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Abstract

Two games are best-response equivalent if they have the same best-response cor-

respondence. We provide a characterization of when two games are best-response

equivalent. The characterizations exploit a dual relationship between payoff differ-

ences and beliefs. Some “potential game” arguments (cf. Monderer and Shapley,

1996, Games Econ. Behav. 14, 124–143) rely only on the property that potential

games are best-response equivalent to identical interest games. Our results show

that a large class of games are best-response equivalent to identical interest games,

but are not potential games. Thus we show how some existing potential game argu-

ments can be extended.
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1 Introduction

We consider three progressively stronger equivalence relations on games and characterize

each of them.

• Two games are best-response equivalent if they have the same best-response cor-

respondence.

• Two games are better-response equivalent if, for every pair of strategies, they agree

when one strategy is better than the other.

• Two games are von Neumann-Morgenstern equivalent (VNM-equivalent) if, for

each player, the payoff function in one game is equal to a constant times the payoff

function in the other game, plus a function that depends only on the opponents’

strategies.

Two games are VNM-equivalent if and only if, for each player i, there is a constant

wi > 0 such that the ratio of payoff differences from switching between one strategy to

another strategy is always wi. The constant wi is thus independent of the strategies

being compared.

Two games are better-response equivalent if and only if they have the same dominance

relations and, for each player i and each pair of strategies ai and a′i such that neither

strategy strictly dominates the other, there exists a constant wi > 0 such that the ratio

of payoff differences from switching between ai and a′i is always wi. In general, this is a

weaker requirement than VNM-equivalence. It is weaker both because the proportional

payoff differences property is no longer required to hold between some strategy pairs, and

because the weight wi is not necessarily independent of the strategy pair. But if the game

does not have dominated strategies, the weights can no longer depend on the strategies

being compared, and better-response equivalence collapses to VNM-equivalence.

Two games are best-response equivalent if and only if, for each player i and each pair

of strategies ai and a′i such that both strategies are a best response to some belief, there

exists a constant wi > 0 such that the ratio of payoff differences from switching between
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ai and a′i is always wi. Even if a game has no dominated strategies, this is a weaker

requirement than VNM-equivalence. In games with diminishing marginal returns, best-

response equivalence is always a strictly weaker requirement than VNM-equivalence.

Examples are given in the paper.

The most extensive discussion and applications of these relations has come in the

literature on potential games. Monderer and Shapley [10] said that a game was a “po-

tential game” if there exists a potential function, defined on the strategy space, with

the property that the change in any player’s payoff function from switching between any

two of his strategies (holding other players’ strategies fixed) was equal to the change

in the potential function.1 A game is “weighted potential game,” if the payoff changes

are proportional for each player. Thus a game is a weighted potential game if and only

if it is VNM-equivalent to a game with identical payoff functions. While some results

using potential or weighted potential game arguments are using the VNM-equivalence to

identical interest games, other arguments are just using the better-response equivalence

and even only best-response equivalence implications of VNM-equivalence.2 Any paper

that deals only with equilibrium is using only best-response equivalence (e.g., Neyman

[13], Ui [19], Morris and Ui [12]). Similarly, fictitious play only uses the best-response

properties of the game (Monderer and Shapley [9]).3 An application using only better-

response equivalence but not the VNM-equivalence appears in Morris [11]. Some papers

studying quantal responses or stochastic best responses in potential games use the full

power of VNM-equivalence (e.g., Blume [2], Brock and Durlauf [3], Anderson et al. [1],

Ui [20]).4

1See also Ui [18] for a characterization and examples of potential games.
2Arguments that exploit potential arguments to prove the existence of a pure strategy equilibrium

(e.g., Rosenthal [15]) only use ordinal properties of payoffs. Monderer and Shapley [10] introduced

ordinal potential games and Voorneveld [21] and Dubey et al. [4] showed how ordinal potential games

can be weakened to only require pure strategy best-response equivalence.
3Sela [17] establishes convergence of fictitious play in a class of “One-Against-All” games. These are

games best-response equivalent to identical interest games, but not potential games.
4More precisely, they use the full power of VNM-equivalence such that the constant wi is the same

for all the players.

3



The fact that VNM-equivalence is the same as better-response equivalence in the ab-

sence of dominated strategies and may be different in the presence of dominated strategies

has been noted in a number of contexts (see Sela [16], Blume [2] p409, Monderer and

Shapley [10] footnote 9, and Maskin and Tirole [6] p209). However, our characteriza-

tions of better-response equivalence in the presence of dominated strategies and of the

significant gap between better-response equivalence and best-response equivalence fill a

gap in the literature.5

The paper is organized as follows. In section 2, we describe our notions of equivalence

and give an example illustrating the differences. In section 3, we report our character-

izations. In section 4, we restrict attention to a class of games where best-response

equivalence is a strictly weaker requirement than VNM-equivalence and characterize the

class of games. We also discuss an extension to games with infinite strategy spaces and

its application.

2 Equivalence Properties of Games

A game consists of a finite set of players N and a finite strategy set Ai for i ∈ N , and

a payoff function gi : A → R for i ∈ N where A =
∏

i∈N Ai. We write A−i =
∏

j �=iAj

and a−i = (aj)j �=i ∈ A−i. We simply denote a game by g = (gi)i∈N . Throughout the

paper, we regard gi(ai, ·) : A−i → R as a vector in R
A−i . We write gi(ai, ·) � gi(a′i, ·) if

gi(ai, a−i) > gi(a′i, a−i) for all a−i ∈ A−i, and gi(ai, ·) ≥ gi(a′i, ·) if gi(ai, a−i) ≥ gi(a′i, a−i)

for all a−i ∈ A−i.

For i ∈ N , let ∆(A−i) denote the set of all probability distributions over A−i. We

call each element of ∆(A−i) player i’s belief. For Xi ⊆ Ai, let Λi(ai,Xi|gi) ⊆ ∆(A−i)

be a set of player i’s beliefs such that player i with a payoff function gi and a belief
5Mertens [8] studied various notions of best-response equivalence, but with his more abstract strategy

spaces and focus on admissible best responses, there is little overlap with the material in this paper.
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λi ∈ Λi(ai,Xi|gi) weakly prefers ai to any strategy in Xi:

Λi(ai,Xi|gi)
= {λi ∈ ∆(A−i) |

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

) ≥ 0 for all a′i ∈ Xi}.

When Xi is a singleton, i.e., Xi = {a′i}, we write Λi(ai, a
′
i|gi) instead of Λi(ai, {a′i}|gi).

We are interested in characterizing two equivalence relations on games captured by

these sets of beliefs by which players prefer one particular strategy.

Definition 1 A game g is better-response equivalent to g′ = (g′i)i∈N if, for each i ∈ N ,

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i)

for all ai, a
′
i ∈ Ai.

Definition 2 A game g is best-response equivalent to g′ = (g′i)i∈N if, for each i ∈ N ,

Λi(ai, Ai|gi) = Λi(ai, Ai|g′i)

for all ai ∈ Ai.

If g is better-response equivalent to g′, then g is best-response equivalent to g′, since

Λi(ai, Ai|gi) =
⋂

a′
i∈Ai

Λi(ai, a
′
i|gi).

An easy sufficient condition for better-response equivalence is the following.6

Definition 3 A game g is VNM-equivalent to g′ = (g′i)i∈N if, for each i ∈ N , there

exists a positive constant wi > 0 and a function Qi : A−i → R such that

gi(ai, ·) = wig
′
i(ai, ·) +Qi(·).

6Blume [2] called this property “strongly best-response equivalent.”

5



It is straightforward to see that if g is VNM-equivalent to g′, then

gi(ai, ·)− gi(a′i, ·) = wi

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
for all ai, a

′
i ∈ Ai. Conversely, if this is true, then a function Qi : A−i → R such that

Qi(·) = gi(ai, ·) − wig
′
i(ai, ·)

is well defined, and thus g is VNM-equivalent to g′. Thus, we have the following lemma.

Lemma 1 A game g is VNM-equivalent to g′ if and only if, for each i ∈ N , there exists
wi such that

gi(ai, ·)− gi(a′i, ·) = wi

(
g′i(ai, ·) − g′i(a

′
i, ·)

)
(1)

for all ai, a
′
i ∈ Ai.

It is straightforward to see that VNM-equivalence is sufficient for better-response

equivalence. In fact, (1) implies that∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

)
= wi

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

)

for all λi ∈ ∆(A−i) and thus Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) for all ai, a

′
i ∈ Ai.

Best-response, better-response, and VNM-equivalence are equivalence relations. Thus,

they define an equivalence class of games. For example, weighted potential games (Mon-

derer and Shapley [9]) with a weighted potential function f : A → R are regarded as

a VNM-equivalence class of an identical interest game f = (fi)i∈N with fi = f for

all i ∈ N . This is clear by Lemma 1 and the following original definition of weighted

potential games.

Definition 4 A game g = (gi)i∈N is a weighted potential game if there exists a weighted

potential function f : A→ R and wi > 0 for each i ∈ N such that

gi(ai, ·)− gi(a′i, ·) = wi

(
f(ai, ·) − f(a′i, ·)

)
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for all ai, a
′
i ∈ Ai. If wi = 1 for all i ∈ N , g is called a potential game and f is called a

potential function.

As the concept of VNM-equivalence leads us to the definition of weighted potential

games, the concept of better-response equivalence and that of best-response equivalence

lead us to the definition of the following new classes of games.

Definition 5 A game g = (gi)i∈N is a better-response potential game if it is better-

response equivalent to an identical interest game f = (fi)i∈N with fi = f for all i ∈ N .

A function f is called a better-response potential function.

Definition 6 A game g = (gi)i∈N is a best-response potential game if it is best-response

equivalent to an identical interest game f = (fi)i∈N with fi = f for all i ∈ N . A function

f is called a best-response potential function.

Voorneveld [21] called a game a best-response potential game if its best-response

correspondence coincides with that of an identical interest game over the class of beliefs

such that λi(a−i) = 0 or 1. Thus, best-response potential potential games in this paper

form a special class of those in Voorneveld [21].

Existing potential game results that rely only on better-response equivalence or best-

response equivalence, such as those mentioned in the introduction, automatically hold

for the larger class of better-response potential games or that of best-response potential

games. Thus, we are interested in exactly when and to what extent better-response and

best-response equivalence are weaker requirements than VNM-equivalence.

Notice that best-response and better-response equivalence are clearly weaker require-

ments than VNM-equivalence, because the latter imposes too many constraints on pay-

offs from dominated strategy. Moreover, best-response equivalence is significantly weaker

than better-response equivalence, as shown by the following example.

Consider a two player, three strategy, symmetric payoff game g (x, y) parameterized

by (x, y) ∈ R
2
++, where each player’s payoffs are given by the following payoff matrix

(where the player’s own strategies are represented by rows and his opponent’s strategies
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are represented by columns).

1 2 3

1 x −x −2x
2 0 0 0
3 −2y −y y

In the special case where x = y = 1, we have game g (1, 1) with the following payoff

matrix.

1 2 3

1 1 −1 −2
2 0 0 0
3 −2 −1 1

If a row player has a belief λi(k) = πk for k ∈ {1, 2, 3}, he prefers strategy 1 to strategy

2 if and only if

π1 ≥ π2 + 2π3;

he prefers strategy 1 to strategy 3 if and only if

(x+ 2y) π1 ≥ (x− y)π2 + (2x+ y) π3;

he prefers strategy 3 to strategy 2 if and only if

π3 ≥ π2 + 2π1.

Thus the region of indifference between strategies 1 and 2, and between strategy 2 and 3,

does not depend on x and y. Moreover, whenever strategy 1 (or 3) is preferred to strategy

2, it is also preferred to strategy 3 (or 1). Thus the best response regions for this game are

as in figure 1, for any (x, y) ∈ R
2
++. Thus g (x, y) is best-response equivalent to g (1, 1)

for any (x, y) ∈ R
2
++. On the other hand, the region of indifference between strategies

1 and 3 does depend on x and y: in particular, g (x, y) is better-response equivalent to

g (1, 1) if and only if x = y. We will discuss this example again in section 4.
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π1 = 1
Strategy 1

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔

π2 = 1

Strategy 2 is

best response

❚
❚
❚
❚
❚
❚
❚
❚
❚
❚
❚
❚ π3 = 1

Strategy 3

❉
❉
❉
❉
❉
❉

�
�
�
�
�
�

Figure 1: The best response regions

3 Results

3.1 Generic Properties of Games

We will appeal to some generic properties of games, i.e., properties that will hold for all

but a Lebesgue measure zero set of payoffs.

G1: For all i ∈ N , if gi(ai, ·) ≥ gi(a′i, ·), then gi(ai, ·) � gi(a′i, ·) for distinct ai, a
′
i ∈ Ai.

G2: For all i ∈ N , vectors gi(ai, ·)− gi(a′i, ·) and gi(ai, ·)− gi(a′′i , ·) are linearly indepen-

dent for distinct ai, a
′
i, a

′′
i ∈ Ai.

G3: For all i ∈ N , if Λi(ai, Ai|gi)∩Λi(a′i, Ai|gi) �= ∅, then Λi(ai, Ai\{a′i}|gi)\Λi(ai, a
′
i|gi) �=

∅ for distinct ai, a
′
i ∈ Ai.

3.2 Better-Response Equivalence

Strategy ai strictly dominates a′i in game g (we write ai �g
i a

′
i) if gi(ai, ·) � gi(a′i, ·), or,

equivalently, Λi(a′i, ai|gi) = ∅. Strategies ai and a′i are better-response comparable (we

write ai ∼g
i a

′
i) if neither ai �g

i a
′
i nor a

′
i �g

i ai.

Proposition 1 If games g and g′ satisfy generic property G1, then g is better-response

equivalent to g′ if and only if, for each i ∈ N , (a) they have the same dominance relations
(�g

i =�g′
i ) and (b) whenever ai is better-response comparable to a′i (ai ∼g

i a
′
i), there exists

wi(ai, a
′
i) > 0 such that

gi(ai, ·)− gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·)− g′i(a

′
i, ·)

)
. (2)
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Farkas’ Lemma7 plays a central role in the proofs.

Lemma 2 (Farkas’ Lemma) For vectors a0,a1, . . . ,am ∈ R
n, the following two con-

ditions are equivalent.

• If (a1,y), . . . , (am,y) ≤ 0 for y ∈ R
n, then (a0,y) ≤ 0.

• There exists x1, . . . , xm ≥ 0 such that x1a1 + · · · + xmam = a0.

Proof of Proposition 1. We first show that (a) and (b) are sufficient for the better-

response equivalence of g and g′. If ai ∼g
i a

′
i, then (b) implies that

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

)
= wi(ai, a

′
i)

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

)

and thus

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i).

If ai �g
i a

′
i, then

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) = ∆ (A−i) .

If a′i �g
i ai, then

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i) = ∅.

To prove necessity, suppose that g is better-response equivalent to g′. Since

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i),

we have

ai �g
i a

′
i ⇔ Λi(a′i, ai|gi) = Λi(a′i, ai|g′i) = ∅ ⇔ ai �g′

i a′i
7See a textbook of convex analysis such as recent one by Hiriart-Urruty and Lamaréchal [5], or classic

one by Rockafellar [14].
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and thus (a) holds.

To prove (b), suppose that ai ∼g
i a

′
i. We know that ai ∼g′

i a′i. Let λi ∈ ∆(A−i) be

such that
∑

a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

) ≥ 0.

Since λi ∈ Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i),∑

a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

) ≥ 0.

This implies that if (ya−i)a−i∈A−i ∈ R
A−i is such that

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i)− gi(a′i, a−i)

) ≤ 0,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

−
∑

a−i∈A−i

ya−i

(
g′i(ai, a−i)− g′i(a

′
i, a−i)

) ≤ 0.

By Farkas’ Lemma, there exist xai

a′
i
≥ 0 and za−i ≥ 0 for a−i ∈ A−i such that

−xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

) − ∑
a−i∈A−i

za−iδ
a−i(·) = − (

g′i(ai, ·)− g′i(a
′
i, ·)

)

where δa−i : A−i → R is such that δa−i(a′−i) = 1 if a′−i = a−i and δa−i(a′−i) = 0

otherwise. Thus,

xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

) ≤ g′i(ai, ·) − g′i(a
′
i, ·).

If xai

a′
i
= 0, then g′i(ai, ·)− g′i(a′i, ·) ≥ 0. However, this is impossible since ai ∼g′

i a′i implies

that ai does not strictly dominate a′i in g′ and G1 requires that if ai does not strictly

dominate a′i, then it is not the case that g′i(ai, ·)− g′i(a
′
i, ·) ≥ 0. Thus, xai

a′
i
> 0.

Symmetrically, we have

x
a′

i
ai

(
gi(a′i, ·)− gi(ai, ·)

) ≤ g′i(a
′
i, ·)− g′i(ai, ·)
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where xa′
i

ai > 0. Thus,

(
xai

a′
i
− x

a′
i

ai

) (
gi(ai, ·)− gi(a′i, ·)

) ≤ 0.

If xai

a′
i
−xa′

i
ai > 0, then gi(ai, ·)−gi(a′i, ·) ≤ 0, and if xai

a′
i
−xa′

i
ai < 0, then gi(ai, ·)−gi(a′i, ·) ≥ 0,

which we already noted are impossible. Thus, xai

a′
i
= x

a′
i

ai , which implies that

xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

)
= g′i(ai, ·) − g′i(a

′
i, ·).

This proves (b).

If g has no dominated strategy, then (2) is true for every ai, a
′
i ∈ Ai. If wi(ai, a

′
i) is the

same for every ai, a
′
i ∈ Ai, then better-response equivalence implies VNM-equivalence.

However, Proposition 1 does not say anything about whether wi(ai, a
′
i) does depend upon

ai, a
′
i ∈ Ai. Thus, we are interested in when better-response equivalence implies VNM-

equivalence. The following proposition provides a sufficient condition for the equivalence

of better-response equivalence and VNM-equivalence.

Proposition 2 Suppose that games g and g′ satisfy generic properties G1 and G2,

and that, for each i ∈ N , (a) they have the same dominance relations (�g
i =�g′

i ), (b)

∼g
i generates a connected graph on Ai, and (c) for any ai, a

′
i, a

′′
i , a

′′′
i ∈ Ai such that

ai ∼g
i a

′
i and a

′′
i ∼g

i a
′′′
i with ai �= a′′′i , there exists a sequence {ak

i }m
k=1 such that a

1
i =

ai, a
2
i = a′i, a

m−1
i = a′′i , a

m
i = a′′′i , a

k
i ∼g

i ak+1
i for k = 1, . . . ,m − 1, ak

i ∼g
i ak+2

i for

k = 1, . . . ,m − 2. Then g is better-response equivalent to g′ if and only if g is VNM-

equivalent to g′.

Note that (c) is trivially satisfied if no strategy is dominated, i.e., ∼g
i is the complete

relation. So, the proposition immediately has the following corollary.

Corollary 3 If g and g′ satisfy generic properties G1 and G2 and have no strictly

dominated strategies, then g is better-response equivalent to g′ if and only if g is VNM-

equivalent to g′.
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❙
❙
❙
❙
✥✥✥
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✉

✉

✉

✉Strategy 3

Strategy 2

Strategy 1

Strategy 4

Figure 2: The graph of ∼g
i

It should be emphasized that the sufficient condition of Proposition 2 is sometimes

satisfied even when there are strictly dominated strategies in the game. For example,

consider the following two player game, where only the row player’s payoffs are shown.

1 2
1 4 1
2 1 3
3 2 2
4 3 0

Consider strategies of the row player. We have 1 ∼g
i 2, 2 ∼g

i 3, 3 ∼g
i 4, 1 ∼g

i 3, 2 ∼g
i 4 as

in figure 2, satisfying the condition of Proposition 2, while strategy 1 strictly dominates

strategy 4.

Proof of Proposition 2. We show that if g is better-response equivalent to g′ then g is

VNM-equivalent to g′. Note that, by Proposition 1, if ai ∼g
i a

′
i, there exist xai

a′
i
= x

a′
i

ai

with

xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

)
= g′i(ai, ·) − g′i(a

′
i, ·).

If |Ai| = 2, this completes the proof by Lemma 1. Suppose that |Ai| ≥ 3 and let

ai ∼g
i a

′
i and a′′i ∼g

i a
′′′
i with ai �= a′′′i . Then there exists a sequence {ak

i }m
k=1 satisfying
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the conditions in (c). Thus,

x
ak+2

i

ak+1
i

(
gi(ak+2

i , ·) − gi(ak+1
i , ·)

)
+ x

ak+1
i

ak
i

(
gi(ak+1

i , ·)− gi(ak
i , ·)

)
=

(
g′i(a

k+2
i , ·) − g′i(a

k+1
i , ·)

)
+

(
g′i(a

k+1
i , ·)− g′i(a

k
i , ·)

)
= g′i(a

k+2
i , ·)− g′i(a

k
i , ·)

= x
ak+2

i

ak
i

(
gi(ak+2

i , ·) − gi(ak
i , ·)

)
= x

ak+2
i

ak
i

(
gi(ak+2

i , ·) − gi(ak+1
i , ·)

)
+ x

ak+2
i

ak
i

(
gi(ak+1

i , ·)− gi(ak
i , ·)

)
and (

x
ak+2

i

ak+1
i

− x
ak+2

i

ak
i

) (
gi(ak+2

i , ·)− gi(ak+1
i , ·)

)

+
(
x

ak+1
i

ak
i

− x
ak+2

i

ak
i

)(
gi(ak+1

i , ·)− gi(ak
i , ·)

)
= 0.

By G2, gi(ak+2
i , ·)−gi(ak+1

i , ·) and gi(ak+1
i , ·)−gi(ak

i , ·) are linearly independent and thus

it must be true that xak+2
i

ak+1
i

= x
ak+1

i

ak
i

= x
ak+2

i

ak
i

for k = 1, . . . ,m− 2. Thus, it must be true

that xa′
i

ai = x
a′′′

i

a′′
i
. In other words, there exists a constant c > 0 such that xa′

i
ai = c for any

ai, a
′
i ∈ Ai with ai ∼g

i a
′
i.

In addition, since ∼g
i generates a connected graph on Ai, for any ai, a

′′′
i ∈ Ai with

ai �= a′′′i , there exists a′i, a
′′
i and {ak

i }m
k=1 satisfying the conditions in (c). Thus,

c
(
gi(a′′′i , ·)− gi(ai, ·)

)
=

m−1∑
k=1

c
(
gi(ak+1

i , ·)− gi(ak
i , ·)

)

=
m−1∑
k=1

(
g′i(a

k+1
i , ·) − g′i(a

k
i , ·)

)

= g′i(a
′′′
i , ·)− g′i(ai, ·).

To summarize, for any ai, a
′
i ∈ Ai,

c
(
gi(ai, ·)− gi(a′i, ·)

)
= g′i(ai, ·)− g′i(a

′
i, ·).

This implies that g is VNM-equivalent to g′ by Lemma 1.

14



3.3 Best-Response Equivalence

Strategies ai and a′i are best-response comparable (we write ai ≈g
i a

′
i) if both strategies

are best responses at some belief, i.e., Λi(ai, Ai|gi)∩Λi(a′i, Ai|gi) �= ∅. Note that ai ≈g
i ai

if and only if Λi(ai, Ai|gi) �= ∅.

Proposition 4 If games g and g′ satisfy generic property G3, then g is best-response

equivalent to g′ if and only if, for each i ∈ N , (a) they have the same best-response

comparability relation (≈g
i =≈g′

i ) and (b) whenever ai is best-response comparable to a′i
(ai ≈g

i a
′
i), there exists wi(ai, a

′
i) > 0 such that

gi(ai, ·)− gi(a′i, ·) = wi(ai, a
′
i)

(
g′i(ai, ·)− g′i(a

′
i, ·)

)
.

Proof. We first show that (a) and (b) are sufficient for the best-response equivalence of g

and g′. If Λi(ai, Ai|gi) = ∅, then Λi(ai, Ai|gi) = Λi(ai, Ai|g′i) = ∅ because Λi(ai, Ai|gi) =
∅ implies that ai ≈g

i ai is not true and thus (a) implies that ai ≈g′
i ai is not true. If

Λi(ai, Ai|gi) �= ∅, then {
a′i|ai ≈g

i a
′
i

} �= ∅, and we must have

Λi(ai, Ai|gi) =
⋂

a′
i∈Ai

Λi(ai, a
′
i|gi) =

⋂
{a′

i|ai≈g
i a′

i}
Λi(ai, a

′
i|gi). (3)

Clearly, (3) is true when
{
a′i|ai ≈g

i a
′
i

}
= Ai. To see that (3) is true when

{
a′i|ai ≈g

i a
′
i

} ⊂
Ai, suppose otherwise. Then,

⋂
a′

i∈Ai

Λi(ai, a
′
i|gi) ⊂

⋂
{a′

i|ai≈g
i a′

i}
Λi(ai, a

′
i|gi),

and thus there exists a′′i �∈ {
a′i|ai ≈g

i a
′
i

}
such that

⋂
a′

i∈Ai

Λi(ai, a
′
i|gi) ⊂

⋂
a′

i∈Ai\{a′′i }
Λi(ai, a

′
i|gi).
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However, this implies that ai ≈g
i a

′′
i , which is a contradiction. Thus, (3) must be true.

If ai ≈g
i a

′
i, then (b) implies that

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

)
= wi(ai, a

′
i)

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

)
,

and thus

Λi(ai, a
′
i|gi) = Λi(ai, a

′
i|g′i). (4)

Therefore, by (a), (3), and (4), we have Λi(ai, Ai|gi) = Λi(ai, Ai|g′i). This completes the

proof of sufficiency.

To prove necessity, suppose that g is best-response equivalent to g′. Since

Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),

we have

Λi(ai, Ai|gi) ∩ Λi(a′i, Ai|gi) = Λi(ai, Ai|g′i) ∩ Λi(a′i, Ai|g′i)

and thus ≈g
i =≈g′

i . This proves (a).

If ai ≈g
i a

′
i, then there exists λi ∈ ∆(A−i) such that

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′′i , a−i)

) ≥ 0 for all a′′i ∈ Ai,

∑
a−i∈A−i

λi(a−i)
(
gi(a′i, a−i)− gi(a′′i , a−i)

) ≥ 0 for all a′′i ∈ Ai\ {ai} .

Since λi ∈ Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

) ≥ 0.

16



The above implies that, if (ya−i)a−i∈A−i ∈ R
A−i is such that

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i)− gi(a′i, a−i)

) ≤ 0,

−
∑

a−i∈A−i

ya−i

(
gi(ai, a−i)− gi(a′′i , a−i)

) ≤ 0 for all a′′i ∈ Ai\
{
ai, a

′
i

}
,

−
∑

a−i∈A−i

ya−i

(
gi(a′i, a−i)− gi(a′′i , a−i)

) ≤ 0 for all a′′i ∈ Ai\
{
ai, a

′
i

}
,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

−
∑

a−i∈A−i

ya−i

(
g′i(ai, a−i)− g′i(a

′
i, a−i)

) ≤ 0.

By Farkas’ Lemma, there exist xai

a′
i
≥ 0, γai

a′
i
: A−i → R, and δai

a′
i
: A−i → R such that

−xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

) − γai

a′
i
(·)− δai

a′
i
(·) = − (

g′i(ai, ·)− g′i(a
′
i, ·)

)
where

γai

a′
i
(·) =

∑
a′′

i �=ai,a′
i

uai

a′′
i

(
gi(ai, ·) − gi(a′′i , ·)

)
+

∑
a′′

i �=ai,a′
i

v
a′

i

a′′
i

(
gi(a′i, ·)− gi(a′′i , ·)

)

with uai

a′′
i
, v

a′
i

a′′
i
≥ 0 and

δai

a′
i
(·) =

∑
a−i∈A−i

za−iδ
a−i(·)

with za−i ≥ 0. Thus,

xai

a′
i

(
gi(ai, ·) − gi(a′i, ·)

)
+ γai

a′
i
(·) ≤ g′i(ai, ·)− g′i(a

′
i, ·).

We show xai

a′
i
> 0. Suppose that xai

a′
i
= 0, i.e., γai

a′
i
(·) ≤ g′i(ai, ·)− g′i(a

′
i, ·). Let

λ′i ∈ Λi(ai, Ai\{a′i}|gi)\Λi(ai, a
′
i|gi),
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which exists by ai ≈g
i a

′
i and G3. Since λ′i ∈ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi),∑

a−i∈A−i

λ′i(a−i)γai

a′
i
(a−i) =

∑
a′′

i �=ai,a′
i

uai

a′′
i

∑
a−i∈A−i

λ′i(a−i)
(
gi(ai, a−i)− gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

v
a′

i

a′′
i

∑
a−i∈A−i

λ′i(a−i)
(
gi(a′i, a−i)− gi(a′′i , a−i)

) ≥ 0.

Since λ′i ∈ Λi(a′i, Ai|gi) = Λi(a′i, Ai|g′i) and λ′i �∈ Λi(ai, Ai|gi) = Λi(ai, Ai|g′i),∑
a−i∈A−i

λ′i(a−i)
(
g′i(ai, a−i)− g′i(a

′
i, a−i)

)
< 0.

This is a contradiction. Thus, we must have xai

a′
i
> 0.

We have

xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

)
+ γai

a′
i
(·) ≤ g′i(ai, ·)− g′i(a

′
i, ·)

and symmetrically

x
a′

i
ai

(
gi(a′i, ·)− gi(ai, ·)

)
+ γ

a′
i

ai (·) ≤ g′i(a
′
i, ·)− g′i(ai, ·)

where xai

a′
i
, x

a′
i

ai > 0. Adding both,(
xai

a′
i
− x

a′
i

ai

) (
gi(ai, ·)− gi(a′i, ·)

)
+ γai

a′
i
(·) + γ

a′
i

ai (·) ≤ 0. (5)

We show xai

a′
i
− x

a′
i

ai = 0. Suppose that xai

a′
i
− x

a′
i

ai > 0. Let

λi ∈ Λi(a′i, Ai\{ai}|gi)\Λi(a′i, ai|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi).

Then, the expectation of the left-hand side of (5) is positive because(
xai

a′
i
− x

a′
i

ai

) ∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′i, a−i)

)
> 0

and ∑
a−i∈A−i

λi(a−i)
(
γai

a′
i
(a−i) + γ

a′
i

ai (a−i)
)

=
∑

a′′
i �=ai,a′

i

(uai

a′′
i
+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i)
(
gi(ai, a−i)− gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i
+ u

a′
i

a′′
i
)

∑
a−i∈A−i

λi(a−i)
(
gi(a′i, a−i)− gi(a′′i , a−i)

) ≥ 0.
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This is a contradiction. Symmetrically, if xai

a′
i
− x

a′
i

ai < 0, then we have the symmetric

contradiction. Thus, xai

a′
i
− x

a′
i

ai = 0, and (5) is reduced to

γai

a′
i
(·) + γ

a′
i

ai (·) ≤ 0. (6)

We show γai

a′
i
(·) = γ

a′
i

ai (·) = 0. Suppose that either γai

a′
i
(·) �= 0 or γa′

i
ai (·) �= 0 is true. Let

λi, λ
′
i ∈ ∆(A−i) be such that

λi ∈ Λi(a′i, Ai\{ai}|gi)\Λi(a′i, ai|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi),

λ′i ∈ Λi(ai, Ai\{a′i}|gi)\Λi(ai, a
′
i|gi) ⊆ Λi(ai, Ai\{a′i}|gi) ∩ Λi(a′i, Ai\{ai}|gi).

Consider (λi + λ′i)/2 ∈ ∆(A−i). Then, the expectation of the left-hand side of (6) is

positive because∑
a−i∈A−i

λi(a−i) + λ′i(a−i)
2

(
γai

a′
i
(a−i) + γ

a′
i

ai (a−i)
)

=
∑

a′′
i �=ai,a′

i

(uai

a′′
i
+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i) + λ′i(a−i)
2

(
gi(ai, a−i)− gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i
+ u

a′
i

a′′
i
)

∑
a−i∈A−i

λi(a−i) + λ′i(a−i)
2

(
gi(a′i, a−i)− gi(a′′i , a−i)

)

≥
∑

a′′
i �=ai,a′

i

(uai

a′′
i
+ vai

a′′
i
)

∑
a−i∈A−i

λi(a−i)
2

(
gi(ai, a−i)− gi(a′′i , a−i)

)

+
∑

a′′
i �=ai,a′

i

(va′
i

a′′
i
+ u

a′
i

a′′
i
)

∑
a−i∈A−i

λ′i(a−i)
2

(
gi(a′i, a−i)− gi(a′′i , a−i)

)
> 0.

This is a contradiction. Thus, γai

a′
i
(·) = γ

a′
i

ai (·) = 0.

Summarizing the above, we have

xai

a′
i

(
gi(ai, ·)− gi(a′i, ·)

)
= g′i(ai, ·)− g′i(a

′
i, ·)

where xai

a′
i
> 0. This proves (b).

The following proposition and corollary follow by exactly the same arguments in

Proposition 2 and Corollary 3 in the previous subsection for better-response equivalence.
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Proposition 5 Suppose that games g and g′ satisfy generic properties G2 and G3,

and that, for each i ∈ N , (a) they have the same best-response comparability relation

(≈g
i =≈g′

i ), (b) ≈g
i generates a connected graph on Ai, and (c) for any ai, a

′
i, a

′′
i , a

′′′
i ∈ Ai

such that ai ≈g
i a

′
i and a

′′
i ≈g

i a
′′′
i with ai �= a′′′i , there exists a sequence {ak

i }m
k=1 such that

a1
i = ai, a

2
i = a′i, a

m−1
i = a′′i , a

m
i = a′′′i , a

k
i ≈g

i a
k+1
i for k = 1, . . . ,m − 1, ak

i ≈g
i a

k+2
i

for k = 1, . . . ,m− 2. Then g is best-response equivalent to g′ if and only if g is VNM-

equivalent to g′.

Corollary 6 If g and g′ satisfy generic properties G2 and G3 and ≈g
i is the complete

relation, then g is best-response equivalent to g′ if and only if g is VNM-equivalent to g′.

4 Games with Own-strategy Unimodality

Best-response equivalence relation is an equivalence relation. It will be useful if, as a

closed form, we can describe the best-response equivalence class of a game in which

best-response equivalence is a strictly weaker requirement than VNM-equivalence.

Let Ai be linearly ordered such that Ai = {1, ...,Ki} with Ki ≥ 3. For qi : A−i → R

and wi : Ai\{Ki} → R++, let (qi, wi) ◦ gi : A→ R be such that

(qi, wi) ◦ gi(1, ·) = qi(·),

(qi, wi) ◦ gi(ai, ·) = qi(·) +
ai−1∑
k=1

wi(k) (gi(k + 1, ·) − gi(k, ·)) for ai ≥ 2.

Let Di(gi) be a class of payoff functions of player i obtained by this transformation:

Di(gi) = {g′i : A→ R | g′i = (qi, wi) ◦ gi, qi : A−i → R, wi : Ai → R++}.

It is straightforward to see that g′i ∈ Di(gi) if and only if there exists wi : Ai\{Ki} → R++

such that

g′i(ai + 1, ·) − g′i(ai, ·) = wi(ai) (gi(ai + 1, ·) − gi(ai, ·)) (7)

for all ai ∈ Ai\{Ki}. Note that gi ∈ Di(gi), g′i ∈ Di(gi) implies gi ∈ Di(g′i), and

g′i ∈ Di(gi) with g′′i ∈ Di(g′i) implies g′′ ∈ Di(gi). Thus, Di(gi) defines an equivalence
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class of payoff functions of player i. We write

D(g) = {g′ = (g′i)i∈N | g′i ∈ Di(gi) for all i ∈ N}.

For example, consider a parametrized class of games {g(x, y)}(x,y)∈R2
++

discussed in

section 2. We have {g(x, y)}(x,y)∈R2
++

⊂ D(g(1, 1)). To see this, we write g(x, y) =

(gi(·|x, y))i∈{1,2}. Then, for any (x, y) ∈ R
2
++ and i �= j,

gi(1, aj |x, y) = qi(aj),

gi(2, aj |x, y) = qi(aj) + x (gi(2, aj |1, 1)− gi(1, aj |1, 1)) ,
gi(3, aj |x, y) = qi(aj) + x (gi(2, aj |1, 1)− gi(1, aj |1, 1)) + y (gi(3, aj |1, 1)− gi(2, aj |1, 1))

where qi : {1, 2, 3} → R is such that qi(1) = x, qi(2) = −x, and qi(3) = −2x. Remember

that, for any (x, y) ∈ R
2
++, g(x, y) is best-response equivalent to g(1, 1). It is easy to

see that every game in D(g(1, 1)) is VNM-equivalent to g(x, y) for some (x, y) ∈ R
2
++.

Thus, every game in D(g(1, 1)) is best-response equivalent to g(1, 1).

This observation leads us to the question when every game in D(g) is best-response

equivalent to g. We provide a necessary and sufficient condition for it.

We say that gi is own-strategy unimodal if, for all λi ∈ ∆(A−i), there exists k∗ ∈ Ai

such that, ∑
a−i∈A−i

λi(a−i) (gi(ai, a−i)− gi(ai − 1, a−i)) ≥ 0 if ai ≤ k∗,

∑
a−i∈A−i

λi(a−i) (gi(ai, a−i)− gi(ai + 1, a−i)) ≥ 0 if ai ≥ k∗.
(8)

Note that if gi is own-strategy unimodal, then (8) is true if and only if λi ∈ Λi(k∗, Ai|gi).
Clearly, by (7), gi is own-strategy unimodal if and only if g′i ∈ Di(gi) is own-strategy

unimodal.

We say that gi is own-strategy concave if gi(·, a−i) : Ai → R is concave, i.e., gi(ai +

1, a−i)− gi(ai, a−i) is decreasing in ai for all a−i ∈ A−i.

Lemma 3 Suppose that gi(ai+1, a−i) �= gi(ai, a−i) for all ai ∈ Ai\{Ki} and a−i ∈ A−i,

and that there is no weakly dominated strategy. Then, gi is own-strategy unimodal if and

only if there exists g̃i ∈ Di(gi) such that g̃i is own-strategy concave.
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Proof. Suppose that g̃i ∈ Di(gi) is own-strategy concave. Then, g̃i(ai+1, a−i)−g̃i(ai, a−i)

is decreasing in ai for all a−i ∈ A−i. Thus,
∑

a−i∈A−i
λi(a−i) (g̃i(ai + 1, a−i)− g̃i(ai, a−i))

is also decreasing in ai for all λi ∈ ∆(A−i). This immediately implies that g̃i ∈ Di(gi) is

own-strategy unimodal. Since∑
a−i∈A−i

λi(a−i) (gi(ai + 1, a−i)− gi(ai, a−i))

=
1

wi(ai)

∑
a−i∈A−i

λi(a−i) (g̃i(ai + 1, a−i)− g̃i(ai, a−i)) ,

gi is also own-strategy unimodal.

Suppose that gi is own-strategy unimodal. We prove the existence of an own-strategy

concave payoff function g̃i = (qi, wi) ◦ gi by construction. Later, we will show that there

exists Ck > 0 such that

gi(k + 1, ·) − gi(k, ·) ≥ Ck (gi(k + 2, ·)− gi(k + 1, ·)) . (9)

For Ck satisfying (9), we let wi : Ai → R++ be such that wi(1) = 1 and wi(ai) =
∏ai−1

k=1 Ck

for ai ≥ 2, and qi : A−i → R be such that qi(a−i) = 0 for all a−i ∈ A−i. Since

g̃i(ai + 1, ·) − g̃i(ai, ·) = wi(ai) (gi(ai + 1, ·)− gi(ai, ·)) ,

we have

g̃i(k + 1, ·)− g̃i(k, ·) = wi(k) (gi(k + 1, ·) − gi(k, ·)) ,
g̃i(k + 2, ·) − g̃i(k + 1, ·) = Ckwi(k) (gi(k + 2, ·) − gi(k + 1, ·)) .

By this and (9), we have

g̃i(k + 1, ·) − g̃i(k, ·) ≥ g̃i(k + 2, ·) − g̃i(k + 1, ·),

which implies that g̃i is own-strategy concave.

We prove the existence of Ck satisfying (9) by Farkas’ Lemma. Before doing it, we

must first observe that if∑
a−i∈A−i

λi(a−i) (gi(k + 1, a−i)− gi(k, a−i)) = 0 (10)
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then

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i)) ≤ 0.

To see this, suppose otherwise. Then, there exists λi ∈ ∆(A−i) satisfying both (10) and

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i)) > 0.

Since gi(k + 1, a−i) − gi(k, a−i) �= 0 for all a−i ∈ A−i, (10) implies that there exist

a′−i, a
′′
−i ∈ A−i such that 0 < λi(a′−i) < 1 with gi(k + 1, a′−i) − gi(k, a′−i) > 0 and

0 < λi(a′′−i) < 1 with gi(k+1, a′′−i)−gi(k, a′′−i) < 0. Let ε > 0 be sufficiently small. More

precisely, let ε > 0 be such that

ε < min

{
λi(a′−i), 1− λi(a′′−i),

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i))

2×maxa−i∈A−i |gi(k + 2, a−i)− gi(k + 1, a−i)|

}
.

Let λ′i ∈ ∆(A−i) be such that

λ′i(a−i) =



λi(a−i)− ε if a−i = a′−i,

λi(a−i) + ε if a−i = a′′−i,

λi(a−i) otherwise.

Then, we have

∑
a−i∈A−i

λ′i(a−i) (gi(k + 1, a−i)− gi(k, a−i))

=
∑

a−i∈A−i

λi(a−i) (gi(k + 1, a−i)− gi(k, a−i))

+ ε
(
gi(k + 1, a′′−i)− gi(k, a′′−i)

) − ε
(
gi(k + 1, a′−i)− gi(k, a′−i)

)
= ε

(
gi(k + 1, a′′−i)− gi(k, a′′−i)

) − ε
(
gi(k + 1, a′−i)− gi(k, a′−i)

)
< 0,
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∑
a−i∈A−i

λ′i(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i))

=
∑

a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i))

+ ε
(
gi(k + 2, a′′−i)− gi(k + 1, a′′−i)

) − ε
(
gi(k + 2, a′−i)− gi(k + 1, a′−i)

)
≥

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i))

− 2ε max
a−i∈A−i

|gi(k + 2, a−i)− gi(k + 1, a−i)| > 0,

which contradicts to the assumption that gi is own-strategy unimodal.

Now, we know that, if gi is own-strategy unimodal and satisfies the assumptions,

then it must be true that if

∑
a−i∈A−i

λi(a−i) (gi(k + 1, a−i)− gi(k, a−i)) ≤ 0,

then

∑
a−i∈A−i

λi(a−i) (gi(k + 2, a−i)− gi(k + 1, a−i)) ≤ 0.

This implies that if (ya−i)a−i∈A−i ∈ R
A−i is such that

∑
a−i∈A−i

ya−i (gi(k + 1, a−i)− gi(k, a−i)) ≤ 0,

−ya−i ≤ 0 for all a−i ∈ A−i,

then

∑
a−i∈A−i

ya−i (gi(k + 2, a−i)− gi(k + 1, a−i)) ≤ 0.

By Farkas’ Lemma, there exist xk ≥ 0 and za−i ≥ 0 for a−i ∈ A−i such that

xk (gi(k + 1, ·)− gi(k, ·))−
∑

a−i∈A−i

za−iδ
a−i(·) = gi(k + 2, ·) − gi(k + 1, ·).
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Thus,

xk (gi(k + 1, ·)− gi(k, ·)) ≥ gi(k + 2, ·) − gi(k + 1, ·). (11)

If xk = 0, then gi(k+2, ·)− gi(k+1, ·) ≤ 0. However, this is impossible since there is no

weakly dominated strategy. Thus, xk > 0. By letting Ck = 1/xk, (11) implies (9).

Consider again {g(x, y)}(x,y)∈R2
++

⊂ D(g(1, 1)). In general, gi(·|x, y) is not always

own-strategy concave. However, gi(·|1,1) is own-strategy concave. Thus, Lemma 3 says

that gi(·|x, y) is own-strategy unimodal.

We claim that, generically, D(g) is a best-response equivalence class if and only if gi
is own-strategy unimodal for all i ∈ N .

Proposition 7 Suppose that g has no dominated strategy. Every game in D(g) is best-

response equivalent to g if and only if gi is own-strategy unimodal for all i ∈ N . If gi
is own-strategy unimodal for all i ∈ N and g satisfies generic property G3, then every

game best-response equivalent to g and satisfying G3 is in D(g).

Proof. Suppose that gi is own-strategy unimodal for all i ∈ N . We show that if g′ ∈ D(g)

then g′ is best-response equivalent to g. Let λi ∈ Λi(a∗i , Ai|gi). Then, (8) implies that∑
a−i∈A−i

λi(a−i) (gi(ai, a−i)− gi(ai − 1, a−i)) ≥ 0 if ai ≤ a∗i ,

∑
a−i∈A−i

λi(a−i) (gi(ai, a−i)− gi(ai + 1, a−i)) ≥ 0 if ai ≥ a∗i .
(12)

By (7), this is true if and only if∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(ai − 1, a−i)

) ≥ 0 if ai ≤ a∗i ,

∑
a−i∈A−i

λi(a−i)
(
g′i(ai, a−i)− g′i(ai + 1, a−i)

) ≥ 0 if ai ≥ a∗i .
(13)

Thus, λi ∈ Λi(a∗i , Ai|g′i). Conversely, let λi ∈ Λi(a∗i , Ai|g′i). Since g′i is own-strategy

unimodal, we have (13), which is true if and only if (12) is true. Thus, λi ∈ Λi(a∗i , Ai|gi).
Therefore, Λi(a∗i , Ai|gi) = Λi(a∗i , Ai|g′i) and thus g′ is best-response equivalent to g.
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Conversely, suppose that every game in D(g) is best-response equivalent to g. We

show that gi is own-strategy unimodal for all i ∈ N . Seeking a contradiction, suppose

otherwise. Then, there exist a∗i , ãi ∈ Ai and λi ∈ Λi(a∗i , Ai|gi) such that either of the

following is true:

a∗i < ãi and
∑

a−i∈A−i

λi(a−i) (gi(ãi, a−i)− gi(ãi − 1, a−i)) > 0, (14)

a∗i > ãi and
∑

a−i∈A−i

λi(a−i) (gi(ãi, a−i)− gi(ãi + 1, a−i)) > 0. (15)

When (14) is true, let g′i = (qi, wi) ◦ gi ∈ Di(gi) be such that qi(·) = 0 and

wi(ai) =

{
L if ai = ãi − 1,
1 otherwise.

Then, we have

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i)− g′i(a

∗
i , a−i)

)
=

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i)− g′i(ãi − 1, a−i)

)
+

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi − 1, a−i)− g′i(a

∗
i , a−i)

)
= L

∑
a−i∈A−i

λi(a−i) (gi(ãi, a−i)− gi(ãi − 1, a−i))

+
∑

a−i∈A−i

λi(a−i) (gi(ãi − 1, a−i)− gi(a∗i , a−i)) .

By choosing very large L > 0, we have

∑
a−i∈A−i

λi(a−i)
(
g′i(ãi, a−i)− g′i(a

∗
i , a−i)

)
> 0

and thus Λi(a∗i , Ai|gi) �= Λi(a∗i , Ai|g′i). When (15) is true, we also have Λi(a∗i , Ai|gi) �=
Λi(a∗i , Ai|g′i) by the similar argument. This implies that some game in D(g) is not best-

response equivalent to g, which completes the proof of the first half of the proposition.
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We prove the last half of the proposition. Suppose that gi is own-strategy unimodal

for all i ∈ N and that g satisfies generic property G3. Let g′ be best-response equivalent

to g and satisfy G3. We show g′ ∈ D(g).

We first observe that ai ≈g
i ai + 1 for all ai ∈ Ai\{Ki}. To see this, let λk

i ∈
Λi(k,Ai|gi) for k ∈ Ai, which exists since g has no dominated strategy. Note that if

λi = λk
i or λi = λk+1

i then∑
a−i∈A−i

λi(a−i)gi(k, a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i) for all ai ≤ k,

∑
a−i∈A−i

λi(a−i)gi(k + 1, a−i) ≥
∑

a−i∈A−i

λi(a−i)gi(ai, a−i) for all ai ≥ k + 1.
(16)

Let t ∈ [0, 1] and λk,t
i = tλk

i + (1− t)λk+1
i ∈ ∆(A−i) be such that

∑
a−i∈A−i

λk,t
i (a−i)gi(k, a−i) =

∑
a−i∈A−i

λk,t
i (a−i)gi(k + 1, a−i). (17)

Then, (16) implies that

∑
a−i∈A−i

λk,t
i (a−i)gi(k, a−i) ≥

∑
a−i∈A−i

λk,t
i (a−i)gi(ai, a−i) for all ai ≤ k,

∑
a−i∈A−i

λk,t
i (a−i)gi(k + 1, a−i) ≥

∑
a−i∈A−i

λk,t
i (a−i)gi(ai, a−i) for all ai ≥ k + 1.

By (17), we have λk,t
i ∈ Λi(k,Ai|gi)∩Λi(k+1, Ai|gi). This implies that ai ≈g

i ai +1 for

all ai ∈ Ai\{Ki}.
Since g and g′ satisfy G3 and are best-response equivalent, we can use Proposition 4,

which says that there exists wi : Ai\{Ki} → R++ such that

g′i(ai + 1, ·) − g′i(ai, ·) = wi(ai) (gi(ai + 1, ·) − gi(ai, ·)) .

This implies that g′i ∈ Di(gi) and thus g′ ∈ D(g).

A weaker, but similar claim is true for games such that strategy sets are intervals of

real numbers and payoff functions are differentiable, which has a couple of applications.

In the remainder of this section, we discuss this issue.
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Abusing notations, we give a definition of best-response equivalence of the class of

games. Let Ai be a closed interval of R for all i ∈ N . Assume that gi : A→ R is bounded

and continuously differentiable. Let ∆(A−i) be the set of all probability measures over

A−i and Λi(ai,Xi|gi) be such that

Λi(ai,Xi|gi)

= {λi ∈ ∆(A−i) |
∫

A−i

(
gi(ai, a−i)− gi(a′i, a−i)

)
dλi(a−i) ≥ 0 for all a′i ∈ Xi}.

The definition of best-response equivalence is the same as that for finite games: we say

that g is best-response equivalent to g′ if, for each i ∈ N , Λi(ai, Ai|gi) = Λi(ai, Ai|g′i)
for all ai ∈ Ai.

We say that gi is own-strategy unimodal if, for any λi ∈ ∆(A−i), there exists x∗ such

that

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ x∗,

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ x∗.
(18)

Note that if gi is own-strategy unimodal, then (18) is true if and only if λi ∈ Λi(x∗, Ai|gi).
Since

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) =
∫

A−i

∂gi(ai, a−i)
∂ai

dλi(a−i),

gi is own-strategy unimodal if gi is own-strategy concave, i.e., ∂gi(ai, a−i)/∂ai is decreas-

ing in ai for all a−i ∈ A−i.

For measurable functions qi : A−i → R and wi : Ai → R++, let (qi, wi) ◦ gi : A → R

be such that, for ai ∈ Ai and a−i ∈ A−i,

(qi, wi) ◦ gi(ai, a−i) = qi(a−i) +
∫

x≤ai

wi(x)
∂gi(x, a−i)

∂x
dx.

Let

Di(gi) = {g′i : A→ R | g′i = (qi, wi) ◦ gi, qi : A−i → R, wi : Ai → R++},
D(g) = {g′ = (g′i)i∈N | g′i ∈ Di(gi)}.

28



Proposition 8 Suppose that gi is own-strategy unimodal for all i ∈ N . Then, every

game in D(g) is best-response equivalent to g.

Proof. Let g′ ∈ D(g). Since gi is own-strategy unimodal, for all λi ∈ ∆(Ai), there exists

a∗i ∈ Ai such that

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ a∗i ,

∂

∂ai

∫
A−i

gi(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ a∗i .
(19)

Since
∂g′i(ai, a−i)

∂ai
= wi(ai)

∂gi(ai, a−i)
∂ai

,

(19) is true if and only if

∂

∂ai

∫
A−i

g′i(ai, a−i)dλi(a−i) ≥ 0 if ai ≤ a∗i ,

∂

∂ai

∫
A−i

g′i(ai, a−i)dλi(a−i) ≤ 0 if ai ≥ a∗i .
(20)

Thus, g′i is also own-strategy unimodal. Since (19) is true if and only if λi ∈ Λi(a∗i , Ai|gi)
and (20) is true if and only if λi ∈ Λi(a∗i , Ai|g′i), we must have Λi(a∗i , Ai|gi) = Λi(a∗i , Ai|g′i),
which completes the proof.

This proposition has a useful application concerning the uniqueness of correlated

equilibria. Neyman [13] showed that if g has a continuously differentiable and strictly

concave potential function,8 then the potential maximizer is the unique correlated equi-

librium of g. The set of correlated equilibria is the same for two games if the two games

are best-response equivalent. Thus, we claim the following.

Corollary 9 Suppose that g has a continuously differentiable and strictly concave po-

tential function f . Then, the potential maximizer is the unique correlated equilibrium of

every game in D(g).

Note that a game in D(g) is not necessarily a potential game and payoff functions

are not necessarily concave.
8The definition of potential functions of this class of games is the same as those of finite games.
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