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Abstract

We provide an asymptotic distribution theory for a class of Generalized Method of Moments
estimators that arise in the study of differentiated product markets when the number of
observations is associated with the number of products within a given market. We allow for
three sources of error: the sampling error in estimating market shares, the simulation error
in approximating the shares predicted by the model, and the underlying model error. The
limiting distribution of the parameter estimator is normal provided the size of the consumer
sample and the number of simulation draws grow at a large enough rate relative to the
number of products. We specialise our distribution theory to the Berry, Levinsohn, and
Pakes (1995) random coefficient logit model and a pure characteristic model. The required
rates differ for these two frequently used demand models. A small Monte Carlo study shows
that the difference in asymptotic properties of the two models are reflected in the models’
small sample properties. These differences impact directly on the computational burden of
the two models.



1 Introduction

We are often interested in estimating parameters of demand functions from data on the
quantity, price, characteristics (and perhaps the production inputs) of a set of products
that interact in an imperfectly competitive market. In the simplest case, there is a national
market with one observation per product, and the approximations used for the distribution
of the estimators are obtained by taking the limit as the number of those products, say J ,
grows large.

This paper is concerned with issues that arise when we take limits in dimension J .
The limiting arguments raise novel econometric issues when interactions between firms are
important. Although many of these issues apply to a broader class of models, we will focus
our attention on the assumptions made in the literature on the demand for differentiated
products. In particular, we will provide consistency conditions and asymptotic distributions
for estimators of the parameters of differentiated product discrete-choice demand systems.

Before proceeding to an overview of the paper, we comment on the appropriateness of
taking limits in dimension J (or if J is thought of as endogenous, as market size grows large
in a framework in which J grows in market size). Our argument here is entirely practical.
Industrial organization often has to deal with markets in which both: J is quite large (large
enough to think limiting approximations in dimension J are likely to be relevant), and the
theory of imperfect competition is clearly relevant (partly because of spatial competition and
multi-product firms). It is true that the estimates of parameters of differentiated product
demand systems are often obtained from richer data sets than the single cross-section of
product level data considered in detail here. For example, micro data which matches indi-
viduals to the products they choose, or regional and/or time series variance in the product
level data are often also available. However, as discussed below, in most (though not all) of
these cases J will still be one of the relevant limiting dimensions, and as a result arguments
similar to those given here will have to be used to rationalize the limiting properties of the
parameter estimates1.

Background on the Model and Results

Discrete choice differentiated product demand systems posit that the utility of the consuming
unit is a function of: parameters, θ, observed product characteristics, x, random consumer
tastes and unobserved (by the econometrician) product characteristics, ξ. Some of the
observed characteristics (e.g. price) may be correlated with ξ. The consuming unit either
chooses one of the J products marketed or it chooses not to spend any money on the goods
in this market (in which case we say the consumer chooses the “outside” alternative). Each
unit makes the choice that maximizes its utility. The choices of different consumers differ
because of their tastes, and the distribution of those tastes is denoted by P 0.

1Indeed we do not know of any empirical work on differentiated product demand systems which does not
generate their objective function by forming averages over the products in a given market. As a result they
all have to worry about the interactions between products that lie at the heart of our analysis.
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Our estimate of the model’s market shares, say σ(θ, x, ξ, P ), are generated by simply
adding up over the choices of consuming units with taste distribution P , where P is typically
the empirical distribution of tastes from a random sample drawn from P 0. We observe the
actual market shares, s. Up to sampling error, these are assumed to be the market shares
generated by the model at the true (θ0, P 0). The true value of the unobservables are implicitly
defined by the system

σ(θ0, x, ξ, P 0) = s0, (1)

where θ0 is the true value of the parameter vector and s0 is the true value of the market
shares (without sampling error).

The equation σ(θ, x, ξ, P ) = s can be solved for ξ as a function of (θ, x, s, P ). An identi-
fying assumption on the conditional distribution of ξ(θ0, x, s0, P 0) is made and the θ vector
is estimated by method of moments. For example, if we assume a zero covariance restriction
between some exogenous vector of instruments, z, and the unobserved characteristics, our
moment restriction would be

E[GJ(θ)] ≡ E[
1

J

J∑
j=1

zjξj(θ, x, s, P )] = 0 (2)

at θ = θ0, and our estimate of θ would minimize a norm in 1
J

∑J
j=1 zjξj(θ, x, s, P ).

Several econometric issues arise in this context. First, unlike a traditional microeconomic
cross-section, when we add new observations (products) to the market, the shares and prices
of the existing products will change. Similar problems arise in other contexts, such as
production function estimation, involving interacting firms. To our knowledge no analysis of
the limiting properties of parameter estimates as the number of products grow large in an
imperfectly competitive market is available, although those properties seem fundamental to
empirical work in industrial organization.

In our context the interdependence of firms’ decisions implies that away from the true
value of θ the observations on ξj(θ, x, s

0, P 0) are not independent from one another. That
is since both sj and pj are endogneously determined as a function of the characteristics
of other products (as well as of own-product characteristics) there is conditional (on the
instruments) dependence in the estimate of ξ when θ 6= θ0. As a result, consistency proofs
that require uniform convergence of objective functions, uniform over all possible values of
θ, cannot be used (at least not without a specification for how prices and shares behave
as the number of products grow large). Relatedly, efficient instruments are likely to be a
function of the characteristics of all of the products, and this generates instruments that are
not independent over j.

We show how to obtain a consistency proof based on a property of the limiting value of
the objective that can frequently be evaluated a priori. Given consistency, we then require
only local properties of the objective function to characterize the limit distribution of the
parameter estimates. As a result we are able to use a “triangular array” argument for the
limit distribution of the objective function at θ = θ0, together with simpler local convergence
results (smoothness assumptions will do), to prove asymptotic normality of the parameter
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estimates. Our approach to these problems should be broadly applicable to a wide range of
models of equilibrium markets.

A further problem turns out to be quite important in estimating demand parameters
when either [i] the function σ(·) is an integral estimated by Monte Carlo simulation via a
number, R, of simulation draws or when [ii] the observed market shares, s, are based on a
random sample of consumers of size n and hence are subject to sampling error. In these
cases, the disturbances generated by the simulation and sampling processes also impact on
the distribution of the estimators. As we shall show, the impact of those disturbances differ
markedly depending on which of the available differentiated product demand models are
used. The nature of competition in demand space therefore feeds back to the asymptotic
limit theory. As a result, the rates of convergence of the estimators differ for different
demand models. So our limit theorems are different for the different demand models, and,
as illustrated by our Monte Carlo results, this implies that the computational burden induced
by simulation is quite different for the different models.

We note that the limit theorems are always developed for rates that allow us to quantify
the effects on the limiting distribution of the estimators of all three sources of random-
ness: the consumer sampling process, the simulation process and the process generating the
unobserved product characteristics.

Two Classes of Models

Though we provide results for a quite general class of models, we are particularly concerned
with two special cases. The first is the random coefficients logit (or probit) based estimator
of demand discussed in Berry, Levinsohn and Pakes (1995; henceforth BLP). Under quite
general conditions we show that in the logit and random coefficient logit cases the estimator
will be consistent if J log J/n and J log J/R converge to zero as J increases. For asymptotic
normality at rate

√
J in these cases we require J2/n and J2/R to be bounded. That is, to

obtain a consistent and asymptotically normal estimator for the parameters of these models
we require the number of simulation draws and the size of the consumer sample to grow as
the square of the growth in the number of products. So to obtain precise parameter estimates
from these models we expect to need to use a relatively large number of simulation draws,
especially when the number of products is large.

The second class of models we consider in detail is the “pure characteristic” model.
Its theoretical lineage dates back at least to Hotelling’s 1929 horizontal model, and it has
seen extensive use in the context of the vertical model introduced by Shaked and Sutton
(1982). It can be obtained from BLP’s specification by simply deleting the independent
and identically distributed “logit” errors from each choice alternative. Berry and Pakes
(2002) endow the pure characteristics model with an estimation algorithm analogous to the
estimation algorithm provided in BLP and discuss the advantages of the pure characteristics
framework (focusing on the analysis of the demand for, and the welfare implications of, new
goods).

We show that to estimate the parameters of the uni-dimensional (vertical) pure char-
acteristic model consistently we require only that n and R increase at rate log J , while for
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asymptotic normality we require only that J/n and J/R stay bounded. We also explain why
the multidimensional pure characteristic model is likely to obey the same rate restrictions,
but do not have a formal proof to that effect. Since the rate at which n and R must grow
for asymptotically normal parameter estimates given the pure characteristics model is the
square root of the rate at which they must grow to obtain asymptotically normal estimates
for BLP’s model, we expect to need much smaller numbers of simulation and sampling draws
to obtain precise parameter estimates in the pure characteristics case.

The difference in results arises because differences in the nature of competition between
the two models imply differences in the properties of the share function; i.e. of σ(·) in (1).
Equation (1) must be solved for ξ in order to implement our method of moments estimation
algorithm. In the models with “diffuse” substitution patterns, such as the random coefficient
logit model of BLP, all goods are substitutes for all other goods and the elements of ∂σ(·)/∂ξ
go to zero as the number of products increase. It is the elements of the inverse of this partial
that determine the impact of simulation and sampling error on the estimate of ξ(·) that
satisfies (1). When the partial disappears this inverse grows large. So when J is large a
little bit of simulation or sampling error in s causes large changes in the computed value
of ξ which, in turn, causes larger variance in our estimate of the objective function (in our
estimate of equation (2))2.

In contrast the pure characteristic model has “local” competition (products are only
substitutes with a finite number of other products). The more the number of products the
“closer” will a product’s nearest competitor tend to be, and the larger will be the market
share response to small changes in the quality of the product (i.e. the larger will be ∂σ/∂ξ).
In the pure characteristic model then, a little bit of simulation or sampling error will have
little effect on the computed value of ξ. This suggests that for fixed J we should be able to
obtain “well behaved” parameter estimates from the pure characteristic model with fewer
simulation draws than we need to use in estimating BLP’s model. We provide a Monte Carlo
study which indicates that the difference is rather dramatic.

Since the number of simulation draws needed to obtain precise estimates of the objective
function is likely to be larger in BLP’s model than in the pure characteristic model, the
computational burden of simulation in BLP’s model is expected to be larger than in the pure
characteristics model. Berry and Pakes (2002) show, however, that the computational burden
of obtaining the ξ(·) from the system in (1) is typically larger for the pure characteristics
model than it is for BLP’s model. So there is a trade off to be considered when comparing
the computational burden of the two models between the ease of simulation in one model
and the ease of computing ξ in the other.

2There is an analogy here to the impact of simulation error on the maximum likelihood estimators of
discrete choice models when the choice probabilities are simulated. In that case the probabilities that
determine the likelihood acts like our σ(·) function, and the impact of simulation error on the log-likelihood
is larger when the underlying probabilities of a choice are small. If we let the number of choices (our J) grow
large all but possibly a small number of probabilities would have to go to zero, so for consistency we would
need the simulation error to converge to zero at a faster rate than the rate at which J grows. Unfortunately
the analogy to maximum likelihood does not carry over to the pure characteristics model where σ(·) has
notably different properties, see below.
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Generalizations and Limitations.

There are two common ways in which actually estimated differentiated products demand
systems differ from our setup. First, the same demand model can be applied to richer types
of data. Second, one can add a supply side to the model. For example, one might assume a
Nash pricing equilibrium and use the pricing equation together with the demand equation to
estimate the demand parameters. While these extensions can greatly aid in obtaining precise
parameter estimates, in most cases there is still an interest in how the estimates behave as
J becomes large.

On the demand side, richer data could be either [i] observations on multiple markets
across time and/or geography or else [ii] direct observations on consumers, matching ob-
served attributes of the consumers to their choices. First consider adding more detailed
consumer data within a single market. As explained in Berry, Levinsohn and Pakes (2001),
the consumer data can allow one to obtain more precise estimates of parameters governing
the interaction between consumer attributes and product characteristics. However, by it-
self the consumer data does not reveal the mean effects of the product characteristics on
demand. That paper shows that in the single-market case with observed consumer choices
and unobserved product characteristics, ξ, it is still necessary to take limits in J .

If one has data on multiple independent markets, then the situation is more complicated,
and different sets of assumptions might be appropriate. If the same products, or a subset of
the same products, appear in every market, as in Nevo’s (2001) analysis of breakfast cereals,
then the observations on the unobserved quality of the product are not independent across
markets. In those cases we are back to requiring limits in dimension J (although as noted
by Nevo somewhat different instrumental variables strategies might be available). A similar
situation occurs when we have data on a given market over time, and the same, or related
products, appear in different time periods (as in BLP’s study of auto demand which had
data on twenty years with about a hundred products per year).

If, on the other hand, there were a large number of markets with products whose unob-
servable characteristics are independent over markets, then one may be able to obtain CAN
estimators by taking limits solely in the number of markets and not in J3 . However, if
there are a large number of products within each market, the implications from this paper
for how simulation and sampling error behave as J grows large will still be useful. That is,
our implications for the relationship between J and (n,R) will still be relevant. In other
cases, the number of markets and the number of products may each be moderately large so
we will require limits as both dimensions grow large but their ratios are bounded; a situation
in which our results are also likely to be helpful.

Turning to the supply side, many studies have found that adding a pricing equation and
then jointly estimating all parameters from the combined pricing and demand equations
can markedly increase the precision of demand-parameter estimates. While the strategy
has a cost in additional assumptions, the presence of the demand parameters in the pricing
markup equation adds efficiency to the demand estimates. In this case, though, the need for

3For a contrasting case with different products in every market, consider broadcast radio stations in
different cities.

5



asymptotics in J does not change and the framework we use here can easily be augmented
to include a pricing equation.

Adding the pricing equation does add some clarity to questions about the optimal choice
of instruments for our problem (as in Chamberlain, 1987). It makes clear that optimal instru-
ments for price will depend on the characteristics of rival products, rendering semiparametric
analysis of optimal instruments (as in Newey (1990) and (1993)) difficult if not impossible.
We shall illustrate these problems in the context of our examples and provide some heuristic
guidance for the choice of instruments; but we do not currently have a practical answer to
the questions of optimal instruments.

Organization and Notation

The paper is organized as follows. In section 2 we present the underlying model. In section 3
we present an overview of the main results and the intuition underlying them. This includes
two subsections which introduce our leading examples and explain the differences between
them. Section 4 provides the main mathematical details of the arguments (formal proofs
are relegated to an appendix). Section 5 explains how to determine rates of convergence
given the results of section 4. Section 6 returns to our examples, verifies that they satisfy
the conditions set out in section 4, and provides the formal argument leading to their rates
of convergence. A small Monte Carlo study is presented in section 7.

We use ‖A‖ = {tr(A′A)}1/2 to denote the Euclidean norm of any m× n matrix A,
P−→

to denote convergence in probability, and =⇒ to mean convergence in distribution. For a
matrix AJ×J , we say A = O(g(J)) if the absolute value of the maximum element of the
matrix is of order g(J).

2 The Model and Estimator

We consider a market with J competing products and an outside good. The vectors of
product characteristics will be denoted by (ξj, x1j). The ξj ∈ R are characteristics which are
not observed by the econometrician whereas the x1j ∈ X1 ⊂ Rd1 are observed. As noted in
BLP (1995) they are analogous to the disturbance in the specification of traditional demand
systems and are included to account for the fact that the list of product characteristics used
in estimation does not contain all the product characteristics that consumers care about.
Note also that without these disturbances the model could not rationalize the data. In large
markets, where sampling error in the shares is essentially absent, the model predicts that the
estimated shares should fit the observed shares exactly. This would typically be impossible
if there were no disturbances.

We assume that the sequence {ξj}Jj=1 are independent and identically distributed (i.i.d.)
draws, and, for the most part maintain the assumption that

E[ξj|x1] = 0andE[ξ2
j |x1] <∞ (3)
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with probability one, where x1 = (x11, . . . , x1J). The role and content of this assumption
is discussed in Berry, Levinsohn and Pakes (1995). It can be replaced by other identifying
assumptions without changing the logic of the underlying limit theorem.

In addition to the “exogenous” characteristics [those that satisfy E(ξj|x1) = 0], we allow
products to have additional characteristics, say x2j ∈ X2 ⊂ Rd2, which are “endogenous” (like
price) in the sense of being related to the {ξj}. This produces a problem analogous to the tra-
ditional simultaneity problem in demand and supply estimation. We let x2 = (x21, . . . , x2J),
x = (x1, x2), and ξ = (ξ1, . . . , ξJ). At times we will also need explicit assumptions on the
process generating x.

For any given vector of individual characteristics [households of given income, family size,
etc.], say λ ∈ Rv, the model determines a map from a parameter vector, θ ∈ Θ, where Θ is a
compact subset of Rk, and the vectors of product characteristics, (x, ξ), into the market shares
purchased by individuals with those characteristics. Let that map be ω(x, ξ, λ, θ) : D → SJ ,
where D is the appropriate product space, and SJ is the J+1 dimensional unit simplex, i.e.,

SJ = {(s0, . . . , sJ)′| 0 ≤ sj ≤ 1 for j = 0, . . . , J, and
J∑
j=0

sj = 1}.

If P is a distribution of λ, then the vector of aggregate market shares predicted by our model,
for a given value of θ, and a particular P are

σ(ξ, θ, P ) =

∫
ω(x, ξ, λ, θ)dP (λ), (4)

where we have suppressed the dependence of σ on x for convenience.
The actual market shares in the population are given by evaluating this function at

(θ0, P 0) the true value of θ and P . We designate this vector by s0 = σ(ξ, θ0, P 0). Note that
though P 0 is assumed to be known, we typically will not be able to calculate σ(ξ, θ, P 0)
analytically and will have to make do with a simulator of it, say σ(ξ, θ, PR), where PR is
the empirical measure of some i.i.d. sample λ1, . . . , λR. For example,

σ(ξ, θ, PR) =

∫
ω(x, ξ, λ, θ)dPR(λ) =

1

R

R∑
r=1

ω(x, ξ, λr, θ).

Also though the vector s0 is a random quantity determined by the realization of ξ (s0 =
σ(ξ, θ0, P 0),), we shall at times treat s0 as if it were a non-random quantity [but all our
results are proved with probability one over the distribution of s0].

We will make the following regularity assumptions on σ(ξ, θ, P ).

Assumption A1. (regularity conditions for share function) For every finite J , for all
θ ∈ Θ, and for all P in a neighborhood of P 0, ∂σj(ξ, θ, P )/∂ξk exists, and is continuously
differentiable in both ξ and θ, with ∂σj(ξ, θ, P )/∂ξj > 0, and for k 6= j, ∂σj(ξ, θ, P )/∂ξk ≤ 0
(for k, j = 1, . . . , J). Moreover, s0

j > 0 for all j.
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Note that although these properties must hold for each finite J , they need not hold in
the limit. Thus although we assume that s0

` > 0 for all `, we have s0
` → 0 as J →∞ for all

but possibly a finite subset of the products. Although we do not explicitly model the process
which generates the products with positive market shares, below we require the process that
generates the (ξ, x) tuples to satisfy certain regularity conditions.

The observed vector of market shares are denoted by sn ∈ SJ . Generally, sn will be
constructed from n i.i.d. draws from the population of consumers. Similarly, we assume
that for any fixed (θ, ξ), say (θ1, ξ1), that the function σ(ξ1, θ1, P

R) is constructed from R
independent, unbiased, simulation draws. This makes it natural to make A2.

Assumption A2. The market shares sn` = 1
n

∑n
i=1 1(Ci = `), where Ci is the choice of

the ith consumer, and Ci are i.i.d. across i. For any fixed (ξ, θ), σ`(ξ, θ, P
R)−σ`(ξ, θ, P 0) =

1
R

∑R
r=1 ε`,r(θ, ξ), where ε`,r(θ, ξ) are independent across r and have mean zero, while the

function ε`,r(θ, ξ) is bounded, continuous, and differentiable in θ. Define the J × J ma-
trices V2 = nE[(sn − s0)(sn − s0)′] = diag[s0] − s0s0′ and V3(θ, ξ) = RE[(σ(ξ, θ, PR) −
σ(ξ, θ, P 0))(σ(ξ, θ, PR)− σ(ξ, θ, P 0))′].

Here diag[x] is notation for a diagonal matrix with x on the principal diagonal. Also we
can allow for more general simulators like those based on importance sampling advocated by
BLP, by simply replacing the V3(·) given in A2 with the appropriate importance sampling
variance covariance matrix in the results that follow.

We now outline the logic of the estimation procedure. Elsewhere, [BLP (1995), and
Berry and Pakes (2002)] we provide quite general conditions which insure that for every
(s, θ, P ) ∈ SoJ ×Θ×P, where So

J = {s : 0 < s` < 1 for all `} and P is a family of probability
measures, there is a unique solution for the ξ(θ, s, P ) that satisfies

s− σ(ξ, θ, P ) = 0. (5)

By the implicit function theorem, Dieudonné (1969, Theorem 10.2.1), and A1, the mapping
ξ(θ, s, P ) is continuously differentiable in θ, s, P, in some neighborhood.. The true value of
ξ, say ξ0 ≡ ξ(θ0, s0, P 0), is obtained as the solution to

s0 − σ(ξ, θ0, P 0) = 0. (6)

Define the instrument matrix z = (z1, . . . , zJ) whose components zq = z(x11, . . . , x1J)q ∈
R
`, where z(·)q : (Rd1)J → R

`, and ` ≥ k ( k is the dimension of θ), for q = 1, . . . , J .
Note that we allow the value of the instruments for the jth observation to be a function
of the values of the characteristics of all the observations. This is because most notions of
equilibrium in use [e.g., Nash in prices or quantities] imply that the endogenous variables
we are instrumenting [i.e., price] are functions of the characteristics all the products. We
will require only weak regularity conditions on the zq and will introduce them where needed
below.
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Now let

GJ(θ, s, P ) ≡ 1

J

J∑
j=1

zjξj(θ, s, P ). (7)

The assumption that E(ξj|x1) = 0 ensures that E[GJ(θ0, s0, P 0)] = 0. If we were able
to calculate ξj(θ, s

0, P 0), then (2) would suggest using as our estimate of θ the method
of moments estimator, Hansen (1982), obtained by minimizing the norm of GJ(θ, s0, P 0).
Unfortunately we observe only sn and not s0, and we cannot calculate σ(ξ, θ, P 0) but only
σ(ξ, θ, PR). Consequently, what we do is substitute an estimate of ξ, obtained as that value
of ξ that sets sn − σ(ξ, θ, PR) to zero and denoted by ξ(θ, sn, PR), into (2) and minimize

the resulting objective function. Thus our estimator of θ, say θ̂, is defined as any random
variable that satisfies

‖GJ(θ̂, sn, PR)‖ = inf
θ∈Θ
‖GJ(θ, sn, PR)‖+ op(1/

√
J). (8)

The computation of θ̂ is discussed further in BLP(1995).

3 Overview of the Main Results and Two Examples.

The objective function we are minimizing, ||GJ(θ, sn, PR)||, has a distribution determined
by three independent sources of randomness: randomness generated from the draws on
the vectors {ξj, x1j}, randomness generated from the sampling distribution of sn, and that
generated from the simulated distribution PR. Analogously there are three dimensions in
which our sample can grow: as n, as R, and as J grow large. Our limit theorems will allow
various rates of growth for each dimension. Throughout we let J → ∞ and make n and
R deterministic functions of J, i.e., we write n(J) and R(J) and let n(J), R(J) → ∞ at
some specified rate. If n(J), R(J) → ∞ at a fast enough rate, then the contribution from
simulation and sampling error will be of smaller order, and the asymptotics will be dominated
by the randomness of ξ. We would like to guarantee that all three terms contribute to the
asymptotics, so we make assumptions about the rate of growth of n,R to ensure this (this
will allow us to evaluate the contribution of simulation and sampling error to the asymptotic
distribution of the estimator). Finally, keep in mind that both sn and σ(ξ, θ, PR) take values
in RJ , where J is one of the dimensions that we let grow in our limiting arguments [although
for expositional ease we have not indexed these functions by J in the statement of our
assumptions, those assumptions should be interpreted as holding for each finite J ].

We begin with a heuristic arguments which explains the steps we take to obtain our
proofs. The fact that the dimension of the share function grows with J , makes the proofs
required to validate the arguments in each of these steps quite detailed. As a result, we
close this section with a sketch of the intuition underlying our results for our two leading
examples. The formal arguments required to prove our results are delayed until the next
section.

The consistency argument is established by showing that:
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(i) supθ∈Θ ||GJ(θ, sn, PR)−GJ(θ, s0, P 0)|| converges to zero in probability.

(ii) an estimator that minimized ‖GJ(θ, s0, P 0)‖ over θ ∈ Θ would be consistent for θ0.

(i) insures that neither simulation nor sampling error impacts on the consistency of our
estimator. To establish it we assume that the instruments satisfy regularity conditions and
then provide conditions which insure that ||ξ(θ, sn, PR)−ξ(θ, s0, P 0)||2/J converges to zero in
probability uniformly in θ ∈ Θ. This latter point will require convergence of sn to s0 and PR

to P 0, and sufficient regularity of the mapping (s, P ) 7→ ξ(θ, s, P ). We need the convergence
to be uniform, either in absolute value or relative to the target quantity (convergence relative
to the target quantity is relevant because the population quantity itself is shrinking with
J). Smoothness conditions on the function ξ(·) allow us to convert closeness of (sn, PR) to
(s0, P 0) into closeness of ξ(θ, sn, PR) to ξ(θ, s0, P 0). Note that (sn, PR) is a “function valued”
nuisance parameter, similar to the nuisance parameters used in semiparametric estimation;
see Newey (1994) etc.4

To establish (ii), we apply a version of Pakes and Pollard (1989, Theorem 3.1). This
requires that: (a) GJ(θ0, s0, P 0) converges to zero, and (b) for all θ outside of a neighborhood
θ0, GJ(θ, s0, P 0) stays bounded away from zero. Since at θ = θ0, the ξj(θ

0, s0, P 0) are indeed
conditionally independent of one another (conditional on all the zj), standard laws of large
numbers can be used to insure (a). The problem in using standard uniform convergence
arguments to guarantee (b) is that to verify them we would require a model for how the
distribution of product characteristics (including price) evolves as the number of products
grows large. What we do instead is provide an asymptotic identification condition which
bounds the function ||E[GJ(θ, s0, P 0)]|| uniformly away from zero when θ lies far enough away
from θ0. This condition, which suffices for (b), does not require that GJ(θ, s0, P 0) converges
at all, and puts only weak restrictions on how the characteristic distribution changes as J
grows large. We provide the intuition underlying why we expect the identification condition
to hold in the context of our examples presently.

We turn next to the asymptotic normality result. Write

ξ(θ, sn, PR) = ξ(θ, s0, P 0) +
{
ξ(θ, sn, PR)− ξ(θ, s0, PR)

}
+
{
ξ(θ, s0, PR)− ξ(θ, s0, P 0)

}
.

(9)
Next we express the last two terms in this expression in terms of the simulation and

sampling errors and the parameters of the model. The simulation and sampling errors are
defined by the J × 1 vectors

εn = sn − s0andεR(θ) = σR(θ)− σ(θ).

By A2 both εnandεR(θ) is a sum of i.i.d. mean zero random vectors with known covariance.
From equation (5) and the definition of εn and εR(θ),

s0 + εn − εR(θ) = σ[ξ(θ, sn, PR), θ, P 0].
4It should be noted here that our problem does not fall into the usual case of semiparametric estimators

because the entire vector sn = (sn1 , . . . , s
n
J)′ affects each ξj . To offset this we have the fact that E(sn) = s0

for all J so that the ‘nonparametric estimator’ has zero bias unlike the usual semiparametric case.
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We can therefore expand the inverse map from (sn, θ, P ) to ξ(·) around s0. More formally
by assumption A1, for each J , almost every P , almost all ξ, and every θ ∈ Θ, the function
σ(ξ, θ, P ) is differentiable in ξ, and its derivative has an inverse, say

H−1(ξ, θ, P ) =

{
∂σ(ξ, θ, P )

∂ξ′

}−1

. (10)

Abbreviate σ(θ, s, P ) = σ(ξ(s, θ, P ), θ, P ), H(θ, s, P ) = H(ξ(s, θ, P ), θ, P ), andH0 = H(θ0, s0, P 0),
and further let σR(θ) = σ[ξ(θ, s0, P 0), θ, PR] and σ(θ) = σ[ξ(θ, s0, P 0), θ, P 0].

Now two Taylor expansions give us the last two terms in equation (9) in terms ofH−1(·), εn
and εR(θ). That is, ξ(θ, sn, PR) ' ξ(θ, s0, P 0) + H−1(θ, s0, P 0){εn − εR(θ)}, where the ap-
proximation sign indicates that we have omitted the second order terms from the Taylor’s
expansion.

Substituting our approximation for ξ(θ, sn, PR) into the objective function, we obtain
our linear approximation to GJ(θ, sn, PR) as

GJ(θ) = GJ(θ, s0, P 0) +
1

J
z′H−1

0

{
εn − εR(θ0)

}
. (11)

Next we provide conditions under which:

(a) sup||θ−θ0||≤δJ

√
J [GJ(θ)−GJ(θ, sn, PR)] converges to zero in probability for any sequence

δJ → 0.

(b) An estimator that minimized ‖GJ(θ)‖ over θ ∈ Θ would be: (i) asymptotically normal
at rate

√
J ; (ii) have a variance-covariance matrix which is the sum three mutually

independent terms (one resulting from randomness in the draws on product character-
istics, one from sampling error, and one from simulation error).

A consequence of (a) is that the estimator obtained from minimization of the criterion

function ‖GJ(θ)‖, has the same limit distribution as our estimator (i.e., as θ̂ as defined in
equation (8), and since the former is easier to analyze, we work with it. The general principles
behind showing (a) are well understood: it requires a stochastic equicontinuity condition in
the relevant stochastic process and some pointwise convergence. The difficulty here is in
applying the conditions to specific models.

To establish (b) we provide a slight generalization to Theorem 3.3 in Pakes and Pollard
(1989). The generalization allows for the fact that the underlying distributions of the ran-
dom variables we are taking averages of may depend on J. The proof of (b) also requires
a smoothness condition on the non-random function E[GJ(θ, s0, P 0)] at θ = θ0, and a fur-
ther stochastic equicontinuity condition on the stochastic process GJ(θ, s0, P 0) similar to
condition (iii) of Theorem 3.3 of Pakes and Pollard (1989).

That proof shows that the random vector
√
JGJ(θ0) is the sum of three terms:

TJ1 =
1√
J

J∑
j=1

zjξj ; TJ2 =
1√
J
z′H−1

0 εn ; TJ3 =
1√
J
z′H−1

0 εR(θ0). (12)

11



These random variables are each asymptotically normal at rates determined by the growth
of n(J) and R(J); they are also mutually independent so that var[

√
JGJ(θ0)] = var[TJ1] +

var[TJ2] + var[TJ3]. We develop the limit theory so that all three terms are of the same
magnitude, i.e., so that the effects of share estimation and simulation are captured by our
approximations.5 Finally, applying the arguments of Pakes and Pollard (1989) we then

obtain the asymptotic distribution of
√
J(θ̂ − θ0) in terms of ∂E[GJ(θ0, s0, P 0)]/∂θ and

var[
√
JGJ(θ0)].

3.1 Two Examples

The main purpose of this paper is to obtain consistency and asymptotic normality results
for the empirical analogues of two frequently used models of demand: i) the logit model and
its extension to the random coefficients logit as discussed in BLP(1995), and ii) the “pure
characteristics model” which first appeared as the horizontal model of Hotelling (1929) [see
also Shaked and Sutton’s (1982) vertical model], and has recently been endowed with an
estimation algorithm by Berry and Pakes (2002).

The next section provides a formal consistency and asymptotic normality argument for a
broader class of models which includes the models of interest as special cases. In a subsequent
section we work out the implications of these theorems for our two special cases. Before
proceeding to the formal sections we provide the intuition underlying the results for the
simple logit and pure characteristics models. The discussion here ignores both the conditions
required for uniform convergence and the second order terms in the Taylor expansion which
produces GJ(·) from GJ(·).

3.1.1 The Simple Logit

The utility the ith individual derives from consuming product j is

uij = xjθ + ξj + εij ≡ δj + εij, (13)

where xj is a vector of observed product characteristics which typically includes price, ξj
is an unobserved characteristic, and εij is an i.i.d. (over both products and individuals)
extreme value error term. Since we can add an individual specific constant to all utilities
without changing the distribution of choices, there is a free normalization in this model.
This is customarily resolved by setting the utility of the outside good ui0 = εi0.

Individual i chooses the product which maximizes its utility. The market share function
is obtained by solving for that maximum and then integrating out over the distribution of ε
to obtain

σj(x, ξ, θ) =
exjθ+ξj

1 +
∑J

k=1 e
xkθ+ξk

, j = 1, . . . , J, (14)

5A simpler asymptotic scheme would be to specify the rates n(J) and R(J) such that TJ2, TJ3 = op(1), but
this approach provides less information and is likely to understate the asymptotic variance of the estimator.
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while σ0(x, ξ, θ) = (1 +
∑J

k=1 e
xkθ+ξk)−1. Note that this is one of the few models which has

an analytic form for the market share function. As a result there is no need for simulation
and no simulation error in this model (i.e., εR(θ) ≡ 0).

The model predicts that market shares are determined by the random variables xjθ+ ξj.
For now assume this family of random variables has bounded support [because say xj, ξj,
and θ have bounded support] and density bounded away from zero on this support. Note
that this implies that (with probability one); (a) market shares are all of magnitude O(1/J),
and (b) that for all finite J all products have market shares which are strictly positive.

From (14) the model also has an analytic expression for the unobserved product charac-
teristic

ξj(θ, s, P
0) = ln(sj)− ln(s0)− xjθ. (15)

So our estimator is found by minimizing a norm of

GJ(θ, sn, P 0) = J−1

J∑
j=1

zjξj(θ, s
n, P 0) = J−1

J∑
j=1

zj[ln(snj )− ln(sn0 )− xjθ],

and can be interpreted as a linear instrumental variable estimator.
Assume temporarily that supθ∈Θ ||GJ(θ, sn, P 0)−GJ(θ, s0, P 0)|| converges to zero in prob-

ability. Then all we require for consistency is that for all θ outside of a neighborhood θ0,
GJ(θ, s0, P 0) stays bounded away from zero. But

‖GJ(θ, s0, P 0)−GJ(θ0, s0, P 0)‖ = ‖J−1

J∑
j=1

z′jxj(θ − θ0)‖,

where zj is a vector of instruments of dimension at least as large as that of xj. Thus a

sufficient condition for identification is that for J sufficiently large J−1
∑J

j=1 z
′
jxj is of full

column rank with probability arbitrarily close to one.
Typically zj will consist of the x1,j, or the exogenous product characteristics, and instru-

ments for price (which is allowed to be correlated with the ξj). So our identification condi-
tion requires the price of the product to be a function of observables which are not collinear
with that product’s exogenous characteristics. To formally verify whether this condition we
would have to specify the nature of the pricing equilibrium. However all assumptions used
to approximate equilibria in differentiated product markets imply that a product’s price is a
function both of its own and its competing product’s factor prices, and of the characteristics
of competing products (these determine markups). Since none of these variables are likely to
be collinear with price, and (at least) the characteristics of competitors products are observ-
able, the identification assumption seems unobjectionable. Indeed the interesting question
is not whether our identification condition is satisfied, but which instrument will lead to an
efficient estimator. This is a question that does depend on the precise nature of the pricing
equilibrium (as well as the structure of ownership of the products), as we illustrate in our
discussion of the vertical example below.
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We now move on to the asymptotic normality result. In the logit case it is easy to derive
the elements of the inverse share matrix analytically. We have

∂σj(x, ξ, θ)

∂ξk
=


σj(x, ξ, θ)(1− σj(x, ξ, θ)) k = j

−σk(x, ξ, θ)σj(x, ξ, θ) ifk 6= j,
(16)

Let H(s, θ) denote the J×J share matrix derivative evaluated at ξ = ξ(s, θ), i.e., Hjk(s, θ) =
∂σj(x, ξ(s, θ), θ)/∂ξk. Then if S = diag(s) and i = (1, . . . , 1)′ it can easily be verified that

H(s, θ) = S − ss′ while H(s, θ)−1 = S−1 + ii′/s0.

Substituting into equation (11), the contribution of sampling error to
√
J × GJ(θ0), or

TJ,2(·) in (12), is
√
J
−1
z′H−1(s0)εn. The argument of the last section then implies that to

obtain a limiting distribution of the estimator all we require is a rate of growth for n(J) that
produces a finite variance for TJ,2(·). For simplicity let z contain a single variable, and recall
that our conditions imply that, c/J ≤ s0

j ≤ c/J , for j = 0, 1, . . .. Then since A2 insures that
var(εn) = H(s0), if we let zJ be the sample average of z, we have

var(
1√
J
z′H−1(s0)εn) =

1

nJ
z′H−1(s0)H(s0)H(s0)−1z =

1

nJ

J∑
j=1

[
z2
j

s0
j

+
(
∑J

j=1 zj)
2

s0
0

] ≤ 1

cn
[
J∑
j=1

z2
j+J

2zJ ].

Assuming then that zJ is bounded, asymptotic normality requires n(J) to grow like J2.
The intuition for this result is as follows. Since the shares must always sum to one, we have∣∣∣∣∣∑

k 6=j

∂σk
∂ξj

∣∣∣∣∣ =
∂σj
∂ξj

<∞. (17)

In the logit model an increase in any particular ξ has a small impact on the shares of all
products, and since the sum of those impacts must be finite, as J grows large its impact on
the share of any given product goes down like 1/J . It is the inverse map from changes in
s to the implied ξ(·) that determines the influence of sampling and simulation error on our
estimator, and as J grows large the derivatives of this inverse map grow large. To counteract
this effect we need to increase the number of sampling and simulation draws, i.e., reduce the
variance in those errors, at a rate faster than J ; in particular we need n ∝ J2. Below we
provide the formalities that prove this result and show that the same rate conditions hold
for the random coefficient logit analyzed in BLP.

3.1.2 The Vertical Model

Perhaps the simplest among the models with a finite set of product characteristics discussed
in Berry and Pakes (2002) is the “vertical” model of Shaked and Sutton (1982). In this
model the utility function is

uij = δj − λipj,
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where δj = xjβ + ξj and we normalize the outside alternative so that δ0 = p0 = 0.
Order the products so 0 = δ0 < δ1 < δ2 < δ3 < . . . . Let F (·) denote the distribution of λ

(the marginal utility of income), assume it is increasing over its domain and let

∆j = (δj − δj−1)/(pj − pj−1), for j = 1, . . . , J.

Then necessary and sufficient conditions for all goods to have positive market share in
this model are that 0 = p0 < p1 < p2 < . . . , and ∆j = (δj − δj−1)/(pj − pj−1) are ordered as
∆1 > ∆2 > . . . . In this case the market shares are given by

s0 = 1− F (∆1), sj = F (∆j)− F (∆j+1), forj = 1, . . . , J − 1, sJ = F (∆J). (18)

We analyze this model in detail in section 6.1.2. Here we simply want to point out two
properties of its share function. First though equation (17) must hold in the vertical as well
as the logit model, in the vertical model

∂σk
∂ξj

= 0 for j /∈ {j − 1, j, j + 1}.

That is competition is “local” — only a small number of cross partials are nonzero. Conse-
quently as J grows large none of the nonzero elements of H(·) ≡ ∂σ/∂ξ go to zero, and the
elements of H−1(·) remain bounded. This implies that both simulation and sampling error
are likely to have less impact on estimators of the vertical than on the horizontal model.
Indeed it will allow us to prove an asymptotic normality result when both the number of
simulation and the number of sampling draws grows at rate J (rather than J2 as required
for the logit model).

The local nature of competition in the vertical model makes it relatively easy to consider
questions related to the choice of instruments for this model. If we assume that there is a
Nash pricing equilibrium, and that each product is owned by a distinct firm

pj = mcj +
F (∆j)− F (∆j+1)

f(∆j)
δj−δj−1

(pj−pj−1)2 + f(∆j+1)
δj+1−δj

(pj+1−pj)2

(19)

for j = 1, . . . , J , where f(·) is the density for F (·). So the price of product “j” depends
directly on the characteristics and factor prices of the products adjacent to j, and indirectly
on the factor prices and characteristics of the other products (through the price of the
adjacent products), implying that “good” instruments are likely to depend more on adjacent
then non-adjacent product characteristics.

4 Consistency and Asymptotic Normality

We need to specify the way in which the large vector (sn, σR(θ)) approaches (s0, σ(θ)). Since
these are expanding vectors in which almost all of the individual elements of (s0, σ(θ)) are
decreasing to zero, it will not suffice to specify how each component (snj , σ

R
j (θ)) approaches
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(s0
j , σj(θ)); we will require stronger, uniform, notions of convergence, as is common in semi-

parametric estimation problems.
We will work with the product space SJ × Θ × P, where P is the set of probability

measures, and endow the marginal spaces with (pseudo) metrics: the L∞ metric on P,
ρP (P,Q) = supB∈B |P (B)−Q(B)|, where B is the class of all Borel sets on Rk, the Euclidean
metric on Θ, ρE(θ, θ′) = ‖θ − θ′‖ , and a metric ρα,s0 on SJ defined below. We suppose that

ρα,s0(s, s∗) =


max0≤j≤J

∣∣∣ (sj)α−(s∗j )α

(s0j )
α

∣∣∣ if0 < α ≤ 1

max0≤j≤J
∣∣sj − s∗j ∣∣ ifα = 0.

(20)

The metric ρα,s depends on the parameter α; the higher α is, the stronger is the metric.6

We state the theory for general α, but in the examples we will take different values of this
parameter as convenient. In the logit-like case, we use α = 1, while in the vertical case we
take α = 0. We also put a metric on the space where ξ lives and for this we shall just take
the averaged Euclidean metric ρξ(ξ, ξ

∗) = J−1||ξ− ξ∗||2 = J−1
∑J

j=1(ξj− ξ∗j )2. Finally, define

for each ε, the following neighborhoods of θ0, P 0, and s0: NP 0(ε) = {P : ρP (P, P 0) ≤ ε} and
Ns0(ε) = {s : ρα,s(s, s

0) ≤ ε}, Nθ0(ε) = {θ : ρE(θ, θ0) ≤ ε}, and for each θ and any ε > 0,
define Nξ0(θ; ε) = {ξ : ρξ(ξ, ξ(θ, s

0, P 0)) ≤ ε}.

4.1 Consistency

The consistency result will require several assumptions in addition to A1-A2: conditions
controlling the way in which sn, σR(θ) approach s0, σ(θ); some asymptotic identification
conditions, and some fairly mild restrictions on the instruments.

Assumption A3. The random sequences sn and σR(θ) are consistent with respect to
the corresponding metrics, i.e.,

(a)ρα,s0(sn, s0)
P−→ 0 ; (b) sup

θ∈Θ
ρα,σ(θ)(σ

R(θ), σ(θ))
P−→ 0, (21)

where σR(θ) = σ[ξ(θ, s0, P 0), θ, PR] and σ(θ) = σ[ξ(θ, s0, P 0), θ, P 0]. Furthermore, we sup-
pose that the true market shares satisfy [for the α defined in (20)]

(c)
1

nJα

J∑
j=0

s0
j(1− s0

j)

(s0
j)

2α

P−→ 0 ; (d) sup
θ∈Θ

∣∣∣∣∣ 1

R · Jα
J∑
j=0

σj(θ)(1− σj(θ))
(σj(θ))2α

∣∣∣∣∣ P−→ 0.

Assumption A3(a) is complicated because the dimensions of the vectors sn and s0 increase
with J. Note that each sn` is a sum of independent bounded random variables with expectation

6We include the j = 0 term because the uniform convergence of all other terms does not imply its
convergence.

Note that the space SJ and metric ρs both change with J ; nevertheless, the space can be embedded in
the limiting space consisting of all infinite sequences.
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s0
` , conditional on the realization of ξ. Therefore, to verify assumption A3 requires restrictions

on the growth rates of n(J) and R(J), and on the limiting behavior of the vector s0. We will
focus on the special case defined by the following assumption:

Condition S. Suppose that exists positive finite constants c and c such that with prob-
ability one c/J ≤ s0

` ≤ c/J for each ` = 0, 1, . . . , J.
This condition implies that var(sn` ) = O(1/nJ) by assumption A2. Therefore, (sn` −

s0
`)/s

0
` = Op(

√
J/n) for each ` = 0, 1, . . . , J. This gives the pointwise rate of convergence;

to obtain the sup-norm convergence rate [with respect to the pseudo-metric ρs(s
1, s2) =

max0≤`≤J |s1
` − s2

` | /s0
` ], we apply the Bonferroni and Bernstein inequalities [see Pollard

(1989)] to obtain

Pr

[
max
0≤`≤J

∣∣∣∣sn` − s0
`

s0
`

∣∣∣∣ > ε

]
≤

J∑
`=0

Pr

[∣∣∣∣sn` − s0
`

s0
`

∣∣∣∣ > ε

]

≤
J∑
`=0

exp

(
− ε2

2var(sn` /s
0
`) + 2ε/ns0

`

)

≤
J∑
`=0

exp
(
−ε2O(n/J)

)
. (22)

A sufficient condition for (22) to decrease to zero is that J1+ε/n → 0 for any ε > 0, which
implies (21)(a). Assumption A3(b) is similar but requires uniformity over θ. Assumption
A3(c) is implied by Jα/n→ 0 under condition S, likewise A3(d).

Assumption A4 is a fairly mild restriction on the instruments that will be satisfied for
example if they are bounded. Note that there is no presumption that a law of large numbers
holds since to show that we would need to be more specific about the details of how the
instruments are constructed and the nature of the equilibrium.

Assumption A4. The instruments are such that the matrix z′z/J is stochastically
bounded, i.e., for all ε > 0 there exists an Mε such that Pr[||z′z/J || > Mε] < ε.

Next we provide an assumption that ensures the uniform mean square convergence for
the vector ξ(θ, sn, PR). We reinterpret solving the equations s = σ(ξ, θ, P ) as a minimization
problem, thus ξ(θ, s, P ) is the unique minimum of ||s−σ(ξ, θ, P )||. In fact it is convenient to
take a monotonic transform of both sides of the equation s = σ(ξ, θ, P ). Specifically, we in-
troduce the componentwise transformation τJ : RJ → R

J [ i.e., τJ(s) = (τJ(s1), . . . , τJ(sJ))′]
and the J × 1 vector ψJ(ξ, θ, s, P ) = τJ(s)− τJ(σ(ξ, θ, P )). We then define

ξ(θ, s, P ) = arg min
ξ∈RJ
||ψJ(ξ, θ, s, P )|| (23)

for any θ, s, P . For any bijective transform τJ(·), (23) has the same solution. We already know
that there exists a unique solution ξ(θ, s, P ) to s = σ(ξ, θ, P ) for all (θ, s, P ); this is equivalent
to saying that ψJ(ξ, θ, s, P ) = 0 if and only if ξ = ξ(θ, s, P ). We use the new definition of
ξ(θ, s, P ) as an optimization estimator to guarantee its statistical properties; in view of
the increasing dimensions of ψJ , ξ, however, we must refine the concept of uniqueness of
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ξ(θ, s, P ). Let τJ(x) = J−α/2τα(x) for some fixed function τα(x), and let
·
τα (x) = dτα(x)/dx.

We shall take

τα(x) =


x1−α−1

1−α if0 ≤ α < 1

log x ifα = 1.

For each α the function τα(·) is monotonic. In the logit-like case, we use α = 1 and τα(x) =
log x, while in the pure characteristics case we take α = 0 and τα(x) = x.The next condition
is an asymptotic identification condition used in the analysis of the preliminary estimation
of ξ.

Assumption A5. For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr

[
inf
θ∈Θ

inf
ξ /∈Nξ0 (θ;δ)

∥∥τJ(σ(ξ, θ, P 0))− τJ(σ(ξ(θ, s0, P 0), θ, P 0)
∥∥ > C(δ)

]
= 1.

Our assumptions (3) imply that GJ(θ0, s0, P 0) = op(1). Assumption A6 is our “identifica-
tion” condition [c.f. Theorem 3.1 of Pakes and Pollard (1989)]. Note that it does not require
convergence of the objective function GJ(θ, s0, P 0) at θ 6= θ0 (that would require conditions
on the process generating the x′s and an equilibrium assumption).

Assumption A6. For all δ > 0, there exists C(δ) such that

lim
J→∞

Pr

[
inf

θ/∈Nθ0 (δ)
‖GJ(θ, s0, P 0)−GJ(θ0, s0, P 0)‖ ≥ C(δ)

]
= 1.

Theorem 1 [Consistency] Suppose that A1-A6 hold for some α ∈ [0, 1] and some

n(J), R(J)→∞. Then, θ̂
P−→ θ0.

The proof is in the appendix. This result applies to a wide range of models and to growth
rates on n(J), R(J) as we will see later.

4.2 Asymptotic Normality

We next establish the asymptotic distribution of θ̂. We shall give conditions under which√
JGJ(θ0) is asymptotically normal with bounded variance, while

√
J [GJ(θ, sn, PR)−GJ(θ)] =

op(1) uniformly over a shrinking neighborhood of θ0. Additional standard arguments deliver

the asymptotic distribution of
√
J(θ̂− θ0) in terms of the variance of

√
JGJ(θ0). The precise

magnitude of the variance of
√
JGJ(θ0) is determined by the behavior of the matrix H−1

0 , an
issue we will come back to below.

Assumption B1. θ0 is an interior point of Θ.

Assumption B2. For all θ in some δ > 0 neighborhood of θ0

E
[
GJ(θ, s0, P 0)

]
= ΓJ(θ − θ0) + o(‖θ − θ0‖)
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uniformly in J. The matrix ΓJ → Γ as J →∞, where Γ has full (column) rank.
In B2 we require only that the expectation of GJ(θ, s0, P 0) be differentiable rather than

the function itself. This condition is similar to condition (ii) of Theorem 3.3 in Pakes and
Pollard (1989). What is different here is that the expectation of GJ(θ, s0, P 0). This is because
the derivative of ξ(·) with respect to θ depends on J and the form of the instruments both
will, in general, depend on the number and characteristics of the products marketed.

Assumption B3. For all sequences of positive numbers δJ such that δJ → 0,

sup
‖θ−θ0‖≤δJ

‖
√
J [GJ(θ, s0, P 0)−EGJ(θ, s0, P 0)]−

√
J [GJ(θ0, s0, P 0)−EGJ(θ0, s0, P 0)]‖ = op(1).

This assumption is essentially condition (iii) of Theorem 3.3 in Pakes and Pollard (1989).
It insures that provided B1-B3 hold and

√
JGJ(θ0, s0, P 0) is asymptotically normal, any

consistent estimator that minimized ‖GJ(θ, s0, P 0)|| would be asymptotically normal.
To go further we need to work with the disturbances generated by the expansion in (9)

and (10). Define the stochastic process in (ξ, P, θ)

νJ(ξ, P, θ) =
1√
J
z′H−1(ξ, θ, P )

{
εn − εR(θ)

}
, (24)

where εn = (εn1 , . . . , ε
n
J)′ and εR(θ) = (εR1 (θ), . . . , εRJ (θ))′. This process has the structure

of a sum of independent random variables from a triangular array as can be seen after
interchanging the order of summation, thus

νJ(ξ, P, θ) =
n∑
i=1

YJi(ξ, θ, P )−
R∑
r=1

Y ∗J,r(ξ, θ, P ),

YJi(ξ, θ, P ) =
1

n
√
J

J∑
j=1

aj(ξ, θ, P )εji ; Y ∗J,r(ξ, θ, P ) =
1

R
√
J

J∑
j=1

aj(ξ, θ, P )εj,r(θ), (25)

where z′H−1(ξ, θ, P ) ≡ (a1(ξ, θ, P ), . . . , aJ(ξ, θ, P )). The random variables YJi and Y ∗J,r are
independent across i and r with mean zero and with a distribution that changes with J. This
structure is used to apply laws of large numbers and central limit theorems for triangular
arrays of independent random variables.

Assumption B4. Let YJi = YJi(ξ(θ
0, s0, P 0), θ0, P 0) and Y ∗J,r = Y ∗J,r(ξ(θ

0, s0, P 0), θ0, P 0).
Suppose that limJ→∞E(z′ξξ′z/J) = Φ1 and that

(a) lim
J→∞

nE [YJiY
′
Ji] = Φ2 ; (b) lim

J→∞
RE

[
Y ∗J,rY

∗′
J,r

]
= Φ3 (26)

for finite positive definite matrices Φj, j = 1, 2, 3 and that for some δ > 0, E(||z′ξ/
√
J ||2+δ) =

o(1) and

(c)nE
[
‖YJi‖2+δ

]
= o(1) ; (d)RE

[
||Y ∗J,r||2+δ

]
= o(1). (27)
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Condition B4 guarantees that
√
JGJ(θ0) is asymptotically normal with variance Φ =∑3

i=1 Φi. The reason for condition (27) is that as J increases the distribution of the random
variables Y ∗J,r and YJi changes, so we must use the Lyapunov Central Limit Theorem for
triangular arrays of independent but not necessarily identically distributed random variables,
which in turn requires moment conditions holding to power 2+δ. Our examples will translate
these conditions into restrictions on n(J) and R(J). To do so we shall have to make more
detailed assumptions about z and H0. The next section will provide the details for our two
leading cases.

Finally, we use a stochastic equicontinuity condition on the stochastic process (24) to han-
dle remainder terms. This approach to asymptotics is now well established in econometrics,
see the recent survey of Andrews (1994).

Assumption B5. The process νJ(ξ, P, θ) is stochastically equicontinuous in (ξ, P, θ) at
(ξ(s0, P 0, θ0), P 0, θ0), that is, for all sequences of positive numbers εJ with εJ → 0, we have

sup
‖θ−θ0‖≤εJ

sup
(ξ,P )∈Nξ0 (θ0;εJ )×NP0 (εJ )

∥∥νJ(ξ, P, θ)− νJ(ξ(s0, P 0, θ0), P 0, θ0)
∥∥ = op(1).

In B5 we need to insure that
√
J [GJ(θ, s, P ) − EGJ(θ, s0, P 0)] can be made arbitrar-

ily close to
√
J [GJ(θ0, s, P ) − EGJ(θ0, s0, P 0)] (with arbitrarily large probability) by mak-

ing θ close to θ0. This is stronger than the condition needed to make
√
J [GJ(θ, s0, P 0) −

EGJ(θ, s0, P 0)] close to
√
J [GJ(θ0, s0, P 0) − EGJ(θ0, s0, P 0)] (we have also to insure that

the consumer sampling and the simulation processes do not cause jumps in the disturbance
process at values of θ close to θ0). The stochastic equicontinuity assumption is sufficient to
ensure that the remainder term is of smaller order in probability than

√
JGJ(θ0). We verify

this condition below for the logit case. With these conditions we can give the asymptotic
normality of θ̂. The proof is in the appendix.

Theorem 2. [Asymptotic Normality] Suppose that A1-A6 and B1-B5 hold for some α.
Then, with Φ = Φ1 + Φ2 + Φ3,

√
J(θ̂ − θ0) =⇒ N [0, (Γ′Γ)−1Γ′ΦΓ(Γ′Γ)−1].

Standard errors can be constructed in the usual way. Specifically, when GJ is differen-
tiable in θ let

Γ̂ =
∂GJ

∂θ
(θ̂, sn, PR),

and this will consistently estimate Γ; when GJ is not differentiable in θ we must use numerical
derivatives as in Pakes and Pollard (1989). Furthermore, let

Φ̂2 =
1

nJ
z′Ĥ−1V̂2Ĥ

−1′z ; Φ̂3 =
1

RJ
z′Ĥ−1V̂3Ĥ

−1′z,
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where Ĥ = H(θ̂, sn, PR), V̂2 = Sn − snsn′, and V̂3 = V3(θ̂, ξ(sn, θ̂, PR)), and these will
consistently estimate Φ2 and Φ3.

We now turn to the efficiency question. One can improve the efficiency of θ̂ by taking the
weighted norm criterion, i.e.,

‖GJ(θ, s, P )‖2
WJ

= GJ(θ, s, P )′WJGJ(θ, s, P )

for some weighting matrix WJ . The resulting class of estimators can be treated similarly to
above: it suffices for asymptotic normality to make the additional assumption that WJ →p W
for some symmetric positive definite matrix W, in which case the asymptotic variance is
(Γ′WΓ)−1Γ′WΦWΓ(Γ′WΓ)−1. The optimal weighting matrix is proportional to Φ−1, and
the resulting efficient estimator has asymptotic variance (Γ′Φ−1Γ)−1.

A few final points on efficiency. First if we make a comparison with the estimator that
is optimal when s0, P 0 are known [and the corresponding moment GJ(θ, s0, P 0) can be com-
puted], we find that the variance of our estimator is strictly larger, so an estimator of the
variance which ignores sampling and simulation error will be biased downwards. Also, since
we are only dealing with the demand subsystem here, our estimator can only be efficient in a
limited information sense. That is in virtually all currently used pricing models the pricing
equation also depends on the parameters of the demand system. So if we were willing to
make an equilibrium assumption on how prices are set, we could also use the pricing equation
to help estimate the demand parameters.

A related issue is the question of finding an efficient estimator under the conditional
moment restriction E[ξj|x1] = 0 in the sense of Chamberlain (1987). The form of the
efficient estimator will depend on the nature of the pricing equilibrium, and on the ownership
structure of products. Moreover, since, in general, the efficient instrument will depend
differently on the characteristics and factor prices of all competing products (see the example
in section 3.1.2), the number of dimensions needed for a semiparametric approximation to
those instruments [as in Newey (1990,1993)] will grow in J.7

5 Determining the Rates of Convergence

We seek conditions under which B4 is true, which is equivalent to finding conditions under
which the random variables

TJ2 ≡
√
J
−1
z′H−1

0 εn, and TJ3 ≡
√
J
−1
z′H−1

0 εR(θ)

7As noted in Pakes (1992), if we are willing to assume exchangeability of the pricing function in the order
of the characteristic vectors of the competing products owned by a given firm, and in the firms themselves,
the dimensionality problem can be reduced by using an exchangeable basis in forming the semiparametric
estimators. Though this way of looking at the problem provides some intuition for the choice of instruments,
see for e.g. BLP, in practical situations even a low order exchangeable basis has typically been found to have
too high a dimension to be of much use.
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are asymptotically normal with zero mean and finite non-zero variances respectively limJ→∞Φ2(J)
and limJ→∞Φ3(J), where

Φ2(J) =
1

nJ
z′H−1

0 V2H
−1
0 z ; Φ3(J) =

1

RJ
z′H−1

0 V3H
−1
0 z. (28)

Keep in mind that the matrix H0 is dimension J × J and J grows large in our limiting
argument.

Since for fixed J both TJ2 and TJ3 are a sum of i.i.d. random variables central limit
theorems for triangular arrays imply that it will be sufficient to find conditions on n(J)
and R(J) that guarantee that the Φ matrices are bounded. We consider the term Φ2(J)
[similar comments apply to Φ3(J)]. The behavior of the elements of H−1(θ, s0, P 0) has a
key role here, and, consequently, we will consider several different scenarios regarding these
quantities as is appropriate for different models [i.e., models that have been used for demand
estimation], each of which generates a different limit theorem.

The different limit theorems arise because the different models have different implications
for the components of ∂σ(·)/∂ξ. In particular in the models with“diffuse” substitution pat-
terns, such as the random coefficient logit model of BLP in which all goods are substitutes
for all other goods, that partial goes to zero as the number of products increase, and its
inverse grows large. Consequently, when J is large a little bit of sampling error causes large
changes in the computed value of ξ. In contrast, in the pure characteristic model, competi-
tion is “local”, the more the number of products the “closer” will your nearest competitor
tend to be and the larger will be the response to small changes in the quality of the product.
In these cases a little bit of simulation or sampling error will have almost no effect on the
computed value of ξ.

Formally, if we let a′ = (a1, . . . , aJ) = z′H−1
0 and suppose, without loss of generality, that

z is a J × 1 vector, we have [conditional on s0]

Φ2(J) =
1

nJ

 J∑
j=1

a2
js

0
j −

(
J∑
j=1

ajs
0
j

)2
 , (29)

since V2 = diag[s0] − s0s0′. The magnitude of the matrix Φ2 depends on the vectors a and
s0. Note that the term in square brackets in (29) can be considered to be the ‘variance’ of
the vector (a1, . . . , aJ) with respect to the multinomial like measure induced by the sequence
of weights (s0

1, . . . , s
0
J) [note that depending on the behavior of s0

0, these weights do not
necessarily sum to one even asymptotically].

There are three factors that influence the magnitude of Φ2(J). First, the rate at which
s0
j , j = 0, 1, . . . , J decline with J ; for the purposes of this discussion, we shall assume that

Condition S holds (roughly, all shares go down like 1/J). Second, the rate at which the a′js
grow or decline with J. Finally, the variability of the sequence {aj} also has a role to play
in some cases.

In general, if for some function g(·), we have |aj| ≤ g(J) for j = 1, . . . , J, then for all J,
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J∑
j=1

a2
js

0
j −

(
J∑
j=1

ajs
0
j

)2

≤
J∑
j=1

a2
js

0
j ≤

(
max

1≤j≤J
|aj|
)2 J∑

j=1

s0
j ≤ g(J)2. (30)

This gives a global bound on the variance matrix Φ2(J); it is essentially this bound that was
used in BLP to provide sufficient conditions for asymptotic normality.

However, it turns out that in a leading special case (the logit and random coefficient
logit), there is further structure that can sometimes be exploited to give tighter bounds on
Φ2(J). Specifically, when Condition S hold in these cases we have

(a1, . . . , aJ) = g(J){(1, . . . , 1) +O(1/J)}

for some non-decreasing function g [i.e., the normalized a′s have zero sample variability].
Then, we have

J∑
j=1

a2
js

0
j −

(
J∑
j=1

ajs
0
j

)2

' g(J)2

 J∑
j=1

s0
j −

(
J∑
j=1

s0
j

)2


= g(J)2
[
1− s0

0 −
(
1− s0

0

)2
]

= g(J)2s0
0(1− s0

0). (31)

When condition S holds, the share of the outside alternative s0
0 is O(1/J), and so (31) is

O(g(J)2/J), and we get a reduction in the magnitude of the variance from the crude bound
(30).8

In a subsequent section we investigate three examples. Our purpose is to verify the order
of magnitude of the covariance matrix Φ2(J) and to establish the precise rate of growth on
n(J), R(J) required to achieve asymptotic normality. We achieve this by identifying the rate
of growth and variability of the sequence {a1, . . . , aJ} .

6 Examples

Section 3.1 introduced two examples and we now provide a detailed analysis of both of
them. The first was the logit model. In this specification the utility for any one good,
conditional on the utilities of all the other goods, has full support. As we showed this implies
“diffuse” substitution patterns which, in turn, make estimators of the parameters of the
model quite sensitive to sampling and simulation error. The simple logit only accommodates
very restrictive substitution patterns. So after formalizing our results for the simple logit we

8Note that when the share of the outside alternative is O(1), (31) is the larger magnitude O(g(J)2). In
this case, there is no gain and ( 30) is not improved.
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move on to the random coefficients logit model of BLP (1995)(analogous results hold for the
nested logit, the multinomial probit, and the random coefficients probit).

The second example introduced in section 3.1, and dealt with in detail below, was the
vertical model of Shaked and Sutton (1982). This and the horizontal model of Hotelling
(1929) are uni-dimensional examples of a class of models Berry and Pakes (2002) call the
pure characteristics model, and we consider in more detail below. In these models individ-
ual’s preferences are defined on a finite dimensional space of product characteristics, and
substitution patterns are “local” in the sense that cross price and characteristic elasticities
are only non-zero for a finite number of products.

The asymptotic behavior of our estimator is likely to be different in the two models. In the
first, more traditional class, our examples indicate that the variance in both the simulation
and the sampling error must decline at a rate faster than J increases for consistency and at
the rate J2 for asymptotic normality. For our example of the second class of models, the
variance in the sampling and the simulation error can decline at any rate for consistency and
must decline at rate J for asymptotic normality.

6.1 The logit model

Recall from equations (13) and (14) that the market shares predicted by the logit model are

σj(x, ξ, θ) =
exjθ+ξj

1 +
∑J

k=1 e
xkθ+ξk

, j = 1, . . . , J while σ0(x, ξ, θ) =
1

(1 +
∑J

k=1 e
xkθ+ξk)

,

and from equation (16)

∂σ

∂ξ
≡ H(s, θ) = S − ss′, while H(s, θ)−1 = S−1 + ii′/s0,

where S = diag[s] and i = (1, . . . , 1)′. H(s, θ) is the J × J share matrix derivative evaluated
at ξ = ξ(s, θ), and does not depend on the parameter vector θ.

We now verify the conditions of our theorem assuming the random variables xjθ + ξj
have bounded support and density bounded away from zero on this support.9 This implies
market shares are all of magnitude O(1/J) with probability one, i.e., that Condition S holds.

9However, when xjθ + ξj has unbounded support, then a variety of outcomes are possible. For example,
suppose that xjθ + ξj is standard normal, then σj(x, ξ, θ) = Op(1/J), j = 0, 1, . . . , J, but

min
1≤j≤J

σj(x, ξ, θ) = Op(J−1 exp(−
√

2 log J)),

that is, min1≤j≤J σj(x, ξ, θ) is of smaller order than J−1 in probability. In fact, it is only slightly smaller
and it can be shown to be larger than Op(J−(1+η)) for any η > 0. Thus although ‘most’ market shares must
be O(1/J), the extreme values predicted by the model are a little bit wider. This model never predicts zero
market share for any product unless parameters take extreme values like θ = ±∞, and this is precluded by
the technical requirement that the parameter space be compact. However, one can find even more extreme
behaviour of min1≤j≤J σj(x, ξ, θ) when the distribution of xjθ+ξj has heavy tails like the Cauchy. Depending
on this distribution one can have arbitrarily small shares predicted by the model at the extreme outcome
of xjθ + ξj . When xjθ + ξj has finite variance, the consequence of having small shares for our estimation
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It is straightforward to verify that condition S implies A3. We simply assume that the
instruments are stochastically bounded thus satisfying A4. Taking τα(x) = log(x/σ0), we
have

τJ(σ(ξ, θ, P 0))− τJ(σ(ξ(θ, s0, P 0), θ, P 0) = ξ − ξ(θ, s0, P 0)

and so the identification condition A5 is also satisfied.
As noted a sufficient condition for A6 is that for each ε > 0 there is a J(ε) such that for

any J > J(ε), J−1
∑

j zjx
′
j has full column rank with probability 1− ε, since then

inf
θ/∈Nθ0 (δ)

‖GJ(θ, s0)−GJ(θ0, s0)‖ = inf
θ/∈Nθ0 (δ)

‖

(
1

J

J∑
j=1

zjx
′
j

)
(θ−θ0)‖ ≥ inf

θ/∈Nθ0 (δ)
C‖θ−θ0‖ ≥ Cδ,

with probability 1 − ε. In terms of the pricing problem this requires that the price of a
product not be a linear function of that product’s demand side attributes. However, we
know that the solution to the pricing problem generates a pricing function which depends
on the characteristics of competitor’s, as well as on its own characteristics.

We have just verified the conditions for consistency and we move on to the conditions
needed for asymptotic normality; in particular, (26) and (27) when condition S is true.
Without loss of generality assume z is a vector, and recall from section 5 that to prove (26)
it suffices to find a rate of growth for n that makes the limit, as J grows large, of Φ2(J)
finite (element by element), where

Φ2(J) = (nJ)−1[
J∑
j=1

a2
js

0
j − (

J∑
j=1

ajs
0
j)

2] and ak = z′H(·)−1ek.

The formula for H−1(·), and condition S (i.e., all sj > c/J) implies

ak =
zk
sk

+

∑J
j=1 zj

s0

=
J2zJ
c

[1 +O(1/J)], (32)

where zJ is the sample mean of z, which is bounded by assumption. From (28) if

(a1, . . . , aJ) = g(J)[(1, . . . , 1) +O(1/J)]

then the components of Φ2(J) are Op[g(J)2/J2n]. Equation (32) implies we satisfy this
condition with g(J) = J2Op(1). Thus the components of Φ2(J) are Op(J

2/n); i.e., n must
grow like J2 for asymptotic normality.

We now verify (27). Note that |
∑J

j=1 ajεji| ≤ max1≤j≤J |aj|
∑J

j=1 |εji| ≤ cJ2 for some

constant c, because
∑J

j=1 |εji| ≤
∑J

j=1 1(Ci = j) + E1(Ci = j) ≤ 2, and (32) is true.
Therefore,

E

∣∣∣∣∣ 1

n
√
J

J∑
j=1

ajεji

∣∣∣∣∣
2+δ
 ≤ ( cJ2

n
√
J

)2+δ

problem is not so severe: it only affects the argument for normality through the remainder term magnitudes,
so that normality is preserved although you may need stronger restrictions on the rates of growth of n(J)
and R(J).
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for any δ. Thus nE[|YJi|2+δ] = O(J3+3δ/2n−(1+δ)) = o(1), which, after substituting n(J) = J2,
satisfies our condition provided 3 + 3δ/2 − 2(1 + δ) < 0. That is condition (27) is satisfied
for any δ > 2.

Finally, we turn to the stochastic equicontinuity condition B5. In the logit case, there
is no simulation, i.e., P is known exactly, and there is only the sampling error to consider.
Furthermore, since the equation for ξ is explicit, we can equivalently work with the process
in s,

νJ(s) =
1

J
z′H−1(s)εn,

where H−1(s) = S−1 − ii′/(1− i′s). In the appendix we show that

νJ(sn)− νJ(s0) = Op(J
3/2/n), (33)

so that the remainder terms are of smaller order than the leading variance terms.
In conclusion, the asymptotic variance of

√
J(θ̂− θ0) is (E(zx′))−1 (Φ1 + Φ2) (E(xz′))−1 ,

where

Φ2 = lim
J→∞

1

nJ
z′H−1

0 z

= lim
J→∞

[
1

nJ

J∑
j=1

zjz
′
js
−1
j +

J

n

E(z)E(z′)

s0

]
. (34)

The first term is

1

nJ

J∑
j=1

zjz
′
je
−(xjθ+ξj) ×

(
1 +

J∑
k=1

exkθ+ξk

)
= Op(J/n)

provided E[||zjz′je−(xjθ+ξj)||] < ∞. The second term in Φ2 is Op(J
2/n), and is dominant in

this case.10 Therefore,

Φ2 = lim
J→∞

J2

n
× E(z)E(z′)

limJ→∞(Js0)
.

6.1.1 The Random Coefficients Logit

The logit model is not very suited to empirical work; as is well-known, it implies odd sub-
stitution patterns between products. However, the random coefficients logit, given by

uij = δj + xjλi + εij,

is known to give more reasonable substitution patterns because of the random coefficients on
the x vector. Our notation is intended to separate out the terms with interactions between

10One could also consider the case in which the outside alternative is O(1). Then the two terms in (34)
are of equal magnitude and we must include both.
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individual and product, xjλi; usually, the product characteristics that interact are the prices.
The systematic utility δj depends on the parameters θ and on the product characteristics
xj, ξj, i.e., δj = xjθ + ξj.

The market share for this model is given by

σj(x, ξ, θ) =

∫
eδj+xjλ

1 +
∑

k e
δk+xkλ

dP (λ) ≡
∫
ωj(λ)dP (λ) ≡ E[ωj(λ)], (35)

where P is a given probability measure. Note that the integrand, ωj(λ), is just the logit
market share function evaluated at a particular value of the random coefficients [we have
supressed its other arguments x, θ, ξ]. The derivatives of the market share function are

∂σj
∂ξk

=


∫
ωj(λ) {1− ωj(λ)} dP (λ) j = k

−
∫
ωj(λ)ωk(λ)dP (λ) ifk 6= j.

In matrix terms we can write the share matrix

H = E[H(λ)],whereH(λ) = W (λ)− w(λ)w(λ)′

in which W (λ) = diag(ω1(λ), . . . , ωJ(λ))′ and w(λ) = (ω1(λ), . . . , ωJ(λ))′. Unfortunately,
there is no analytic inverse for this model and no easy expression (that we know of) for the
inverse matrix H−1

0 in the general continuous case. However, we can still characterize its
properties sufficiently well to ensure that property (31) holds.

By the convexity of the matrix inverse [Groves and Rothenberg (1969)] we have

H−1 = [EH(λ)]−1 ≤ E[H(λ)−1]

in the positive definite sense. The inverse of any given logit matrix is W (λ)−1 + ii′/ω0(λ). If
we assume that ωj(λ) ≥ ωj for all j = 0, 1, . . . , J for some nonrandom sequence of constants
ωj that obey condition S, then

[EH(λ)]−1 ≤ W−1 +
ii′

ω0

≡ H−1, (36)

where W= diag(ω1, . . . , ωJ)′. Furthermore, H−1V2H
−1 ≤ H−1V2H−1 by the properties of

positive definite symmetric matrices [Anderson (1984, Theorem A1.1)]. We can now apply
the results from the previous subsection. Under condition S, the variance term (29) is of
order J2/n as in the fixed coefficient logit case. The remaining arguments of the previous
subsection hold here too so that the condition for the central limit theorem is satisfied in
the random coefficient case. In fact, we are able to prove in this case that

Φ2 = lim
J→∞

J2

n
× E(z)E(z′)

limJ→∞(J
∫
ω0(λ)dP (λ))

(37)

Φ3 ≤ lim
J→∞

J2

R
× E(z)E(z′)

limJ→∞(J
∫
ω0(λ)dP (λ))

. (38)

27



We could provide more detailed formalizations of both the identification and stochastic
equicontinuity conditions, but we really have nothing substantive to say that we have not
already said in the context of the fixed coefficient logit model.

6.2 The Vertical Model

Recall from equation (18) that the market shares are then given by

s0 = 1− F (∆1), sj = F (∆j)− F (∆j+1), forj = 1, . . . , J − 1, sJ = F (∆J),

where ∆j = (δj−δj−1)/(pj−pj−1), and ∆1 > ∆2 > . . ., while δj = xjβ+ξj and δ1 > δ2 > . . .
(recall δ0 = p0 = 0).

Since the simple vertical model only require integration over one dimension of hetero-
geneity, we assume there is no simulation error. Further for this model the inversion from
shares to ξ is obtained from the recursive system δj−δj−1 = (pj−pj−1)F−1(1−

∑j−1
r=1 sr). So

our requirement for consistency, i.e., that J−1||ξ(sn)− ξ(s0)||2 →p 0, is expressed in terms of

ξj(s
n)− ξj(s0) =

j∑
l=1

(pl − pl−1)[F−1(1−
j−1∑
l=0

sl)− F−1(1−
j−1∑
l=0

snl )].

For simplicity we assume that the distribution of λ (i.e., F (·)) has bounded support
and is strictly increasing (so its inverse satisfies a Lipschitz condition), and that whatever
equilibrium is established maxj≤J(pj − pj−1) = c <∞.11 Then for any ε > 0

Pr

[
1

J

J∑
j=1

{
ξj(s

n)− ξj(s0)
}2
> ε

]
≤ max

j≤J
Pr
[{
ξj(s

n)− ξj(s0)
}2
> ε
]

≤ J max
j≤J

Pr

{ j−1∑
l=0

sl −
j−1∑
l=0

snl

}2

> ε/c


≤ J exp(−εn/c),

by Bernstein’s inequality (since
∑j−1

l=0 s
n
l can be expresses as a sum of n independent random

variables each bounded by one). The last term goes to zero provided n → ∞ faster than
log J.

11Other assumptions might be relevant here, but would require more detailed analysis of the pricing
equilibrium for the model to make sense. For e.g. if the support of λ were R+ and maxj≤J∆jf(∆j) → 0,
which might happen, for example if the distribution of 1/λ were lognormal or Pareto, and we assumed a
standard Nash in prices equilibrium, we would have to insure that difference in prices of adjacent products
would go to zero for their to be positive markups (and hence for entry) as market size grows larger; see the
pricing equation for this model in (19).
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Recall that to find the rate at which we need n to grow for the consistency and asymptotic
normality results we need the elements of the matrix H−1, where H = ∂σ/∂ξ. Letting
α1 = f(∆1)/p1, α2 = f(∆2)/(p2 − p1), . . . , αJ = f(∆J)/(pJ − pJ−1), it can be shown that

H =


α1 + α2 −α2 0 · · · 0

−α2 α2 + α3
. . . 0 0

0
. . . . . . −αJ−1 0

... 0 −αJ−1 αJ + αJ−1 −αJ
0 0 0 −αJ αJ

 . (39)

The matrix H is a band matrix with all elements more than one place from the diagonal
being zero. Note also that all row and columns sums are zero apart from the first row and
column, and so the matrix is not diagonal dominant. Furthermore, it can be verified that

H−1 =

min(i,j)∑
r=1

1

αr


i,j

=


1
α1

1
α1

1
α1

· · · 1
α1

1
α1

1
α1

+ 1
α2

1
α1

+ 1
α2

· · · 1
α1

+ 1
α2

1
α1

1
α1

+ 1
α2

1
α1

+ 1
α2

+ 1
α3
· · · 1

α1
+ 1

α2
+ 1

α3
...

...
...

. . .
...

1
α1

1
α1

+ 1
α2
· · · . . . 1

α1
+ · · ·+ 1

αJ

 .

Notice that any fixed i, j element of the inverse matrix is of order one as J →∞ (this is in
contrast to the logit models where the individual elements of the inverse were all of order
J).

Assume that the z are bounded. Then, for k = 1, . . . , J,

ak ≡ z′H−1ek ≤ max |zl| ×

[
J

k∑
`=1

1

α`
+

k−1∑
j=1

(
j∑
`=1

1

α`
−

k∑
`=1

1

α`

)]

= max |zl| ×

[
J

k∑
`=1

p` − p`−1

f(∆`)
−

k−1∑
j=1

k∑
`=j+1

p` − p`−1

f(∆`)

]
,

which gives the individual elements in the vector z′H−1. It now follows that because pj < pk
when j < k,

ak ≤ max |zl| × J
k∑
`=1

p` − p`−1

f(∆`)
, (40)

which is of order J for any fixed k.
For Theorems 1 and 2 we must determine the magnitude of the sample variance of

the sequence (a1, . . . , aJ) with respect to the multinomial(s1, . . . , sJ) or equivalently the
multinomial(1/J, . . . , 1/J). In fact,

1

J

J∑
k=1

a2
k −

(
1

J

J∑
k=1

ak

)2

≤ 1

J

J∑
k=1

a2
k
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≤ J2 (max |zl|)2 × 1

J

J∑
k=1

(
k∑
`=1

p` − p`−1

f(∆`)

)2

≤ J2 (max |zl|)2 ×
1
J

∑J
k=1

(∑k
`=1(p` − p`−1)

)2

{min1≤`≤J f(∆`)}2

≤ J2 (max |zl|)2 | ×m−2 1

J

J∑
k=1

p2
k,

which is finite provided 1
J

∑J
k=1 p

2
k is finite and min1≤`≤J f(∆`) ≥ m > 0. Both of these

conditions are assumed (although one can use a similar argument to obtain different rates
when they are not).

Given the lower bound m and that the price sequence has a finite second moment, (30)
holds with g(J) = J. Therefore, the covariance matrix Φ2(J) is of order J/n. That is, in this
case, we obtain consistency if n increases at any rate faster than log J , while the asymptotic
normality result holds with all three terms contributing provided n grows like J . We do not
know whether one can improve on our inequality.

Note the contrast to the logit-type models, where n must increase at rate J for consistency
and rate J2 for the asymptotic normality result [when all shares are the same magnitude].
The difference between the models is due to the difference between localized and diffuse
competition. In the models with sampling and simulation errors, the derivative of market
share with respect to product quality is declining at the same rate as the shares. Therefore,
the elements of the inverse derivative matrix (dσ /dξ )−1 are growing in J , and the number
of simulation draws must increase at a faster rate to offset this. In the vertical model,
competition is localized and the derivative of market share with respect to product quality
does not decline in J , and so the elements of the inverse derivative matrix stay bounded.
As a result our limit theorems can suffice with a lower rate of growth for n in the vertical
model.

7 Monte Carlo Results

In this section we discuss Monte Carlo results for simple versions of our models. We start with
logit-type models. In particular we present results for a simple logit where the market shares
are observed with sampling error, and then for a random coefficients logit with simulation
error in the computed shares. Next we turn to the pure characteristic models. Here we start
with a simple vertical model where market shares are observed with sampling error and then
move to a multi-dimensional pure characteristics model with simulation error. The monte-
carlo results reinforce the theoretical discussion in the previous sections. That is to obtain a
“well-behaved” estimator for the first class of models sample sizes and simulation draws must
be quite large and increase rapidly in J . The sample sizes and number of simulation draws
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which seem to be necessary for estimating the versions of the pure-characteristic model can
be much smaller, and, do not increase nearly as rapidly in J .

All of our examples here involve data on a single-cross section of markets, to fit with our
theoretical discussion of how estimates behave as J varies within a market. In practice there
are several reasons to prefer to estimate off data that features a cross section or time series
of different market equilibria.

For the logit model, the deterministic part of utility is drawn as

δj = xjβ + ξj, (41)

where ξj is drawn from the standard normal distribution. The x’s are a constant and a
standard normal, with a β coefficient on the constant of 3 and a slope coefficient of 1.
(Except as noted, all random variables in the Monte Carlo exercises are i.i.d. draws.)

Table 1 gives the mean estimated value of β2 across 1000 Monte Carlo datasets. Each
column gives results for a different value of J , the number of products, while the panels
running down the table vary the number of consumer draws used to calculate the market
share of the sample (n). Note that zero shares are discarded from the dataset. The fourth
panel gives results for n set proportional to J , while in the fifth panel n is set equal to J2 .
The last column uses the true expected shares (i.e., “n =∞”).

In the second row of each panel is the simulated standard deviation (the standard error
of the estimate across the simulated samples) and the third row gives the standard error of
the mean (the simulated standard error divided by

√
1000). Apart from the inversion, the

simple logit model is linear in parameters. Thus, given no sampling error in the shares, we
should get unbiased results even for small J. This is consistent with the results for n =∞.

We see that the results are particularly bad for small n relative to J , with a large apparent
bias. This is in large part due to the sample selection bias that comes from throwing small
share products out of the market.12 A good with a low value of x will tend to have a positive
market share only if it has a large value of ξ while a good with a high value of x will tend
to have a positive share even for small ξ . This generates a negative correlation between x
and ξ among goods with postive market shares.

Table 2 gives Monte Carlo results for a random coefficients logit. In this case (as in most
of the empirical literature on aggregate data), we assume that observed market shares have
no sampling error.13 We can always simulate positive predicted shares and so there is no
sample selection problem. In this case, we can consider small values of R, but because the
computational burden is higher we do not include a set of results for J2.

Our random coefficients logit example once again sets δj = xjβ+ξj, but now β = (−5, 1).
Utility of consumer i for product j is

uij = δj + θxλixj2 + εij, (42)

where λ is standard normal, the standard deviation of the random “taste for x”, θx, is set
to one and xj2 is the non-constant element of x. As usual, the ε’s are i.i.d. extreme-value

12 We did not deal with this problem in our theoretical analysis above, but it is likely to be a problem for
datasets built from small samples of consumers.

13 I.e. we are assuming that the observed shares are aggregated over a very large number of consumers.
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draws. The market shares are calculated by taking R draws from the distribution of the
random coefficient λ. The “observed” market shares are set to their expected value at the
true parameter values (i.e., we are assuming that the observed shares are aggregated over a
very large number of consumers.)

Computation of the inverse shares follows BLP, but we do not use a variance reduction
(importance sampling) scheme of sort used in that paper.

Table 2 summarizes the estimates of θx, the standard deviation of the random coefficient
on the non-constant x. The results are consistent with the theory that suggest that the esti-
mation routine will perform badly when the number of simulation draws is “small” relative
to the number of products. In particular there seems to be a bias that increases in J holding
R fixed (at least at low values of R). Also when J gets large (take our J = 100), we need
fairly large value of R for that bias to go away (for J=100 we probably need R > 500). As
the theory predicts the variance goes down in the number of products (in J). Recall that
for this model consistency requires both J and R to increase and R must increase at a faster
rate than J .

Table 3 has results for the vertical model. As in Table 1, the variance in observed shares is
generated by small samples of consumers rather than from simulation error in the predicted
shares. Once again, this can produce zero observed market shares, but in the vertical model
the zero share products can be included in the estimation routine at little cost.14

The exact vertical model considers a utility function of

uij = δ − θpλipj, (43)

where δ is “quality”, λi is consumer-specific part of the the marginal disutility of a price
increase and θp is a parameter of the model. To keep the random coefficient in an easy
one-parameter family, we assume that λi is drawn from the unit exponential distribution, so
that θp (set equal to one in the experiments) is the mean disutility of a price increase. In
fact, θp is not separately identified from demand-side data and so is held fixed at one in the
Monte Carlo experiments (this is just a normalization.)

Quality is modeled as δj = xjβ + ξj, where the two components of x are a constant and
a uniform drawn from (0, 2). β is set equal to (1.5,1). The “unobserved” ξj is uniform on
(−1, 1) . To insure that the expected shares are all positive, price is set equal to δ2.15

The results in Table 3 summarize the estimates of β2, the slope coefficient on x in the
quality equation. These results are very different than those for the logit-type models in
table 2. Indeed when we use the vertical model it is striking that there is no apparent
inconsistency in the estimates anywhere in the table (even when J = 200 and n = 50). As
expected, for fixed n the variance decreases in J . However for small n the decrease is almost

14 In practice, the inversion for δ simply sets the δ of zero share products to the δ of the next lowest-priced
good. Since zero shares occur in the vertical model when δ’s are “close together”, this creates little bias.
Note the contrast to the logit model, where zero share products have systematically low δs and where the
inversion routine cannot handle zero shares. We should note that this is the choice of δ for a zero market
share product produced by our estimation algorithm; any δ below this value would also be consistent with
a zero market share.

15 In the vertical model, all shares will be positive if price increases “fast enough” in quality.
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imperceptible, while with large n the variance declines at very close to the rate of
√
J , which

is the rate we would expect if simulation had no impact on the estimates at all.
We conclude with an example of the computation of δ in a multidimensional pure

characteristics- model. To the vertical model of Table 3, we add a random coefficient on
the observed x,

uij = δ + θxλi1xj − θpλi2pj, (44)

with
δ = β0 + β1xj + ξ. (45)

There are now two dimensions of the unobserved consumer tastes, related to x and p.
In the vertical model of Table 3, computation was not an issue and so we focused on

small consumer samples as the source of “simulation” error. In the pure random coefficients
model, the market shares must be simulated and so we focus on simulation error. We assume
that the consumer sample is very large. This is fairly realistic in many datasets and avoids
the problem of sample selection that arises in the small sample case.

As discussed in Berry and Pakes (2002), estimation of the parameters is computationally
cumbersome as the number of products increases, making it difficult to estimate the model
with many repetitions in a Monte Carlo exercise. For computational tractability, we therefore
focus on the computation of δ at fixed values of parameters. In particular, we hold the
parameters (θx, θp) of the random coefficients at their true values and then compute δ from
the constructed data on x, p and expected market shares. The method of solving for ξ is
the “exact” homotopy method of Berry and Pakes (2002). To summarize the relevant error
in the computation, we regress the computed δ on x to obtain an estimate of (β0, β1). In
Table 4, we report the mean estimates of β1 we obtained from repeating this procedure for
different number of products and simulation draws.

The data for Table 4 were created via the following assumptions. The observed xj is
drawn as 1.5 times a random uniform on (0,1). The unobserved ξj is drawn as a a random
uniform on (0,1). (Note that somewhat more of the variance in δ comes from x as oppose
to ξ, which will aid the estimation procedure.) The term δ is then constructed via the
parameters (β0, β1) = (2, 1). To ensure positive market shares, price is set equal to a convex
function of δ, eδ/10. The random “taste” for x is standard normal, while the random term
on price is modeled as a standard log-normal (with µ = 1.)

The results in Table 4 are consistent with our conjecture that the multi-dimensional
pure characteristics model behaves much as the single-dimendional (vertical) model. In
particular there is no obvious bias in the estimates even when there are only a small number
of simulation draws. The “∞” row of Table 4 uses the true δ that created the data (as this
is the δ that would be recovered if both n and R were infinite). This row therefore gives
the results from the model without any simulation error. It is apparent that at low values
of J and high values of R very little of the standard error of the estimate is attributable
to simulation error, but that fraction is still quite large when J = R (note that throughout
we keep R fairly small as that keeps the computational burden of estimating the model
repeatedly on different simulated data sets manageable). Overall, however, the table seems
consistent with the conjecture that the multidimensional pure characteristics model behaves
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similar to the unidimensional characteristic model; in particular we do not need R to grow
faster than J for consistency and fairly precise estimates can be obtained from relatively
small values of R.

A Appendix

Proof of Theorem 1. We first show that the estimator defined as any sequence that satisfies

‖GJ(θ̂, s0, P 0)‖ = inf
θ∈Θ
‖GJ(θ, s0, P 0)‖+ op(1)

is consistent. Note that assumption A1 together with the law of large numbers for triangular arrays
[see, for example, Billingsley (1986, Theorem 6.2)] imply that ‖GJ(θ0, s0, P 0)‖ = op(1). Therefore,
by Theorem 3.1 of Pakes and Pollard (1989) it will suffice to show that for every (δ, ε) > (0, 0)
there exists a C∗(δ) > 0 and an J(ε) such that for J ≥ J(ε)

Pr
[

inf
θ/∈Nθ0 (δ)

‖GJ(θ)‖ ≥ C∗(δ)
]
≥ 1− ε,

where we have omitted indexing GJ by (s0, P 0) for notational convenience. From the triangle
inequality infθ/∈Nθ0 (δ) ‖GJ(θ)−GJ(θ0)‖ ≥ C(δ) implies that

inf
θ/∈Nθ0 (δ)

‖GJ(θ)‖ ≥ C(δ)− ‖GJ(θ0)‖.

Fix ε > 0, and let ε∗ = min{ε, C(δ)}, so that 0 < ε∗ ≤ ε. Since ‖GJ(θ0)‖ = op(1), there exists
J1(ε∗) such that for any J ≥ J1(ε∗), Pr{‖GJ(θ0)‖ ≥ ε∗/2} ≤ ε∗/2. By assumption A1, there exists
J2(ε∗) such that for J ≥ J2(ε∗), Pr{infθ/∈Nθ0 (δ) ‖GJ(θ)−GJ(θ0)‖ ≥ C(δ)} ≥ 1−ε∗/2. Consequently,
(2) implies that for J ≥ max{J1(ε∗), J2(ε∗)}

Pr
[

inf
θ/∈Nθ0 (δ)

‖GJ(θ)‖ ≥ C(δ)− ε∗/2
]
≥ 1− ε∗ ≥ 1− ε.

To complete the proof let C∗(δ) = C(δ)− ε∗/2 > 0.
We now return to the actual estimator θ̂ and show that

‖GJ(θ̂, sn, PR)‖ = inf
θ∈Θ
‖GJ(θ, s0, P 0)‖+ op(1). (46)

We show that
sup
θ∈Θ

1
J
||ξ(θ, sn, PR)− ξ(θ, s0, P 0)||2 = op(1), (47)

which implies that

sup
θ∈Θ
|| 1
J
z′{ξ(θ, sn, PR)− ξ(θ, s0, P 0)}||2 ≤ 1

J
||z′z||2 × 1

J
sup
θ∈Θ
||ξ(θ, sn, PR)− ξ(θ, s0, P 0)||2

= op(1),
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i.e., that supθ∈Θ ‖GJ(θ, sn, PR)−GJ(θ, s0, P 0)‖ = op(1). This in turn implies (46) by the triangle
inequality.

The result (47) follows from the following argument. We show below that

sup
θ∈Θ
||ψJ(ξ(θ, sn, PR), θ, s0, P 0)|| = op(1). (48)

Then, by Assumption A5: when ||ξ − ξ(θ, s0, P 0)|| ≥ δ
√
J, we have infθ∈Θ ||ψJ(ξ, θ, s0, P 0)|| ≥ ε.

This implies that ||ξ(θ, sn, PR) − ξ(θ, s0, P 0)||2/J = op(1) by contradiction, which concludes the
proof of (47) and hence (46). The result (48) follows because:

sup
θ∈Θ
||ψJ(ξ(θ, sn, PR), θ, s0, P 0)|| ≤ sup

θ∈Θ
||ψJ(ξ(θ, sn, PR), θ, s0, P 0)− ψJ(ξ(θ, sn, PR), θ, sn, PR)||

≤ sup
θ∈Θ

sup
ξ
||ψJ(ξ, θ, s0, P 0)− ψJ(ξ, θ, sn, PR)||

≤
∥∥τJ(sn)− τJ(s0)

∥∥
+ sup
θ∈Θ

sup
ξ

∥∥τJ(σ(ξ, s0, P 0) + εR(θ))− τJ(σ(ξ, s0, P 0))
∥∥ .

For some intermediate values sj we have by the mean value theorem

∥∥τJ(sn)− τJ(s0)
∥∥2 =

1
Jα

J∑
j=1

[ ·
τα (sj)(snj − s0

j )
]2

≤ max
1≤j≤J

∣∣∣(s0
j )
α ·
τα (sj)

∣∣∣2 1
Jα

J∑
j=1

[
snj − s0

j

(s0
j )α

]2

≤ max
1≤j≤J

∣∣∣(s0
j )
α ·
τα (sj)

∣∣∣2 × 1
nJα

J∑
j=1

s0
j (1− s0

j )
(s0
j )2α

× (1 + op(1))

= op(1),

by assumption A3, while max1≤j≤J |(s0
j )
α ·
τα (sj)| ≤M with probability tending to one by assump-

tions A3. This is because

M ≥ max
1≤j≤J

∣∣∣(sj)α ·
τ1 (sj)

∣∣∣
= max

1≤j≤J

∣∣∣{(s0
j )
α + sαj − (s0

j )
α} ·τα (sj)

∣∣∣
≥ max

1≤j≤J

∣∣(s0
j )
ατα(sj)

∣∣− max
1≤j≤J

∣∣∣∣∣sαj − (s0
j )
α

sαj

∣∣∣∣∣ max
1≤j≤J

|sαj
·
τα (sj)|

= max
1≤j≤J

∣∣(s0
j )
ατα(sj)

∣∣+ op(1),
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where the op(1) term follows from A3(a) and (c). The result

sup
θ∈Θ

∥∥τJ(σ(ξ, s0, P 0) + εR(θ))− τJ(σ(ξ, s0, P 0))
∥∥ = op(1)

follows by similar arguments using A3(b) and (d)

Proof of Theorem 2. As discussed in section 3, this will follow from Pakes and Pollard
(1989, Theorem 2) provided our remainder terms are op(1) and the leading terms satisfy a central
limit theorem.

Leading Term Argument. We show that[
var
(
c′
√
JGJ(θ0)

)]−1/2
c′
√
JGJ(θ0) (49)

is asymptotically normally distributed with mean zero and variance one for any vector c. Since the
three terms in

√
JGJ(θ0), denoted TJ1, TJ2, and TJ3, say, are mutually independent it suffices to

show that var (c′TJ`)
−1/2 c′TJ`, ` = 1, 2, 3, converge to standard normal random variables. Then,

by the Cramér-Wold device [the fact that a multivariate random variable is normal if any linear
combination of its elements are], we have the result.

A standard central limit theorem for mutually uncorrelated random variables establishes that(
c′E{var(ξ|z)zz′}c

)−1/2
c′J−1/2z′ξ(θ0, s0, P 0) =⇒ N(0, 1).

Condition (27) enables us to apply the Lyapunov central limit theorem for triangular arrays [see
for example, Billingsley (1986, Theorem 27.3)], which says that the random variables c′

∑n
i=1 YJi

and c′
∑R

r=1 Y
∗
J,r are asymptotically normal.

We now turn to the remainder terms. For each fixed θ, we use a Taylor series approximation
to ξ(θ, sn, PR)− ξ(θ, s0, PR) and to ξ(θ, s0, PR)− ξ(θ, s0, P 0). Specifically, by the intermediate
value theorem

0 = σ(ξ(θ, sn, PR), θ, PR)− sn

= σ(ξ(θ, s0, PR), θ, PR)− sn +
∂σ(ξ, θ, PR)

∂ξ′
{
ξ(θ, sn, PR)− ξ(θ, s0, PR)

}
, (50)

where ξ is intermediate between ξ(θ, sn, PR) and ξ(θ, s0, PR). In fact, there are different vec-
tors ξ for each row, but we suppress this for notational convenience. Thus using the facts that
σ(ξ(θ, s0, PR), θ, PR) = s0 and that for any ξ ∈ Nξ0(θ; ε) the matrix ∂σ(ξ, θ, PR) /∂ξ′ is invertible
with probability tending to one, we can write

ξ(θ, sn, PR)− ξ(θ, s0, PR) = −
{
∂σ(ξ, θ, PR)

∂ξ′

}−1

εn (51)
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with probability tending to one. Likewise,

0 = σ(ξ(θ, s0, PR), θ, PR)− s0

= σ(ξ(θ, s0, P 0), θ, PR)− s0 +
∂σ(ξ, θ, PR)

∂ξ′
{
ξ(θ, s0, PR)− ξ(θ, s0, P 0)

}
,

where ξ are intermediate between ξ(θ, s0, PR) and ξ(θ, s0, P 0) as before. Then we use the fact that
σ(ξ(θ, s0, P 0), θ, PR) − s0 = σ(ξ(θ, s0, P 0), θ, PR) − σ(ξ(θ, s0, P 0), θ, P 0) = εR(θ) to obtain that
with probability tending to one

ξ(θ, s0, PR)− ξ(θ, s0, P 0) = −

{
∂σ(ξ, θ, PR)

∂ξ′

}−1

εR(θ). (52)

Therefore,
√
J [GJ(θ)−GJ(θ, sn, PR)] = − 1√

J
z′
[
H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1

]
εn

− 1√
J
z′
[
H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1

]
εR(θ). (53)

We must establish that
√
J [GJ(θ)−GJ(θ, sn, PR)] = op(1) uniformly in θ in a shrinking neighbor-

hood of θ0. We just show that

sup
||θ−θ0||≤εJ

|| 1√
J
z′{H(ξ, θ, PR)−1 −H(θ0, s0, P 0)−1}εn|| = op(1), (54)

from which the result follows. The proof for the term (53) is similar and is omitted. Since ξ is
intermediate between ξ(θ, sn, PR) and ξ(θ, s0, PR) it is also consistent in mean square, i.e., there
exists a sequence εJ → 0 such that Pr[ξ /∈ Nξ0(θ0; εJ)] → 0. Furthermore, for this εJ we have
Pr{ρP (PR, P 0) ≥ εJ} → 0 by the Glivenko-Cantelli theorem. Then, notice that for any η > 0,

Pr

[
sup

||θ−θ0||≤εJ
|| 1√

J
z′{H(ξ, θ, PR)−1 −H(θ, s0, P 0)−1}εn|| > η

]

≤ Pr

[
sup

||θ−θ0||≤εJ
||νJ(ξ, PR, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η

]

≤ Pr

[
sup

||θ−θ0||≤εJ
sup

(ξ,P )∈Nξ0 (θ0;εJ )×NP0 (εJ )

||νJ(ξ, P, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η

]
+ Pr

[
ξ /∈ Nξ0(θ0; εJ)

]
+ Pr

[
PR /∈ NP 0(εJ)

]
= Pr

[
sup

||θ−θ0||≤εJ
sup

(ξ,P )∈Nξ0 (θ0;εJ )×NP0 (εJ )

||νJ(ξ, P, θ)− νJ(ξ(s0, P 0, θ), P 0, θ)|| > η

]
+ o(1)

= o(1)
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by the stochastic equicontinuity condition B5.

Proof of (33). It suffices to show that for any random sequence s(n) converging to s0 we have
||νJ(s(n)) − νJ(s0)|| →p 0. We shall take s(n) = sn and show that Rn = νJ(sn) − νJ(s0) = op(1),
where

Rn =
1√
J
z′{(Sn)−1 − S−1}(sn − s) +

1√
J
z′ii′(sn − s){ 1

1− i′sn
− 1

1− i′s
} ≡ Rn21 +Rn22.

The following argument shows that under our conditionsRn21 = Op(J3/2/n) andRn22 = Op(J3/2/n).
We deal first with Rn21, which can be rewritten using a geometric series expansion as

|Rn21| ≤ max ‖z`‖ ×
1√
J

J∑
`=1

δ2
`

1 + δ`
,

where δ` = (sn` − s`)/s`. For any ε > 0,

Pr [|Rn21| > ε] ≤ Pr
[
|Rn21| > ε and max

1≤`≤J
|δ`| ≤ 1/2

]
+ Pr

[
max

1≤`≤J
|δ`| > 1/2

]

≤ Pr
[
|Rn21| > ε and max

1≤`≤J
|δ`| ≤ 1/2

]
+ o(1)

by the uniform convergence of δ` assumed in A3. When max1≤`≤J |δ`| ≤ 1/2, |Rn21| ≤ 2√
J

∑J
`=1 δ

2
` ,

and by the Markov inequality

Pr

[
2√
J

J∑
`=1

δ2
` > ε

]
≤

2√
J

∑J
`=1E(δ2

` )

ε

=
2

n
√
J

∑J
`=1

(1−s`)
s`

ε
= O(J3/2/n).

Similar calculation applies to Rn22.

Proof of (38) and (37). We show that for any vector z,

z′H−1ek
J2

=
µz
s0

+O(1/J), k = 1, . . . , J, (55)

where µz = limJ→∞ J
−1
∑J

j=1 zj and s0 = limJ→∞ J
∫
s0(λ)dP (λ). The variance formula then

follows from (31). Note that the matrix Γ is the same as in the fixed coefficient logit case.
The proof of (55) is quite long because we can’t directly calculate the inverse of H in this case.

Instead we approximate the continuous mixture by a sequence of finite mixture, each of whose
inverse we can compute. Let T, TJ : P→R, where

TJ(P ) =
z′H(P )−1ek

J2
; T (P ) =

µz
s0(P )

,
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where the notation H(P ) emphasizes the dependence of the matrix H on the probability measure
P. We must show that for all ε > 0, there exists J0 such that for all J ≥ J0,

|TJ(P )− T (P )| < ε.

We shall work with a discrete mixture of fixed coefficient models indexed by m. By the triangle
inequality

|TJ(P )− T (P )| ≤ |TJ(P )− TJ(Pm)|+ |TJ(Pm)− T (Pm)|+ |T (Pm)− T (P )|

= I + II + III

for any m. The proof that III is small follows directly from our assumptions and the strong law
of large numbers. We show below that II converges to zero uniformly in m,J. What remains is to
show that I is small, which follows from the crude inequality

1
J2

∣∣z′H(P )−1ek − z′H(Pm)−1ek
∣∣ ≤ 1

J2

∥∥z′H(Pm)−1
∥∥ ‖H(P )−H(Pm)‖

∥∥H(P )−1ek
∥∥ (56)

and the following bounds (obtained below)

∥∥z′H(Pm)−1
∥∥ ≤ O(J5/2) (57)∥∥H(P )−1ek
∥∥ ≤ O(J2) (58)

‖H(P )−H(Pm)‖ ≤ O(1/m(1−η)/2J1/2), (59)

provided J4+η/m→ 0.
Proof of (58). Writing H(P )−1 = C−1B, we have that H(P )−1ek =

(
b1k
c1
, . . . , bJkcJ

)
whose

(squared) norm is

J∑
j=1

b2jk
c2
j

≤ 1
min1≤j≤J c2

j

 J∑
j=1

bjk

2

≤ cons tan t
J2 {1−∆(J)}2

= O(J4)

because the elements of B and C are known to be positive. This establishes (58). The verification
of (57) is given below.

Proof of (59). Specifically, we show that the matrix H(P ) =
∫
S(λ)dP (λ)−

∫
s(λ)s(λ)′dP (λ)

can be well approximated by the matrix H(Pm) =
∫
S(λ)dPm(λ) −

∫
s(λ)s(λ)′dPm(λ), where Pm

is an empirical distribution of size m from the population governed by P, that is,

H(Pm) =
1
m

m∑
`=1

{
S(λ`)− s(λ`)s(λ`)′

}
.

We work element by element. Since Jsj(λ) is bounded away from both zero and infinity, we have
that for positive finite constants c1 and c2,
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Pr
[∣∣∣∣J2

∫
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

∣∣∣∣ > κ

m

]
≤ exp

[
−2κ2/mc1

]
Pr
[
J

∣∣∣∣∫ sj(λ)(1− sj(λ)) {dPm(λ)− dP (λ)}
∣∣∣∣ > κ

m

]
≤ exp

[
−2κ2/mc2

]
,

by Hoeffding’s exponential inequality, see Pollard (1984, p191). Therefore taking κ = cm1/2(logm)r,
we have by the Bonferroni inequality,

Pr
[

max
1≤j 6=k≤J

∣∣∣∣J2

∫
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

∣∣∣∣ > c(logm)r

m1/2

]

≤
∑∑
j 6=k

Pr
[
J2

∣∣∣∣∫ sj(λ)sk(λ) {dPm(λ)− dP (λ)}
∣∣∣∣ > c(logm)r

m1/2

]

= O(J2) exp[−c∗(logm)2r] (60)

for some constant c∗. Taking m = Jα for any α > 0, we get that

∞∑
m=1

Pr
[

max
1≤j 6=k≤J

∣∣∣∣J2

∫
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

∣∣∣∣ > c(logm)r

m1/2

]
<∞

provided r > 3/2c∗α, so that by the Borel-Cantelli lemma, we have for any η > 0,

m(1−η)/2 max
1≤j 6=k≤J

∣∣∣∣J2

∫
sj(λ)sk(λ) {dPm(λ)− dP (λ)}

∣∣∣∣ −→ 0 (61)

with probability one. Similarly,

m(1−η)/2 max
1≤j≤J

∣∣∣∣J ∫ sj(λ)(1− sj(λ)) {dPm(λ)− dP (λ)}
∣∣∣∣ −→ 0 (62)

with probability one. In conclusion, the discrete mixture of logits well approximates any random
coefficient logit matrix. Specifically, (59) follows because

‖H(P )−H(Pm)‖2 =
J∑
j=1

{H(P )−H(Pm)}2j,j +
J∑
j=1

J∑
k=1

j 6=k

{H(P )−H(Pm)}2j,k

≤ J max
1≤j≤J

{H(P )−H(Pm)}2j,j + J2 max
1≤j 6=k≤J

{H(P )−H(Pm)}2j,k

= O(1
/√

Jm1−η )

with probability one for large m,J by (61) and (62).
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Proof of II. Consider the discrete mixture

H =
1
m

m∑
`=1

(S` − s`s`′),

where s` = (s`1, . . . , s
`
J)′, ` = 1, . . . ,m. We show that

1
J2
z′H−1ek =

1
J

∑J
j=1 zj

J 1
m

∑m
`=1 s

`
0

+O(1/J), k = 1, . . . , J, (63)

where s`0 = 1−
∑J

j=1 s
`
j = O(1/J), ` = 1, . . . ,m.

Write H = (D + UV ′)/m, where D =
∑m

`=1 S
` and U = (s1, . . . , sJ) and V = −(s1, . . . , sJ).

We have

z′H−1ek = m
{
z′D−1ek − z′D−1U(I + V ′D−1U)−1V ′D−1ek

}
(64)

by the Sherman-Morrison-Woodbury formula [Golub and Van Loan (1989, p51)]. First note that

z′D−1ek =
zk
dk

= O(J/m),

where dj =
∑m

`=1 s
`
j = O(m/J), j = 1, . . . , J, so this term is of smaller order. We are going to

establish that

[
(I + V ′D−1U)−1

]
ij

=
1 +O(1/J)∑m

`=1 s
`
0 [1 +O(1/J)]

(65)

for all i, j = 1, . . . ,m. In this case,

m

J2
z′D−1U(I + V ′D−1U)−1V ′D−1ek =

1
J2 1

m

∑m
`=1 s

`
0

z′D−1Uii′V ′D−1ek +O(1/J),

where i′V ′D−1ek = 1 and z′D−1Ui =
∑J

j=1 zj , so we get the required result (63).
We have

z′D−1U1×m =
( ∑J

j=1

zjs
1
j

dj
, · · · ,

∑J
j=1

zjs
m
j

dj

)
; V ′D−1ek = −


s1k
dk
...
smk
dk


and

I + V ′D−1U =


1−

∑J
j=1

(s1j )
2

dj
−
∑J

j=1

s1js
2
j

dj
· · · −

∑J
j=1

s1js
m
j

dj

−
∑J

j=1

s2js
1
j

dj
1−

∑J
j=1

(s2j )
2

dj
−
∑J

j=1

s2js
m
j

dj
...

. . .
...

−
∑J

j=1

smj s
1
j

dj
−
∑J

j=1

smj s
2
j

dj
· · · 1−

∑J
j=1

(smj )2

dj

 . (66)

Substitute smj = dj −
∑m−1

`=1 s`j and use the fact that
∑J

j=1 s
`
j = 1− s`0, to obtain
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J∑
j=1

smj s
k
j

dj
= 1− sk0 −

m−1∑
`=1

 J∑
j=1

skj s
`
j

dj

 ≡ 1− sk0 −
1
m

m−1∑
`=1

a`k

J∑
j=1

(smj )2

dj
=

J∑
j=1

dj +
m−1∑
`=1

m−1∑
k=1

J∑
j=1

s`js
k
j

dj
− 2

m−1∑
`=1

J∑
j=1

s`j

≡
m−1∑
`=1

m−1∑
k=1

a`k +
m−1∑
`=1

s`0 − sm` − (m− 2),

where a`k =
∑J

j=1

skj s
`
j

dj
. Therefore, we can write

I + V ′D−1U =
[
A a
a′ b

]
+

1
J

[
0m−1,m−1 δ

δ′ φ

]
= X +

E

J
,

where the m− 1×m− 1 matrix A is

A =


1− a11 −a12 · · · −a1,m−1

−a12 1− a22 · · · −a2,m−1
...

. . .
...

−a1,m−1 −a2,m−1 . . . 1− am−1,m−1

 ,

while the m− 1× 1 column vectors

a =


−
{

1−
∑m−1

`=1 a1`

}
...

−
{

1−
∑m−1

`=1 am−1,`

}
 ; δ =

 Js1
0

...
Jsm−1

0

 ,
and the scalars b = (m− 1)−

∑m−1
`=1

∑m−1
k=1 a`k and φ = J(−

∑m−1
`=1 s`0 + sm` ).

Note that the matrix X = (xjk) is singular, in fact the last column (row) is equal to minus the
sum of the preceding m− 1 columns (rows). Therefore, by Taylor expansion

det
(
X +

E

J

)
=

1
J

m∑
j,k=1

∂ det (X)
∂xjk

ejk +
1

2J2

m∑
j,k,l,r=1

∂2 det (X)
∂xjk∂xlr

ejkelr + . . . (67)

First, we have that ∂ det (X) /∂xjk = xAdjjk , where xAdjjk is the adjoint [i.e., the determinant of the
matrix Xjk formed by deleting the j’th row and k’th column from X, see Anderson (1984, p598)]
of xjk. In fact, for all j, k

xAdjjk = det(A), (68)

as we show below. Since most of the matrix E = (ejk) is zero, we only need the adjoints corre-
sponding to the outer (right) border of the matrix X, which means there are only order m terms
in the first summation in (67). Also, note that
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∂2 det (X)
∂xmj∂xmk

=
∂2 det (X)
∂xjm∂xkm

= 0 j, k = 1, . . . ,m,

so there are only order m2 terms in the second summation. Furthermore, since

∂2 det (X)
∂xmj∂xkm

= det(Ajk) = O(det(A)/m),

the second term in (67) is of order m/J2 and

det(I + V ′D−1U) = det(A)
m∑
`=1

s`0[1 +O(1/J)]. (69)

Finally, we must show that the adjoints of the matrix Z = X + E/J satisfy

zAdjjk = det(A)[1 +O(1/J)], j 6= k, (70)

which implies (65) holds.

Proof of (68). We use the fact that determinants are invariant to certain linear transforma-
tions and also that the matrix X has the following property

xjm = −
m−1∑
`=1

xj` ; xmk = −
m−1∑
`=1

xm`, j, k = 1, . . . ,m,

to show that the determinant of the matrix

Xmj =

 x11 · · · x1,j−1 x1,j+1 · · · x1,m
...

...
...

...
xm−1,1 · · · xm−1,j−1 xm−1,j+1 · · · xm−1,m


is the same as the determinant of the matrix A. Specifically, add columns 1 to m−2 to the m−1’th
column and one gets the matrix A. For general Xjk a sequence of such transformations gives the
result.

Proof of (70). Essentially the same as above.
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Table 1:
Monte Carlo Estimates for the Simple Logit Model

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Consumer Draws # of Products (J)
(n) 10 25 50 100 200
500 0.941 0.798 0.778 0.633 0.518

(0.362) (0.209) (0.137) (0.086) (0.076)
[0.011] [0.007] [0.068] [0.004] [0.002]

1000 0.997 1.013 0.974 0.934 0.882
(0.426) (0.255) (0.149) (0.120) (0.077)
[0.014] [0.008] [0.005] [0.004] [0.002]

2000 1.023 1.046 0.998 0.976 0.923
(0.500) (0.224) (0.138) (0.123) (0.089)
[0.016] [0.007] [0.004] [0.004] [0.004]

10J 0.685 0.728 0.768 0.921 0.916
(0.406) (0.214) (0.132) (0.110) (0.088)
[0.013] [0.007] [0.004] [0.004] [0.004]

J2 0.615 0.857 1.021 1.022 1.015
(0.358) (0.200) (0.139) (0.101) (0.077)
[0.011] [0.006] [0.004] [0.003] [0.002]

∞ 1.027 0.997 0.995 1.007 1.008
(0.376) (0.242) (0.133) (0.094) (0.073)
[0.012] [0.008] [0.004] [0.003] [0.002]

Notes: Simulated Standard Errors (empirical standard deviations across the repititions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].

46



Table 2:
Monte Carlo Estimates for the Random Coefficients Logit

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Simulation # of Products (J)
draws (R) 10 50 100

10 1.194 1.218
(0.982) (0.512) *

[.031] [0.016]
50 1.025 1.039 1.241

(0.645) (0.311) (0.495)
[0.020] [0.010] [0.016]

100 0.982 1.013 1.037
(0.674) (0.271) (0.209)
[0.021] [0.009] [0.007]

500 0.998 1.008 1.015
(0.633) (0.255) (0.181)
[0.002] [0.008] [0.006]

10J 0.982 1.008 1.018
(0.674) (0.255) (0.181)
[0.014] [0.008] [0.006]

Notes: Simulated Standard Errors (empirical standard deviations across the repititions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].

∗With 100 products and only 10 draws, we had numeric problems computing the estimates.
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Table 3:
Monte Carlo Estimates for the Pure Vertical Model

True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Consumer # of Products (J)
Draws (n) 10 25 50 100 200

50 1.023 1.022 1.011 0.997 1.013
(0.494) (0.373) (0.349) (0.321) (0.302)
[0.016] [0.012] [0.011] [0.010] [0.010]

100 1.005 1.010 1.005 1.002 1.009
(0.426) (0.303) (0.257) (0.244) (0.217)
[0.014] [0.010] [0.008] [0.008] [0.007]

500 0.993 0.998 1.001 1.005 1.007
(0.371) (0.223) (0.176) (0.142) (0.123)
[0.012] [0.007] [0.006] [0.005] [0.004]

1000 1.01 0.99 1.00 1.00 1.00
(0.361) (0.227) (0.162) (0.118) (0.097)
[0.011] [0.007] [0.006] [0.004] [0.003]

10J 1.018 1.014 1.008 0.998 0.996
(0.440) (0.253) (0.175) (0.120) (0.085)
[0.014] [0.008] [0.006] [0.004] [0.003]

J2 0.998 0.998 1.000 1.002 1.000
(0.423) (0.227) (0.153) (0.105) (0.074)
[0.014] [0.007] [0.005] [0.003] [0.002]

∞ 0.997 0.999 0.999 1.001 0.997
(0.364 (0.214) (0.141) (0.101) (0.072)
[0.011] [0.007] [0.005] [0.003] [0.002]

Notes: Simulated Standard Errors (empirical standard deviations across the repititions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].
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Table 4:
Monte Carlo Estimates for a Pure Characteristics Model

True Value of the Parm is 1
100 Monte Carlo Repetitions

# Simulation # of Products, (J)
Draws (R) 10 25 50 100

10 1.039 0.999 1.016 1.021
(0.370) (0.332) (0.311) (0.325)
[0.037] [0.033] [0.031] [0.033]

25 1.043 0.993 0.999 1.010
(0.279) (0.268) (0.235) (0.214)
[0.028] [0.027] [0.024] [0.021]

50 1.040 1.006 0.992 1.024
(0.243) (0.215) (0.187) (0.161)
[0.024] [0.021] [0.019] [0.016]

100 1.036 1.023 0.987 1.012
(0.224) (0.182) (0.143) (0.136)
[0.022] [0.018] [0.014] [0.014]

J 1.039 0.993 0.992 1.012
(0.370) (0.268) (0.187) (0.136)
[0.037] [0.027] [0.019] [0.014]

∞ 1.030 1.013 0.986 1.002
(0.207) (0.164) (0.103) (0.061)
[0.021] [0.016] [0.010] [0.006]

Notes: Simulated Standard Errors (empirical standard deviations across the repititions) in
(·) and Simulated Standard Error of the Estimated Mean in [·].
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