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Abstract

We consider the provision of venture capital in a dynamic model with multiple research

stages, where time and investment needed to meet each benchmark are unknown. The alloca-

tion of funds is subject to moral hazard. The optimal contract provides for incentive payments

linked to attaining the next benchmark, which must be increasing in the funding horizon of

each stage. Benchmarking reduces agency costs, directly by shortening the agent’s guaranteed

funding horizon, and indirectly via an implicit incentive effect of information rents in future

financing rounds.

The ex ante need to provide incentives and the venture capitalist’s desire to cut information

rents ex post create a hold-up conflict, which can be overcome by providing all funds in every

stage in a single up-front payment. Empirical patterns of the evolution of financing rounds and

research intensity over the lifetime of a project are explained as optimal choices: the optimal

capital allocated and the funding horizon are increasing from one stage to the next. This

emphasizes the notion that early stages are the riskiest in an innovative venture.

Key words: venture financing, optimal stopping, benchmarking, stage financing, abandon-

ment option.

JEL Classification: D83, D92, G24, G31.



1. Introduction

1.1. Motivation

The venture capital industry, which has become the main source of financing of innovative

projects, offers unique insights into how financiers and managers of innovative start-ups align

their interest and resolve agency conflicts. The most frequently cited agency problems in ven-

ture capital contracting are that entrepreneurs may invest into efforts that have high personal

return (scientific recognition, investment in human capital, etc.) but add little or no value

to the venture, and the tendency of the entrepreneurs to continue their projects beyond the

efficient stopping time. The importance of the latter problem has arguably been reaffirmed by

the slow and expensive wind-down of many cash-burning internet start-ups after March 2000.

Stage financing stands out as “the most potent control mechanism a venture capitalist can

employ” (Gompers and Lerner (1999), p. 139). Venture capitalists do not commit to future

financing rounds, but will only agree to future financing rounds if their intermediate evaluation

of the project is positive. By staging their financing, venture capitalists retain the real option

to abandon the project periodically. Often, explicit benchmarks - technological or financial

in nature - are written into the contracts, giving the venture capitalists additional contingent

control rights that can be exercised if the benchmarks are missed, including the rights to change

the management of the venture or to initiate liquidation procedures. Typically, the estimated

cash need for the entire stage is injected at the beginning of the round, putting a large cash

reserve at the disposal of the firm that is gradually drawn down.

Empirical research has revealed that the precise use of staging instruments depends on

the risk and the characteristics of the project. The riskier is the project, the less information

venture capitalists have about the venture, or the larger is the discretion of the entrepreneurs1,

the shorter are the staging intervals, and hence the more frequently are venture capitalists

reevaluating the project and pondering the abandonment option. The larger is the total funding

received of a venture, the more financing rounds are used. There is further empirical evidence

on typical patterns of stage financing over the lifetime of a project. Typically, the duration of

stages are increasing from one stage to the next. Also, the amount of cash injected per round

is increasing over time. The rate of return seems to be highest in the early stages of a project,

both measured by the internal valuations estimated at the start of every financing round, as

by market-based exit valuations.2 Practitioners apply considerably higher discount rates in
1Kaplan and Stromberg (2001)(2002), Gompers and Lerner (1999).
2See for these observations Cochrane (2001), Das et. al. (2002), Gompers and Lerner (1999), p. 139.
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early stages, reflecting a perceived higher failure risk there than in later stage investments.

While it has long been recognized in the literature that stage financing is a tool to mitigate

agency conflicts, explicit dynamic studies on how projects are benchmarked, and how the opti-

mal staging policy interacts with the typical conflicts in the financier-entrepreneur relationship,

are surprisingly rare. Agency considerations are, however, an important determinant of the

optimal funding policy of an innovative project. They influence the research intensity, research

lay-out and the research budget. This paper aims to provide a more detailed understanding of

this link by looking at the role of benchmarking.

We propose a simple model of a venture project over multiple stages to analyze this in-

teraction. The venture capitalist controls the investment opportunity but she needs a wealth

constrained entrepreneur to run it. The project consists of several stages, each characterized

by a benchmark, and the successful completion of the project requires that every benchmark

is met. Time and money needed to meet each benchmark are subject to uncertainty, since in

each period, the research effort can either make progress or fail. As the project continues to

receive financing without achieving the next benchmark, the investor gets closer to the point

where she wishes to abandon the entire project. When one of the benchmarks is attained, the

probability of the entire project jumps upwards.

The investment effort is unobservable to the investor and the entrepreneur can divert the

funds to his private ends. The entrepreneur’s control of the fund allocation introduces a conflict

meant to capture in a stylized way the two main agency conflicts in the venture financing cited

earlier, namely self-serving investments and the bias towards inefficient continuation. In each

period, the solution of the agency conflict has to take into account the intertemporal incentives

for the entrepreneur. If the entrepreneur diverts the capital flow for private purposes, she knows

that she continues to receive funding for sure. In contrast, if she invests the funds, she knows

that with a certain probability she is successful and the funding in the current stage will end.

The longer the funding horizon of the current stage, the larger is this option value of the

diversion.

1.2. Results and empirical implications

We first analyze the optimal funding when the venture capitalist cannot observe whether the

intermediate benchmarks have been attained. In this case, the venture capitalist can only

define a total funding horizon for the entire project, and make sure that the reward to the

entrepreneur in case of completion of the last benchmark provides sufficient incentives to invest.
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This solution is inefficient compared with benchmarking for three reasons: first, there is no

abandonment if the early benchmarks are not completed in time, adding to the entrepreneur’s

discretion and information rent. Second, if the early stages take longer than expected, the

remaining budget for the last stages is inefficiently small. Finally, since the venture capitalist

is in a position of asymmetric information with respect to the number of benchmarks that have

already been met, the incentive payments must be tailored to fit several possible “types” of

the entrepreneur, which again increases the information rent.

We then consider the case where the benchmarks are observable. The optimal contract uses

stage financing, the conclusion of a new contract upon reaching each benchmark. This offers

the advantage of exploiting the value of the real option to abandon the project over time. The

necessary incentive payments are an increasing function of the entrepreneur’s discretion over

the funds, and thus of the funding horizon of each stage. It reduces agency costs, because the

agent’s guaranteed funding horizon is reduced by the introduction of intermediate benchmarks.

Agency costs are also reduced by the fact that the informal promise of information rents

in future financing rounds acts as an implicit incentive device. A hold-up problem emerges

between the ex ante incentive potential of implicit contracts and the venture capitalist’s desire

to cut information rents ex post. The supply of excess cash to the venture, as implied by

providing all funds in a given stage in a lump-sum payment at the beginning of each stage, is

a commitment device to overcome this problem.

We find that the optimal funding horizon is increasing from one stage to the next. This

effect is exacerbated by the impact of the agency costs, and by the implicit incentive effect

of future information rents. Thus, our model shows that the principal stylized facts of the

evolution of funding over time can be explained as optimal choices: the research intensity is

lower for early stages, explaining that a smaller budget is allocated to them, that their duration

is shorter, and their success probability smaller. This is turn explains why the research risk is

larger in early stages, and thus the observed return, conditional on success in early stages, is

larger.

1.3. Related Literature and Overview

While the importance of stage financing has been widely documented in the empirical literature

on venture capital contracting,3 only a small number of theoretical papers have explicitly tried
3Kaplan and Stromberg (2001), (2002), Kaplan et al. (2002), Gompers and Lerner (1999), Cochrane (2001)

and Das et al. (2002).
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to provide a rationale for the use of benchmarks in venture finance. Cornelli and Yosha

(1999) analyze the problem of an entrepreneur manipulating short-term results for purposes

of “window-dressing”. Neher (1994) shows that stage financing can serve as an instrument to

reduce the bargaining power of an opportunistic entrepreneur who can repudiate her financial

obligations. Berk et al. (2000) distinguish between purely technical risk in early stages and

a diverse sources of risk in later stages. They show that the systematic risk component is

strongest in early stages, justifying a larger risk premium. Elitzur and Gavious (2001) have a

model with several stages, where the probability to attain each benchmark is determined by

the entrepreneur’s one shot effort choice. In their setting, optimal incentives contracts give

rewards only upon completion the last stage, in contrast to our results.

The basic set-up of our model closely follows our earlier papers on venture funding and

the financing of innovation (Bergemann and Hege (1998) and (2002)), where we studied the

dynamics of the optimal contract, the role of hard claims, the impact of time consistency on

the stopping decision, and distinguished between arm’s length and relationship financing. The

innovation in this paper is the inclusion of intermediate benchmarks.

The agency problem in our paper is also related to papers emphasizing the role of hard

budget constraints in the funding of innovation, like Ambec and Poitevin (2001) and Qian and

Xu (1998). Finally, a large literature has investigated capital structure design, and in particular

the use of convertible securities, as a tool for the venture capitalist to force abandonment

of unprofitable projects, and thus as an alternative or complementary instrument to staged

financing. Recent papers have frequently looked at two-sided moral hazard situations between

entrepreneur and venture capitalist, e.g. Casamatta (2000), Repullo and Suarez (2000) and

Schmidt (2002).

The paper is organized as follows. The model is presented in Section 2. The single stage

project is reviewed in Section 3. The structure and efficiency of multi-stage projects without

benchmarking is examined in Section 4. We then consider stage financing with benchmarking

in Section 5. Section 6 discusses possible extensions and concludes.

2. The Model

We consider a project with uncertain return that needs continuous financing over several stages

and that can be undertaken by an entrepreneur or agent with zero wealth. The project is fi-

nanced by a venture capitalist providing up the necessary funds. The entrepreneur and venture

capitalist are both risk-neutral and have a common discount rate r > 0. We introduce first the
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technological characteristics of stage financing before turning to the contracting environment.

2.1. Project and Stages

The innovative project needs to go through N sequential stages, which we denote by n =

1, 2...,N , to be successful. At the end of each stage, there is a discernible output, or benchmark.

This may be a first research result, a key module, a prototype or a beta version, a product

ready for mass production, and finally the production, distribution and marketing facilities

necessary for the launch of operations. The stages are sequential in the sense that the successful

completion of the stage n− 1 is a technological prerequisite for entering into the stage n.
If the last stage is completed, the output is verifiable and a gain of R is realized. The value

of an incomplete project is zero (discussed in Section 6). We assume that it is worthwhile to

undertake the project for at least one period, R > c.

The uncertainty of the project is resolved over time by a discovery process. In every stage,

experimentation is needed to preserve the chances that the benchmark is eventually met, and

experimentation requires time and money. If experimentation is undertaken in a given period

t, then the stage of the project is successfully completed with probability λ, and costs cλ to

undertake. Therefore, the probability of completion of each stage per period is either λ (if

there is investment), or 0 (if there is none). These conditions are the same for every stage.

The nature of uncertainty in our model essentially is about the time and investment needed

within each stage.

The investment only influences the conditional probability of success in every period and

independent of time. In particular, the investment flow does not influence the value of the

successful realization, R.

As the experimentation process unfolds over time, agent and venture capitalist learn more

about the prospects of the project. Suppose then that for each stage, experimentation is

undertaken for a total of Tn periods, where Tn = T 1, T 2,...TN denotes the maximum duration

or horizon for the completion of each of the stages n = 1, 2, ...N . The ex ante probability of

successful completion of the first stage is thus 1 − (1 − λ)T
1
. Since the completion of each

earlier stage is required to move on, if there is no success in the nth stage within the horizon

of Tn periods, it means that the entire project is abandoned. The ex ante probability that the

entire project will be successful is then

p10 =
NY
n=1

³
1− (1− λ)T

n
´
,
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We next determine the evolution of the posterior beliefs. Denote by pnt the jointly held belief

that the project will eventually be a success, held in the tth period of the nth stage based on

continuous experimentation prior to t:

pnt =
³
1− (1− λ)T

n−t´ NY
i=n+1

³
1− (1− λ)T

i
´

Thus, as long as the entrepreneur continues to invest in any given stage, the belief about

the project’s success is gradually diminishing as a result of the shorter number of chances of a

yet successful experiment, Tn − t. However, once stage n is successfully completed, the belief
discontinuously jumps to a higher level. We get a stochastic seesaw pattern of the evolution

of the following belief: the belief slopes down within each stage but has an upwards trend

overall, representing the improvement in beliefs as the projects nears completion of the final

stage. The timing of the jumps are stochastic due to the uncertain nature of each stage. (See

Figure 1 ).

2.2. Moral Hazard and Financing

Entrepreneur and venture capitalists have initially the same assessment about the likelihood of

success, which is given by the prior belief p10. The funds are supplied by the venture capitalist,

but they can only be allocated by the agent to generate the desired success R. The venture

capitalist, however, cannot observe whether the funds are correctly applied to the experiment,

and thus a moral hazard problem arises between financier and entrepreneur. The entrepreneur

can in fact “shirk” and decide to divert the capital flow to her private ends, gaining a utility

of cλ in the process.4 In contrast, the successful completion of any stage n = 1, ...,N − 1 is
observable and verifiable.

The venture capitalist proposes a contract to the entrepreneur which can be contingent

on time, the capital provided by the investor, as well as on new agreements between the two

parties. Then the entrepreneur accepts or rejects the proposal, implying that the venture

capitalist captures the entire surplus of the project.5 Because of the moral hazard problem of

the financing, however, the contract cannot be made contingent on the use of the funds. The
4An equivalent interpretation of the moral hazard problem is that running the experiments requires effort,

which is costly for the agent. By reducing the effort, the agent also reduces the probability of success and hence

the efficiency of the employed capital.
5The opposite assumption about the distribution of bargaining power is made in Bergemann and Hege (1998)

and (2002).
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design of the contract has to ensure that incentive compatibility and individual participation

constraints are satisfied.

We will argue below that stage contracts of the following form are the optimal arrangements

in this environment. The venture capitalist proposes such a stage contract at the entry into

each new stage n. The contract specifies the maximal stage duration Tn to complete the stage

n, and a dynamic schedule of monetary reward payments snt that the agent receives in the

event of meeting the benchmark of the nth stage after t periods.

The contract contains provisions effectively inhibiting the continuation of the project once

Tn periods have lapsed; the project will have to be irrevocably abandoned. In other words, we

assume that the venture capitalist can choose Tn and commit to the following horizon.6

3. A Single Stage

We prepare the ground by looking at the simple case where there is just a single possible stage,

N = 1. This case is a version of the model analyzed in our earlier papers (Bergemann and

Hege (1998)and (2002), where details for the expression of this Section can be obtained) with

a simplified belief process, but with two important differences: first, the venture capitalist

has the bargaining power; and second, the number of periods is determined by the venture

capitalist’s profit maximization objective rather than efficiency.

Value of the Venture. We denote by Vt(T ) the value of the project in stage t if the total

horizon comprises T periods. Suppose the optimal number of financing periods is fixed at T

which we assume for now (and show later) to be finite. Note that in the first best, T =∞ since

we have assumed that λR − cλ ≥ 0. If the project should be funded once, it should receive
funds indefinitely since the problem is stationary. Hence we obtain the value of the venture in

the terminal period T as VT (T ) = λR− cλ, and in earlier periods recursively via the following
dynamic programming equation:

Vt(T ) = max
it∈{0,λ}

½
itR− cit + 1− it

1 + r
Vt+1(T )

¾
, (3.1)

where it ∈ {0,λ} is the venture capitalist’s allocation of funds. Clearly, the linear form of the

value function (3.1) indicates that it is optimal to invest at the level of cλ for as long as t ≤ T .
We consider the transition to the continuous time limit of our model, as in Bergemann and

Hege (2002), from where details can be gleaned. Let ∆ denote the time elapsed between two
6See Bergemann and Hege (2002) for an extensive discussion of renegotiation in this game.
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periods t and t+ 1. With this notation, (3.1) can be rewritten as:

Vt(T ) = R∆λ− c∆λ+ 1−∆λ
1 +∆r

Vt+∆(T )

Letting ∆→ 0 and solving yields the continuous-time expression of the project’s value function

at t = 0:

V0(T ) =
1− e−(r+λ)T

r + λ
(R− c)λ (3.2)

The value function V0(T ) offers an intuitive explanation. cλ is invested in each period,

and the prize R is obtained with probability λ, conditional on no earlier discovery. The value

of the project is then discounted with an effective factor of r + λ, compounding pure time,

discounting r and the probability of success λ in each period. Total project uncertainty is then

captured by the first term in (3.2), which can be understood as a stochastic discount factor

over T period, discounting the uncertain arrival time of the risky success.

Incentive Contracts. Since successful completion of the project is the only verifiable ev-

idence on the agent’s effort, the incentives provided to the entrepreneur should maximally

discriminate with respect to the signal R. With the wealth constraint of the entrepreneur,

the optimal contract is a share contract, where the agent receives a positive reward st ≥ 0 if
the project was a success and nothing otherwise. is The minimal reward st of the entrepre-

neur is chosen so that she truthfully carries out the proposed investment policy. We consider

only optimal share contracts from the venture capitalist’s point of view, with full scope for

intertemporal transfers, i.e. long-term contracts.

We start from the incentive compatibility constraint for the entrepreneur in the last period,

which immediately leads to the last period requirement on the entrepreneur’s reward, λsT ≥ cλ,
and hence an expected value to the entrepreneur of ET (T ) = cλ. Moving backwards in time,

we obtain a sequence of value functions, denoted by Et(T ), and characterized recursively by

the incentive problem:

Et(T ) = min
st

½
∆λst +

1−∆λ
1 +∆r

Et+1(T )

¾
, (3.3)

where st is the minimum cash reward satisfying the entrepreneur’s incentive constraint.7

We notice the intertemporal structure of the problem. The incentives to divert for the agent
7The incentive constraint takes the form

∆λst +
1−∆λ

1+∆r
Et+1(T ) ≥ c∆λ+

1

1+∆r
Et+1(T ).
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arise (i) via a contemporaneous effect, namely the utility from the diverted funds cλ, and (ii)

via the dynamic effect that the contract continuation into the next period becomes more likely.

The solution st of the minimization problem (3.3) delivers the expected value Et(T ) the

entrepreneur receives for a given funding policy, taking in to account the sequence of incentive

constraints. Taking again limits as ∆→ 0, the value function Et(T ) of the entrepreneur and

his reward in case of success is given by:

Et(T ) = st = cλ
1− e−r(T−t)

r
. (3.4)

The compensation st ensures that the entrepreneur employs the capital in every period

towards the discovery process. The behavior of the shares st over time is thus determined

by an underlying option problem. The value of this particular option is determined as any

regular option by the volatility of the underlying state variable (represented by the conditional

probability λ) and the maturity (the remaining length of the funding, T − t). Therefore,
two forces help to realign the interest of the entrepreneur with the ones of the investor: (i)

sufficiently strong discounting and (ii) shares are decreasing over time and hence penalize late

discovery.

Optimal Stopping. As the market for venture capital is competitive, in equilibrium the

net value of the project will belong entirely to the venture capitalist. Prior to stopping the

project, the venture capitalist will decide to fully fund the project; therefore, the decision on

the optimal stopping time T sufficiently summarizes the venture capitalist’s investment policy.

The venture capitalist’s initial problem is then given by:

max
{T,(st)}

{Vt(T )−Et(T )} (3.5)

We have already characterized the optimal function of rewards st in (3.4). To determine

the optimum stopping time T , we investigate the maximum of (3.5) and obtain the following

solution (from the first-order condition):

T = − ln
c

R−c
λ

. (3.6)

Thus, unlike the first best solution, which always would be to choose T =∞, the presence of
agency costs implies a reduction in the horizon that maximizes the venture capitalist’s profits.

4. Funding without Benchmarks

We first consider the case where the venture capitalist has no benchmarking technology, i.e.

no capacity to observe or verify the completion of earlier stages. Only the realization of the
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last stage remains verifiable. Completion of all stages is indispensable for the project to create

value, namely the prize R. Therefore, in this case, the venture capitalist can budget only for

a single investment stage of total length T . For simplicity, we restrict this discussion to the

case where there are just two stages, with N = 2, which is sufficient to analyze the structure

of the solution. For this analysis, we make the additional assumption that

R > c

µ
2 +

1

λ

¶
. (4.1)

This assumption guarantees that the venture capitalist is willing to offer a share sT that is

sufficient to ensure the entrepreneur’s incentives in period T − 1, even if the entrepreneur has
not yet completed the first benchmark.

4.1. Value of the Venture

Let us then consider the value of the firm in this problem. Assume that the entrepreneur has

successfully completed the first stage. We use the superscript i ∈ {1, 2} for the value functions
to indicate that the entrepreneur knows to be in stage i = 1, 2. If the entrepreneur knows

to be in the second stage, the value of the venture is obtained recursively by the dynamic

programming equation:

V 2t (T ) = max
it

½
∆itR− c∆it + 1−∆it

1 +∆r
V 2t+∆

¾
, (4.2)

where it ∈ {0,λ} indicates the funding policy of the venture capitalist. We know that the

entrepreneur may try to complete the second stage for at most T periods, and the first stage

for T periods. If the last stage is a failure in all T periods, the final prize will be zero. Again,

maximum investment it = λ will be optimal in all periods. Thus,

V 2t (T ) =
1− e−(r+λ)(T−t)

r + λ
(R− c)λ .

Similarly, the agent’s value function in the first stage is,8

V 1t (T ) = max
it∈{0,λ}

½
∆it

1 +∆r
V 2t+∆(T )− c∆it +

1−∆it
1 +∆r

V 1t+∆(T )

¾
. (4.3)

Solving recursively, and considering the limit as ∆→ 0 (see the Appendix for a derivation),

V 10 (T ) =
λ

r + λ

"
1− e−(r+λ)T

r + λ
− Te−(r+λ)T

#
(R− c)λ (4.4)

8Whether V 2
t (T ) or V

1
t (T ) is the true value is private knowledge of the entrepreneur, since he alone observes

the first benchmark.
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In this expression, the second term in the square bracket indicates the increasing loss from

the following unconditional temporal limit: the later is the entry t into the second stage, the

shorter will be the remaining time T − t to successfully complete this final round. The first
two terms in expression (4.4) represent the stochastic discounting of the final value, which

occurs over the two stages. Finally, the last term Te−(r+λ)T expresses loss from suboptimal

exploitation of second stage.

4.2. Information Rent and Optimal Stopping

We turn then to the entrepreneur’s rent in this case. The optimal continuation contract at the

entry into the last stage is exactly as the contract would be for a single stage problem with a

maximum of T periods. That is, the entrepreneur can secure herself at least a rent of

E1t (T ) = cλ
1− e−r(T−t)

r
(4.5)

Since only the entrepreneur observes whether the first benchmark has been attained or not,

asymmetric information between venture capitalist and entrepreneur emerges as the project is

undertaken - the entrepreneur knows whether he is of “type 1” - still trying to meet the first

benchmark - or already of “type 2” - i.e., advanced to the second stage -, while the venture

capitalist must design a contract that is incentive-compatible for one or for both types. Clearly,

the project cannot succeed if it is not incentive compatible at least initially for the type 1, and

later for type 2. It is intuitive that, as the funding horizon T draws to a close, it is easier to

ensure the incentives of type 2 than of type 1, who is in a more remote position, i.e. still two

benchmarks away from final success. The critical question is, therefore, whether the optimal

contract will provide incentives for both types throughout, or whether it will abandon the type

1 entrepreneur at some point and only provide incentives to the more advanced type 2.

We will show in the Appendix that under assumption (4.1), the lower bound of the en-

trepreneur’s value in (4.5) represents at the same time the value function of the agent in the

optimal incentive-compatible contract, that provides incentive compatibility for both types for

the longest time possible, namely for the first T − 1 periods. Since maximal incentive compat-
ibility can be ensured with a contract that costs no more than the lower bound (4.5) of the

entrepreneur’s value, this contract must be optimal.

Taking the difference of expressions (4.4) and (4.5) yields the venture capitalist’s objective

function as:

V 10 (T )−E10(T ) =
λ

r + λ

"
1− e−(r+λ)T

r + λ
− Te−(r+λ)T

#
(R− c)λ− cλ1− e

−rT

r
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The first-order condition yields the solution, which is given as the solution T of

Te−λT =
c

λ (R− c) (4.6)

There are then two cases to be considered: either the project has a positive value for the

venture capitalist and the optimal project horizon corresponds to the larger solution of (4.6)

which is the only candidate for a maximum. Or, if the project is “poor”, i.e. R is small relative

to c, it may be optimal to choose T = 0.

5. Stage Financing

In this Section, we assume that the venture capitalist is able to observe and verify the comple-

tion of the first stage. The optimal contract is then a succession of stage financing contracts:

only after successful completion of the first stage will the contract for the second stage be

drafted. Contingent stopping, after failure in the first stage, is a valuable, real option in this

case (as we will show), ensuring that continuing finance is only taking place if there is success

in the preceding stage.

5.1. Value of the Venture and Agency

Proceeding again in a backwards fashion from the last stage, the value of the venture in the

last stage, V Nt (T
N), corresponds exactly to the value in the single stage problem expressed in,

where the optimal funding horizon in the stage N will now be denoted as TN .

Consider then the value function in the penultimate stage. This value is a function of both

the current duration TN−1 and the last stage duration TN . To keep the notation short, let

Tn = (Tn, Tn+1,...TN) denote the vector of the durations of the remaining stages in stage n.

The value function is recursively determined as

V N−1t (TN−1) = max
it∈{0,λ}

½
∆itV

N
0 (T

N)− c∆it + 1−∆it
1 +∆r

V N−1t+∆ (TN−1)
¾

(5.1)

Taking again limits as ∆→ 0 and solving recursively, this value can be expressed as

V N−10 (TN−1) =
1− e−(r+λ)TN−1

r + λ

³
V N0 (T

N)− c
´
λ (5.2)

=
1− e−(r+λ)TN−1

r + λ

Ã
1− e−(r+λ)TN

r + λ
(R− c)λ− c

!
λ ,
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where the last equation is obtained after using the expression for the last stage derived in

Section 3. More generally, the value function for n stages can be stated as:

V 10 (T
1) =

Ã
NY
n=1

λ
1− e−(r+λ)Tn

r + λ

!
(R− c)−

NX
i=1

Ã
NY
n=i

λ
1− e−(r+λ)Tn

r + λ

!
c (5.3)

Clearly, as we construct recursively the value function of the multi-stage problem V (n)0 (Tn, ..., TN),

we find that the value function exhibits the following time pattern: with the completion of one

stage, synonymous to entry into the next stage, the value experiences a discontinuous jump

upwards; but within each stage, as the time runs towards the horizon set for its completion,

the value is decreasing. Thus, the value function follows a stochastic seesaw pattern with an

upwards drift just as the belief function does.

We turn then to the entrepreneur’s rent at entry into the last stage. The optimal continua-

tion contract at the (stochastic) entry point into the last stage is exactly as the contract would

be for a single stage problem. That is, the entrepreneur can secure herself at least a rent of

E
N)
0 (TN) = cλ1−e

−rTN

r , where TN is the funding horizon of the last stage. In fact, this rent

is independent of the exact time when the last stage is reached. Thus, since the problem at

the beginning of the last period is isomorphic to the single stage problem investigated above,

the venture capitalist’s preferred solution will be the same. The venture capitalist designs this

contract to maximize V N0 (T
N)−EN0 (TN ), and the solution will be as in (3.6), TN = − 1λ ln c

R−c .

The situation becomes more complicated though as we move backwards in time. Consider

the penultimate stage. Since the successful completion of this stage is verifiable, the agent can

be paid a reward upon meeting the benchmark of this stage, and this reward can be conditional

on the timing of the success. We will denote this time-contingent reward by sN−1t , where t is

the period within the second to last stage where the agent meets the benchmark. Moreover,

the agent knows that success carries with it the implicit compensation of moving on to the

last stage, with its information rent EN0 (T
N). This information rent has an incentive effect

in the second to last period. As it turns out, the size of this incentive effect, relative to the

required incentive payment schedule within the stage, leads to an important distinction in the

construction of the agent’s value function.

5.2. Always Immediate Incentives

If TN−1 periods have passed without discovery, the project is liquidated, and the agent gets

nothing, i.e. EN−1
TN−1+∆(T

N−1) = 0. Therefore, and considering again the continuous-time case

13



in the last period of stage 1, the entrepreneur expects a rent of

EN−1
TN−1(T

N−1) = λ
h
sN−1
TN−1 +E

N
0 (T

N)
i

(5.4)

In fact, incentive compatibility requires that this expected value be larger than cλ, which

is the entrepreneur’s option value from shirking. Hence if λEN0 (T
N) < cλ, then sN−1

TN−1 > 0 is

required. This condition can be rewritten as:

λ < λ̂ ≡ r

1− erTN (5.5)

Note that λ > λ̂ will generally hold if (i) λ > r and if (ii) TN is large enough. In essence,

the promise of the minimum of future information rents suffices by itself to guarantee incentive

compatibility, and further contemporaneous incentives are not needed.

We consider then first the case where λ < λ̂, since this case is easier to analyze, leaving the

complementary case to the next subsection. With this condition, a positive reward payment

is needed whenever the agent successfully completes one of the stages. We denote by snt > 0

the minimum reward required upon completion of the nth stage in period t of stage n. The

following simple observation is important to understand the structure of feasible contracts if

λ < λ̂:

Lemma 1. Feasible stage financing contracts require that the agent be paid with an immediate

cash reward of at least snt .

Proof: See Appendix.

In particular, it is not sufficient to pay the agent with equity or other contingent claims

on R, that can only be cashed in if all stages are successfully completed. Immediacy of

incentive rewards is the key observation here, and the reason for this immediacy is that a hold-

up problem would arise otherwise: if the payments to the agent were contingent on achieving

further benchmarks, they would have incentive effect in the next stage. As a result, the investor

would cut back the rewards offered ex post, at entry into the subsequent stage. Anticipating

this reduction ex ante, the agent would find it more attractive to shirk rather than to work.

The investor needs to commit to the level of incentive payments required ex ante, and pledging

immediate rewards that are not contingent on further achievements are the obvious way to do

it.

This observation is interesting because in principle, one would expect that the highest

power of incentives could be attained by making all rewards contingent on completion of the
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final benchmark: in our nested model, the last stage has the highest information value on

effort, since its completion means that the agent has truthfully invested in all prior stages.

By contrast, success in any earlier stage gives information regarding the agent’s effort only up

to that benchmark. Although, incentives contingent on meeting the final benchmark appear

to be the cheapest device for the investor, since actual reward payments will have to be paid

only if the entire project is successful. Indeed, Gavious and Elitzur (2001) obtain a result that

incentives should be based on the accomplishing of the last benchmark in a different model of

stage financing, which shares with our model the feature that stages are nested.9

The fact that we obtain a different result here clearly points to a trade-off in our model, a

trade-off between the advantage high-powered incentives (which pleads in favor of postponing

compensation) and the need to be time-consistent. An important practical implication of our

immediacy result is:

Corollary 1. Contracts can guarantee immediate incentives by providing all the funding needs

for any stage up-front.

Up-front financing in the current stage, and hence the build-up of potentially important

cash reserves, is not the only way to achieve the required immediate rewards; other forms are

possible as well. But it is the way that is frequently observed in practice. Stage financing typ-

ically implies that cash is raised discontinuously, at the beginning of each stage, while the cash

outflow from the venture is often much smoother. Our analysis interprets this discontinuous

evolution in the venture’s cash position as a deliberate choice to guarantee the agent’s required

information rents. In our view, the cash paid up-front is cash at the discretion of the agent,

and this discretion protects the agent against any possible hold-up by the investor. Notice that

a lower bound of the entrepreneurs’ information rent at any given moment is the remaining

stream of cash in-flows up to the maximum horizon of the current stage; and any excess cash

that the entrepreneur holds in the current stage, after reaching the benchmark early, will be

used in the subsequent stage since the new can easily provide the right incentives for mutual

advantage.

We will continue with the analysis of the optimal contract in the case of λ < λ̂, and in

particular determine the optimal horizon Tn in a typical stage n. Starting from condition (5.4)

in period Tn and moving backwards in time, suppose the agent accomplishes the benchmark of
9The logic of making compensation contingent on the most informative output is also reminiscent of Innes

(1990) moral hazard model.
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this stage in period t < Tn. When discovery is made, the entrepreneur will get a future rent that

is at least equal to En+10 (Tn+1, Tn+2, ...), and this regardless of the period in which discovery

occurs. We assume that immediate incentives are always needed, i.e. snt > 0 is necessary

throughout to satisfy this incentive constraint. Taking this into account, the continuous time

incentive constraint at any time must satisfy

Ent (T
n) = λ

h
s
(n)
t +En+10 (Tn+1)

i
+ (1− λ)Ent (T

n) ≥ cλ+Ent (Tn) (5.6)

Since snt > 0, clearly the inequality in (5.6) will be binding. Hence, after solving recursively,

Ent (T
n) = λcλ

1− e−rTn
r

(5.7)

As we would expect, the entrepreneur’s rent is monotonically decreasing within the first

stage, i.e. Ent (T
n) > Enτ (T

n) for τ > t.

We can then determine the optimal budgeting decision in this case. The investor recursively

solves the contract design problem and chooses the optimal funding horizon Tn by maximizing

her net value V n0 (T
n) − En0 (Tn). Substituting and solving the maximization problem (7.7)

yields the following results:

Proposition 1. Suppose immediate rewards are needed in every period, i.e. snt > 0 for all n

and t. Then the optimal horizon in stage n is given by:

Tn = −1
λ
ln

Ã
c

V n+10 (Tn+1)− c

!
(5.8)

The optimal horizon Tn is strictly increasing in n.

Proof: See Appendix.

5.3. Implicit Incentives

We turn now to the case where λ > λ̂. Consider the entrepreneur’s incentives in the last period

of the penultimate stage. If the benchmark is accomplished, the entrepreneur will get a future

rent that is at least equal to

EN0 (T
N) = cλ

1− e−rTN
r

.

Thus, the entrepreneur’s current value can be evaluated as

EN−1
TN−1(T

N−1) = max
(
cλ,λcλ

1− e−rTN
r

)
.
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But in the case λ > λ̂, we know the entrepreneur’s implicit incentives given by the prospect of

moving on the last stage exceed the minimal incentives required, and hence

EN−1
TN−1(T

N−1) = λcλ
1− e−rTN

r
,

meaning that sN−1
TN−1 = 0 is sufficient.

Taking this into account, clearly incentive compatibility will be satisfied in the last period of

stageN−1. Moving backwards in time, in each prior period of this stage incentive compatibility
requires that:

EN−1t (TN−1) = λ

"
sN−1t + cλ

1− e−rTN
r

#
+ (1− λ)EN−1t (TN−1) ≥ cλ+EN−1t (TN−1) (5.9)

Inequality (5.9) reveals that sN−1t = 0 is sufficient as long as

λ

Ã
cλ
1− e−rTN

r
−EN−1t (TN−1)

!
≥ cλ (5.10)

Let us consider any general funding stage n. Now, as we would expect, the entrepreneur’s

rent is monotonically decreasing within each stage, i.e. Ent (T
n) > Enτ (T

n) for τ > t. To see

this, note that Ent (T
n) ≤ cλ

r for all t ∈ [0, Tn], i.e. the agent’s rent will never exceed the value
of a perpetual stream of funding of cλ (since this is the maximum rent she can divert). Thus,

there will be at most a single transition period where inequality (5.10) switches from being

violated (and hence snt > 0 for all periods prior to the transition period) to being satisfied

(hence snt = 0). We denote this transition period by t̂
n. That is, t̂n is the first period where

implicit incentives are wholly sufficient to guarantee incentive compatibility. We can then

express the value of the information rent as

Ent (T
n) =


λ

µ
1−e−(r+λ)(t−t̂n)

r+λ

¶
En+10 (Tn+1) if t ≥ t̂n

cλ1−e
−r(t̂n−t)
r + e−r(t̂

n−t)λ
µ
1−e−(r+λ)(Tn−t̂n)

r+λ

¶
En+10 (Tn+1) if t < t̂n

(5.11)

An investigation of the investor’s problem allows us to establish the following key insight:

Proposition 2. The optimal stopping time Tn will be such that the reward function s(n)t is

initially strictly positive, for an initial interval of t ≥ 0.

Proof: See Appendix.
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The observation that the rewards snt are initially strictly positive is equivalent to saying

that the transition point t̂n in equation (5.12) is strictly positive. This observation allows us

to write the agent’s value, at entry into stage n, as:

En0 (T
n) = cλ

1− e−rt̂n
r

+ e−rt̂
n
λ

1− e−(r+λ)(Tn−t̂n)
r + λ

En+10 (Tn+1) (5.12)

In other words, the experimentation will be long enough for the agent initially to receive

enough contingent compensation via information rents in future stages. As time is running out

in the current stage, however, the option value that the agent obtains by deviating diminishes,

and with it the need to compensate for the loss in this value. In other words, once t̂1 is

passed, the experimentation in the current stage comes essentially free for the investor, since

the implicit promise of future rents is sufficient; but that second phase cannot be prolonged

without increasing the first, costly phase.

Note that the distance Tn− t̂n is determined in a recursive fashion, via condition of (5.10),
and is therefore independent of Tn. We adopt the notation In ≡ Tn − t̂n for the duration of
this second phase. The agent’s value function En follows again the, by now familiar stochastic

seesaw pattern, decreasing within each stage and upwards jumping at the entry into a new

stage (see Figure 2 ). After substituting (5.2) and (5.12) and transiting to continuous time, the

investor’s problem of maximizing V n0 (T
n)−En0 (Tn) can be analyzed. We find:

Proposition 3. (i) Suppose λ > λ̂. Then there is at least one stage, namely the penultimate

stage, where implicit incentives are eventually sufficient.

(ii) In a stage where implicit incentives are eventually sufficient, the optimal total horizon

Tn is given by:

Tn = In +
1

λ
ln

V n+10 (Tn+1)e−(r+λ)In

c− rEn+10 (Tn+1)
³
1−e−(r+λ)In

(r+λ)

´ , (5.13)

where In, the duration of the phase where implicit incentives are sufficient, is:

In = − 1

r + λ
ln

Ã
c (r + λ)− rEn+10 (Tn+1)

λEn+10 (Tn+1)

!
. (5.14)

(iii) In is increasing in n, and In > 0 in the final stages of the project (except for the last

stage), but not necessarily in the early stages. If In > 0 in stage n, then the funding horizon

Tn is strictly larger compared with the same stage with only immediate incentives (λ < λ̂).

Proof: See Appendix.
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The important insight of this analysis is that the availability of implicit incentives will

indeed increase the funding horizon. Since the funding horizon is always too short compared

to the first-best (where it is infinite), and since the funding horizon is in principle increasing

as more stages are completed and the overall value of the project increases, this is a welcome

mechanism to overcome agency-driven capital budgeting constraints. Recall that the funding

horizon in the last stage TN , will be the same with immediate or implicit incentives. Thus, a

longer horizon in earlier stages is unambiguously good news. Intuitively, this increase in the

funding horizon is due to the fact that part of the compensation in the current stage need not

be provided contemporaneously. It is implied by the continuation values, making an extension

of the current round less costly in terms of information rents. This effect may be so strong

that the total funding horizon is not monotonically increasing from one stage to the next.

It is also intuitive why In is increasing over time. Since the agent’s value must be strictly

increasing from stage to stage (otherwise the incentive constraint would be violated), the

potential power of implicit incentives is also increasing over time. Thus, frequently implicit

incentives will be prevalent in the last stages of a project (while still requiring immediate cash

incentives in the early periods of each stage, according to Lemma 2). But in the early stages,

it is more likely that the compensation must rely on immediate cash incentives in every period.

5.4. Synopsis

We can summarize our observations as follows: if the investor cannot use benchmarks, then

the capital budget allocated to the project will be severely curtailed. The information rent has

to be compounded over the entire horizon. Moreover, the experimentation horizon is defined

for the project as a whole, and not fine-tuned to every stage. This will often lead to unwanted

distortions in time allocations between various stages. For example, if most of the horizon has

elapsed but the agent did not yet succeed in meeting the first benchmark, he will nevertheless

continue to run the experiments for the first stage. The problem of continuing for too long

in the first stage is made worse by the fact that the horizon for the subsequent stages will

automatically be shortened, since the continuation budget becomes history-dependent.

Benchmarking introduces a sequential real option to abandon. In the context of our dy-

namic agency model, the option value of these imbedded real options is comprised of the

following four effects:

First, since the project is abandoned once a benchmark is not met within its pre-defined

horizon, the information rent of the agent is dramatically reduced. In the simplest and perhaps
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most instructive case (immediate incentives), the compounding period of the information rent

is shortened to the maximal duration of a single stage, rather than the maximal duration of

the entire project.

Second, benchmarking makes it possible to define optimal and intertemporally consistent

research budgets (research horizons) for every single stage. An important advantage is that

these budgets will be independent of the history of delays and cost overruns in past financing

rounds.

Third, the optimal research horizon increases from one stage to the next. Early stages

should stop relatively rapidly because the chance for an overall success is remote. As more

benchmarks are realized, the value of the project increases, and it becomes rational to persevere

for longer. This finding explains that the first steps in a research project are the riskiest (and

deserve the application of a higher risk-adjusted discount rate). Importantly, this decreasing

trend in research risk is explained as an endogenous decision in a dynamic model, and not by

technological characteristics. We would obtain a similar result if, say, λ was larger in early

stages, making them a priori more likely to succeed.

A fourth, and more subtle, option value of benchmarking is that it permits the use of

implicit incentives comprised by the relational promise of future contingent financing rounds

if earlier rounds are successfully completed. The promise of future information rents serves as

a powerful incentive device in earlier stages, making the extension of the funding horizon in

earlier stages cheaper. The power of implicit incentives will notably be strong if the project’s

success probability is high relative to the time discount effect (λ > r). This is a welcome effect

from a social point of view since the presence of agency costs means that all research horizons

are too short when compared with the first best. The interdependence between the optimal

sequencing of research horizons and the implicit incentive effect is perhaps the most intriguing

finding of our analysis.

The benefits of benchmarking are reflected in the following comparative findings on the

project duration:

Proposition 4. (i) The total research horizon over all stages will always be strictly larger if

stage financing is used compared with funding without benchmarking.

(ii) If the project is relatively poor, Rc < 1 + e, then the last stage of stage financing alone

will have a longer funding horizon than the entire horizon if there is no benchmarking.

Proof: See Appendix.
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Thus, for a given research budget amounting to the total expected outlays at the beginning

(real investments and compensations for the agent), the research horizon and the success

probability will be the larger, the better defined, and the better monitored the intermediate

benchmarks are. Its initial value and return to investors, as well as the value appreciation of

the portfolio company from one financing round to the next, should be increasing functions of

the benchmarking intensity.

6. Robustness and Conclusion

This paper investigated the provision of venture capital in a research venture with sequential

development stages. The binary outcome of each stage of the project is uncertain, and a steady

investment flow is needed to safeguard the chances for success in each stage. The entrepreneur

controls the application of the funds which are provided by the venture capitalist.

The optimal compensation of the entrepreneur is akin to a nested sequence of option con-

tracts. The options express the value of the intertemporal incentive constraint, and the rela-

tional promise of future options works to alleviate the pressure to provide contemporaneous

performance-related cash incentives.

A natural extension is to consider what happens if there are intermediate values of the

project, that is if upon realization of the intermediate benchmark n, a positive value Rn is

realized if the project is unsuccessful in the next stage and hence abandoned after n stages. In

this case, the combined result of the current and all previous intermediate stages, worth Rn,

will be sold to outsiders for a cash payment of Rn at the time of the sale. The project will

then be irreversibly terminated, since neither the incumbent entrepreneur nor the acquiring

outsiders will have a possibility to complete the missing stages. We assume of course that the

successive intermediate values of the project satisfy, R1 < R2 < .... < RN−1 < RN , and that

in a perfect world, every stage until the final stage N is worthwhile undertaking.

It is easy to see that this generalization has no impact on our finding whatsoever: As argued

in Section 5, in principle the optimal incentive instrument would exploit the highest incentive

power possible and grant a rent to the agent only upon completion of the last stage. But this

leads frequently to a time consistency conflict between the ex ante level of required investments,

and immediate cash compensations are needed to overcome the hold-up problem. Nothing

changes in the structure of the optimal incanting contracts, when intermediate results are

introduced. The only effect is in the investor’s objective function, and indeed the appreciation

of the values V n from one stage to the next may be substantially reduced, and with it the
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increase in the optimal funding horizons form one stage to the next.

The paper focuses on the financing of venture projects, but the problem analyzed here is

present in the financing of R&D in general. We show that the optimal funding horizon or

research intensity in each of the sequential stages are derived endogenously, and identify the

key determinants, namely future project risks and information rents and their interaction in

the current stage. The present work contributes to the understanding of how agency costs and

optimal research policy interact.

22



7. Appendix

Derivation of Equation (4.4): In discrete time, the value function can be written as follows

(where we use the notation δ = 1
1+r for the discount factor):

V 10 (T ) = δλV 21 (T ) + δ(1− λ)V 11 (T ) = δλ
1− δT−1(1− λ)T−1

1− δ(1− λ)
(R− c)λ+

δ(1− λ)

"
1− δT−2(1− λ)T−2

1− δ(1− λ)
+ δ(1− λ)

1− δT−3(1− λ)T−3

1− δ(1− λ)
+ ....

#
δλ (R− c)λ

=
δλ

1− δ(1− λ)

"
1− δT−1(1− λ)T−1

1− δ(1− λ)
− T δT−1(1− λ)T−1

#
(R− c)λ

For the transition to continuous time, we introduce again the notation ∆, hence replace

δ = 1
1+r by

1
1+∆r and λ by ∆λ. Taking the limit as ∆→ 0, (4.4) obtains.

Derivation of Equation (4.5): We develop the argument in discrete time. We denote by

Eit the entrepreneur’s value function in t if he is of type i = 1, 2, and drop the argument T

for simplicity. Suppose the entrepreneur is of type 1 in period T − 1, i.e. he still has not
completed the first stage. To ensure incentive compatibility for the last two periods, the last

period reward sT must at least satisfy

E1T−1 = δλ2sT + δ(1− λ)cλ ≥ cλ(1 + δ) (7.1)

Note that the venture capitalist is willing to offer this compensation since, from assumption

(4.1), the minimum reward sT satisfying (7.1) is such that R − c > sT , so the net expected

profit of the venture capitalist is positive. The value function of the type 1 entrepreneur in

period t ≤ T − 1 can also recursively be expressed as:

E1t = δλE2t+1 + δ(1− λ)E1t+1 ≥ cλ+ δE1t+1, (7.2)

where E1T = cλ is the value that a type 1 entrepreneur receives in the last period (only diverting

the capital can be rational). Hence, to satisfy incentive compatibility of type 1,

E2t ≥ E1t +
cλ

δλ
(7.3)

is required, and the sequence st, st+1 must be chosen so as to satisfy (7.3). Note also that

sT = cλ+
cλ

δλ
(7.4)
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satisfies this condition (7.3) in period T −1 and, hence, also (7.1) with equality. Consider then
incentive compatibility for type 2 which requires that

E2t = λst + δ(1− λ)E2t+1 ≥ cλ+ δE2t+1 ⇔ st ≥ c+ δE2t+1 . (7.5)

Using (7.4) and (7.3), it is possible to construct recursively a sequence of rewards sT−1, sT−2, ...

such that the incentive compatibility constraints (7.2) and (7.5) for types 1 and 2 hold with

equality, everywhere for t ≤ T−1 and for type 2 at t = T . Then, by substituting (7.1) (holding
with equality) into (7.2) (also holding with equality), we can recursively solve for the type 1

value function as

E1t = cλ
1− δT−t

1− δ
, (7.6)

and since (7.6) corresponds to the lower bound (4.5) and guarantees incentive compatibility

for both types in the maximum number of periods, this contract must be optimal.

Proof of Lemma 1: Suppose that the reward with expected value of snt is paid only condi-

tional on termination of the next benchmark n+1, for example, by paying a cash payment of

ŝn+1 = r+λ

1−e−(r+λ)Tn+1 s
n
t if the benchmark of stage n+1 is completed. Recall that E

n+1
0 (Tn+1)

is the minimum incentive compatible value of the agent upon entry in the subsequent stage.

Suppose that, in the contract signed at entry in stage n + 1, the investor pledges new incen-

tive compatible rewards worth En+10 (Tn+1) . But since snt is paid only conditional on success

at least in the new stage n + 1, this reward has incentive power in stage n + 1 as well: the

effective value that the entrepreneur expects when never deviating in the new stage is worth

snt + E
n+1
0 (Tn+1). It follows that the investor can propose another contract for stage n + 1,

where every success reward is reduced by ŝn+1, and yet this contract is incentive-compatible

ex post. Thus, incentive payments worth snt + E
n+1
0 (Tn+1) are required ex ante, but only

En+10 (Tn+1) will be offered ex post, showing a contradiction.

Finally note that λ > λ̂ is the critical condition: this condition ensures that immediate

compensation is required in every period of the last stage, and sinceEn−1 < En and Tn−1 < Tn,

it follows immediately that the same holds in all prior stages. QED.

Proof of Proposition 1: The optimal stopping horizon Tn is obtained by substituting (5.3)

and (5.7) into the optimization problem:

max
Tn

V n0 (T
n)−En0 (Tn) (7.7)

and solving for the first-order condition. The fact that Tn is strictly increasing in n is an

immediate consequence of the fact that V n+10 > V n0 . QED.
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Proof of Proposition 2: Assume to the contrary that snt = 0, implying t̂n = 0. Then,

according to (5.11), the problem (??) becomes:

max
Tn

Ã
1− e−(r+λ)Tn

r + λ

!
λ
³
V n+10 (Tn+1)−En+10 (Tn+1)

´
(7.8)

and since V n+10 (Tn+1)−En+10 (Tn+1) > 0 as a consequence of recursive optimization, there

is no finite solution Tn of (7.8). But then observe that, as Tn → ∞, the agent can secure a
perpetual rent of cλ simply by always deviating. Thus, incentive compatibility of the contract

in stage 1 requires that

lim
Tn→∞

En0 (T
n) ≥ cλ

r
. (7.9)

Finally, note that En0 (T
n) ≥ cλ

r in (5.12) requires that t̂
n → ∞ as well, contradicting our

assumption that t̂n = 0. QED.

Proof of Proposition 3: In a stage where In > 0, the investor’s initial problem can be

written as (dropping bracket arguments for simplicity):

max
t̂n

Ã
1− e−(r+λ)Ine−(r+λ)t̂n

r + λ

!
λV n+10 −

Ã
1− e−rt̂n

r

!
cλ− e−rt̂n

Ã
1− e−(r+λ)In

r + λ

!
λEn+10

(7.10)

Maximizing the objective function (7.10) and solving for Tn gives (5.14). The solution

of In is obtained by solving the equivalent condition for (5.10) for an arbitrary stage n, and

evaluated with equality at t = t̂n,

λ

Ã
En+10 − λ

Ã
1− e−(r+λ)In

r + λ

!
En+10

!
= cλ (7.11)

Next, En0 (T
n) must be strictly increasing in n, since otherwise the incentive constraint

could not hold at the beginning of each stage. Inspection of (5.14) shows then that In is

strictly increasing as well. Then consider the first-order condition of problem (??):

e−(r+λ)T
n
λV n+10 = e−r(T

n−In)
Ã
cλ− r (1− e

−(r+λ)In)
r + λ

λEn+10

!
(7.12)

Since we are looking at a stage where In > 0, it must be the case that

e−rI
n

Ã
1− e−(r+λ)In

r + λ

!
λEn+10 > e−rI

n 1− erIn
r

cλ (7.13)
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which implies that, for a given Tn,

e−r(T
n−In)

Ã
cλ− r (1− e

−(r+λ)In)
r + λ

λE
(n+1)
0

!
< e−rT

n
. (7.14)

But then compare the first-order condition (7.13) to condition (7.7) in the case of immediate

incentives. Taking into account (7.14) then implies that for the same stage n, with identical

V n+10 on the left hand side, the optimal Tn must be larger in the case of implicit incentives

compared with the case of immediate incentives. QED.

Proof of Proposition 4: (i) Assume that a project with N = 2 will be stage financed, but

contains the following contract provision: the duration of the second stage is a 1:1 decreasing

function of the effective length of the first stage. That is, if the duration of stage 2 is T 2 when

discovery of the first benchmark is immediate at t = 0, then the duration of stage 2 will be

shortened to T 2 − τ if the first-stage discovery is alone made at τ > 0.

Assume that λ < λ̂. The value function of the project is identical to (4.4), and because of

λ < λ̂, the agent’s value function is identical to (5.7). Let T = T 1+T 2. The objective function

is then:
λ

r + λ

Ã
1− e−(r+λ)T

r + λ
− Te−(r+λ)T

!
(R− c)λ− cλ1− e

−r(T−T 1)

r
(7.15)

and differentiation with respect to T leads to the following first-order condition:

λTe−λT =
c

R− ce
rT 1 (7.16)

Comparison of (7.16) and (4.6) clearly shows that the total funding horizon T is larger than

without benchmarking. It is easy to extend this argument to N > 2. Moreover, note that the

total funding horizon is weakly larger if λ > λ̂, so the result holds a fortiori in this case.

(ii) As for the comparison of the length of the last stage under benchmarking, note that

comparing (3.6) and (4.6) shows that

e−λT
1
= λT 2e−λT

2
=

c

R− c (7.17)

where T 1 is the solution of (3.6). Hence T 2 > T 1 iff λT 2 > 1 in (4.6). Thus, for λT 1 = 1,

T 2 = T 1, and from (3.6), λT 1 = 1 implies that c
R−c =

1
e . Then assume λT

1 > 1, implying

e−λT 1 = c
R−c <

1
e . Hence also λT

2e−λT 2 = c
R−c <

1
e . Consider then the inequality λT

2e−λT 2 <
1
e . Rearranging and taking logs,

λT 2 > lnλT 2 + 1

which can only hold if λT 2 > 1, hence T 2 > T 1. QED.
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Figure 1: Evolution of final success probability. The success times of intermediate

benchmarks are random.
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Figure 2: Evolution of the entrepreneur’s value function. The success times of intermediate

benchmarks are random.
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