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Abstract

The asymptotic refinements attributable to the block bootstrap for time series are
not as large as those of the nonparametric iid bootstrap or the parametric bootstrap.
One reason is that the independence between the blocks in the block bootstrap sample
does not mimic the dependence structure of the original sample. This is the join-point
problem.

In this paper, we propose a method of solving this problem. The idea is not to
alter the block bootstrap. Instead, we alter the original sample statistics to which
the block bootstrap is applied. We introduce block statistics that possess join-point
features that are similar to those of the block bootstrap versions of these statistics.
We refer to the application of the block bootstrap to block statistics as the block-block
bootstrap. The asymptotic refinements of the block-block bootstrap are shown to be
greater than those obtained with the block bootstrap and close to those obtained
with the nonparametric iid bootstrap and parametric bootstrap.

Keywords: Asymptotics, block bootstrap, block statistics, Edgeworth ex-
pansion, extremum estimator, generalized method of moments estimator,
maximum likelihood estimator, ¢ statistic, test of over-identifying restric-
tions.

JEL Classification Numbers: C12, C13, C15.



1 Introduction

The principal theoretical attribute of bootstrap procedures is the asymptotic
refinements they provide. That is, when properly applied, bootstrap tests have errors
in null rejection probabilities that are of a smaller order of magnitude as the sample
size, N, goes to infinity than those of standard asymptotic tests based on the delta
method. Similarly, bootstrap confidence intervals (CIs) have coverage probability
errors of a smaller order of magnitude than those of standard asymptotic CIs based
on the delta method.

This paper is concerned with the magnitude of the asymptotic refinements of the
block bootstrap for time series. These asymptotic refinements are not as large as
those of the nonparametric iid bootstrap or the parametric bootstrap. For example,
for iid observations, the error in rejection probability (ERP) of a one-sided bootstrap
t test based on the nonparametric iid bootstrap is O(N~1), e.g., see Hall (1992). In
contrast, for stationary strong mixing observations, the ERP of a one-sided bootstrap
t test based on non-overlapping or overlapping blocks is O(N~1/2-€) for 0 < ¢ < 1/4,
where £ depends on the block length, see Andrews (2002), hereafter denoted A2002,
and Zvingelis (2002). For the parametric bootstrap, the ERP of a one-sided bootstrap
t test is essentially the same as that for the nonparametric iid bootstrap. This holds
for iid observations as well as for stationary strong mixing Markov observations, see
Andrews (2001b).

There are two reasons why the asymptotic refinements of the block bootstrap are
less than those of the nonparametric iid bootstrap. The first is that the independence
between the blocks in the block bootstrap sample does not mimic the dependence
structure of the original sample. This is the join-point problem. The second reason
is that the use of blocks of length greater than one increases the variability of various
moments calculated under the block bootstrap distribution in comparison to their
variability under the nonparametric iid bootstrap distribution. The reason is that
the variability is determined by the amount of averaging that occurs over the blocks
and longer blocks yields fewer blocks and, hence, fewer terms in the averages.

In this paper, we propose a method of solving the join-point problem. We do
not alter the block bootstrap, because there does not seem to be a way to avoid
its join-point feature. Rather, we alter the original sample statistics to which the
block bootstrap is applied. We introduce block statistics (for the original sample)
that have join-point features that resemble those of the block bootstrap versions of
these statistics. We call the application of the block bootstrap to block statistics the
block-block bootstrap.

The asymptotic refinements obtained by the block-block bootstrap are shown to
be greater than those obtained by the standard block bootstrap. In fact, the block
length can be chosen such that the magnitude of the asymptotic refinements of the
block-block bootstrap is arbitrarily close to that obtained in the iid context using the
nonparametric iid bootstrap. In practice, however, one would not expect the block-
block bootstrap to perform as well as the nonparametric iid bootstrap for iid data.
But, the asymptotic results suggest that it should outperform the block bootstrap in
terms of ERPs and CI coverage probabilities.



A block statistic is constructed by taking a statistic that depends on one or more
sample averages and replacing the sample averages by averages with some summands
deleted. Let ¢ denote the block length to be used by the block bootstrap. We take £
such that £ = £y — 0o as N — o0o0. The join points of the block bootstrap sample are
41,20+ 1,..., (b—1)¢, where b is the number of blocks and N = bl. We delete the
[7¢] summands before each of the join points, where [7¢] denotes the smallest integer
greater than or equal to 7¢, 7 € (0,1), and 7 = 7y — 0 and 7/ — C'log(N) — oo
as N — oo for all constants 0 < C' < oo. For example, 7 o« N™%7 satisfies these
conditions for any 0 < § < 1. Note that 7 is the fraction of observations that are
deleted from each block and from the whole sample.

For example, consider an estimator that minimizes a sample average of summands
that depend on the observations and an unknown parameter @, such as a quasi-
maximum likelihood or least squares estimator. The corresponding block estimator
minimizes the same sample average but with the summands described above deleted.
A Dblock t statistic for 8 is based on a block estimator of 6 normalized by a block
standard deviation estimator.

Consider a sample average that appears in the definition of a block statistic. The
last non-zero summand in one block is separated from the first summand in the next
block by [7¢] time periods, where [7¢] — oo as N — oco. In consequence, for an
asymptotically weakly dependent time series, such as a strong mixing process, the
blocks are asymptotically independent. On the other hand, the blocks that appear
in the bootstrap version of the block statistic are independent by construction.

Independence of the bootstrap blocks mimics the asymptotic independence of
the original sample blocks sufficiently well that the join-point problem is solved.
That is, join points do not affect the magnitude of the asymptotic refinements of
the block-block bootstrap. See Section 2 for a detailed discussion of why this is
true. Also, the join-point correction factors introduced in Hall and Horowitz (1996)
and employed in A2002 for use with the block bootstrap are not needed with the
block-block bootstrap.?2 Furthermore, in the case of an m-dependent process, the
block length can be finite with the block-block bootstrap, whereas it must diverge to
infinity with the standard block bootstrap.

Although the block-block bootstrap solves the join-point problem, the block-block
bootstrap yields moments that are more variable than moments under the nonpara-
metric iid bootstrap distribution—just as the standard block bootstrap does. In
consequence, the asymptotic refinements obtained by the block-block bootstrap still
depend on the block length. In particular, they are decreasing in the block length.
Suppose £ o« N7 for some 0 < v < 1. In this paper, we show that the ERP of
a one-sided bootstrap ¢ test using the block-block bootstrap is O(N -1/ 2=8) for all
€ < 1/2 — . In consequence, if 7 is taken close to zero, the ERP is close to O(N~1),
which is the ERP of a one-sided nonparametric iid bootstrap ¢ test.

In practice, one has to use a block length £ and a deletion fraction 7 that are large
enough to accommodate the dependence in the data. Hence, one cannot just take
v arbitrarily close to zero. Thus, the above asymptotic result does not imply that
one would expect the block-block bootstrap to work as well as the nonparametric iid



bootstrap does with iid data. However, it does suggest that the block-block bootstrap
should have smaller ERPs when v < 1/4 than does the block bootstrap.

Block statistics have the same asymptotic efficiency as the standard statistics
upon which they are based, because m — 0 as N — oo. Hence, block-block bootstrap
tests have the same asymptotic local power as standard asymptotic tests and as
block bootstrap tests. Nevertheless, block statistics sacrifice some efficiency in finite
samples because some observations are deleted. This is a drawback of the use of the
block-block bootstrap.

A second drawback of the block-block bootstrap is that it requires the specification
of the deletion fraction 7, as well as the block length £. The asymptotic results do not
suggest a data-dependent method that is appropriate for choosing 7 and ¢. In fact,
the asymptotic refinements are maximized by taking  arbitrarily close to zero, which
is not a wise choice for finite samples, as stated above. (This implies that higher-
order expansions are not helpful in choosing «.) Also, the asymptotic refinements
do not depend on 7, provided 7 satisfies the conditions listed above, so they do not
provide information regarding a good choice of 7. It may be possible, however, to
using higher-order expansions to determine a suitable choice of 7 for a given value of
~. This is beyond the scope of the present paper.

This paper presents the results of some Monte Carlo experiments that are designed
to assess the finite sample performance of the block-block bootstrap. A dynamic
regression model with regressors given by a constant, a lagged dependent variable,
and three autoregressive variables is considered. Two-sided ClIs for the coefficient on
the lagged dependent variable are analyzed.

Standard delta method Cls are found to perform very poorly. For example, in the
base case considered, which has a coefficient of .9 on the lagged dependent variable, a
nominal 95% delta method CI has coverage probability of .759. Block and block-block
bootstrap Cls are found to out-perform the delta method CI by a noticeable margin.
For example, the usual nominal 95% symmetric non-overlapping block bootstrap
CI with block lengths ¢ = 5 and 10 has coverage probabilities of .922 and .915,
respectively. The block-block bootstrap is found to improve upon the block bootstrap
in most cases. For example, in the base case, with deletion fraction m = .2 and
block lengths ¢ = 5 and 10, the coverage probabilities of the symmetric block-block
bootstrap are .928 and .938, respectively. The coverage probabilities of equal-tailed
block and block-block bootstrap Cls are found to be noticeably worse than those of
symmetric bootstrap Cls, but still noticeably better than those of delta method Cls.

In sum, the Monte Carlo results illustrate that the block-block bootstrap improves
the finite sample performance of the block bootstrap in the dynamic regression mod-
els that are considered. The results also show that any of the bootstrap methods
considered out-performs the delta method by a substantial margin.

We now discuss some alternative bootstraps for time series to the block bootstrap.
One alternative is the parametric bootstrap for Markov time series. See Andrews
(2001b) for an analysis of the higher-order improvements of this bootstrap. An ob-
vious restriction of the parametric bootstrap is that it requires the existence of a
parametric model or, at least, a conditional parametric model given some covariates.



Another alternative bootstrap procedure for Markov processes, that does not
require a parametric model, is the Markov conditional bootstrap (MCB). Under some
conditions, the MCB yields asymptotic refinements that exceed those of the block
bootstrap, see Horowitz (2001). The MCB utilizes a nonparametric density estimator
of the Markov transition density. This density has dimension equal to the product of
the dimension of the observed data vector and the order of the Markov process plus
one. For example, for a bivariate time series and a first-order Markov process, a four
dimensional density needs to be estimated. Since nonparametric density estimators
are subject to the curse of dimensionality, they are reliable only when the density has
dimension less than or equal to three or, perhaps, four. In consequence, the range of
application of the MCB is restricted to very low dimensional problems.

The tapered bootstrap of Paparoditis and Politis (2001, 2002) (PP) is another
alternative to the block bootstrap. The tapered bootstrap is a variant of the block
bootstrap in which the observations near the ends of the bootstrap blocks are down-
weighted. PP shows that the tapered bootstrap is asymptotically correct to first
order and that it reduces the asymptotic bias of the bootstrap variance estimator.
PP does not address the issue of asymptotic refinements of the tapered bootstrap.

When the standard block bootstrap is applied to block statistics, as it is in this
paper, the resulting bootstrap is a tapered bootstrap in which the tapering function
is rectangular. Hence, the bootstrap procedure considered here is related to the
tapered bootstrap of PP.3 However, the key to obtaining the improved asymptotic
refinements of the block-block bootstrap over the block bootstrap is that both the
original sample statistic and the block bootstrap downweight observations near the
end of the blocks. This is not considered in PP and it differentiates the approach
taken in this paper from that of PP.

The discussion above indicates that the available alternatives to the block boot-
strap for time series are useful, but are either only applicable in restrictive contexts
or are not known to produce asymptotic refinements. In consequence, the problem
addressed in this paper of how to increase the asymptotic refinements of the block
bootstrap remains an important problem.

The results of this paper apply using the same assumptions and for the same cases
as considered in A2002. In particular, two types of block bootstrap are considered—
the non-overlapping block bootstrap, introduced by Carlstein (1986), and the over-
lapping block bootstrap, introduced by Kiinsch (1989). The results apply to ex-
tremum estimators, including quasi-maximum likelihood, least squares, and gener-
alized method of moment (GMM) estimators. The results cover ¢ statistics, Wald
statistics, and J statistics based on the extremum estimators. One-sided, symmetric
two-sided, and equal-tailed two-sided t tests and Cls are covered by the results. Tests
of over-identifying restrictions are covered.

A key assumption made throughout the paper is that the estimator moment
conditions are uncorrelated beyond some finite integer k£ > 0, which implies that
the covariance matrix of the estimator can be estimated using at most k correlation
estimates. This assumption is satisfied with kK = 0 in many time series models in
which the estimator moment conditions form a martingale difference sequence due to



optimizing behavior by economic agents, due to inheritance of this property from a
regression error term, or due to the martingale difference property of the ML score
function. It also holds with 0 < kK < oo in many models with rational expectations
and/or overlapping forecast errors, such as McCallum (1979), Hansen and Hodrick
(1980), Brown and Maital (1981), and Hansen and Singleton (1982). For additional
references, see Hansen and Singleton (1996). This assumption is also employed in
A2002 and Hall and Horowitz (1996).

Some papers in the literature that do not impose the uncorrelatedness restriction
beyond « lags are Gotze and Kiinsch (1996), Lahiri (1996), and Inoue and Shintani
(2000). However, if the uncorrelatedness restriction does not hold and one employs a
heteroskedasticity and autocorrelation consistent covariance matrix estimator, then
the asymptotic refinements of the block bootstrap are smaller than otherwise and
they depend on the choice of the smoothing parameter. The use of block statistics
also may prove to have advantages in such cases. This is left to further research.

The proofs of the results in this paper make extensive use of the results of A2002.
That paper, in turn, relies heavily on the methods used by Hall and Horowitz (1996),
Bhattacharya and Ghosh (1978), Chanda and Ghosh (1979), Gétze and Hipp (1983,
1994), and Bhattacharya (1987).

The paper A2002 considers the k-step block bootstrap as well as the standard
block bootstrap. The asymptotic refinements established in this paper for the block-
block bootstrap also hold for the k-step block bootstrap applied to block statistics
provided the condition in A2002 on the magnitude of k is satisfied.

The remainder of the paper is organized as follows: Section 2 gives an overview of
the problem considered in the paper and its solution based on block statistics. Section
3 defines the block extremum estimators. Section 4 defines the overlapping and non-
overlapping block-block bootstraps. Section 5 states the assumptions. Section 6
establishes the asymptotic refinements of the block-block bootstrap. Section 7 reports
some Monte Carlo results. An Appendix contains proofs of the results.

2 Overview of the Proposed Approach

In this section, we provide heuristic explanations of (i) the ERP of the standard
one-sided asymptotic ¢ test, (ii) the source of asymptotic refinements of the bootstrap,
(iii) the join-point problem of the block bootstrap, and (iv) the improved asymptotic
refinements attributable to the block-block bootstrap. Explanations of points (i) and
(ii) are needed in order to exposit points (iii) and (iv).

2.1 ERP of the Standard Asymptotic ¢ Test

We begin by discussing the ERP of the usual one-sided asymptotic ¢ test. (The
basic idea also applies to one-sided Cls and two-sided tests and Cls.) The ob-
served sample is xy = {X; : ¢ < N}. We have an extremum estimator EN of
an unknown parameter # € © C RL¢. The estimator minimizes a sample average
pn(0) = N"1S N 5(X;,0), where p(-, -) is a known function. For example, Oy could



be a least squares or maximum likelihood estimator. (The results given below also
cover the case where 0y is a GMM estimator.)

We are interested in testing the null hypothesis Hg : 0, = 6, against the alter-
native hypothesis Hj : 8, > 6o, where 6, is the r-th element of 6. The ¢ statistic for
HO is

Ty = N2y, — 60,)/ (on)1? (2.1)

rr

where 5N7T denotes the r-th element of 5N and (on)rr denotes an estimator of the
asymptotic variance of N1/2 (51\7771 —6p,). The usual ¢ test with asymptotic significance
level « rejects Hy if Ty > zq, where z, is the 1 — o quantile of a standard normal
distribution.

Under suitable smoothness and moment conditions on p(X;,#), one can obtain an
Edgeworth expansion for the distribution function (df) of T that holds under Hjp.
In particular, under Hyp, we have

P(Ty < 2) = ®(2) + N™qn(2)(2) + Rn (2), (2.2)

where the remainder Ry (z) satisfies sup,cz|Rn(2)] = O(N71) as N — oo, the
function gy (z) is O(1) uniformly over z as N — oo, and ¢(z) denotes the standard
normal density function.

Taking z = z, in the Edgeworth expansion of (2.2) gives

P(Ty > 24) =1 — ®(2,) = N2 (20)d(20) + O(NTY) =1 — B(2,) + O(N~Y?).
(2.3)
Thus, the ERP under Hy of the asymptotic ¢ test is of order O(N_I/Q) as N — oo.
To understand the asymptotic refinements that the bootstrap can provide, the
form of the function gy(z) in (2.2) is important. The function gy(z) is an even
polynomial in z of order two. The coefficients of the polynomial in 2z are polynomials
in moments of normalized partial derivatives of the criterion function p (6) evaluated
at 0o, where 0y denotes the true value of § under Hy. (The coefficients also depend
on moments of normalized derivatives of random functions that arise in the standard
error estimator (o N)%P) An example of such a moment is

2
( 1/22 pXZ,Q(J), (2.4)

where E denotes expectation under the distribution P that generates the sample x
and F(0/0601)p(X;,00) = 0 by the asymptotic first-order conditions for the estimator.
If the observations are iid, the moment in (2.4) reduces to

E (8%;)()(@, 90)>2. (2.5)

With dependent observations, the moment in (2.4) involves a double sum of correla-
tions of random variables that depend on X; and X for i,5 =1,..., V.



2.2 Asymptotic Refinements of the Bootstrap

Next, we discuss the bootstrap and the asymptotic refinements that it achieves.
The idea of the bootstrap is to estimate the joint distribution P of the observations by
some estimator, say P*, using the sample y, and to use this estimator to determine
the distribution of T rather than to rely on the asymptotic distribution of Ty . For
example, if the data are iid, one can take P* to be the distribution of iid random
vectors each of which has distribution given by the empirical distribution of the
sample x . This yields the nonparametric #id bootstrap. For dependent data, one
can use the block bootstrap, which is described below.

Let x& = {X} : ¢ < N} be a sample of random vectors that are distributed
according to P* conditional on xy. Define p}, (0) as py(0) is defined, but with x7}
in place of xy; define 073 to minimize p};(0) over O; define ((r}‘v)%z as (O’N)%Q is
defined, but with xj; in place of xy; and define the bootstrap t statistic Tx =
N2 (ON —/9\N7T) / (O’}‘V)%Z The distribution of T3, under P* mimics that of Ty under
P, provided P* is a suitable estimator of P. In consequence, the 1 — o quantile of
Ty, denoted 27}, can be used to approximate the 1 — o quantile of Tyy. Hence, the
bootstrap test of asymptotic significance level a rejects Hy if Ty > 27 ..

Typically, the analytic calculation of 2., is intractable, but the simulation of
samples x7 with distribution P* is easy and fast. In consequence, the bootstrap
is carried out by (i) simulating a large number, B, of bootstrap samples x4 (b) =
{X}():1 < N} for b=1,..., B, which are independent across samples (but not nec-
essarily within samples) with each sample having distribution P*; (ii) computing the
B bootstrap criterion functions pj;(6,0), estimators §73(b), and ¢ statistics T (b) for
the bootstrap samples % (b) for b =1, ..., B; and (iii) approximating the population
1—a quantile 5. , of Tx by the sample 1—a quantile 2. (B) of {T%(b) : b=1,..., B}.
As B — o0, 2} ay(B ) converges in probability to z7. ,, because a sample quantile of iid
random variables converges in probability to the éorresponding population quantile.
Andrews and Buchinsky (2000) provide a three-step method for determining a value
of B so that 2. (B) is close to 2., with high probability. Often, B needs to be in
the range of 750-1000. ’

Under suitable conditions, one can obtain an Edgeworth expansion for the df of
Ty, that holds under Hy conditional on x . In particular, under Hyp, we have

P(T} < 2) = ®(2) + N™24(2)9(2) + Riy(2), where

P(sup|Ry(2)] > CN™H) =0O(N"') as N — o0 (2.6)
zER

for all constants C' > 0. Note that the Edgeworth expansion in (2.6) is random
because it depends on the original sample y -

The function g} (2) in (2.6) is the same polynomial in z as gy (z), except that the
moments that appear in the coefficients of the polynomial in z are taken with respect
to P* rather than P. Thus, the moment in (2.4) appears in the Edgeworth expansion
of T, with the expectation taken under P* rather than P.

Using the Edgeworth expansions of (2.2) and (2.6) evaluated at z = 27, , and the



definition of 27, the ERP of the bootstrap ¢ test under Hy can be written as

P(Ty > z1,) —
= P(In > 274) = P (Ty > 274)

= N7V (g8 (#h0) —an(#h)) $(Z0) + BN (Zha) = B (i), (27)

where 2}, , —p 2o as N — 00. The remainder terms are of smaller order of magnitude
than the first term and, hence, can be ignored.

The ERP of the bootstrap ¢ test depends on the magnitude of ¢} (2. ) —qn (25 ,)-
This, in turn, depends on the magnitude of the difference between moﬁlents, such as
that in (2.4), calculated under P* and under P. Provided these differences are of order
0,(N~¢) for some & > 0, the ERP of the bootstrap can be shown to be o( N~1/2-¢),
which is smaller than that of the standard asymptotic ¢ test. The magnitude of these
differences depends on how good an estimator P* is of P, which depends on the type
of bootstrap that is used.

2.3 Asymptotic Refinements of the Bootstrap for Iid Observations

If the data are iid and P* is the nonparametric iid bootstrap distribution, then
the expected value of a random variable under P* equals the sample average of the
random variable with respect to the sample x . This holds because X has a discrete
distribution with probability 1/N of equaling X; for all j = 1,..., N under P*. For

example,
2

o (a%p<xg*,eo>>2 =N-lé (a%mxi,eo)) , (25)

where E* denotes expectation with respect to P*. By the central limit theorem,

B (a%mxgz 90)>2 - F ((%mxi, %))Q — 0,(N12), (29)

In consequence, the difference between the moment in (2.5) under P* and under
P is of order N=1/2. Analogous results hold for other moments. Hence, the order
of magnitude of ¢y (27.,) — an(27,) 18 N-1/2, Using (2.7), this yields the order of
magnitude of the ERP of the nonparametric iid bootstrap to be N~!. Thus, the order
of magnitude of the ERP of the nonparametric iid bootstrap t test, N~!, is much
smaller than that of the asymptotic ¢ test, N~1/2.

2.4 Asymptotic Refinements of the Block Bootstrap

We now discuss the block bootstrap for time series observations and, in partic-
ular, the magnitude of the reduction in ERP that can be obtained using the block
bootstrap. We suppose that the observations {X; : i« > 1} are a stationary strong
mixing process with exponentially declining strong mixing numbers.

We consider two types of block bootstrap. One uses non-overlapping blocks and
the other uses overlapping blocks. In either case, one breaks up the sample x, into



blocks of length ¢, where ¢ oc N7 for some 0 < v < 1. In the case of non-overlapping
blocks, the first block is (X1, ..., Xy), the second block is (X471, ..., Xo¢), etc. There
are b non-overlapping blocks, where N = /¢b. In the case of overlapping blocks, the
first block is (X7, ..., X¢), the second block is (Xa, ..., X¢4+1), etc. There are N —¢+1
overlapping blocks.

To obtain a block bootstrap sample, one draws b independent blocks by sampling
with replacement from the non-overlapping or overlapping blocks which are based on
the original sample. One lays the b randomly selected blocks end to end to form a
sample of size N = £b. The distribution P* for the block bootstrap is the distribution
of the bootstrap sample obtained in the manner just described. Note that both
the non-overlapping and the overlapping block bootstraps are obtained by drawing
b independent blocks. The only difference is that one draws from b non-overlapping
blocks in one case and from N — ¢ + 1 overlapping blocks in the other.

The block bootstrap sample is {Xika"'7X;7X;+17'“7X;ea"'7XEkb—1)e+1a“'7Xg€}'
Within each randomly selected block, the dependence structure of the original sample
is captured. But, the observation at the end of one block is independent of the next
observation, which does not reflect the dependence pattern of the original data. In
consequence, there is a problem with the joint points of the blocks in the bootstrap
sample.

This has adverse consequences for the magnitude of the asymptotic refinements
of the block bootstrap. It implies that there is a bias in the estimation of moments
under P via moments under P*. In consequence, the difference between moments in
(2.4) under P* and under P has order of magnitude no smaller than N~¢, where
& <vyand £ o N7 for 0 <y < 1. Details are given below.

A second problem with the block bootstrap is that the variances of block bootstrap
moments are larger than the variances of nonparametric iid bootstrap moments.
This occurs because the use of b iid blocks of length ¢, rather than N iid blocks of
length one, leads to less averaging and, hence, larger variances. In consequence, the
difference between moments in (2.4) under P* and under P has order of magnitude
no smaller than N~¢, where £ < 1/2 — . Again, details are given below.

Given the two constraints on &, the upper bound on £ is maximized when the block
length ¢ is proportional to N'/4 ie., ~v = 1/4. In this case, we obtain £ < 1/4. Thus,
the difference between moments in (2.4) under P* and under P has order of magnitude
no smaller than N—1/%. Hence, the order of magnitude of an (27 o) —an(z7,) s at

least N~1/4. Using (2.7), this yields the order of magnitude of the ERP to be at least
N—3/%_ This shows that the order of magnitude of the ERP of the block bootstrap ¢
test, which is at least N3/, is smaller than that of the asymptotic ¢ test, which is
N~Y2_ as is desirable. But, it is larger than that of the nonparametric iid bootstrap
t test, which is N~!, which is not desirable. (Of course, the latter is not applicable
when the data are dependent.)

We now show more explicitly why the restrictions £ < vy and £ < 1/2—+ arise with
the block bootstrap applied to standard statistics. We consider the non-overlapping



block bootstrap. We compute the largest value £ such that

N 2 N ?
* - 9 * - —a h
E (N 2y :8—91p(xi,90)> —E(N 2y :3910()(1,90)) = 0p(N7%). (2.10)
i=1 =1

Let b; denote the set of ¢ indices of the j-th block for j = 1,...,b. That is,
bj ={(j —1)€+1,...,j¢}. Let b} be the set of ¢ indices that correspond to the j-th
randomly selected bootstrap block for j =1, ...,b. Note that {b;‘ :j=1,...,b} are iid
each with a uniform distribution over {b; : j = 1,...,b}. Let

Za& p(X7,00) and Y; = Zae p(Xi,60). (2.11)

zeb* 1€b;

We can rewrite (2.10) as

2 2

b b
NTE (Y V7| -NE|D) Y| =op(N 0. (2.12)
j=1 j=1
We have )
b b 1 b
* * *\ 2 2
S| =S Eor=s (o), 219
j=1 j=1 j=1

where the first equality holds by independence across the bootstrap blocks and the
second equality holds by identical distributions of the bootstrap blocks plus the fact
that expectations under P* for the non-overlapping block bootstrap are given by
averages over the b blocks by, ..., by.

By (2.13), the bootstrap moment in (2.12) equals N~! Z;)-:l Y}Q. We can de-
compose the difference in (2.12) into the deviation of N~! 22:1 sz from its mean,
N1 23:1 EYjQ, and the difference between its mean and NflE(Z?:1 Y;)?, which
is a bias term. Using a strong mixing moment inequality derived in A2002 (see
(9.51) and (9.53)), one can show that the deviation of N~} 23:1 Y}Q from its mean
is 0,(N~¢) provided € < 1/2 —~.4

The bias term is

b b b b

NN EY)-NT'EQ Y)’=-N"") ) EY;Yj. (2.14)
Jj=1 Jj=1 n=1ja=1

J1#j2
The dominant terms in the double sum are the ones for which |j; — j2| = 1, because
if |j1 — j2| > 2, the summands of Y}, and Yj, differ by at least ¢ time periods,
¢ — oo as N — oo, and, hence, a strong mixing covariance inequality implies that
these covariance terms are asymptotically negligible. The number of summands with
|j1—Jj2| = 11s 2b—2. We can show that EY}, Y; y1 = O(1) using a covariance inequality
for strong mixing random variables (because, for example, the first summand in Y},
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differs from the summands in Y}, 41 by at least ¢ time periods). But, EY} Yj 11 #
o(1), because the last observation in Yj, (or the next to last, etc.) is correlated with
the first observation in Y}, 1.

Putting these results together, we find that the right-hand side (rhs) of (2.14) is

—N7H(20 - 2)O(1) +0(1)) = O™ = O(N7) (2.15)

using N = b¢ and ¢ oc N7. The rhs is o(N~¢) only if £ < 7. This demonstrates that
the bias created by the join-point problem leads to the condition £ < . In turn, this
leads to smaller asymptotic refinements of the block bootstrap applied to standard
statistics than those of the nonparametric iid bootstrap.

2.5 Asymptotic Refinements of the Block-block Bootstrap

The problem addressed in this paper is: how can one obtain bootstrap tests for
time series data whose ERP is smaller than that of the block bootstrap and, hence,
closer to that of the nonparametric iid bootstrap. To solve this problem, we propose
altering the original sample ¢ statistic, T, in such a way that it has block join
points and its distribution is mimicked by the block bootstrap. We do so without
affecting the asymptotic efficiency of the estimator 6 that is used to construct the ¢
statistic. In consequence, the proposed test has the same asymptotic local power as
the asymptotic ¢ test and the block bootstrap ¢ test.

The idea is to delete some observations from the estimator criterion function
pn(0) = N1 szi1 p(Xi,0) that occur just before the join points of the block boot-
strap. The join points are the observations indexed by ¢ + 1, 20 4+ 1,... . More
specifically, before each join point, [7f] observations are deleted, where 7 satisfies the
conditions in the sixth paragraph of the Introduction. Let p,(X;,#) denote p(X;,0) if
the i-th observation is not deleted and 0 if the i-th observation is deleted. The result-
ing estimator criterion function is py . (0) = (N7)™* SN pe(Xi,6), where 7 = 1 —.
(We normalize the sum by (N7)~!, rather than N~!, because N7 is the number of
non-zero terms in the sum.) We call py . (0) a block statistic and the estimator that
minimizes it a block estimator. R

When estimating the asymptotic standard deviation of 6y , that is used to con-
struct the ¢ statistic, we delete the same observations in the various sample averages
that arise in the standard deviation estimator. The resulting ¢ statistic is called a
block t statistic.

The effect of deleting observations in py () before the join points is that the last
non-zero summand in each block of length ¢ is separated by length [7¢] from the
first summand in the next block. Since m¢ — oo as N — oo and the observations
are weakly asymptotically dependent (strong mixing), the summands in each block
are asymptotically independent of the summands in the next block and every other
block.

The bootstrap criterion function, call it pj . (€), is the same as py .(0), but with
the original sample replaced by the bootstrap sicunple. Note that p}‘V,W(Q) is comprised
of independent blocks. This mimics the asymptotic independence of the blocks in
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Pn,x(0). The same is true for the bootstrap standard deviation estimator. Together,
this eliminates the join-point problem because we can show that for all £ < 1/2 —~,

2

E* N*WN 0, (X*0 2 E N*WN 0, (Xi00)| = op(N¢
;a_elpﬂ( i 0) - ;8_91p7r( 15 0) _OP( )
(2.16)
Analogous results hold for other moments. The key point is that the restriction £ < -,
discussed above, is eliminated.
The block bootstrap applied to block statistics is called the block-block bootstrap.
To see why the restriction ¢ < v is eliminated with the block-block bootstrap, we
look at the proof of (2.16). Let

Yy 289 pr(X7,00) and Yy j = 289 pr(Xi,60), (2.17)

zeb* i€b;

for j =1,...,0. By the same argument as in (2.13), the bootstrap moment in (2.16)
equals N~ 1 Z i1 Y2 '; and its deviation from its mean is op (N~ &) provided ¢ < 1/2—7.
Similarly, the bias term is

b b b b
NN EVZ, = NT'EQY Yr;)?=-N">" > EYr;Yaj,. (2.18)
Jj=1 Jj=1 Jj1=1j2=1
n#j2

At this point, the analysis differs from that of the previous section because even for
|71 — j2| = 1 the non-zero summands in Yy ;, and Yr j, are separated by at least [7/]
time periods. In consequence, by a strong mixing covariance inequality of Davydov,

| EYr,jy Vrjo| < K|[Yrall5a" ([70]), (2.19)

for all j1,j2 =1, ...,b, where K is a finite constant, || - ||, denotes the L, norm, p and
r are constants that satisfy p,~ > 1 and 1/r +2/p = 1, and {«(s) : s > 1} are the
strong mixing numbers of {X; : ¢ > 1}. This inequality can be used again to show
that ||Yr 1]l = O(¢) provided E|(0/061)p(X;,60p)P < oco. Hence, the rhs of (2.18)
multiplied by N¢ is

O(NELB22a" ([n0])) = O(NEH o ([n€])) = o(1), (2.20)

where the last equality holds for all £ > 0 because ¢ — C'log(N) — oo as N —
oo for all constants 0 < C' < oo and the strong mixing numbers {a(s) : s > 1}
decline exponentially fast. (The latter implies that a(s) < [; exp(—3ys) for some
B1,B2 > 0 and N&tlar([nf])) — 0 iff (€ + 1)log(N) + rlog(a([nf])) — —oo iff
(0] — (1/8,)1og(8y) — (€ + 1)/(r) log(N) — 00.)

We conclude that the bias term is o(1) for all £ > 0. These calculations show that
the use of a block t statistic eliminates the bias problem associated with the block
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bootstrap. It does not, however, eliminate the variance problem. The restriction
& < 1/2 — ~ still remains. This restriction is minimized by taking ~ close to zero,
which corresponds to taking short bootstrap blocks. Given the use of block statistics,
this does not induce a bias problem.

Theoretically, one can choose vy arbitrarily close to zero and the ERP of the
resulting block-block bootstrap t test has asymptotic order of magnitude arbitrarily
close to N1, the same order as for the nonparametric iid bootstrap test. In practice,
however, one needs to take v > 0 sufficiently large that the dependence structure of
the original sample is captured by the bootstrap blocks. Hence, one would not expect
the block-block bootstrap to perform as well as the nonparametric iid bootstrap.

Nevertheless, the asymptotic results lead one to expect the block-block bootstrap
to outperform the standard block bootstrap. That is, by considering block statistics
when employing the block bootstrap, we expect to reduce the ERP of block bootstrap
tests and the coverage probability errors of block bootstrap Cls.

In the following sections, we provide rigorous counterparts to the heuristic results
discussed above.

3 Block Extremum Estimators and Tests

In this section, we define the block statistics that are considered in the paper.
As much as possible, we use the same notation as A2002 and Hall and Horowitz
(1996). The observations are {X; : i = 1,...,n}, where X; € R*=. The observations
are assumed to be from a (strictly) stationary ergodic sequence of random vectors.
We consider block versions of extremum estimators of an unknown parameter is
6 € © C R, The estimators we consider are either GMM estimators or estimators
that minimize a sample average, which we call “minimum p estimators.” Examples
of minimum p estimators are maximum likelihood (ML), least squares (LS), and
regression M estimators.

The GMM estimators that we consider are based on the moment conditions
Eg(Xi,0p) = 0, where g(-,-) is a known Lg-valued function, X; is as above, 0y €
© C R is the true unknown parameter, and Ly > Lg. The minimum p estima-
tors that we consider minimize a sample average of terms p(X;,0), where p(-,-) is a
known real function. Minimum p estimators can be written as GMM estimators with
9(X,,6) = (9/99)p(X..0).

We assume that the true moment vectors {g(X;, 0p) : @ > 1} (for a GMM or mini-
mum p estimator) are uncorrelated beyond lags of length x for some 0 < k < oo. That
is, Eg(X;,00)9(Xit+j,60) = 0 for all j > k. In consequence, the covariance matrix
estimator and the asymptotically optimal weight matrix for the GMM estimator only
depend on terms of the form ¢(X;,6)g(X;4j,6) for 0 < j < k. This means that the
covariance matrix estimator and the weight matrix can be written as sample averages,
which allows us to use the Edgeworth expansion results of Gétze and Hipp (1983,
1994) for sample averages of stationary dependent random vectors, as in A2002 and
Hall and Horowitz (1996). For this reason, we let

Xi = (XL, XL 4,y X10 ) fori=1,..,n— k. (3.1)
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All of the statistics considered below can be closely approximated by sample averages
of functions of the random vectors X; in the sample yp :

xy={X;:i=1,.... N}, (3.2)

where N = [(n — k) /)¢ for block bootstraps with block length ¢ and [-] denotes the
integer part of -. Thus, as in A2002, Hall and Horowitz (1996), and Gétze and Kiinsch
(1996), some observations X; are dropped if (n — k) /¢ is not an integer to ensure that
the sample size N is an integer multiple of the block length ¢.

Block statistics are based on sample averages of functions with certain summands
deleted. The fraction of observations deleted is 7w, where 7 satisfies the conditions
stated in the Introduction. As above, 7 =1 — 7 and ¢ is the block length. Given a
function such as g(Xj;,0), we let g-(X;,0) denote the function that is zero if the time
subscript ¢ corresponds to an observation that is one of the [7/] observations before
a join point and is g(X;,#) otherwise. Thus,

o 9(X4,0) ifie[(j—1)0+1,50—[rml]] for some j =1,...,b
gx(Xi,0) = { 0 otherwise - (3:3)

We consider two forms of block GMM estimator. The first is a one-step block
GMM estimator that utilizes an L, x L, non-random positive-definite symmetric
weight matrix €. In practice, {2 is often taken to be the identity matrix Ir,. The
second is a two-step block GMM estimator that utilizes an asymptotically optimal
weight matrix. It relies on a one-step block GMM estimator to define its weight
matrix.

The one-step block GMM estimator, 5N, solves

N ! N
min Jy ~(0) = ((Nr)lz gﬁ(xz-,e)> Q ((NT)lz gﬂ(xi,e)). (3.4)

i=1 i=1

The two-step block GMM estimator which, for economy of notation, we also
denote by 6y, solves

N ! N
min Jy (0, 0n) = ((NT)l Zgﬁ(Xi,9)> QN (0N) ((NT)l ;gﬁ(Xi,9)> , where

=1
Ona(0) = Wy (0),

N
WNﬂ' = 12 dn X’l79g7l'(X179 +ZH Xz;Xer]v‘g) 5
i=1 j=1
Hrp (X3, Xi15,0) = g2(X4,0)9(Xit5,0) + 9(Xitj,0) g (X5, 0)’, (3.5)

and Oy solves (3.4). By definition, Hr(X;, X;4;,6) equals zero or not depending on
the value of ¢, not ¢ + j.
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The block minimum p estimator, which we also denote by 5N, solves

N
: 1

where p,(X;,0) is defined analogously to ¢gr(X;,0) in (3.3) with g(X;,0) replaced by
p(X;,0). For this estimator, we let g(X;,8) denote (0/060)p,(X;,0). Except for con-
sistency properties, the block minimum p estimator can be analyzed simultaneously
with the block GMM estimators. The reason is that with probability that goes to one
(at an appropriate rate) the solution 6 to the minimization problem (3.6) is an inte-
rior solution and, hence, is also a solution to the problem of minimizing a quadratic
form in the first-order conditions from this problem with weight matrix given by the
identity matrix, which is just the one-step block GMM criterion function.
The asymptotic covariance matrix, o, of the block extremum estimator 6 is

(D'QD) 1D’ QD(D'AD) ! if Oy solves (3.4)

=1 (D'QyD)! if Oy solves (3.5)
D10y D? if O solves (3.6), where
Q = lim (EW N .x(09)) " and D = E%g(Xi,Qo). (3.7)

By stationarity, )9 does not depend on 7.
A consistent estimator of o is

(DﬁV,WQDNJT)_1D§V,WQQJ}}W(§N)QDN,7T

X(DEVJQDN,W)A if Oy solves (3.4)

ONm = (Df\rﬂrQN,w(@N)DN,w)_l if 51\/ solves (3.5)
DX/,IWQR;}W (/éN )DE}W if 51\/ solves (3.6), where
ARy
_ —1 5
Dyx = (NT) ;WQW(XMQN)- (3.8)

Let 0,, 6o, and §N7T denote the r—th elements of 6, 6y, and 51\; respectively. Let
(0N x)rr denote the (r,7)-th element of o . The block ¢ statistic for testing the null
hypothesis Hy : 0, = 0p is

Tn = (NT)Y2(On, — bo,0) /(o n.q)2L2% (3.9)

Let 1(6) be an REm—valued function (for some integer L, > 1) that is continuously
differentiable at 6y. The block Wald statistic for testing Hop : (o) = 0 versus H; :

n(6) # 0 is

W = Ven@n) (gnnes(Gn@y ) n@x). @10
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The block J statistic for testing over-identifying restrictions is
In = Knx(0n) Knx(@x), where

En(0) = QU2 0)(NT) 7V g:(X,,0) (3.11)

™
i=1

and 51\; is the block two-step GMM estimator. Under Hy, Ty has an asymptotic
N(0,1) distribution. If L, > Ly and the over-identifying restrictions hold, then Jy
has an asymptotic chi-squared distribution with Ly — Ly degrees of freedom. (This is
not true if the one-step block GMM estimator is used to define the block J statistic.)

4 'The Block-block Bootstrap

The observations to be bootstrapped are {XZ : 1 <i < N}. As above, the block
length ¢ satisfies ¢ oc N7 for some 0 < v < 1. (Note that one can take v = 0 if the
data are m-dependent.) We consider both non-overlapping and overlapping block
bootstraps. For the non-overlapping block bootstrap, the first block is )N(l, ...,X@,
the second block is )~(g+1, ...,)”(% etc. There are b different blocks, where b¢ = N.
For the overlapping block bootstrap, the first block is )?1, . Xe, the second block is
X, ...,)NQH, etc. There are N — ¢ 4 1 different blocks.

The bootstrap is implemented by sampling b blocks randomly with replacement
from either the b non-overlapping or the N — ¢ + 1 overlapping blocks. Let )?f, -
XJ’(] denote the bootstrap sample obtained from this sampling scheme.

The bootstrap one-step block GMM estimator, 6%, solves

N ! N
min Jy . (0) = ((NT)_IZ g;;(X;*,e)> Q <(N7’)_IZ @;(X;*,@)), where
i=1 i=1

0co
97(X7,0) = gn(X},0) = B (X7, O), (4.1)
X7 denotes the first element of X'Z*, E* denotes expectation with respect to the
distribution of the bootstrap sample conditional on the original sample, and g (X}, 0)

is defined as gr(Xj;,0) is defined in (3.3) but with X in place of X;. For the non-
overlapping and overlapping block bootstraps, respectively, we have:

N N
(N7) 1 ZE*QW(X:,Q) = (N7) ! Zgﬂ(Xi,O) and
i=1 =1

N N
(NT)DY B ge(X7,0) = (N = £+ 1) 171 “w(i, £, N)gr(X;,6), where

i=1 i=1
i/ if i€ [1,0—1]
w(i, t,N) = { 1 ifie[t,N—0+1] . (4.2)

(N—i+1)/¢ ifi€[N—(+2 N]
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The bootstrap sample moments (N7)~! SN g*(X7* 0) in (4.1) are recentered (by
subtracting off E*gﬂ(Xz*,gN)) to ensure that their expectation E*(NT)~! Zf\il
95(X},0) equals zero when 6 = 5N, which mimics the population moments Eg.(X;,0),
which equal zero when 6 = . Note that recentering also appears in Shorack (1982),
who considers bootstrapping robust regression estimators, as well as in Hall and
Horowitz (1996) and A2002.

The bootstrap two-step block GMM estimator, also denoted by 6%, solves

!/
-1
IglglélJNﬂ.(e HN <NT Zgﬂ. i ) QNﬂ' HN < Zgﬂ- 1 )7

where
Uy e(0) = Wi (0) 7,
L N K
Wia(0) = (NT)T' Y | gn(X7 007 (X7, 0) + ) HR(X) Xj55.0) |
i=1 j
H*(X* Xz*z+]70) - gTI'(X’l* ‘9) (Xz*z+]70)/+g (Xz*iJr]’e)g:r(X;’e)/’ (43)

Ejv denotes the bootstrap one-step block GMM estimator that solves (4.1), and X

- 1,147
denotes the (j + 1)-st element of X for j =1,....k
The bootstrap block minimum p estimator, also denoted by 6}, solves

N

. -1 * _ % * n !
ggg (NT) ;(pﬂ(X’L 79) E gW(Xz 79N) 9)7 (44)

where gw( ! 0) = (0/00)p.(-,0). For the non-overlapping block bootstrap, the term
(NT)~ ZZ 1 E*gW(X* 9N) @ is zero, because (NT)"'SN E*g. (X, EN) =
(NT)~ 3N —19n (Xi,0 Oy) = 0, where the second equality holds by the first-order con-
ditions for 0 n using the fact that the dimensions of g, (+,-) and 0 are equal. For the
overlapping block bootstrap, (N7)~1 SN E*gW(X;,gN) 4 (NT)LYN, gﬂ(Xi,/éN)
= 0 and the extra term in (4.4) is non-zero. In this case, the term (N7)~! Zf\il
E*g, (XZ-*,@N)’ 0 properly recenters the block minimum p bootstrap criterion function.
It yields bootstrap population first-order conditions that equal zero at 5N, as desired.
That is, E*(9/00)(NT)" o, (px(X;,0) —E*ge(X;,0n)'60) = E*(N7)1 3N,
g5(X},0) = 0 when 0 = Oy. With this recentering, the first-order conditions for
0y are (N7)"1SN g5 (X7,0%) = 0, rather than (N7)~' 2N g, (X7,0%) = 0,
which means that 073 minimizes the one-step block GMM bootstrap criterion function
I (0) with g (-,0) = (0/00)p(-,0) and arbitrary positive definite weight matrix
Q.

The bootstrap block covariance matrix estimator is

Ohvr = O (B), where
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(D (0) QDY ()™ Dy (0)Q0, (0) ™

XQD} 1(6)(Dy £(6Y 2D} (0)) 1 O solves (3.4

N0 =\ Dy (07 (0D (0)) if Dy solves (3.5)
Dy (0) 1% (6) "' Dy . (0) 7 if Oy solves (3.6) and
N oo
Dig(0) = (NT)7' Y —50x(X,0). (4.5)
=1

The bootstrap block ¢, Wald, and J statistics are

Th = (NTY2(0%, — On) /oh - (08)22,
Wy = HN,W(QN) HN,W(QRI)? and
Ty = Ky «(05) KX +(0%), where

“1/2
Hi®) = ((n)ria @) zgn@) ) (N0M2(0(6) =)
N
K30 (0) = Q3(0)2(V7) 72 Y g3 (X0, (46)
i=1

¢y, denotes the r-th element of Oyand o} (0 )r denotes the (r,7)-th element of
an - (0n). Note that the bootstrap block ¢, Wald, and J statistics are not defined us-
ing7 correction factors, in contrast to the test statistics considered in Hall and Horowitz
(1996) and A2002. Because of the block nature of the statistics, we do not have to
correct for the fact that the bootstrap blocks are independent.

Let Z|*T\,a7 27 o0 Zyy.a0 and 27, denote the 1 — « quantiles of [Tx [, T}, Wy, and
JX respectively. To be precise, since the distributions of |T%| etc. are discrete, we
define 27| o t0 be a value that minimizes |P*(|T%| < z) = (1 —a)| over z € R. The
precise definitions of 2}7(1, z{jv o> and zi ., are analogous.

Each of the following tests is of asymptotic significance level . The symmetric
two-sided block-block bootstrap ¢ test of Hy : 8, = 6p versus Hj : 6, # g rejects Hy
if |Tw| > 27|, The equal-tailed two-sided block-block bootstrap ¢ test for the same
hypotheses rejects Hy if Ty < 2;7 a/2 OF Ty > 2z}, 9- The one-sided block-block
bootstrap t test of Hg : 0, < 6p, versus Hy : 0, > 90r reJects Hyif Ty > zT . The
block-block bootstrap Wald test of Hy : n(6p) = 0 versus H; : n(fy) # 0 rejects the
null hypothesis if Wy > 2y o~ The block- block bootstrap J test of over-identifying
restrictions rejects the null if J N > 2],

Each of the following CIs is of asymptotic confidence level 100(1 — «)%. The
symmetric two-sided block-block bootstrap CI for 0, is [@Nﬂ« — z‘*T" (JN)%Q/Nl/2’
gN,T + 27 q ((TN)}«T/«Z /N1/2]. The equal-tailed two-sided block-block bootstrap CI for
Oo,r is [@N7T — ZT /2(UN)1/2/N1/2 QNT + le a/g((rN)l/z/Nl/Q} The upper one-
sided block-block bootstrap CI for o,y is [,y — 25, (on)rh° /N2, 00). The block-

block Wald-based bootstrap confidence region for 7(6g) is {n € Rln : N (n(gN) -
n) (On(On) /900 (In(On)/06')) () = 1) < 25y 0}
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5 Assumptions

We now introduce the assumptions. They are essentially the same as those of
A2002 and are similar to those of Hall and Horowitz (1996).

Let f(X;,0) denote the vector containing the unique components of g(X;, ) and
9(Xi,0)9(Xi44,0) for j = 0,...,k, and their derivatives through order d; > 3 with
respect to 0. Let (87/007)g(X;,0) and (87/067) f(X;, 6) denote the vectors of partial
derivatives with respect to 6 of order j of g(X;,0) and f(X;,0), respectively.

The following assumptions apply to the one-step block GMM, two-step block
GMM, or block minimum p estimator.

Assumption 1. There is a sequence of iid vectors {g; : i = —o0,...,00} of
dimension L. > L, and an L, x 1 function h such that X; = h(eg;,ei-1,€i-2,...).
There are constants K < oo and £ > 0 such that for all m > 1

E||h(giei-1,---) — h(€iy€i-1y s Eimm, 0,0, .|| < K exp(—&m).

Assumption 2. (a) © is compact and 6g is an interior point of ©. (b) Either
(i) 5N minimizes Jy (6) or JN,W(Q,gN) over 6 € ©; 0y is the unique solution in O to
Eg(X1,6) = 0; for some function Cy(x), ||g(z,01) —g(z,02)|| < Cy(x)||01 — 02]| for all
x in the support of X7 and all #1, 602 € ©; and EC# (X7) < oo and EHg(X1 0)||% < o0
forall@ € © forall 0 < ¢; < oo or (ii) 0y minimizes N~ SN pr(Xi,6) over 6 € © for
some function p(z, ) such that (0/00)p(x,0) = g(x,0) for all x in the support of X;;
0o is the unique minimum of Ep(X1,60) over § € O; and Esupycg ||9(X1,0)||% < 0o
and E|p(X1,60)|" < oo for all # € © for all 0 < g1 < oo.

Assumption 3. (a) Eg(X1,60)g(X1+4,60) = 0for all j > k for some 0 < k < oo.
(b) © and € are positive definite and D is full rank Ly. (c) g(x,0) is d = dj + do
times differentiable with respect to 8 on Ny, some neighborhood of 6, for all x in
the support of X3, where di > 3 and dy > 0. (d) There is a function Caf()?l) such
that [[(29/069) [(X1,0) — (&9 /069) [ (%, 80)]| < Cop(:)[10 — 6ol for all 6 € No for
all j =0,...,dz. (¢) ECE (Xl) < oo and E||(87/067) f(X1,00)]|2 < Cy < oo for all
j=0,. d2 for some constant Cy (that may depend on ¢2) and all 0 < g2 < oo.
(f) f (Xl, 0o) is once differentiable with respect to X with uniformly continuous first
derivative. (g) If the Wald statistic is considered, the RL7-valued function n(-) is d;
times continuously differentiable at 6y and (9/96")n(6y) is full rank L, < L.

Assumption 4. There exist constants K7 < oo and § > 0 such that for arbitrarily
large ¢ > 1 and all integers m € (6 1, N) and t € R™() with § < ||t|| < N€,

2m—+1
E <exp <it' Z f(is,90)> {ej:|j—m| > Kl})

where ¢ = +/—1 here.

The lower bounds on di and ds in Assumption 3 are minimal bounds. The results
stated below specify more stringent lower bounds that vary depending upon the result.

E < exp(—d),
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Assumption 4 is the same as condition (4) of Gotze and Hipp (1994). It reduces to
the standard Cramér condition if {X; : ¢ > 1} are iid. The moment conditions
in Assumptions 2 and 3 are stronger than necessary, but lead to relatively simple
results. See Andrews (2001a) for a much more complicated set of assumptions, but
with weaker moment conditions than those above, that are sufficient for the results
given below.

6 Asymptotic Refinements of the Block-block Bootstrap

In this section, we show that the block-block bootstrap leads to greater asymptotic
refinements in ERPs of tests and in CI coverage probabilities when compared to
the block bootstrap, as well as in comparison to procedures based on first-order
asymptotics.

The following Theorem shows that the symmetric two-sided block-block bootstrap
t, Wald, and .J tests have ERPs of magnitude o( N~(11+€) for all £ < 1/2—+ when the
block length ¢ is chosen proportional to N7. It shows that the block-block bootstrap
equal-tailed two-sided ¢ and one-sided t tests have ERPs of magnitude o(N—(1/2+)
for all £ < 1/2 —~ when ¢ is chosen proportional to N7. The only restriction on 7 is
that 0 < v < 1/2. Hence, for y close to zero, £ is close to 1/2. For m-dependent data,
v = 0 is permitted.

In contrast, with the block bootstrap, analogous results hold but with the addi-
tional restriction that & < . The latter restriction, combined with £ < 1/2—-y, imply
that £ <1/4.

The following results hold for statistics based on one-step block GMM, two-step
block GMM, and block minimum p estimators.

Theorem 1 (a) Suppose Assumptions 1-4 hold with di > 5 and do > 4; 0 < £ <
1/2—7v,0<y<1/2; m€(0,1); and m — 0 and ¢ — C'log(N) — oo as N — oo for
all constants 0 < C' < co. Then, under Hy : 8, = 0o,

P(Tx| > 2y o) = a+ o(N-049).
Under Hy : n(6p) = 0,

PWn > 2jyq) = a+ o(N~119),
In addition, if Ly > Lg, then

P(Jy > 23,) = a+o(N 119,

(b) Suppose Assumptions 1-4 hold with di > 4 and da > 3; 0 < & < 1/2 — ~;
0<~v<1/2;7me (0,1); and @ — 0 and 7l — Clog(N) — oo as N — oo for all
0 < C < oo. Then, under Hy : 0, = 0o,

P(TN < Z},Q/Q or TN > Z},lfa/Z) = 0[-'-0(N7(1/2+§)) and

20



P(Ty > 24.,) = a+o(N~ /20y,

(c) If the observations {X; : i > 1} are m-dependent for some integer m < oo, then
the results of parts (a) and (b) hold under the stated conditions, but with v =0 and
with the restrictions on 7 replaced by imsupy_,oo ™ < 1 and iminf y_,oo [7l] > m+k.

Comments: 1. The errors in parts (a) and (b) of the Theorem when the critical
values are based on standard first-order asymptotics (using the normal distribution or
the chi-square distribution) are O(N~1), O(N~1/2), and O(N 1) respectively. Thus,
parts (a) and (b) of the Theorem show that the bootstrap critical values reduce the
ERP (and the error in CI coverage probability) relative to first-order asymptotics by
a factor of at least N~¢. The choice of 7 close to zero maximizes ¢ subject to the
requirement of the Theorem that £ < 1/2 — 4. For such a choice of v, the results of
parts (a) and (b) hold for £ close to 1/2.

2. When the data are m-dependent, part (c) of the Theorem shows that one
does not need the block length, ¢, to diverge to infinity as N — oo or the number
of observations deleted per block, [7/], to diverge to infinity as N — oco. What is
needed is that the number of observations deleted per block, [7/], is greater than
to equal to m + k for NV large. This suffices, because the blocks statistics are based
on sample averages, which are sums of independent blocks provided [7f] > m + &,
which is exactly mimicked by the independence of the bootstrap blocks.

In contrast, when the block bootstrap is applied to non-block statistics and the
observations are m-dependent, the length of the blocks needs to diverge to infinity
as N — oo.

3. The reason that symmetric two-sided block-block bootstrap t tests, Wald tests,
and J tests are correct to a higher order than equal-tailed two-sided ¢ tests and one-
sided t tests is that the O(N~1/2) terms of the Edgeworth expansions of |Tx|, W,
and Jy are zero by a symmetry property. See Hall (1992), Hall and Horowitz (1996),
or A2002 for details.

4. The possibility of improving the result of Theorem 1(a) for |Tx| when the
data are dependent via the symmetry argument of Hall (1988), which applies with
iid data, is unclear, see the discussion in A2002.

7 Monte Carlo Simulations

In this section, we describe some Monte Carlo simulation results that are designed
to assess the coverage probability accuracy of block-block bootstrap Cls.

7.1 Experimental Design
We consider a dynamic linear regression model estimated by LS:

5

Y = 6o1 + Y1602 + Z Z; 60,5 + U;
=3

= Z!0y+ U, for i =1,..., N, where
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Zi = (,Yie1,Zi3, Zia, Zis)'
Oy = (9071,...,9075)/,
Zij = Zi—1;py + Vi for j =3,4,5,
X; = (Y;, 7!, and
9(Xi,0) = (Y; — Z{0)Z;. (7.1)

Five regressors are in the model. One is a constant; one is a lagged dependent
variable; and the other three are first-order autoregressive (AR(1)) regressors with
the same AR(1) parameter p;. The innovations, V; ;, for the AR(1) regressors are iid
across ¢ and j with mean zero and variance one and are independent of the errors Us;.
The regressor innovations and the errors are taken to have the same distribution. We
consider three different distributions: standard normal, chi-square with two degrees
of freedom (recentered and rescaled to have mean zero and variance one), and uniform
on [—v/12,4/12] (which has mean zero and variance one). The initial observations
used to start up the AR(1) regressors are taken to have the same distribution as
the innovations, but are scaled to yield variance stationary processes. The moment
vectors g(X;, 0p) are uncorrelated. In terms of the notation introduced above, x = 0,
n= N, and X; = Xj.

The parameters 0 1,603,004,005 are taken to be zero. Three combinations of
(Oo,2, pz) are considered: (.9,.8), (.95,.95), and (.8,.7). Two sample sizes N are con-
sidered: 50 and 100.

We consider Cls for the parameter 6p2 on the lagged dependent variable. The
CIs are based on a t statistic that employs the LS estimator of 62 coupled with
either a heteroskedasticity consistent standard error estimator or a homoskedasticity
consistent standard error estimator:

NI/Q(/éN,Q —002)
(Fn1)an
N1/2(§N,2 —002)

~ 1/2
(Gn,1)2h

N
Oy = (Z ZZ-Z;> A
i=1 i=1
N -1 N N -1
GN1 = (lezizg> NN " U:Z:7 (lezizg> :
i=1 =1 =1

TNy =

M

M

N N -1
ON2 = N*lef (lezizg> , and
=1 i=1
U, =Y;— Zo. (7.2)

We compare standard two-sided delta method Cls to symmetric two-sided and
equal-tailed two-sided block bootstrap and block-block bootstrap Cls. Both non-
overlapping and overlapping block bootstrap and block-block bootstrap Cls are con-

22



sidered. The delta method CI is given by [51\/,2 — Za/2 ((?N’j)éf/Nl/z,
5N72 + za/g(ﬁNyj)ééz/Nl/z} for j = 1 or 2, where z,/5 denotes the 1 — /2 quan-
tile of the standard normal distribution. The bootstrap Cls are defined in Section 4
above. The bootstrap Cls are based on blocks of length ¢ = 5 or 10 with the num-
ber of observations “skipped” in each block (Skip) in the computation of the block
statistics equal to 0,1, or 2. Note that the deletion fraction 7 equals Skip/¢. Hence,
deletion fractions of 0, .2, and .4 are considered. When Skip = 0, the block-block
bootstrap reduces to the standard block bootstrap.

The number of simulation repetitions used is 40,000 for each case considered. This
yields simulation standard errors of (approximately) .0010, .0015, and .0004 for the
simulated coverage probabilities of nominal 95%, 90%, and 99% CIs respectively.

7.2 Simulation Results

Table I reports results for symmetric two-sided Cls. Table II does likewise for
equal-tailed two-sided Cls. In both Tables, results for a base case are reported in
Column 1 and variations on the base case are reported in Columns 2-9. The base
case has (0o2, pz) = (.9, .8), standard normal (N(0,1)) distributions for the regressor
innovations and errors, sample size N = 50, CIs based on heteroskedasticity consistent
(HC) standard error estimates, and Cls with 95% nominal coverage probability. In
Columns 2 and 3, the nominal coverage probabilities are 90% and 99%, respectively,
and all other features are as in the base case. Columns 4 and 5 differ from the base
case in that (6o 2, pz) = (.95,.95) and (.8,.7) respectively. Column 6 differs from the
base case in that N = 100. Columns 7 and 8 differ from the base case in that the
distributions of the regressor innovations and errors are chi-square with two degrees of
freedom (x2) and uniform on [—+/12,+/12] (Unif) respectively. Column 9 differs from
the base case in that homoskedastic (Homo) standard error estimates are employed.

The results of Table I show the following;:

1. The coverage probabilities of the delta method ClIs are poor. For example, in
the base case, the coverage probability of the nominal 95% delta method CT is
.759.

2. The bootstrap Cls perform fairly well and, hence, out-perform the delta method
CIs by a wide margin. This is true regardless of the choice of the block length
¢, the number of observations skipped, and the case considered. For example,
in the base case, the worst nominal 95% bootstrap CI has coverage probability
.915. The best has coverage probability .942.

3. The best bootstrap results are quite good and are obtained with (¢, Skip) =
(10,2) or (5,1) with non-overlapping or overlapping blocks. These bootstraps
are based on block statistics that skip 20% of the observations (which yields
standard errors estimates that are 12% larger than when Skip = 0). For exam-
ple, for (¢, Skip) = (10, 2), the non-overlapping block-block bootstrap CI has
coverage probability that varies between .928 and .955 for the seven cases with
95% nominal Cls.
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4. When Skip = 0, the bootstrap results are not very sensitive to the choice of
block length ¢. When Skip > 1, the bootstrap results are not very sensitive to
the block length provided Skip is adjusted so that the same deletion fraction 7
is maintained. That is, the results for (¢, Skip) = (10,2) are quite similar to
those with (¢, Skip) = (5,1).

5. The coverage probabilities of the bootstrap Cls are increasing in the number of
observations skipped in almost all cases. Because the standard block bootstrap
(for which Skip = 0) under-covers in all cases, this leads to smaller coverage
probability errors in most cases for one or more bootstraps based on block
statistics (for which Skip > 1).

6. There is not much difference in performance between the non-overlapping and
the overlapping bootstraps. Neither is dominant.

7. The results for nominal 90% and 99% CIs given in Columns 2 and 3 are anal-
ogous to those in Column 1 for 95% CIs. That is, the delta method CI does
quite poorly and the bootstrap Cls do fairly well.

8. The effect of increasing and decreasing the amount of correlation, as shown in
Columns 4 and 5, respectively, is as expected. Increasing the amount of corre-
lation reduces the coverage probabilities and increases the coverage probability
errors of all ClIs. Decreasing the amount of correlation increases the coverage
probabilities and decreases the coverage probability errors.

9. The effect of increasing the sample size, as shown in Column 6, is to increase
the coverage probabilities and reduce the coverage probability errors for almost
all Cls.

10. The effect of changing from normal to x3 and uniform distributions is to increase
and decrease, respectively, the coverage probabilities of the Cls. Thus, the delta
method CI and most bootstrap CIs perform better with x3 distributions and
worse with uniform distributions than with standard normal distributions.

11. The use of the homoskedasticity consistent standard error estimate (which is a
consistent estimate in the cases considered) improves the coverage probability
of the delta method CI, but has little effect on the bootstrap Cls. Hence, the
bootstrap Cls sacrifice little by using heteroskedasticity consistent standard
error estimates.

For brevity, Table II reports results only for non-overlapping bootstrap CIs. Anal-
ogous results for overlapping bootstraps are similar, though slightly worse. Table 1T
reports three probabilities for each Cl—the coverage probability, the probability of
missing to the left, and the probability of missing to the right.

The results of Table II show the following:

1. The coverage probabilities of the equal-tailed bootstrap Cls are noticeably lower
than those of the symmetric bootstrap Cls reported in Table 1. For example, in

24



the base case, the coverage probability of the nominal 95% equal-tailed boot-
strap CI with (¢, Skip) = (10,2) is .885, whereas that of the corresponding
symmetric CI is .942.

2. The coverage probabilities of the equal-tailed bootstrap Cls are noticeably bet-
ter than those of the delta method.

3. The best bootstrap CI is the one with (¢, Skip) = (5, 2). The block LS estimator
upon which this CI is based has standard errors that are 29% larger than those
of the full sample LS estimator. In consequence, this bootstrap CIs is noticeably
longer than those based on the standard block bootstrap (for which Skip = 0).

4. The probability of missing to the left is too high for all Cls, but especially for
the delta method CI. This reflects the downward bias of the LS estimator.

5. The probability of the delta method CI missing to the right is too low. For the
bootstrap Cls, it is sometimes too high and sometimes too low.

6. The effect of changing the amount of correlation, sample size, distribution, and
standard error estimate is similar for equal-tailed CIs as for symmetric Cls.

In sum, the Monte Carlo results show that all of the bootstrap Cls considered
out-perform the delta method ClIs. The margin of improvement is quite substantial
for symmetric bootstrap CIs. The results also show that the block-block bootstrap
yields improved coverage probabilities in the majority of cases considered compared
to the standard block bootstrap. Hence, there is some evidence that the theoretical
advantages established above for the block-block bootstrap are reflected in finite
samples.
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8 Appendix of Proofs

The proof of Theorem 1 holds by making some adjustments to the proof of The-
orem 2 of A2002. The proof of Theorem 2 of A2002 relies on sixteen Lemmas. These
Lemmas need to be adjusted as follows. Lemma 1 needs to hold for triangular arrays
of functions {hy,(-) : ¢ < N, N > 1}, rather than a single function A(-), in order to
apply the Lemma with hy;(X;) = g(Xi,00), rather than h(X;) = ¢g(X;,6p). This
extension is easily achieved. It is stated as Lemma 1 below.

Given the new Lemma 1 (and the fact that (N7)/N — 1 as N — oo under the
assumption that m = 1 — 7 — 0), the proofs of Lemmas 2-13 and 16 of A2002 hold
with g(Xj, 6p) replaced by g(X;,00) throughout without any significant changes in
their proofs. Lemma 15 of A2002 is not needed when block statistics are considered
because it involves the behavior of correction factors, which are not used with block
statistics. Lemma 14 of A2002 needs to be changed. In particular, we need to show
that it holds with the condition £ < v deleted. Lemma 2 below gives the required
result.

Given that Lemmas 2-14 and 16 of A2002 hold with ¢g(Xj;, 6p) replaced by g-(X;, o),
Theorem 1(a) and (b) hold by the proof of Theorem 2 of A2002. For the case of m-
dependent observations {X; : i > 1} (covered in Theorem 1(c)), the only adjustment
to the proof that is required is that the result of Lemma 14 of A2002 needs to hold
with v = 0. Lemma 2 below covers this case.

8.1 Lemmas

Lemma 1 Suppose Assumption 1 holds.

a) Let {hn;(-) :i < N,N > 1} be a triangular array of matriz-valued functions that
satisfy Ehy (X X;) =0 for all i, N and SUP; < N N >1 EHth( )P < oo forp>2 and
p>2a/(1—2c) for some c € [O 1/2) and a > 0. Then, for all e > 0,

ngnooNaPHNthM || > N~%) =0.

(b) Let {hn,i() @ < N,N =1} be a triangular array of matriz-valued functions that
satisfy sup;<y N>1 E||W(X)|]P < oo for p > 2 and p > 2a for some a > 0. Then,
there exists a constant K < oo such that

N
Jim NeP(|N7! ;m,xxnn > K) =0.

Asymptotic refinements of the block bootstrap depend on the differences between
the Edgeworth expansions of the dfs of T and Ty being small (and analogously
for Wn, Wy) and (Jn, Jy)). Let vy o denote a vector of population moments
including those of ¢,(X;,60p) and some of its partial derivatives with respect to 6.
VN r,a is defined precisely below. Let v/} N ., denote an analogous vector of bootstrap
moments including those of g (X}, 0p) and some of its partial derivatives. Edgeworth
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expansions of the dfs of Ty, Wy, and Jy at a point y, with remainder of order o(N—%),
where 2a is an integer, depend on polynomials in y whose coefficients are polynomials
in the elements of vy r q. Analogously, Edgeworth expansions of the dfs of T, Wy,
and Jy; are the same as those of Ty, Wy, and Jy, but with V?\/Jr,a in place of vy 7 o. In
consequence, asymptotic refinements of the block bootstrap depend on the magnitude
of the differences between vy ., and vy x 4. Lemma 2 shows that these differences
are small asymptotically. o B

We now define vy, and ViN.ra brecisely.  Let f(X;,0) be the vector-valued

function defined at the beginning of Section 5. Let fW(XZ,Q) be the function de-
rived frorn f(X;,0) in the same way as g (X;,0) is derived from g(X;,0) in (3.3).
Let fX(X/,6) denote the vector containing the unique components of gx (X, ) and
ge (X7, 9) (XZ* " j»0) forall j = 0, ..., k and their derivatives with respect to § through
order di. Let Sy, = (N71)7! Zf\il fr(Xi,00), Sr = ESn.r, Syx = (N7)! Y
[2(XF0n), and Sf = E*Sy.. Let Uy, = (NT)V%(Syx — Sp) and T, =
(NT)I/Q(S* — S%). Let ¥y, and W ; denote the j-th elements of ¥y, and
\I/}*V , respectlvely Let vy x,o and v} Nora denote vectors of moments of the form
(NT)“(m ETlLZ YN, and (NT)em) [+ | U 7 j,> respectively, where 2 <
m < 2a+ 2, a(m) =0 if m is even, and a(m) = 1/2 if m is odd.

Lemma 2 Suppose Assumptions 1 and 3 hold with dy > 2a + 1 for some a > 0,
0<€<1/2—7, and either (i) 0 < v < 1/2 or (ii) the observations {X; : i > 1}
are m-dependent for some integer m < oo, ¥ =0, m € (0,1), and liminfy_,o [7l] >
m + k. Then,

lim N*P(|[VN 50 — VNmall > (NT)"%) =0.

N—oo

Comment. The condition £ < <, which is needed in Lemma 14 of A2002, is not
needed in Lemma 2 because the moments considered are moments of block statistics.
This is the key feature of block statistics that allows the block-block bootstrap to
attain larger asymptotic refinements than the block bootstrap applied to standard
statistics.

8.2 Proofs of Lemmas
8.2.1 Proof of Lemma 1

A strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995,
Theorem 2 and Remark 2, pp. 25-30) gives E|| 3>V hNyi(X})Hp < CNP/? provided
p > 2, where C' does not depend on N. Application of Markov’s inequality and the
Yokoyama—Doukhan inequality yields the left-hand side in part (a) of the Lemma to
be less than or equal to

N
lim e PN PPE|| Y " hy(X5)|]P < Jim PO NO—PTPetp/2 — (). (8.1)

N—oo :
i=1

Part (b) follows from part (a) applied to th()Ai:z) — EhNi(X}) with ¢ = 0 and the
triangle inequality. [
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8.2.2 Proof of Lemma 2

The proof of Lemma 14 of A2002 goes through with g(X;, 6y) replaced by ¢ (X, 6o)
except for the proof that Bs = 0.

More specifically, as in A2002, the least favorable value of m for the bootstrap
moment, (N7)*(m™) E* | J R S i (in terms of its distance from the corresponding
population moment) is three. Hence, we just consider this case. For notational
simplicity, suppose j, = 1 for ;= 1,2,3. Thus, we need to show that

Jim NOP((NT)V2E* (U 0)* = (NT)VZEWR 1) > (NT)75) = 0. (8.2)

Let fr; = fﬂ,l()?i,eo) —Efﬂ,l()?i,%), where fml()?z-,%) denotes the first element
of fﬂ—(XZ',eo). Let by = {1, ...,f}, by = {£—|—1, ,QK}, ey by = {(b—l)f—l—l, ,b@}, where
N =0l Let Y; ; = Ziebj fr,i- Then,

N b
\I/N,ﬂ—’l = (NT)71/2Z]C71—7Z' = (NT)il/QZYﬂ’,j- (83)
=1

i=1
By the arguments in the proof of Lemma 14 of A2002, provided £ < 1/2 — 1,

lim N°P(|(NT)Y2E*(Uy ,1)? — (NT)TOEYS )| > (N7)~¢) = 0. (8.4)

N—oo

Hence, it suffices to show that

limsup (N7)¢|(N7)Y2EW, | — (N7)"'bEY2 | =0. (8.5)

N—o0

(Equation (8.5) shows that By of A2002 equals zero.)
Using (8.3), we have

b b b
(NT)'PETY = (N1 Y S 3 EY;,Y5,Y5. (8.6)
J1=1ja=1jg=1

Hence,

b
(NT)S|(NT)PETY g — (NT)TIOEYZ | = (N7)¢ Z Z Z EYj,YpYjs. (8.7)
=1 jo=1 ja=1

.7'1#]'27&.7'3
If the observations {X; : i > 1} are m-dependent, then the observations {X; : i > 1}
are (m + k)-dependent and Y;, and Y, are independent for all j; # ja for N large
because the number of deleted observations at the end of each block satisfies [7¢] >
m + k for N large. Since EYj; = 0 for all ji, the rhs of (8.7) equals zero in the
m-~dependent case.
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Next, we consider the case where the observations are not necessarily m-dependent,
but 0 < v < 1/2. By a strong mixing covariance inequality of Davydov, e.g., see
Doukhan (1995, Thm. 3(1), p. 9),

|EY 3, Y5 Yig| < 8[[Yillp - [V Ys llg@" (T[] = ), (8.8)

where p,q,r > 1,1/p+1/q+1/r =1, || ||, denotes the LP norm, and {«a(s) : s > 1}
are the strong mixing numbers of {X; : ¢ > 1}, which decline to zero exponentially fast
by Assumption 1. This inequality holds because the summands in Y;, are separated
from those in any blocks Y}, and Y}, by at least [7/] — k by the block feature of fr ;.
This is the key part of the proof.

Next, by Minkowski’s inequality, ||Yj, ||, = [|Yillp < || fr1llp < €7C1 for some
constant C7 < co. By an application of the Cauchy-Swartz inequality and the fact
that [[Yallzy = [[¥3]|2g, we have ||V}, ¥, = [[¥aYall, < [[Yall3, < (rCy)?. Hence,
(8.5) holds by (8.7) and (8.8) provided

(NT)§71b3(€T)3OéT((7T[| —K) = (NT)2+§OKT([7T[| — k) —0as N — oo. (8.9)

Since the a—mixing numbers, {a(s) : s > 1}, decline to zero exponentially fast in s,
(8.9) holds provided 7¢ — C'log(N) — oo for all C' < oo, as is assumed. [
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Footnotes

! The author thanks Joel Horowitz for helpful comments. The author grate-
fully acknowledges the research support of the National Science Foundation via grant
number SBR-9730277.

2 These correction factors alleviate, but do not solve, the join-point problem for
the block bootstrap applied to standard statistics. They allow the block bootstrap
to attain ERPs for two-sided t tests of magnitude O(N~17¢) for £ < 1/4, but these
are still noticeably larger than those attained by the nonparametric iid bootstrap.
Correction factors are not needed for one-sided ¢ tests to yield asymptotic refinements.

3 Furthermore, one could consider block statistics that are defined using a smooth
tapering function. The block bootstrap applied to such statistics would be a tapered
bootstrap. It is likely that the block bootstrap applied to such statistics would yield
asymptotic refinements akin to those obtained in this paper.

4 The condition £ < 1/2 — v is stronger than necessary to establish the stated
result, which applies to a bootstrap moment of order two. However, this condition
is necessary when bootstrap moments of order three, such as E*(N~Y/23N (9/06,)
p(X7,0p))3, are considered.

5 For convenience, we state that limits are as N — oo below, although, strictly
speaking, they are limits as n — oo.
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TABLE 1
Coverage Probabilities for Two-sided Delta Method and Symmetric Two-sided
Block and Block-Block Bootstrap Confidence Interals*

Column 1 2 3 4 5 6 7 8 9
60,2 .9 9 .9 .95 .8 .9 .9 .9 9
Pz .8 .8 .8 .95 7 .8 .8 .8 .8
N 50 50 50 50 50 100 50 50 50

2

Distribution N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) x5 Unif N(0,1)
Std Err Est HC HC HC HC HC HC HC HC Homo
Conf Level 95% 90% 99% 95% 95% 9%  95% 95% 95%

A Method 799 .669 .886 .702 .833 853 791 751 .808

Non-overlapping Block Bootstrap

¢ Skip

5 0 922 870 976 .903 .945 941 942 920 921
5 1 928 876 .982 916 .947 935 948 926 .926
5 2 .966 932 .994 .959 975 966 975 .961 .966
10 0 915 870 972 .903 .935 939 931 .913 914
10 1 .920 873 977 .908 .936 939 935  .919 917
10 2 .938 900 .984 .928 .952 955 952 .938 .937

Overlapping Block Bootstrap

¢ Skip

5 0 925 875 977 .904 .949 945 947 921 .924
5 1 939 .895 .983 923 .958 953 962 .933 .938
5 2 .958 923 .989 .947 .969 962 974 951 .958
10 0 923 878 975 910 .943 945 940 .923 923
10 1 930 .889 979 919 .948 948 .950  .930 .930
10 2 .942 902 .985 931 .956 956 .959  .941 941

* The standard block bootstrap results are those for which Skip = 0 and the
block-block bootstrap results are those for which Skip = 1 or 2.



TABLE 1T
Coverage Probabilities and Probabilities of CIs Missing to the Left and Right for
Two-sided Delta Method and Two-sided Equal-tailed Block and Block-Block
Bootstrap Confidence Interals: Non-overlapping Blocks

Column 1 2 3 4 5 6 7 8 9
00,2 9 9 9 .95 .8 9 9 9 9
Py .8 .8 .8 .95 7 .8 .8 .8 .8
N 50 o0 50 50 50 100 50 50 50

2

Distribution N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) N(0,1) x5 Unif N(0,1)
Std Err Est HC HC HC HC HC HC HC HC Homo
Conf Level 95% 90% 99% 95% 95% 9%5%  95% 95% 95%

A. Coverage Probabilities

A Method 759 .669 .887 702 .833 853 .791 751 .808
¢ Skip

5 0 848 764 .946 .825 .876 874 840  .863 .848
5 1 .890 816 967 875 912 906 .883  .901 .891
5 2 935 879 .986 .926 .950 940 931 .939 .939
10 0 .840 770 .936 .812 .851 884  .829 851 .841
10 1 .861 796 .950 .835 873 901 .853  .873 .861
10 2 .885 .826 .960 .862 .895 920 .882  .896 .887

B. Probabilities of Missing to the Left—Nominal Probabilities are .025, .05, or .005

A Method 231 314 11 .280 153 138 200 .239 185
L Skip

5) 0 137 211 .049 .149 .098 111 143 123 137
5 1 .100 165 .030 107 071 .084  .104 .090 .099
5 2 .059 110 013 .064 .041 .054  .062 .057 .057
10 0 133 191 .050 .149 .104 .095 143 123 131
10 1 116 .168 .039 130 .088 .081 121 1105 115
10 2 .095 143 031 107 072 066  .097 .086 .094

C. Probabilities of Missing to the Right—Nominal Probabilities are .025, .05, or .005

A Method .009 017 .003 018 .015 009  .009 .010 .006
¢ Skip

5 0 015 025 .005 025 .026 015 .017 .013 015
5 1 010 019 .003 018 .017 .010  .013  .009 .010
5 2 .006 011 .001 011 .009 .005  .007 .005 .004
10 0 .027 .040 .014 .039 .045 .021 029  .026 .027
10 1 .024 .036 .011 .036 .039 .018 026  .023 .024
10 2 .020 .031 .009 .031 .033 .014  .022 .018 .020




