by parts (a) and (c) using Assumption 5.

This completes the proof for the case where v = a.

The proofs of parts (a)-(d) of the Theorem for v = b and ¢ are essentially the same
as that for v = a because Assumption 4 implies that the estimators (Vi (s rm/21-1),
Y(j)) and (Vi (14m)s Va(j)) behave like (317, 7(;)) asymptotically.

Part (e) holds by altering the proofs of parts (a)-(d) given above. Let C' be an
m x m such that C"C = A,,. Then,

Pi(7, Am) = (CYj(j4m-1) = CZj (jm-1)7) (CYj(j4m-1)—CZj (j4m-1)7)- (8.16)
Define

(5, -+, tjtm-1) = Up(rm-1) = CUjipm-1),
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(2 e0sZj4m=1)" = Zi-Gam-1) = CLj(em-1),
gt = (Zi,tw%,t)/? (817)

where 21 ; € RF1. By construction, for t = j,...,j +m — 1,

~ _ N, )
21y = Zl,j—(j+m—1)ct*]+17 where

C = (c1yecm), (8.18)

c; € R for j=1,...,m, and Zl,j_(ﬂm,l) denotes the first k1 columns of Zj_(ﬂm,l).

An analogue of (8.6) holds with P;(y) replaced by P;j(7, Ay,) by replacing wuy, 2,
29 t, and Maxs<7im HB:FIZLSH by ug, 2z, z2¢, and m? MaXs<T4+m HBEI'ZLSH: respec-
tively, provided Lor(c) is defined with ¢ replaced by ¢/m? on the right-hand side of
(8.3). This holds because

B717
j:lﬁlzgfmﬂ t=j,-r-??fmf1H 2Ll
1
= max o max BT (215 -0 21 gm—1) -1 |
< m? max ||Bylasl, (8.19)
s<T+m

where the inequality uses the fact that the elements of C are all less than or equal to
m in absolute value.

In the present case, gj(er,cr) is defined as in the last equality of (8.6) but with
u; and 2oy replaced by u; and zo 4, respectively. Given this definition of g;(er, cr),
the rest of the proofs of parts (a)-(d) hold without change when Pj(v) is replaced by
Pj(v, Ap,). This completes the proof of part (e). O

Proof of Lemma 1. We start by showing Br (¥ 1.7 — 719) —p 0. First, note that

T 1
TS B e B = [ ) (3.20)
t=1 b

by definition of vy (r). Let vy 90 =T~ Zt 1 B 121 tth By the partitioned regres-
sion formula,

BT(%,LT - 71,0)

o1 T
! —1 /
= (/ vir(r)vir(r)dr —vior(T § 22.1%91) Rz 2T>
JO t=1
T T T
7'y B! — T :
X 21t — V1,27 22.1%9,)” 29 4y
t=1 t=1

t=1
= 0,(1), (8.21)

where the second equality holds because (i) v1 27 —p 0 by Assumption LS(c); (ii)
71 Zthl 22125, —p Y20 > 0 by the ergodic theorem and Assumptions 1, LS(a),

29



and LS(e); (iii) the integral converges in distribution to .[01 vi(r)v1(r)'dr (which is

positive definite a.s. by Assumption LS(e)) by Assumption LS(b) and the continuous

mapping theorem; (iv) 77131 Br'zi4us —p 0 by Assumption LS(c); and (v)

T-! Zthl 29 yuy —p 0 by the ergodic theorem and Assumptions 1 and LS(a).
Similarly, we have

Y2,1-T — 72,0

T 1 -1 -1
= (Tl Zzlt'zé,t — V/1,2,T </ Vl,T(T)Vl,T(T)/dT) I/1727T>
JO

t=1
T 1 1 T

X (Tl Zzz,tm - 1/’1727T </ I/LT(’I“)I/LT(T‘)/CZ’)“) 71 ZB;lthut)>
t=1 70 t=1

= o,(1). (8.22)

Next, to obtain the properties specified in Assumption 4 for %7(]-) for £ =1,2, it
suffices to show that

Jj+m—1
Kir = =1 m%fmil HTil Z B:Flzl,tzi,thlH = op(1),
[AR} t:]
Jj+m—1
Korp = g max | Z z91254|| = 0p(1),
J=4,.. m t:]
j+m—1
Kor = max 77037 zpoul| = o,(1),
]7 " t:]
Jj+m—1
Kayr = o max 177" Y Brlazll = op(1),
" t:]
j+m—1
Ksr = o max 1T~ > Bty = op(1), (8.23)
" t:]

These conditions are sufficient because (8.21) and (8.22) show that the differences
between Br (Y 1.0 — V) and Br(Y, ;) — Ve0) are captured by the terms in (8.23).

We have

Kip <T 'm sup |jvr(r)]|* =T 10,(1) = 0,(1), (8.24)
re(0,1]

where the first equality holds by Assumption LS(b) and the continuous mapping
theorem.

To establish the conditions of (8.23) for Ky p-K5 7, we use the following re-
sult. Suppose that {{; : t > 1} is a sequence of mean zero random variables and
SUpP;>1 E||&,||}? < oo for some § > 0. Let 7; = Ziign_l &;. Then, for all ¢ > 0,

-1 T— 1
PHT! max |[rjl] > <) = Pr(UI | Irl| > Teh)
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T—m+1

< Pr(|[7;]] > Te)
j=1
< (T —m+ 1)E||r;|| o1+ —(1+9)
= o(1), (8.25)
where the second inequality uses Markov’s inequality. Hence,
Jj+m—1
-1
jggljfiﬂ 1T tz &l —p 0. (8.26)
=j

Applying (8.26) with & = 29,125 , — E22,25, gives Ky —p 0 using the facts that
E||22.4]|**® < 0o by Assumption LS(a) and Ezy 2, does not depend on t or T for
t < T by Assumption 1. Applying (8.26) with & = 22 su; gives K37 —, 0 using the
fact that E||z2u||'T® < oo by Assumption LS(a).

For K47, we have

Jj+m—1
Kir < 71 . = 0,(1 8.27
< max Z;H@M7ggﬂwww 0p(1), (8.27)

where the equality holds by Assumption LS(b) and by applying (8.26) with &, = ||22||
using Assumptions 1 and LS(a). An analogous argument with w; in place of 22 gives
K51 —p 0 because E|u[1*® < oo by Assumption LS(a). This completes the proof
for :Y\f,(]) for ¢ = 1,2

The properties specified in Assumption 4 for %72(]-) for £ = 1,2 hold by essentially
the same argument as for 7, ;.

To obtain the properties specified in Assumption 4 for 7,1 (p4pm) for £ = 1,2,
it suffices to show that the conditions in (8.23) hold with the sums being over t =
T+1,....,T +m, rather than t = j,...,7 + m — 1, and with the max over j deleted.
These conditions are sufficient because (8.21) and (8.22) show that the differences
between Br (Vg1 — Ye0) and Br(V1(r4m) — Veo) are captured by the terms in
(8.23) with the adjustments just described.

Let K} = 0p(1) for i = 1, ..., 5 denote the conditions in (8.23) with these changes.
We have

Kip<T7m_ max |57 2P = o1, (8.28)

where the equality holds by Assumption LS(d). Next, we have, for all ¢ > 0,

m m
Pr(IT1 ) zryizh piall > €) = Pr(ll Y zomsizhpyll > Te) = o(1),  (8.29)
i=1 =1

where the equality holds because the distribution of 1" ||22, 7125 ;|| does not
depend on T' by Assumption 1. Hence, K3 = 0p(1). An analogous argument with
227,52571; replaced by zg;u; gives K = op(1).
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Next, we have

T+m

Kip <T7' Y el Jmax HVT( )l = op(1), (8.30)
t=T+1

where the equality holds by Assumption LS(b) and the argument in (8.29). An
analogous argument with ||z || replaced by |us| gives K7, = 0,(1). This completes
the proof for 7, 1_(74m)- 7

The properties specified in Assumption 4 for 7 (pym/o7) for £ = 1,2 are es-
tablished by the same argument as just given for 7, ;. (T+m) but with m replaced by
[m/2]. Hence, Assumption 4 holds.

Assumption LS(a) obviously implies Assumption 2.

Finally, Assumption LS(b) and the continuous mapping theorem imply that

max||B Ll = sup |lvz(r)|| —a sup ||v(r)|] < oo as. (8.31)
t<T re0,1] re0,1]

This result, combined with Assumption LS(d), establishes Assumption 3. O
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Footnotes

I The first author gratefully acknowledges the research support of the National
Science Foundation via grant number SES-0001706.

2 When m > k, the F statistic is based on the projection of the post-breakdown
residual vector on the post-breakdown regressor matrix. One can define a test sta-
tistic S, that corresponds to this. Andrews (2002) does so for linear and nonlinear
models with stationary observations. In the present context, however, the parametric
subsampling critical values we use for the tests does not deliver an asymptotically
valid critical value because the regressors are not stationary and the statistic S,
depends on the regressors.

3 Alternatively, one could take this element of By to be (T'+m)'/2. The choices
T'/2 and (T +m)/? are equivalent because m does not depend on T. We choose T/
for notational simplicity.

4 The reason that conditions (i) and (ii) are sufficient for Assumption LS(d) is that
Assumption LS(b) and the continuous mapping theorem imply that sup,c(o 1 [[vr(7)]|
—d SUPpe(o 1 |[[V(7)]| < 0o a.s. The left-hand side equals max;<r | BF 2] IF 214
comes from a sequence, this implies that max;<qm, HBEimthH = Op(1). Combined
with condition (ii), this yields Assumption LS(d).

33



References

Ahn, S. K. and G. C. Reinsel (1990): “Estimation for Partially Nonstationary Au-
toregressive Models,” Journal of the American Statistical Association, 85, 813-
823.

Andrews, D. W. K. (1988): “Laws of Large Numbers for Dependent Non-identically
Distributed Random Variables,” Econometric Theory, 4, 458-467.

(2002): “End-of-sample Instability Tests,” Cowles Foundation Discussion
Paper No. 1369, Yale University. Available at http://cowles.econ.yale.edu.

Chow, G. C. (1960): “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions,” FEconometrica, 28, 591-605.

Dufour, J.-M., E. Ghysels, and A. Hall (1994): “Generalized Predictive Tests and
Structural Change Analysis in Econometrics,” International Economic Review,
35, 199-229.

Ferguson, T. S. (1967): Mathematical Statistics: A Decision Theoretic Approach.
New York: Academic Press.

Hansen, B. E. (1992): “Tests for Parameter Instability in Regressions with I(1)
Processes,” Journal of Business and Economic Statistics, 10, 321-336.

Johansen, S. (1988): “Statistical Analysis of Cointegration Vectors,” Journal of
Economic Dynamics and Control, 12, 231-255.

(1991): “Estimation and Hypothesis Testing of Cointegrating Vectors in
Gaussian Vector Autoregression Models,” Econometrica, 59, 1551-1580.

Kim, J.-Y. (1999): “Testing Structural Change in a Cointegration Relation,” un-
published manuscript, SUNY Albany.

(2000): “Detection of Change in Persistence of Linear Time Series,” Journal
of Econometrics, 95, 97-116.

King, M. L. and G. H. Hillier (1985): “Locally Best Invariant Tests of the Er-
ror Covariance Matrix of the Linear Regression Model,” Journal of the Royal
Statistical Society B, 47, 98-102.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the Null
Hypothesis of Stationarity Against the Alternative of a Unit Root,” Journal of
Econometrics, 54, 159-178.

Leybourne, S. J. and B. P. M. McCabe (1989): “On the Distribution of Some Test
Statistics for Coefficient Constancy,” Biometrika, 76, 169-177.

34



Nabeya, S. and K. Tanaka (1988): “Asymptotic Theory of a Test for the Constancy
of Regression Coefficients Against the Random Walk Alternative,” Annals of
Statistics, 16, 218-235.

Nyblom, J. (1986): “Testing for Deterministic Linear Trend in Time Series,” Journal
of the American Statistical Association, 81, 545-549.

(1989): “Testing for the Consistency of Parameters Over Time,” Journal of
the American Statistical Association, 84, 223-230.

Nyblom, J. and T. Makelainen (1983): “Comparisons of tests for the Presence Ran-
dom Walk Coefficients in a Simple Linear Model,” Journal of the American
Statistical Association, 78, 856-864.

Park, J. Y. (1992): “Canonical Cointegrating Regressions,” Econometrica, 60, 119-
144.

Phillips, P. C. B. (1988a): “Weak Convergence of Sample Covariance Matrices to
Stochastic Integrals Via Martingale Approximations,” Fconometric Theory, 4,
528-533.

(1988b): “Weak Convergence to the Matrix Stochastic Integral fol BdB',”
Journal of Multivariate Analysis, 24, 252-264.

(1991): “Optimal Inference in Cointegrated Systems,” Econometrica, 59,
283-306.

Phillips, P. C. B. and B. E. Hansen (1990): “Statistical Inference in Instrumental
Variables Regression with I(1) Processes,” Review of Economic Studies, 57,
99-125.

Phillips, P. C. B. and M. Loretan (1991): “Estimating Long Run Economic Equi-
libria,” Review of Economic Studies, 58, 407-436.

Politis, D. N., J. P. Romano, and M. Wolf (1999): Subsampling. Springer Series in
Statistics. New York: Springer.

Pollard, D. (1984): Convergence of Stochastic Processes. New York: Springer.

Quintos, C. E. (1997): “Stability Tests in Error Correction Models,” Journal of
Econometrics, 82, 289-315.

Quintos, C. E. and P. C. B. Phillips (1993): “Parameter Constancy in Cointegrating
Regressions,” Empirical Economics, 18, 675-706.

Saikonen, P. (1991): “Asymptotically Efficient Estimation of Cointegrating Regres-
sion,” Econometric Theory, 7, 1-21.

Scheffée, H. (1959): The Analysis of Variance. New York: Wiley.

35



Shin, Y. (1994): “A Residual-based Test of the Null of Cointegration Against the
Alternative of No Cointegration,” Fconometric Theory, 10, 91-115.

Sowell, F. (1990): “The Fractional Unit Root Distribution,” Econometrica, 58, 495-
505.

Stock, J. H. and M. Watson (1993): “A Simple Estimator of Cointegrating Vectors
in Higher Order Integrated Systems,” Econometrica, 61, 783-820.

Tanaka, K. (1993): “An Alternative Approach to the Asymptotic Theory of Spurious
Regression, Cointegration, and Near Cointegration,” Econometric Theory, 9,
36-61.

36



Table 1

Average and Range of Null Rejection Rates Over Eight Models for Nominal .05
Tests

T =100 T =250
m p Test Avg Range Avg Range
Avg P, 113 [.060, .251] 074 [.052, .127]
Over By .059  [.029, .090] 054 [.040, .067]
All P, 052 [.028, .081] .051  [.040, .064]
Nine
(m,p) Ra 113 [.017, .257] 074 [.033, .134]
Values R, .058 [.017, .097] .053 [.033, .073]
R, 046 [.020, .077] .047  [.032, .065]
10 0 P, 113 .094, .139] 074 1.069, .081]
b, .067 [.050, .084] .059 [.053, .065]
P, .064 [.046, .081] 057  .049, .064]
R, .087 [.017, .123] .065 [.033, .079]
Ry .058 [.017, .072] .054  [.033, .063]
R, 034 [.020, .045] 041 [.032, .047]
10 4 P, 136 [.114, .166] .082 [.074, .091]
by .066  [.040, .082] .056  [.043, .065]
P, 056  [.041, .075] 051  [.042, .063]
R, 139 [.109, .168] .086 [.075, .097]
Ry 062 [.019, .071] .056  [.033, .061]
R, .038 [.026, .051] 042 [.033, .050]
10 8 P, 202 [.160, .251] 106 [.093, .127]
by 078 [.029, .090] .060 [.040, .067]
P, .054  [.044, .066] .048  [.040, .057]
R, 207 [.159, .257] 110 [.093, .134]
Ry .084 [.024, .097] .056  [.040, .073]

R. 053 [.041, .067]  .050 [.044, .059]




Table I (cont.)

T =100 T = 250
Test Avg Range Avg Range
P, .076  [.060, .090] 062 [.058, .067]
by 047 [.039, .052] .051  [.046, .055]
P, 045 [.034,.051]  .049 [.043, .054]
R, .085 [.071, .103] 065 [.059, .074]
Ry 042 [.025, .051] .048  [.038, .056]
R. 032 [.024, .038] 042 [.036, .047]
P, .090 [.071, .110] .068  [.060, .076]
P, 043 [.032,.049]  .049 [.044, .054]
P, 037 [.028, .046] 046 [.040, .052]
R, 097 [.081, .115] .070  [.064, .079]
Ry, 044 .027, .048] .049  [.040, .053]
R, 034 [.026, .042] .044  [.039, .049]
P, 147 1125, .180] .088 [.079, .103]
b, .060 [.039, .067] 057 [.047, .060]
P. 047 [.039, .057] 052 [.047, .060]
R, 155 [1128, .190] .090 [.081, .107]
Ry 066 [.041, .072] .060  [.049, .066]
R. .051  [.043, .061] .053  [.051, .057]
P, (=R,) .067 [.060, .075] .054  [.052, .062]
P (=P, =R,=R.)  .044 [.035,.048]  .045 [.042,.049]
P, (= R,) 074 [.069, .081] .058 [.061, .061]
P, (=P.=Ry=R.) .050 [.044, .053] 048 [.047, .049]
P, (= Ra) 110 [101,.122]  .072  [.068, .078]
P, (=P.=Ry=R,) 074 [.072, .077] .062  [.060, .065]




Table I1

Average of Rejection Rates Over Eight Models for Size-corrected .05 Tests

Unit Root Alternative Parameter Shift Alternative

m p Test T =100 T =250 T =100 T =250
Avg P, .59 .61 .69 .81
Over P, .58 .61 .65 .80
All P, .58 .61 .63 .80
Nine
(m,p) R, .55 .58 .70 .82
Values R, .54 .08 .65 .81
R, .56 .59 .67 .82
10 0 P, .88 .88 .68 .80
P, .87 .88 .57 7
P, .82 .87 .50 .75
R, .76 .83 .71 .85
Ry .76 .83 .63 .84
R, .80 .85 .65 .84
10 4 P, .89 .90 .75 .82
P, .86 .90 .65 .84
P, .87 91 .61 .83
R, .78 .82 .74 .85
Ry 77 .82 .64 .85
R, .78 .84 .68 .85
10 8 P, .87 .86 .84 .89
P, .82 .88 .73 .89
P, .85 .89 .74 .89
R, .80 .80 .82 .88
Ry .74 .81 .68 .87

R, .75 .81 .69 .88




Table II (cont.)

Unit Root Alternative Parameter Shift Alternative

Test T =100 T =250 T =100 T =250
P, .66 .70 .61 7
Py .65 .70 .55 .75
P, .62 .69 .54 75
R, .62 .68 .66 .81
Ry .63 .68 .63 .80
R, .64 .69 .65 .80
P, .66 72 .68 .82
by .68 72 .67 .82
P .67 .73 .64 .81
R, .62 .67 .69 .83
Ry .62 .67 .66 .82
R, .63 .67 .68 .83
P, .68 .68 .81 .88
by .66 .70 .79 .88
P .66 .68 7 .88
R, .65 .66 .81 .87
Ry .62 .67 .75 87
R, .62 .67 .76 87
P, .23 .25 .46 .65
P, .23 .25 .46 .65
P, 23 .24 .61 .76
Py 23 .24 .62 .76
P, .25 24 .80 87

B, .25 .24 .80 .87




Table A-I

True Size of Nominal .05 Tests for Models with a Constant, Time Trend, Two Unit
Root Regressors, Two Stationary Regressors and Innovation Distributions Given by
(i) Normal, (ii) x3, (iii) t3, and (iv) Uniform

Normal % t3 Uniform
T T T T
m p Test 100 250 100 250 100 250 100 250

10 0 I, 107 .073 .099 .069 104 .071 118 .078
Py .066 .059 .081 .064 084  .065 054 .054
P 061  .056 078 .062 .081 .064 046 .049
R, 120 .078 119 .078 121 .076 123 .079
Ry 059  .055 .064  .057 065 .057 061 .055
R, 031 .039 037 .042 041 .045 029 .038
10 4 P, 137 .082 116 .074 123 .078 142 .089
P, 067 .056 077 .063 082 .065 061 .054
P 052 .048 071 .060 075 .062 041 .042
R, 140 .085 134 .084 139 .082 137 .088
Ry 067 .058 066 .059 071 .058 065 .060
R, 034 .041 038 .043 043 .045 035 .043
10 8 P, 202 .109 195 .097 191 .100 207 110
by 082 .063 088 .060 .089 .067 084 .063
P 048 .047 062 .050 066 .057 048 .046
R, 208 111 207 108 205 110 207 112
Ry .090 .069 093 .065 096 .071 092 .069

R, .051  .050 056 .048 057 .055 052 .050




Table A-I (cont.)

Normal % i3 Uniform
T T T T

Test 100 250 100 250 100 250 100 250

P, 075 .061 063 .058 .060 .060 087 .065

P, .047 051 052 .053 .048 .055 039 .046

P. 044 .049 061 .052 048 .054 034 .043

R, 082 .065 .081 .061 078 .062 084 .065

Ry 043 .048 .048 .050 .048 .050 .040 .048

R, 029 .040 037 .045 037 .045 027 .039

P, 092 .069 071 .060 074 .064 102 .073

Py 044 .050 047 .052 .049 .04 041 .045

P 036 .044 .045 .050 046 .052 028 .040

R, 097 .071 091  .068 092 .068 100 .070

Ry .047 .051 048 .052 048 .053 045 .047

R, 033 .044 037 .047 037 .049 031 .041

P, 150 .091 138 .082 134 .079 154 .091

P, 063 .060 064 .058 067 .058 062 .057

P, 045 .052 .051  .052 053 .052 .041 .048

R, 156 .093 150 .087 147 .085 158 .092

Ry 070 .063 .069 .060 072 .060 070 .061

R, .050 .055 052 .053 055 .053 .049 .053

P, (= Ry) 067 .053 .060 .052 061 .054 075 .062
P, (=P.=Ry,=R,) 045 .044 048 .049 047 .049 035 .042
P, (= R,) 073 .057 069 .054 070  .055 .081 .061
P, (=P.=Ry,=R.) 048 .048 053 .049 052 .049 044 .047
P, (= R,) 112 .072 106 .069 103 .069 A17.077
P, (=P.= Ry = R,) 075 .061 073 .060 072 .060 077 .064




Table A-II

True Size of Nominal .05 Tests for Models with Normal Innovation Distributions and
(1) ppgu = 4, (il) ppg . = -8, (iii) No Stationary Regressors, and (iv) No Time Trend

PDau PDau No Stat. No Time
=4 =.8 Regr. Trend
T T T T

m p Test 100 230 100 230 100 230 100 230

10 0 P, 119 .076 139 .081 125 .078 .094  .069
P, 068 .060 071 .061 065 .060 050 .053
P, 063 .057 .061  .057 059  .056 .066 .059
R, 132 .084 154 .092 144 .089 093 .068
Ry 063 .058 072 .063 059  .054 017 .033
R, 031 .040 034 .044 020 .032 045 .047
10 4 P, 141 .084 148 .084 166 .091 114 .075
by 068 .056 069 .057 067 .055 .040 .043
P 051 .046 051 .048 .049  .045 061 .054
R, 141 .087 146 .089 168 .097 109 .075
Ry 069 .059 .070 .061 066 .058 019 .033
R, 037 .041 036 .043 026 .033 .051  .050
10 8 I, 204 106 204 106 251 127 160 .093
Py .082  .061 083  .060 .090 .064 029 .040
P .049  .045 .049  .045 044 .040 063 .056
Rq 207 108 207 107 257 134 159 .093
Ry .091  .066 .090 .067 097 .073 024 .040

R, 052 .048 050 .048 041 .044 067 .059




Table A-II (cont.)

PDau PDau No Stat. No Time

=4 =.8 Regr. Trend

T T

Test 100 250 100 250 100 250 100 250
P, .080 .063 090 .067 084 .064 .069 .059
P, .048 .051 .050 .054 .048 .051 .040 .048
P, 044 .049 .044  .050 043 .047 .049 .052
R, .090 .068 103 .074 094 .068 071 .059
Ry, .045 .051 .051  .056 039 .046 025 .038
R. 030 .043 035 .047 024 .036 038 .045
P, 092 .067 096 .069 110 .076 .080 .065
) 042 .049 043 .048 043 .048 032 .044
P, 035 .045 035 .044 032 .042 .043 .049
R, 097 .070 100 .071 115 .079 .081 .064
Ry .046 .051 .047 .050 .043 .050 027 .040
R, 033 .043 034 .042 026 .039 042 .048
P, 150 .088 147 .087 180 .103 125 .081
Py 062 .057 061 .056 065 .060 039 .047
P, 045 .049 .044  .049 039 .049 057 .055
R, 157 .091 153 .088 190 .107 128 .081
Ry .069 .060 067 .059 072 .066 .041  .049
R, .050 .052 .048 .051 043 .052 .061 .057
P, (= Ry) 067 .055 070 .053 071 .054 065 .052
P, (=P.=Ry,=R,) .044  .045 .046  .045 043 .044 048 .045
P, (= R,) 077 .059 078 .059 078 .060 .069 .056
P, (=P. =Ry, =R.) 051 .049 .050 .049 048 .048 051 .049
P, (= R,) 109 074 109 072 122 .078 101 .068
P, (=P.=Ry,=R.) 073 .062 072 .061 075  .065 076 .061




Table A-III

Power of Significance Level .05 Size-corrected Tests Against Unit Root Alterna-
tives for Models with Innovation Distributions Given by (i) Normal, (i) x3, (iii) t3,
and (iv) Uniform

Normal X3 i3 Uniform
T T T T
m p Test 100 250 100 250 100 250 100 250

10 0 P, 91 .93 80 .79 72 .64 95 97
by 90 .93 .4 .76 .65 .61 95 97
= 87 .92 .66 .78 57 .58 95 97
R, 78 .84 77 .83 7278 78 .85
Ry 719 84 .76 .83 7179 .79 .85
R, .82 .86 .80 .85 .75 .80 83 .86
10 4 P, 91 .93 .86 .86 7973 93 .95
Py .89 .93 81 .85 7373 93 .96
P 90 .93 .76 .86 .66 .77 94 .96
R, 79 .82 78 .82 47T 79 .83
Ry .81 .83 .76 .83 479 81 .83
R, 7 .84 719 84 .73 .80 78 .85
10 8 P, .88 .88 .86 .85 81 .76 90 .90
by .83 .89 81 .87 75079 84 91
P 87 .90 82 .88 73 .80 89 .92
R, .81 .80 .81 .80 76 .73 82 .82
Ry .76 .81 75 81 7176 76 .83

R, 76 .82 4 82 .69 .76 a7 .83




Table A-IIT (cont.)

Normal % i3 Uniform
T T T T
Test 100 250 100 250 100 250 100 250
P, 7174 bl .57 43 .51 81 .85
P, .69 .74 A7 .55 A1 48 .81 .85
P. 68 .73 42 .53 37 4T 81 .85
R, .65 .69 .62 .67 55 .60 65 .71
Ry .65 .69 .64 .68 b5 .61 .67 .71
R, .66 .70 .64 .68 56 .62 .69 .72
P, .68 .75 .60 .66 50 .55 .74 .80
Py 7275 58 .65 b0 .57 78 .82
P 7176 b4 .64 46 .55 79 .82
R, 63 .68 .60 .66 52 .88 .65 .70
Ry .64 .68 62 .68 55 .60 .67 .70
R, .65 .68 63 .68 .56 .59 .66 .70
P, 69 .69 .65 .66 .56 .56 1473
Py 69 .71 .62 .69 54 .59 7376
P, 69 .71 63 .68 b4 .58 73 .76
R, .66 .66 .63 .64 Db o7 70071
Ry 63 .67 .61 .67 51 .58 .68 .72
R, .64 .68 .61 .66 54 .59 .67 .72
P, (=R,) 22 .25 A7 .16 A8 .19 34 .36
P, (=P.=Ry,=R,) 23 .25 A7 .16 A7 18 33 .36
P, (= R,) 24 .25 16 .19 .16 .16 29 31
P, (=P.=Ry=R,) 23 .25 19 .19 A8 .18 300 .32
P, (= R,) 25 .25 22 21 20 .18 29 .28
P, (=P.= Ry = R,) 26 .25 21 .22 19 .19 29 .28




Table A-IV

Power of Significance Level .05 Size-corrected Tests Against Unit Root Alterna-
tives for Models with Normal Innovation Distributions and (i) ppxy = -4, (ii)
ppx,u = -8, (iii) No Stationary Regressors, and (iv) No Time Trend

PDau PDau No Stat. No Time
=4 =.8 Regr. Trend
T T T T

m p Test 100 250 100 250 100 250 100 250

10 0 P, 91 .93 90 .93 90 .93 91 .93
Py 90 .93 88 .93 88 .92 90 .93
P 87 .92 88 .92 84 91 90 .93
R, 76 .82 .74 81 75 .82 81 .85
Ry 76 .83 73 .82 .4 .83 76 .84
R, .81 .85 7 84 .80 .85 .84 .86
10 4 P, 91 .93 90 .93 89 .92 92 .93
Py .88 .93 89 .93 87 .93 91 94
P 90 94 90 .94 87 .93 91 94
R, 719 .83 18 .82 77 81 80 .84
Ry 7 83 .76 .82 .74 .82 73 .82
R, .80 .84 719 84 18 .84 82 .85
10 8 P, .87 .87 87 87 86 .87 .89 .88
by .83 .89 82 .89 .79 .88 88 91
P 87 91 86 91 85 .90 87 .90
R, .81 .80 .80 .80 .80 .80 82 .82
Ry 750 .82 750 .82 72 81 .70 .80

R, 76 .82 75 .82 73 81 78 .83




Table A-IV (cont.)

PDz PDau No Stat. No Time

=4 =.8 Regr. Trend

T T T T

Test 100 250 100 250 100 250 100 250
P, 69 .74 69 .73 .68 .74 72074
P, 69 .74 69 .73 .67 .73 70073
P, 68 .72 68 .73 62 .71 70 .74
R, 62 .68 .61 .69 62 .68 .66 .70
Ry .64 .69 .62 .67 .62 .68 .62 .68
R. 65 .69 62 .68 .64 .69 .68 .70
P, .68 .75 .68 .75 .67 .74 7175
) 72072 72075 70075 7376
P, 7175 175 .68 .75 73 .76
R, .63 .70 63 .68 .60 .66 .66 .69
Ry .64 .65 63 .68 .62 .67 .61 .68
R, .65 .67 63 .68 .62 .67 .66 .69
P, 69 .69 69 .69 .69 .69 .69 .70
Py 68 .71 68 .71 65 .71 700 .71
P, 69 .71 68 .71 .66 .71 .68 .71
R, .66 .67 .66 .67 .67 .65 .66 .68
Ry .64 .68 .64 .68 .63 .68 59 .66
R, .62 .67 62 .68 .60 .66 .65 .68
P, (= Ry) 23 .25 23 .25 22 .25 24 .26
P, (=P.=Ry,=R,) 24 .25 25 .25 23 .25 23 .25
P, (= R,) 24 .25 24 .25 24 .25 23 .25
P, (=P. =Ry, =R.) 23 .24 23 .25 23 .25 24 .25
P, (= R,) 25 .25 25 .25 27 .26 27 .25
P, (=P.=Ry,=R.) 260 .25 26 .25 260 .25 26 .25




Table A-V

Power of Significance Level .05 Size-corrected Tests Against Parameter Shift Al-
ternatives for Models with Innovation Distributions Given by (i) Normal, (ii) x3,
(iii) t3, and (iv) Uniform

Normal % t3 Uniform

T T T T
m p Test 100 250 100 250 100 250 100 250

10 0 P, .69 .81 .60 .72 .58 .66 72 .85
Py 09 .79 45 .68 44 .61 66 .84
P .50 .76 35 .67 34 .57 .61 .82
R, 70 .84 .69 .84 .68 .83 .70 .85
Ry .64 .83 .61 .83 .61 .82 64 .84
R, .67 .84 65 .84 .65 .83 67 .84
10 4 P, 75 .85 .71 .80 .69 .77 .76 .86
by .66 .84 5779 56 .74 .69 .86
P .62 .83 A48 .77 A7 .76 .67 .86
R, 73 84 72 .85 712 84 73 .85
Ry .63 .83 63 .84 .65 .84 64 .34
R, .67 .84 .66 .84 .64 .84 68 .84
10 8 P, .83 .89 82 .88 81 .85 83 .89
by 72 .89 .71 .88 .70 .85 72 .89
= 74 .89 .70 .88 .67 .85 75 .89
R, .81 .87 81 87 .80 .85 81 .88
Ry 70 .87 .67 .87 .67 .85 68 .87

R, .67 .87 .69 .87 .68 .86 71 87




Table A-V (cont.)

Normal % i3 Uniform
T T T T
Test 100 250 100 250 100 250 100 250
P, 62 77 49 .69 47 .70 .67 .81
P, b6 .75 42 .67 40 .67 .64 .80
P. .64 .74 38 .65 37 .66 .62 .80
R, .66 .80 64 .79 62 .79 .65 .80
Ry .63 .80 .61 .79 b9 T8 .65 .80
R, .64 .80 63 .79 62 .79 .64 .80
P, 67 .82 63 .79 .60 .77 69 .83
Py 66 .81 bS8 LT b6 .77 .69 .83
P 65 .81 b4 7T 52 .76 .68 .83
R, .68 .82 .66 .81 .64 81 .69 .82
Ry 65 .81 65 .82 .65 .81 .67 .82
R, 67 .82 .66 .82 .63 .81 .67 .82
P, 81 87 79 87 ST .86 81 .88
Py 7 87 14 87 73 .86 a7 .88
P, a7 87 75 .87 73 .86 718 .88
R, .80 .86 79 87 .78 .86 80 .87
Ry 75 .86 14 .87 73 .86 75 .87
R, 75 .86 75 .87 73 .86 75 .87
P, (=R,) 42 .62 43 .61 A4 .63 50 .67
P, (=P.=Ry,=R,) 44 .63 43 .61 43 .63 50 .67
P, (= R,) 59 T4 ST TS b8 .75 .62 .76
P, (=P.=Ry=R,) 59 .74 .60 .75 .60 .75 .63 .76
P, (= Rq) 79 87 79 .87 .78 .86 79 .87
P, (=P.= Ry = R,) 79 .87 79 87 .78 .86 719 .87




Table A-VI

Power of Significance Level .05 Size-corrected Tests Against Parameter Shift Al-
ternatives for Models with Normal Innovation Distributions and (i) pp, , = -4, (ii)
Ppzu = -8, (iii) No Stationary Regressors, and (iv) No Time Trend

PDau PDau No Stat. No Time
=4 =.8 Regr. Trend
T T T T

m p Test 100 250 100 250 100 250 100 250

10 0 P, 714 .85 7T 88 .67 81 70 .81
Py .66 .84 .69 87 bl 7T b8 .79
P 09 .82 .65 .86 40 .74 58 .79
R, .73 .86 75 87 67 .84 .74 .85
Ry .70 .85 .64 87 bo .82 63 .83
R, .66 .86 55 .86 .61 .83 72 .85
10 4 P, .80 .88 82 .90 73 .85 .76 .85
Py 71 .88 .76 .90 59 .83 68 .84
P .69 .87 .74 .90 54 81 68 .84
R, St 87 78 .89 71 84 .74 .85
Ry .69 .87 .71 .88 55 .83 62 .83
R, 71 87 73 .88 .61 .83 72 .85
10 8 P, .86 91 88 .92 82 .88 .84 .89
by 760 .91 79092 .69 87 78 .89
P 790 91 82 .93 .64 .88 78 .89
R, .84 .89 .86 .90 80 .87 82 .88
Ry 72 .89 .74 .90 57 .85 .67 .86

R, .74 .89 7 .90 .54 .86 75 .88




Table A-VI (cont.)

PDz PDau No Stat. No Time

=4 =.8 Regr. Trend

T T T T

Test 100 250 100 250 100 250 100 250
P, 67 .81 71 .83 .60 .76 62 .77
P, .63 .80 .68 .83 b2 T4 ST TS
P, 61 .79 67 .82 46 .72 ST .76
R, .68 .82 71 .84 .63 .79 .66 .81
Ry 67 .82 69 .84 b8 T8 .62 .79
R. .68 .82 70 .84 .61 .79 .67 .80
P, 72 .85 75 .87 .67 81 .69 .82
) 71 .83 75 .87 .63 .81 .68 .82
P, 70 .84 14 87 .60 .80 .68 .82
R, 72 .86 75 .87 .65 .81 71 .82
Ry 70 .82 73 .86 62 .80 .65 .82
R, 71 .84 73 .86 63 .81 70 .83
P, 84 .90 86 .91 .81 .87 80 .87
Py 81 .90 83 91 714 .87 79 .88
P, 81 .90 82 91 75 .87 718 .88
R, 83 .89 84 .90 .80 .87 .80 .87
Ry 78 .89 81 .90 120 87 .74 .86
R, 79 .89 81 .90 73 .86 78 .87
P, (= Ry) 50 .68 S5 Tl 43 .62 43 .63
P, (=P.=Ry,=R,) Sl .67 56 Tl 43 .62 43 .63
P, (= R,) .65 .78 .69 .80 .60 .74 b9 T4
P, (=P. =Ry, =R.) .64 .78 .69 .80 59 T4 .60 .74
P, (= R,) 82 .88 83 .90 719 .87 719 .87
P, (=P.=Ry,=R.) 82 .88 84 .90 .79 .86 79 .87




Figure 1.1 Thailand Figure 1.2 Philippines

Figure 1.1(a): Error Process u_t Figure 1.2(a): Error Process u_t

eror process u_t

(o] break period
—4
-8
;
2R 136 161 186 211 236 261 286 311 336 361 386 TBEETTTIT 136 161 186 211 236 261 286 311 336 361 386
dota: 12/31/96-7/13/98, break cate: 5/15/97 (96th, by Kim (2000)) data: 12/31/96-7/13/98, break date: 7/01/97 (131st, by Kim (2000))
Figure 1.1(b): p-values for P Test Figure 1.2(b): p—values far P Test
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doto: 12/31/96—-7/13/98, daily data: 12/31/96-7/13/98. daily
Figure 1.1(c): p—values for R Test Figure 1.2(c): p—values for R Test
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Figure 1.3 Indonesia Figure 1.4 Singapore
Figure 1.3(0): Errar Process u_t Figure 1.4(a): Error Process u_t
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A T ST 86 211 236 261 286 311 336 361 386 3BT 36 16T 186 211 236 261 286 311 336 361 386
data: 12/31/896-7/13/98, breck date: 7/10/97 (138th, by Kim (2000)) data: 12/31/96-7/13/98, break date: 10/10/97 (204th, by Kim (2000))
Figure 1.3(b): p-values for P Test Figure 1.4(b): p—volues for P Test
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daota: 12/31/96—7/13/98. daily data: 12/31/96-7/13/98. daily
Figure 1.3(c): p—values for R Test Figure 1.4(c): p—values for R Test
1.0 1.0
0.9 0.9
0.8 0.8 — o o Rt
Q.7 0.7
0.6 0.6
a.5 0.5
0.4 0.4
a.3 0.3
a.2 0.2
ot ) RSNV PR S W L
0'086 111 136 161 186 211 236 261 286 311 336 361 386 0'086 111 136 161 186 2711 236 261 286 311 336 361 386

dota: 12/31/96-7/13/98. daily date: 12/31/96-7/13/98. daily



