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Abstract

An exact form of the local Whittle likelihood is studied with the intent of
developing a general purpose estimation procedure for the memory parameter
(d) that does not rely on tapering or differencing prefilters. The resulting exact
local Whittle estimator is shown to be consistent and to have the same N (0, %)
limit distribution for all values of d if the optimization covers an interval of width
less than % and the initial value of the process is known.

AMS 2000 subject classification: 62M10; JEL Classification: C22

Key words and phrases: Discrete Fourier transform, fractional integration, long
memory, nonstationarity, semiparametric estimation, Whittle likelihood.

Short Title: Exact Local Whittle Estimation

1 Introduction

Semiparametric estimation of the memory parameter (d) in fractionally integrated
(I(d)) time series is appealing in empirical work because of the general treatment

*The authors thank an Associate Editor and three referees for helpful comments and advice that
led to a substantial revision of the original version of this paper. Shimotsu thanks the ESRC for
research support under Grant R000223629 to Essex University (his former affiliation) and the Cowles
Foundation for hospitality during his stay from January 2002 to August 2003. Phillips thanks the
NSF for support under Grant #SES 0092509. Simulations were performed in MATLAB.



of the short memory component that it affords. Two common statistical proce-
dures in this class are log periodogram (LP) regression (Geweke and Porter-Hudak,
1983, Robinson, 1995a) and local Whittle (LW) estimation (Kiinsch, 1987, Robin-
son, 1995b). LW estimation is known to be more efficient than LP regression in the
stationary (|d| < 3) case, although numerical optimization methods are needed in
calculation. Outside the stationary region, it is known that the asymptotic theory
for the LW estimator is discontinuous at d = % and again at d = 1, is awkward to
use because of nonnormal limit theory and, worst of all, the estimator is inconsistent
when d > 1 (Phillips and Shimotsu, 2004). Thus, the LW estimator is not a good
general purpose estimator when the value of d may take on values in the nonstation-
ary zone beyond %. Similar comments apply in the case of LP estimation (Kim and
Phillips, 1999).

To extend the range of application of these semiparametric methods, data dif-
ferencing and data tapering have been suggested (Velasco, 1999, Hurvich and Chen,
2000). These methods have the advantage that they are easy to implement and they
make use of existing algorithms once the data filtering has been carried out. Differ-
encing has the disadvantage that prior information is needed on the appropriate order
of differencing. Tapering has the disadvantage that the filter distorts the trajectory
of the data and inflates the asymptotic variance. In consequence, there is presently
no general purpose efficient estimation procedure when the value of d may take on
values in the nonstationary zone beyond %.

The present paper studies an exact form of the local Whittle estimator which
does not rely on differencing or tapering and which seems to offer a good general
purpose estimation procedure for the memory parameter that applies throughout the
stationary and nonstationary regions of d. The estimator, which we call the exact LW
estimator, is shown to be consistent and to have N (0, %) limit distribution when the
optimization covers an interval of width less than %. The exact LW estimator therefore
has the same limit theory as the LW estimator has for stationary values of d. The
approach seems to offer a useful alternative for applied researchers who are looking
for a general purpose estimator and want to allow for a substantial range of stationary
and nonstationary possibilities for d. The method has the further advantage that it
provides a basis for constructing valid asymptotic confidence intervals for d that are
valid irrespective of the true value of the memory parameter.

The exact LW estimator given here assumes the initial value of the data to be
known. This restriction can be removed by estimating it along with d, as shown by
Shimotsu (2004). Also, computation of the estimator involves a numerical optimiza-
tion that is more demanding than conventional LW estimation. Our experience from
simulations indicates that the computation time required is about ten times that of
the LW estimator and is well within the capabilities of a small notebook computer.

2 Exact Local Whittle Estimation

We consider the fractional process X; generated by the model

(1-L)Y X, =u{t>1}, t=0+1,... (1)



where I{-} is the indicator function and u; is stationary with zero mean and spectral
density f,(\) ~ Gg as A — 0. Expanding the binomial in (1) gives the form

t

>

k=0

(2)

where

['(do + k)

ot = ")
is Pochhammer’s symbol for the forward factorial function and I'(-) is the gamma
function. When dj is a positive integer, the series in (2) terminates, giving the usual
formulae for the model ( 1) in terms of differences and higher order differences of X,
An alternate form for X is obtained by inversion of (1 ), giving a valid representation
for all values of dy

=(do)(do+1)...(dp +k—1),

L S (do)i
Xp=(1-L)Pul{t>1} =) Tk (3)
k=0

Define the discrete Fourier transform (d.f.t.) and the periodogram of a time series a;
evaluated at frequency A as

wa (N) = (27rn)_1/22n:ateit’\, I, (A) = |wa (N) 2.

2.1 Exact Local Whittle Likelihood and Estimator

We start with the likelihood function of the stationary innovation u¢. The (negative)
Whittle likelihood of u; based on frequencies up to \,, and up to scale multiplication

is
Zmﬁ *Zn y =22 (@

where m is some integer less than n. We want to transform the likelihood function
(4) to be data dependent.

If |do| < 3, it is known that I,()\;) can be approximated by )\?dolx()\j) (Robin-
son, 1995a, 2004). Therefore, if one views I,();) as the jth observation of w; in
the frequency domain, replacing I,,();) in (4) with A?d"[m(}\j) and adding the Jaco-
bian Z;n:l log )\]-_2d to (4) makes it data dependent. Indeed, the resulting objective
function coincides with that of the LW estimator.

However, when dp takes a larger value, in particular when |dp| > 1, )\?dOIx(/\j)
no longer provides a good approximation of I,,();). In this paper, we propose to use
a “corrected” d.f.t. of X; that can approximate I,,()\;) and validly transform (4) in
such cases. Lemma 5.1 in Appendix B provides the necessary algebraic relationship
for these quantities for any value of dy, namely,

L) = Ipdog(Aj) = [Dn(e™;5do)Plus (A3 do)|?, (5)
va(Njid) = we(Nj) — Du(e™;d) 1 (2mn) V2 X0 (d),




where Dy, (e";d) = 31, (7,3)"’6““’\ and )Z,\n(d) = Zg;é EZV,\pe_ipAXn,p with EZVAP =
D hepil (ﬁ)k e®*. The function v,(A\;;do) in (5) adds a correction term that in-
volves X a;n(do) to the d.ft. wy(A;) which ensures that the relationship (5) holds
exactly for all dy. Accordingly, we may interpret v;(\j;do) as a well-suited proxy
for the jth frequency domain observation of X;. Consequently, replacing I,(};) in
(4) with | Dy (5 d)[|vs()j; d)|?, adding the Jacobian > ity log |Dy,(e";d)| 72, and
using (5) again give, in conjunction with the local approximation f,(\;) ~ G and
|Dn(e;d)[* ~ A3 (Phillips and Shimotsu, 2004),

1 & og) 1
where Tna,()\;) is the periodogram of AYX; = (1 — L)?X; = >r_, %Xt_k.
We propose to estimate d and G by minimising @,,(G, d), so that

(@, c?) = arg min Qm (G,d), (6)
G'E(O,OO)7 dE[Al,Ag]

where Ay and A, are the lower and upper bound of the admissible values of d such
that —oco < A < Ag < oo. Concentrating Qm, (G, d) with respect to G, we find that
d satisfies R
d = argmin R(d),
de[A1,Az]

where

~ 1 — . 1 —
=1 —2d— ) "log =—>Y1I ).
R(d) ogG(d) dm ; Og)‘]7 G(d) m Adx()‘J)

The estimator d is based on the transformation of the Whittle likelihood function of
ug by (5). Since (EQ follows from a purely algebraic manipulation and holds exactly
for any d, we call d the exact local Whittle estimator of d.!

2.2 Consistency
We now introduce the assumptions on m and the stationary component u; in (1).

Assumption 1
fu(A) ~Go € (0,00) as A —0+.

Assumption 2 In a neighborhood (0, ) of the origin, f,,(\) is differentiable and

%logfu()\) =0 asA—0+.

'The word “exact” is used to distinguish the proposed estimator (which relies on an exact algebraic
manipulation) from the conventional local Whittle estimator, which is based on the approximation

I (M) ~ A;leu(/\j). Of course, the Whittle likelihood is itself an approximation of the exact likeli-
hood, but this should cause no confusion.




Assumption 3

0o 0o
2
U = C(L) gt = E Cj€t—j, ZC]- < 00,
Jj=0 Jj=0

where E(g|F,_1) = 0, E(e?|F,_1) = 1 a.s.,, t = 0,#+1,..., in which F, is the o-field
generated by e, s < t, and there exists a random variable ¢ such that Fe? < oo and
for all n > 0 and some K > 0, Pr(let| >n ) < K Pr(le| > n).

Assumption 4

1 1 12
_+m(ogm) + 8% .o for any v > 0.
m n mY
Assumption 5
Ay — Ay <9/2.

Assumptions 1-3 are analogous to Assumptions A1-A3 of Robinson (1995b). However,
we impose them in terms of u; rather than X;. Assumption 4 is slightly stronger than
Assumption A4 of Robinson (1995b). Assumption 5 restricts the length of the interval
of permissible values in the optimization (6) although it imposes no restrictions on
the value of dp itself. For instance, if we assume the data are overdifferenced at most
once and hence dy > —1, then taking [Aj, Ag] = [—1,3.5] makes d consistent for
any do € [A1,Ag]. When one wants to allow the interval of permissible values to
be wider than 9/2, the tapered estimators with sufficiently high order of tapering
provide useful alternatives. R

Under these conditions we may now establish the consistency of d.

2.3 Theorem

Suppose Xi is generated by (1) with do € [A1, Ag] and Assumptions 1-5 hold. Then
d —, dy as n — oo.

Assumption 5 is necessary for the following reason. Loosely speaking, we prove
consistency by showing that (i) when |d — dp| is small, R(d) — R(dp) converges uni-
formly to a non-random function that achieves its minimum at dp, and (ii) when
|d — do| is large, R(d) — R(dp) is uniformly bounded away from 0. When |d — dp| is
larger than 1/2, the periodogram Iaa,();) in the objective function does not behave
like )\i(dfdo)]u()\j). Consequently, R(d) — R(dp) does not converge to a non-random
function, and we need an alternate way to bound it away from zero. For instance,
when 1/2 < d — dp < 3/2, the normalized d.f.t. is expressed as (c.f. equation (30) in
the proof of consistency)

A O () = e FE DI () 740 (22m) M2 e g,

where Z, = Y7 (1 — L)?X;. The leakage from the last term prevents the uniform
convergence of R(d) — R(dp) and complicates the proof. When |d — dp| is larger,



)\;(dfdo)wAdx()\j) has further additional terms (e.g. the equation below (51)), and
we could show the necessary results only for |d — dg| < 9/2, which is why we need
Assumption 5. Lemma 5.17 in Appendix B is the main tool in handling the effects
of such additional terms. We can relax Assumption 5 if we can extend Lemma 5.17
to hold with more general summands (1 — €*9)*Qy + - - - + Qp, but we were not able
to do so.

2.4 Remarks

1. An alternate way of accommodating a wider range of d without sacrificing
efficiency is to use a two-step procedure. A two-step estimator based on the
objective function R(d) that uses a (higher-order) tapered estimator in the first
step would have the same asymptotic variance as the exact LW estimator.?

2. The model (1) assumes, in effect, that the initial value of X; is known. In
practice, it is more natural to allow for an unknown initial value, p,, and model

X; as

(do)
k!

t—1
Xi=po+ (1 —L) OuT{t>1} = pg+> Ut - (7)
k=0

Estimation of p affects the limiting behavior of the estimator. According to
Shimotsu (2004), (i) if 4 is replaced with the sample average X =n~1 Y} | X3,
then the estimator is consistent for dy € (—%, 1) and asymptotically normal for
dy € (—%, %), but simulations suggest that the estimator is inconsistent for
dp > 1, and (ii) if y is replaced by Xi, then the estimator is consistent for
do > % and asymptotically normal for dg € [%, 2), but simulations suggest that
the estimator is inconsistent for dy < 0. To accommodate unknown i, it is
possible to extend Theorem 2.3 for X; generated by (7) by estimating 1 along

with dp. For instance, Shimotsu (2004) proposes estimating pg by
7 (d) = w(d)X + (1 —w(d)) X,

where w(d) is a smooth (twice continuously differentiable) weight function such
that w(d) =1 for d < 1/2, w(d) € [0,1] for 1/2 < d < 3/4, and w(d) = 0 for
d > 3/4, and replacing X; with X; — zi(d) in the periodograms in the objec-
tive function. Shimotsu (2004) shows the resulting estimator of d is consistent
and asymptotically normal for dy € (—3,2) excluding arbitrary small intervals
around 0 and 1. Another possibility would be to replace X; with X; — p in
the periodogram ordinates and minimize the objective function with respect to

(d, G, ).

3. Fractionally integrated processes as defined in (1) are more restrictive in some
ways than the stationary frequency domain characterization used in Robinson

2Strictly speaking, the asymptotic properties of tapered estimators have been established only
under the alternate type of fractionally integrated process generated as in (8) below, although some
results on the difference between their d.f.t.’s are available (Robinson, 2004).



(1995b) and elsewhere. It might be possible to extend the results in this paper
to the class of nonstationary processes analyzed by Robinson and Marinucci
(2001) and seek to achieve a similar degree of generality to Robinson (1995b)
but we do not attempt to do so here.

4. Another popular definition of a fractionally integrated process provides for dif-
ferent generating mechanisms according to the specific range of values taken by
dop, as in

{ Xt = (1 - L)_dout7 dO € (—OO, 1/2)7 (8)
Xe=pg+ g1 Zey Zy=(1—L)""duy, dye(1/2,3/2),

with corresponding extensions for larger values of dy, so that X; or its (higher-
order) difference is stationary. While we do not explore the effects of these
alternate generating mechanisms here, simulation results suggest that the ver-
sion of the exact LW estimator by Shimotsu (2004) is consistent for this type
of fractionally integrated process.

2.5 Asymptotic Normality

We introduce some further assumptions that are used to derive the limit distribution
theory.

Assumption 1’ Assumption 1 holds and also for some 3 € (0, 2]
fuN) =Go(1+0(N)) as A —0+.

Assumption 2’ In a neighborhood (0,d) of the origin, C(e*") is differentiable and

%C(e“) =0\ Y asA—0+.

Assumption 3’ Assumption 3 holds and also
E(}|Fi1) = pg, E(e}|Fi1) = g, as., t=0,%1,...,

for finite constants p3 and jiy.

Assumption 4 Asn — oo,

1 1+28 2 1
— 4 (log m) + %% .0 for any v > 0.
m n2p mY



Assumption 5 Assumption 5 holds.

Assumptions 1’-3' are analogous to Assumptions A1’-A3’ of Robinson (1995b),
except that our assumptions are in terms of wu; rather than X;. Assumption 4’ is
slightly stronger than Assumption A4’ of Robinson (1995b).

The following theorem establishes the asymptotic normality of the exact local
Whittle estimator for dog € (Ag, Ag).3

2.6 Theorem
Suppose Xy is generated by (1) with dy € (A1, As) and Assumptions 1'-5" hold. Then

-~ 1
m/? <d—do) —>dN<O,Z> as n — Q.

3 Simulations

This section reports some simulations that were conducted to examine the finite
sample performance of the exact LW estimator (hereafter, exact estimator), the LW
estimator (hereafter, untapered estimator) and the LW estimator with two types of
tapering studied by Hurvich and Chen (2000) and Velasco (1999) with Bartlett’s win-
dow (hereafter, tapered (HC) and tapered (V) estimator, respectively). The tapered
(HC) estimator and tapered (V) estimator are consistent and asymptotically normal
for d € (—0.5,1.5) with limiting variances 1.5/(4m) and 2.1/(4m), respectively (see
footnote 2). We generate I(d) processes according to ( 3) with u; ~ itdN (0,1). A;
and As are set to —6 and 6. Although this setting violates Assumption 5, it does
not appear to adversely affect the performance of the exact estimator. The bias,
standard deviation, and mean squared error (MSE) were computed using 10,000
replications. The sample size and band parameter m were chosen to be n = 500 and
m = n%6% = 56. Values of d were selected in the interval [—3.5, 3.5].

Tables 1 and 2 show the simulation results. The exact estimator has little bias
for all values of d. The untapered estimator has a large bias for d > 1, corroborating
the theoretical result that it converges to unity in probability (Phillips and Shimotsu,
2004). When —0.5 < d < 1, the exact and untapered estimators have similar variance
and MSE. The variances of the tapered estimators are always larger than those of
the exact and untapered estimator. Again, this outcome corroborates the theoretical
result that the tapered estimators have larger asymptotic variance. The tapered
(HC) estimator has small bias and performs better than the tapered (V) estimator.
However, the tapered (HC) estimator has around 50% larger MSE than the exact
estimator due to its large variance.

3The approximate mean squared error and the corresponding optimal bandwidth can be obtained
heuristically in the same manner as Henry and Robinson (1996).



Table 1. Simulation results: n = 500, m = n%% = 56

Exact estimator Untapered estimator

d bias s.d. MSE bias s.d. MSE
-3.5 -0.0024 0.0787 0.0062 3.1617 0.2831 10.076
-2.3 -0.0020 0.0774 0.0060 1.6345 0.3041 2.7640
-1.7 -0.0020 0.0776 0.0060 0.8709 0.2788  0.8363
-1.3 -0.0014 0.0770 0.0059 0.4109 0.2170 0.2160
-0.7 -0.0024 0.0787 0.0062 0.0353 0.0885  0.0091
-0.3 -0.0033 0.0777 0.0060 -0.0027 0.0781 0.0061
0.0 -0.0029 0.0784 0.0061 -0.0075 0.0781  0.0062
0.3 -0.0020 0.0782 0.0061 -0.0066 0.0785  0.0062
0.7 -0.0017 0.0777 0.0060 0.0099 0.0812 0.0067
1.3 -0.0014 0.0781 0.0061 -0.2108 0.0982  0.0541
1.7 -0.0025 0.0780 0.0061 -0.6288 0.1331 0.4130
2.3 -0.0026 0.0772 0.0060 -1.2647 0.1046 1.6104
3.5 -0.0016 0.0770 0.0059 -2.4919 0.0724 6.2150

Table 2. Simulation results: n = 500, m = n%% = 56

Tapered (HC) estimator Tapered (V) estimator
d bias s.d. MSE bias s.d. MSE
-3.5  2.5889 0.3037 6.7946 1.6126 0.3380  2.7148
-2.3  1.1100 0.2893 1.3157  0.2155 0.1726  0.0762
-1.7 04474 0.2154 0.2466  0.0259 0.1235  0.0159
-1.3  0.1551 0.1231 0.0392 0.0081 0.1211  0.0147
-0.7  0.0278 0.0957 0.0099 -0.0068 0.1219  0.0149
-0.3  0.0100 0.0971 0.0095 -0.0133 0.1224  0.0151
0.0 0.0034 0.0985 0.0097 -0.0138 0.1224  0.0152
0.3 -0.0033 0.1004 0.0101 -0.0132 0.1235 0.0154
0.7 -0.0066 0.0994 0.0099 -0.0068 0.1227  0.0151
1.3 -0.0079 0.0987 0.0098 0.0140 0.1232  0.0154
1.7 0.0008 0.0972 0.0095 0.0456 0.1288  0.0187
2.3 0.0528 0.0981 0.0124 -0.1781 0.1419  0.0519
3.5 -0.4079 0.1142 0.1795 -1.4541 0.1338  2.1322

Figures 1 and 2 plot kernel estimates of the densities of the four estimators for
the values d = —0.7,0.3,1.3 and 2.3. The sample size and m were chosen as n =
500 and m = n%65, and 10,000 replications were used. When d = —0.7, the exact
and tapered (V) estimators have symmetric distributions centred on —0.7, with the
tapered estimator having a flatter distribution. The untapered and tapered (HC)
estimators appear to be biased. When d = 0.3, the untapered and exact estimators
have almost identical distributions, whereas the two tapered estimators have more
dispersed distributions. When d = 1.3, the untapered estimator is centred on unity.
In this case, the exact estimator seems to work well, having a symmetric distribution
centred on 1.3. The tapered estimators have flatter distributions than the exact
estimator but otherwise appear reasonable and they are certainly better than the
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Figure 1: Densities of the four estimators: n = 500, m =n

inconsistent untapered estimator. When d = 2.3, the untapered and tapered (V)
estimators appear centred on 1.0 and 2.0, respectively. In this case, the tapered (HC)
estimator is upward biased. Again, the exact estimator has a symmetric distribution

centred on the true value 2.3.

In sum, there seems to be little doubt from these results that the exact LW
estimator is the best general purpose estimator over a wide range of d values.

4 Appendix A: Proofs

In this and the following section, |z|+ denotes max{z,1} and z* denotes the complex
conjugate of z. C, ¢, and e denote generic constants such that C,c¢ € (1,00) and
e € (0,1) unless specified otherwise, and they may take different values in different

places.
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4.1 Proof of consistency

Define G(d) = Go= >1" A 2-(d %) and S(d) = R(d) — R(dp). Rewrite S(d) as follows:

S(d) = R(d) - R(do)
G G(dy) 1 & L, mAdd)
= loedg) e, EZ de/m

—2(d — dy) % > logj — (logm — 1) | +2(d — do) — log(2(d — do) + 1),
j=1
Define U(d) = 2(d — dp) — log(2(d — dp) + 1) and

@(do) é(d) 2d—2dg

_ _ _ 2d—2dy m
T(d) log Co log G log Z] / 5 —do) 71

1 m
+2(d = do) | — > “logj — (logm — 1)
1

so that S(d) = U(d) — T(d). For arbitrary small A > 0, define ©1 = {dy — 2 + A <
d < do+ 3} and Oy = {d € [A1,dy — 3 + A] U [do + 3, A2]}, O being possibly
empty. Without loss of generality we assume A < % hereafter. For % > p > 0, define

11



N, ={d:|d—dy| < p}. Then it follows (c.f. Robinson, 1995b, p. 1634) that

d—do| > p) < i < i <0).
Pr <|d do| > p> < Pr (deé?{Np S(d) < o) +Pr <1&f S(d) < 0> 9)
Robinson (1995b, (3.4), p.1635) shows

infgeo,\n, U(d) > p?/2. (10)

Therefore, Pr(|d — do| > p) — 0 if
sup [T'(d)| =, 0, Pr <inf S(d) < O) — 0,
@1 62

as n — o0o. From Robinson (1995b), the fourth term of 7'(d) is O(logm/m) uniformly

indé€ 0 and
2d — do) + 1 o= [ j \ 272 1
<4 — 1l = — . 11

Séllp m 21: m © m28 (11)
Note that
~ _ 2(d—d, d _ 2(d—d
G(d) — G(d) _ ml S A ; 0)/\(0 )IAI()\) Gom~ 13" A ; o)

G(d) Gom-13" i(d do)

mL (G fm) 20 O () — Gom S (/)2 o)
Gom 137" (j/m)2(d=)
[2(d — do) + 1] m~ L 7 (j /m) =) XX~ () — Gy
[2(d — do) + 1] Gom 1 7 (j/m)2@-)
A(d)

= B0 (12)

Therefore, by the fact that Pr(|logY| > ¢) < 2Pr (]Y — 1| > ¢/2) for any nonnegative
random variable Y and € < 1, supg, |T(d)| — 0 if

supg, |A(d)/B(d)| — 0. (13)
Define 0 = d — dy, and define
Vi) =(1-L)X;=(1-L)" %1 —-L)* X, =1 — L) wI{t >1}.

Hereafter, we use the notation a; ~ I () when a; is generated by (1) with parameter
a. So Y; ~ I (—6). Note that

deO & —3+A<H< ]

Applying Lemma 5.1 (a) to (Y;(0),u;) and reversing the role of X; and wu;, we obtain
wy(Aj) = wu(Aj) Dn(e™50) — (2m) ~V/20y, (0), (14)

12



and A(d) can be written as, with g = 2(d — dp) + 1

<@=%fX%f[A%w> ). (15)
1

Hereafter in this section, let I,; denote I ()\;), wy; denote wy,(A;), and employ the
same notation for the other d.f.t.’s and periodograms. From an argument similar to
that of Robinson (1995b, p. 1636), supg, |A(d)| is bounded by

m—1 2A 1 T m
2 Z < > ~3 Sup Z [)\_2 I, — ] —sup Z [)\_2 I,; — . (16)
©1 J=1 7j=1
Now
—260
A 20, — Go

— AL, = AT D, (e 0) T, + [A].—29|Dn(ew;9)| — Go/fu\)] L
+ L = 1CE) 15| Go/ fulry) + Go@r Ly = 1), (17)
For any n > 0, Lemma 5.2 and Assumption 1 imply that n can be chosen so that

A Da(E30) = Go/ ful\)| <m+ OO +0G7), G =1...m. (18)

The results in Robinson (1995b, p. 1637) imply that, uniformly in j = 1,...,m,

Elwy; — C(e™)w.;[? = O(og(j + 1)),
E | L — |C(e™)2L;] = O/ (log(j + 1))*/?).

It follows from (18) and (19) that

2A 1

m

> () ——wp}jHAQﬂD (30 = Go/ ful\)] Tus

1

+PW—WMMWAM%UA>] (0 +m?n 2+ m 2 logm)
Robinson (1995b, pp. 1637-8) shows Y " (r/m)? r=2 1> 127l —1)] —p 0 and

m~ 1Y 7 (2nl; — 1) —, 0. From (14), the fact that ||A|> — |B|?| < |A + BJ||A — B]
and the Cauchy-Schwarz inequality we have

A 2
E sup )\]._29ij — )\;29 ’Dn(elkj;é?)‘ I
©1
~ 2\ 1/2 2\ 1/2
, Ux., (0 U.n (0
< | Esup 2)\79Dn(61)‘j;9)wuj - )\‘79%—() p|A; 9)\)—() (20)
01 / J 2mn 61 V2t
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From (19) and Lemmas 5.2 and 5.3, it follows that, uniformly in j = 1,...,m,
—0 i 1% _ 1/277 2 2
Esup |A;"Dp(e"V; 0)wy;| = O(1), Esup A O(2mn)~ Uxnjn (0)] = O™ (logn)?).
©1

Therefore, we obtain
(20) = O(1 + j~*logn)O(j/*logn) = O(j~*/*(log n)?). (21)
It follows that

m—1 2A 1

r 2
E —20 —20 N,
1 (E> _E sup El |:)‘j 2 I, — )‘j 2 ‘Dn(e 1,9)‘ Iuj:|

and hence the first term in (16) is o, (1). Using the same technique, we can show
that the second term in (16) is o, (1), and supg, |A(d)| —, 0 follows. (11) gives
supg, | B(d) — Go| = O(m~22), and (13) follows.

Now we take care of O = {d € [A1,do — 1 + AJU [do + 3, Ao]} = {0 € [A; —
do, —% + A] U [3, Ay — dy]} to show Pr (infe, S(d) < 0) — 0. Note that

=0 (m_A(log n)2) ,

S(d) = logG(d) —log G(do) — 2(d — do)— Zlog)\j
1
= log—ZIAdm log—ZIAde] 2(d — do)log——Zd do)— Zlogj

(d—do) d d
= 1og—2)\ 0) \2(do = )IAde log—ZIAdow

—2(d — dp) log 7 —2(d —dp)logp
1 o, . _ 1
= log—Z(j/p)Qe)\j%IAdwj—log—Z[AdOW-
me me
= log D(d) — log D(dp),

where p = exp(m !> ["logj) ~ m/e as m — oo. Applying (17) with § = 0 and
proceeding similarly to the argument below (17), we obtain

log D(dg) — log Gy = log <1+G ZIW—GO> =o0p(1).
Therefore, Pr(infg, S(d) < 0) tends to 0 if there exists 6 > 0 such that
Pr (inf@2 log D(d) — log Gy < log (1 + 5)) Pr (mf@2 D(d) — Gy < 5G0)

as n — 0. Now, for any fixed x € (0, 1), we have

N 1 m j 20 ) 1 m j 20 )
D(d) = — ) N> — ) NI,

1 [rem]
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Let > denote the sum over j = [km],...,m. It follows that, for d € O,
ﬁ(d) —Go>m! Z'(j/p)%()\j_%lyj —Go) + Go(m™ (G /p)¥ - 1). (22)

From Lemma 5.7, by choosing ¢ first and then k sufficiently small, for large m we
have
infg, Go(m 13 (j/p)?° — 1) > 46Gy.

Therefore, Pr(infg, S(d) < 0) — 0 if there exists § > 0 such that
Pr (inf@2 (m—1 G/ (AP, GO)) < —35G0> 0, (23)

as n — oo. We proceed to show (23) for subsets of ©,.
First we consider ©3 = {0 € [-3, —1 + A]}. Rewrite

m Y (5/p) (0 Ly = Go) = Aua(6) + A2n(9),
where
An(0) = m G/ [N 0 = AT Da(e™:0) L (24)
Aaal0) = m™ S (G/0) [ A7 Da(e™30) P Ly — Gol (25)
For Ay, (6), since (20)-(21) are still valid for § € ©3, we have

Esupgy )\j_%lyj - )\;29|Dn(ei)‘j;0)|2luj = 0@ ?(logn)?),

and it follows from Lemma 5.5 that Esupgy [A1n(0)] = o(1). For Agy (), rewrite
Aop(0) as

m= 3 (G /p) N Da(€50)] = Gof fu(N)] L (26)
+m 3 (5/0)? [Tug — |C (€M) PL)Go/ fu(N) (27)
+m (G /p)? Go(2r L — 1). (28)

supey |(26)], supey [(27)] = 0p(1) follows from (19) and Lemmas 5.2 (b) and 5.5. For
(28), summation by parts gives

(28) = Gy <%>2Q% m_1]<(%)29— <T;1>26> Z (2nl; —1)

r=[km Jj=[rm]
m A
Gy <;> = Z[: ](%Jgj —1) = 1(0) + 11(0).
j=[km

As in Robinson (1995b, p.1637), write
1 < 1
2ml; — 1= — Z(Ef -1+ 522608{(8 —t)Ajteser,

n
1 s#t
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from which it follows that

r=[km)]
+% Z s(;llp <%>26 % ZZ Z cos{(s — t)\j}eser] .
r=[km] | ~2 s#t j=[km]

From Robinson (1995b, (3.19) and (3.20)), we have n=! >"7(¢? — 1) —, 0 and

2
B (55 s1 568t Xy c0s{(s =)} ) = O(rm?).

In conjunction with maxj.,j<,<m Supe, (r/m)® = O(1), we obtain SupPg} [1(0)| =
op(1). supgy [11(0)| = 0,(1) follows from a similar argument. Hence supgy [(28)] =
op(1) and supey [A2n(0)] = 0p(1) follow, and we establish (23) for 6 € el

For ©% = {6 : 3 <0 < 2}, Define Z,,(0) = Y1, Y; (0) ~ I (1 —0) with 1 — 6 €
[—1/2,1/2]. From Lemma 5.1 (b), we have

wyj = (1 — €M )w,; + (2mn) "2 e Z,,(6). (29)
Define

Dnj(0) = A;%(1—€™)Dp(e™;60 - 1),
U,(0) = A;9(1—ew)(27m>—1/2 U (0 —1),

and then applying (14) to (Z¢(0),u;) gives
5wy = Dy (0) wy — Tnj(0) + ;7 (2mn) ™12 €9 2,,(0). (30)
Since § — 1 > —1/2, from Lemma 5.2 we have, for § € ©2,
Dpj () = e 2% + O(\;) + O(j7Y/%), uniformly in 6. (31)
With a slight abuse of notation, rewrite

m™ 3 (5/p) (A L — Go)
= m Y (G/p) NP1y — | Dy (0) PLug) +m 32 (5/0)* (| Dy () P 1y — Gl
= Aln(e) + A2n(9) (32)

Therefore, (23) follows if, for 6 € ©3,

Pr(infg A1,(0) < —20Go) — 0, supg |A2,(0)] = 0p(1), asn — oo. (33)

16



supy |A2,(0)| = op(1) follows straightforwardly from (31) and by the same argument
as the one for § € ©1. For Ay, (0), substituting (30) to the definition of Ay, (0) gives

Aw(0) = m™3(G/p)* U (0) (34)
+m Y (5/p) AT (2mm) T 22 (35)
—2Re[m ™" 37'(5/p)* Dnj (6)" w};U,;(0)] (36)
—2Re[m ™ Y/ (3/p)*Tn;(0)A; 7 (2mn) ™12 €% Z,,(0)] (37)
+2Re[m ™! 3/ (5/p)? Dy (0)" wi ;A ? (2mn) "2 e Z,(0)]. (38)

(34) is almost surely nonnegative. Lemma 5.3 gives
Esupy [Uy;(0)* = 0" (logn)?), (39)

and hence supy |(36)| = 0p(1) follows from (39) and Lemma 5.5. Therefore, (33) and
hence (23) follow if, for any ¢ > 0,

Pr(infy[(35) + (37) + (38)] < —¢) — 0, asn — oc. (40)
We proceed to show (40). First, there exists n > 0 such that, uniformly in 6,
(35) = p~2 (27) 21 201 7 (9)2m L SV 1 > p(m 022, ()2,
From (39) and Lemma 5.5, we have, uniformly in 0,
(37) = m~n=Y22,(6) - Op(m™/%logn).
For (38), it follows from (31), ¢ = 1+ O(};), and Lemmas 5.5 and 5.9 that

m S5 /0) % D () wippA; 0 (2mn) % €% Z,,(6)

= (2mn) "2 Zu(0)e3 m T 3 (5/p) P wi; AT
+(2mn) "2 Zy(0)m™ Y (5/p) P wi A IOy) + O
= mn97Y22,(0)[0,(m Y2 logm) + Op(mn~1)). (41)

Therefore, we can write
(37) + (38) = m~n?"122,(0) - R, (0,w), (42)
where w denotes an element of the sample space, €2, and
supg |Rn (6,w)| = Op(ky);  kn = m~Y2logn +mn~t — 0. (43)
Before showing (40), define
0 = {(w,H) e x0:m V2 |Z,(0)| < k,logm

Qy = {(w,@) €eQx0:m ' V22,00)] > ky logm},

17



where © is the domain of § (©1 in this case), so that Q1 UQy = x ©. Then
{(@,0) s n(m =022, (0))2 — [m =0/ =1/22,(0) - R (0,w) | < —C}
= {@.0) 1 (nm™n® =12 2,(0))% — |m =00 22, (0) - R (0,0) | < —C) N}
U {(w, 6): (77(77179719*1/2Zn(9))2 —|m™n9722,(0)- R, (8,w) | < —C) N Qg}
{@.0): n(m= 002 Z,(0))2 ~ ke logm | R (0,0)] < —C }
0 {(,0) s m~0n07112 | 2,(6) Ik Yo m — | By (6.) ) <~
C {(w,0):kplogm|Ry, (0,w)]| > (}U{(w,0) : nky,logm — |R, (6,w)| < 0}.
Therefore,
{w - infp [n(m—%@—l/?Z )2 = m~n0= Y22, (8) - Ry ( ] }
C {w:supgkplogm|R, (0,w)| > 0Go} U{w : nkylogm — supy |R,, (6,w)| <0},
and it follows that
Pr (infe [n(m*9n9*1/2zn<9>>2 —|m P27, - R, (0, w) |} < —c)
< Pr(knlogmsupy |Ry (0,w) | = ¢) + Pr (nknlog m — supy | Ry (6,w) | < 0) — 0,

N

because supy | Ry, (0,w) | = Op(ky), and k2 logm — 0 from Assumption 4. Therefore,
(40) follows, and hence (23) holds for 6 € ©3.
For ©3 = {0: —2 <60 < —1}, from Lemma 5.1, we have

Wyj = (1 — )71 way; — (1 — eyt (27m)71/2 MY, (6), (44)
where AY;(6) ~ I(—60 — 1). With a slight abuse of notation, define
Daj (6) = A7(1— ™) 1Dy(e™;0 4 1),
Unj(0) = X(1—e™) " 2mn) V2000 (0+1).
Then, applying (14) to (AY;(0),u;) gives
A5 Pwy; = Dij (0) way — Unj(0) + 277 (2mn) 712 e (1 — €)1y, (6). (45)
D,,;(0) and U,;(0) satisfy (31) and (39) for § € ©3, because —0 — 1 € [~1/2,1/2].
Using the decomposition (32) and the same argument as the one for § € ©3% we
obtain

m S5 /p) (AP Ly — Go) = mT Y (/) NP 1y — | Dy (0) [P 1] + 0p(1),

where 0,(1) is uniform in 6 € ©3. Using (45), rewrite the first term on the right as

m= S (5 /p) % Uy (0)] (46)
+m S (5/p) AT (2mm) T |1 — €] 7Y, (0)? (47)
—2Re[m ™" Y2 (j/p)* Dnj ()" w};Un;(0)] (48)
—2Re[m ™ Y/ (/)P TUnj(0)A7? (2mn) /2 € (1 — )71V, ()] (49)
+2Re[m ! 37 (5/p)? Dy (0)" wiyA;? (2mn) T2 €9 (1 — )71y, (0)]. (50)
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(46) is almost surely nonnegative. Because D,;(0) and U,;(#) satisfy (31) and
(39), it follows from a decomposition similar to (41) and Lemmas 5.5 and 5.9 that
supy |(48)| = o0,(1) and (49) + (50) = m~0=1nf*1/2y, (9) - Op(m~2logn + mn=1).
Finally, (47) is equal to
p729n2971(2ﬂ_)72971 -1 Z/ |1 i/\j|72Y ( )2
— p729n2071(2ﬂ_) 20— 1Y( ) flz )\ (1+0( )) > nm72072n29+1yn(0)2(751)
for some 1 > 0. Therefore, we can apply the argument following (42) with slight

changes to show (23) for 6 E 03.
For ©3 = {0: 3 <0 < 3}, by applying (29) twice and (14), we obtain

A wy; = Drj(0)wy; — Unj(0) + A7 (2mn) "2 €9 [(1— €29) 37 Z4(0) + Zn(0)),
where

Dn](Q) — )\j—@(l_ i)\j)QD ( i)\j.a_ )

Tnj(0) = AP0 — )% (2mn) V200 (0 - 2),

and Dy (0) and U,,;(0) satisfy ( 31) and (39). We proceed to evaluate the terms in
m~! Zl(j/P)%)\j_?erj. First, observe that

m ™Y (5/p) AT (2mn) TH (1 - €M) T Zi(0) + Za(0)]
= p P 2m) P T Y (1 =€) 207 Zu(0) + Za(6)[. (52)
By applying Lemma 5.17 (a) with Q3 = Q2 = 0, Q1 = >_7 Z(0), and Qo = Z,(0),
there exists n > 0 such that, for sufficiently large n,
(52) > nm*29+2n29*3(27f Zu(0)? + nm 20271 7,(0)? = Asn(0),

uniformly in #. Of the other terms in m™! > (j /p)29/\ 201,;, the terms involving
the cross products of wy;, Uy;(0) and (1 — €)1 Z4(0) + Z,(0) are dominated by
A3,(0). For instance, proceeding as (41) gives

m ™t Y (3/p)* Daj(O)wg Ay (27n) Y2 e [(1— 7)) 321 Z4(6) + Zn(6)]
_ m—9+1n9—3/2 2711 Zt( ) . Op( —-1/2 logn +n~ m)
+m 012 Z,(0) - O, (m™?logn + n"tm),
where the O, (-) terms are uniform in 6. Therefore, the terms in m=1 3" (5 /p)?? [A;Qelyj—
| Dy (0)|?1,5] are either o,(1) or nonnegative or dominated by As,(#). Using (31) and
proceeding as (26)-(28) and the following argument gives supy [m =1 3" (5 /p)?*[| Dpn; (0) |21, —
Gol| = 0,(1), thus (23) follows for 0 € ©3.
Since 0] < Ay — A; < 9/2, the proof is completed by showing (23) for the
remaining subsets of O :
O = {0:-5/2<60<-3/2}, ©5={0:7/2<6<5/2},
0 = {#:-7/2<60<-5/2}, ©5=1{0:9/2<0<7/2},
0y = {0:-9/2<0<-7/2}.
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Applying (29) or (44) repeatedly and (14) gives the required result for ©;. For in-
stance, for O = {0 : —9/2 < 0 < —7/2}, applying (44) four times and then (14), we
have o '

Ay = Do (O)was — Unj(0) = A; 7 (27n) /2 MWW,

where

1
Tnj(0) = A=) 2rn) 200 (04 4),
Wiy = (1-€™) A%, (0) — (1 - ™) PA%Y,(0)

—(1 = M) 2AY,(0) — (1 — €)1y, (0),

Dy (6) = A1 e™) Dy (™50 + )
®) = %

and Dy, (0) and U,;(0) satisfy (31) and (39). We can easily obtain
mt Y (G /) (AP Ly — Go) = mT Y (/) [N yj — [ D (0) 1 1ug] + 0p(1),

where o0, (1) is uniform in @ € ©3. For the first term on the right, from Lemma 5.17
(b), we have, for large n and n > 0,

m~ Y (/) AT (2mn) T Wiyl
_ (27T)—20—1n20—1p—20m—1 Z/ |an|2

-1y, | IS (ARY(0)) 4 m O (A%Y, ()2

+m 4t (AY;,(0))? + m2n2Y,;,(6)? ’ (53)

> nn

uniformly in . The terms involving the cross products between wy;, Up;(6) and W,,;
are dominated by (53). The other terms in m™! Z'(j/p)%[/\j_wlyj — | Dnj (0) 214
are either 0,(1) or almost surely nonnegative, and hence (23) follows. W

4.2 Proof of asymptotic normality

Theorem 2.3 holds under the current conditions and implies that with probability
approaching to 1, as n — oo, d satisfies

0= R'(d) = R'(do) + R"(d)(d — do), (54)

where |d — dg| < |c/i\— dp|. From the fact that

—w = — E et (1-L0)" X, = E etlog (1 — L) (1 — L)* Xy,
od Adej od \/2mn 1 ( ) X V2t ) & ) ) X
0? 1

Y d
W’U}Adw’j - \/% ; ¢ ! (log (1 - L))2 (1 - L) Xta

we obtain N N R - ~ -
i) — GG =GR _ GGl — Gid)
G2(d) G3(d) ’
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. 1< 9 § 1 & .
Gl(d) = E Z a— [wAdxijdxj] = E Z2Re [wlog(l—L)Ad:ijAdxj] ’
1 1
. 1 < 92 . 1 & .
Gg(d) = E;a_ [wAdxijd:nj} = E;Wx (L,d,]),
Wz (L, d:j) = 2Re |:w(log(1—L))2Ad$jw*Adxj] + 2110%(1_L)Adw]"
~ ~ 1 &
Go(d) = — Z 20}\ #1y5, Gi(d) = oy Z 26}‘ 2 Re [Wi0g(1-L)y5wy;] »

1
m

1 20\ — .
Gz(d) = EZ]20)\] 29Wy(L707])a
1

and 0 = d — dy and Y;(0) = (1 — L)?X; = (1 — L)%usI{t > 1} as defined in the proof
of Theorem 2.3. Fix ¢ > 0 and let M = {d : (logn)*|d — do| < €}. From (9) in the
proof of Theorem 2.3, we have

Pr(d ¢ M) < (infe,\ar S(d) < 0)+o(1).
Hence, in view of (10), Pr(d ¢ M) tends to zero if

supe, |A(d)/B(d)] = op((logn)”®). (55)

where A(d) and B(d) are defined in (12) in the proof of Theorem 2.3. From Assump-
tion 1/, (18) is strengthened to

A Du(: 0 = Col Fu(N)| = OO +OGT), G=1....m. (56)
Therefore, proceeding as in the proof of Theorem 2.3, we obtain
m rA2A ] r
—) = A1, — 21Gol,,
21:<m> 72 S(l)llp 21:[ jo vl T AT 84

Robinson (1995b, (4.9), p. 1643) shows

=0, (mﬁn_ﬁ +m ™2 (log n)z) .

Sr(2nly —1) = 0p(rY?), asn — oo, forl<r<m, (57)

and it follows that > 7" (r/m)*2 r=2| S (2rI; —1)| = O(m~ 22 logm). Applying the
same argument to the second term of (16), we obtain supg, |A(d)| = op((logn)~®),
and (55) follows in view of (11). Thus we assume d € M in the following discussion
on Gi(d). N N

Now we derive the approximation of G(d) for k = 0, 1,2. For Go(d), observe that

E'supge !X_ZQ i — Lujl
< Esupgey ’)‘ Iy — )‘_29’D € Mj59)’2luj| + Esupge Mj_wyDn(eMj;e)’z — 1|1y;
O ?(logn)? + 2072, j=1,...,m, (58)
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where the third line follows from (21) and Lemma 5.2. Since |j% — 1|/]26] <
(logj)n2‘6| < (logj)nl/log” = elogj on M, we have

supj, ]]20—1| ((logn)_?’), supjs ]329]— o1), j=1,....,m. (59)

Therefore, in view of (58) and EI,; = O(1) (following from (19)), we obtain
< sup L ij%[)\ﬂel ; = i

oMM ;o m

= o0,((logn)?).

For G1(d), from (14) and Lemma 5.15 we have

m

Go(d —%Z

1

sup + Sup
M

)‘;29wlog(1—L)yJwa + I (€)1 uj
= J(e™) [1= 372D 0)?] L
— T (€M) Dy (€5 0)wyy - A7 (2mn) TP Ty ()7
=X 0D (e 0) wy; - A0 (2mn) T2 Vi (0) — A7 (2mn) T U (0)" Vi (6) -
Then, since J,(¢"X) = O(logn), it follows from (59) and Lemmas 5.2, 5.3, and 5.15
that
— Zsupjze ‘Re [ wlog(l L)Wy + Jn (€M) u]] ‘ = op ((logn)~ 1) .

In conjunction with (59), J,,(e*) = O(logn) and EI,; = O(1), it follows that
Ch(d) + — i 2Re [1,()] 1,
m J

%i (1- 42 )2Re[J(M )}Iw
1

sup
M

+ 0, ((logn)™') =0, ((logn) ™).

M

For Ga(d), the same line of argument as above with Lemma 5.15 (c) gives

d) — % i {QRe [Jn(ez‘,\j)2] n 2Jn(€ixj)Jn(eiAj)*}Iuj
1

Gald) ~ — > {Re )]} 1
1

From (19) and Assumption 1’, we obtain

= sup
M

=op(1).

E|L; — Gol.j| < E|lL;—|C(e™) ;| + E2r|fu()\}) — fu(0)|L;
= O0(Y(log(j +1)) +nP), j=1,....m.
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Therefore, in view of J, (%) = O(logn), Fl.; = 1, and Cov(I;j, L) = O(1) if j = k
and O(n~1) if j # k, we have
éO@) = m~ YY" Luj + 0p((logn)~?)

= Gom ' 31" L + 0p((logn) ?)

= Go+op((logn)™?),
Gi(d) = —2m™ 31" Re[J(e™ )] uj + 0p((logn) ™)

= —Gom ' 7 2Re[Ju (€))L + 0p((logn) )

= —Gom™' 31" 2Re[Ju(e"™V)] + 0p((logn) ™),
Ga(d) = m™t 3T 4{RelJn(e™)]} o + 0p (1)
Gom ™' 321" 4{Re[Ju (™))} Lej + 0, (1)
= Gom ™" 17" HRel[Jo(e™)]}? + 0, (1).

1

It follows that
H@)=[@@&@—@@H@@}
m 17 4{Re[ T, (6212 — {Gom™ ' S0 2 Re[J, ()]} + 0,(1)
{Go +0p((logn)~2)}*
= 4m~t T Re[ o (¢M)]}? — 4{m ™t 7 RelJu(e™)]} + 0, (1) (60)
From Lemma 5.13 (a) and a routine calculation, we obtain
m~ T {Re[ (€M)} = mT YT (log Aj)? + o (1),
{m T RelJu(e™)]}2 = (m™' 1" log Aj)* +o(1).
Therefore, (1/4) times (60) is, apart from o, (1) terms,
m~ 3 log Aj)2 — (m~ Y M log A\j)? = m Y M (log §)% — (m ™t S log 5)? — 1,
and R"(d) =4 + o, (1) follows.
Now we find the limit distribution of m!/2R/(dy). In view of Lemma 5.15 (b),

Elwyj—C(e™ )we* = O(5 " log(j+1)) (see (19)), and E|Jux,; (€ L)ey|* = O(nj ")
(see ( 77)), we obtain

—wlog(l—L)uijj = [J (6’ J)wuj +Tnj]w2j
C (1) (2mn) ™2 Jox, (€7 L), C (e )
( 1) (2mn) "2 Jox, (67 L)eg [wl; — C (™) w?)]

= Tu(e™) = O(1) (2mn) M2 (6P L) Ole) uy + R,
where 7,,; is defined in Lemma 5.15 (b), and E|jY/2R,;| = o(1) + O(j~*/?1logm) as
n — oo. It follows that m'/2G1(dp) is equal to

m~ 2 ST 2 Rel (€)1 (61)
+C (1) m ™2 1 2Re[(2mn) "2 Tn, (€7 L)en O (€) *w})] (62)
+0p(1) + Op(m ™"/ (logm)?).
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From Lemma 5.13 (a), we have
(61) = 2m~Y2 5" (log A;) Luj + Op(m®?n=2) + O, (m ™2 log m).
For (62), in view of the fact that

wlj = @rn) VRS e, = (2mn) V2 I ey,

we obtain the decomposition

m—1/2 ZT(an)_l/an)\j( z)\JL)S C( i )*w;

= m_1/2211nc(ei/\j)*(2ﬁn)_l( 0 j)\jpe_ip)\]&‘n—p)( 0 elthig, q). (63)

Because the ¢; are martingale differences, the second moment of ( 63) is bounded by

1 m m n—1 2 m m n—1
Jj=1k=1p=0 j=1k=1p=0
1 m n—1 _ ~ n—1
s ZZ X [ [ | . (65)
=1 k=1p=0,p#q q=0
Since %J.p = O(max{]pulnj*l, logn}) from Lemma 5.13 , (64) is bounded by
1 m m |n—1 n—1 n n—1 n
- 1 2 e -0 ( -1 1 2 ! 1 4) ’
ot 2 2 | 2 e 2y 2| O b s s

and, in view of the fact that ZZ;& "N =A) = nT {j = k}, (65) is bounded by

m n—1 m n—1
% Z Z ‘}/\jp ‘o o (% Z Zj71|p|j_1n10g n) =0 (mfl (log n)3) ,
1 0

j=1p=0

giving (62) = op (1) . Therefore, we obtain m2Gy(dy) = 2m~1/2 > (log Nj) L +

op(1). Let v; = logA; — 121 log\; = logj —m™1Y "logj with > "v; = 0.
Then it follows that

m1/2R/(d0) _ m1/2

G1 do
— log \;
Cldo Z s ]

2m~1/2 >0 (log)\ )uj +0, (1) = (m~' 31" log )‘j)2m_1/2 2.1 Luj

m~1 37" Ly
_ o 2mT N v 4 0p (1)
B Go +0p (1)
2 Sy (ly — Go) 0y (1)
B Go + Op (1)
_ 2m*1/2 ZT Vj(Q?TIEj — 1) + Op (1) N (O 4)
1+ 0, (1) d SR

where the fifth line follows from Robinson (1995b, p.1644), completing the proof. W
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5 Appendix B: Technical Lemmas

Lemmas 5.2 extends Lemma A.3 of Phillips and Shimotsu (2004) to hold uniformly
in 6. Tts proof follows easily from the proof of Lemmas A.2 and A.3 of Phillips and
Shimotsu (2004) and is therefore omitted.

5.1 Lemma (Phillips, 1999, Theorem 2.2)
(a) If X follows (1), then

we (\) = Dy, (eM; d) we (A) — (27n) V26 Xy, (d),

where Dy, (e™;d) = S, (*kd!)keim and

n—1 n

B (i - - (e,

X (d) = Dy <e AL;d) Xo =D dpe P Xy, dy= Y e
p=0 k=p+1

(b) If X follows (1) with d =1, then

wy (A) (1 — e“‘) = wy (A) — (27Tn)*1/26i(”+1))\Xn'

5.2 Lemma (c.f., Phillips and Shimotsu, 2004, Lemmas A.2 and A.3)
(a) Uniformly in 0 € [-C,C] and in j =1,2,...,m with m = o(n), as n — oo,
AL =€) = e WL O(N), ATFL- NP =140,
(b) Uniformly in 0 € [-1+¢,C] and in j=1,2,...,m with m =o(n), as n — oo,
N Du(e;0) = L 00) + 0G0,
A Dn(e;0))7 = 1+0(0)+0G ).

5.3 Lemma
Let (N])\n 0) = ﬁn)\(e_i)‘L; Ou, = Z;;é%\pe_ip’\un_p. Under the assumptions of

Theorem 2.3, we have, uniformly in j =1,...,m, as n — o0,

Esupge|_1/21/2) |n9_1/2j1/2_0[7>\jn () > = O((log n)?).

5.4 Proof
When 6 = 0, the result follows immediately because U A (0) = 0. When 6 # 0, define

ap = 'é)\jpe—iij so that (7,\].” 0) = ZZ;& aptn—p. We suppress the dependence of a,,

on 6 and A;. Summation by parts gives

n—2 p n—1
Ux;n (0) = Z(ap — apt1) Z Un—q t Qn-1 Zun—q-
p=0 q=0 q=0
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Phillips and Shimotsu (2004, page 670) show that (note that Phillips and Shimotsu
use ), instead of \; to denote Fourier frequencies)

) _in.
ap — Gp+1 :bnp(e) +—( n') e ij7
where .
— A4+0OT(k—=0) ;0
bop(0) = ih=p); (66)
o, TEO(k+2)

~ n—2 P (_9) n—2 ' p (_9) ‘ n—1
UAjn 0) = b”p(e) Z Un—q + n! - TPy Z Up—q + n! R i1 Z Up—q
p=0 9=0 © =0 q=0 ’ q=0
n—2 n—1
= by (0 P (=0)n —ip}; -
= np( ) Z Up—q + ol [ Z Up—g
p=0 q=0 p=0 q=0

= Uin(0)+ Usy ().

We proceed to show that the elements of n?~1/25%/2-017, (9) are of the stated
order. First, for Uy, we have

n—2 p
Sup n?=1251/2=0,,, (9)‘ < ngp‘ne_l/gjm_ebnp(ﬂ)‘ > tn gl
p=0 q=0

Because Y. Fuiusiq = 27 f,(0) = 27nGy < o0, it follows from Kronecker’s lemma
that, uniformly in p =0,...,n— 1,

E(3 0 un—q)* = (p+1) X2 ,(1— lal/(p + 1)) Bugurq = O(lpl+). (68)
Therefore, if we have, uniformly in p=0,...,n—1and j=1,...,m,
_ . — —3/2
subger1y2.12 [0 V22 by (0)| = O(pl ), (69)

then it follows from Minkowski’s inequality that

2
9 n—2
Esup | 12200, ()] =0 [ | b7 | =0 (Gogn)?).  (70)
0
p=0
To show (69), Phillips and Shimotsu (2004, page 670, equation (21)) show that

bup(®)] = O (min|pl "L, 1ol 1) (1)

uniformly in 6 € [-1/2,1/2], p=10,...,n—1, and j = 1,...,m. Although Phillips
and Shimotsu do not state explicitly that the bound (71) holds uniformly in 6 €
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[—1/2,1/2], it is clear from its proof that (71) holds uniformity in 6 € [—1/2,1/2].
Then (69) follows from (71) because

. 0 3/2 3/2

0<p<n/j : n V220070 = (jlp|y /)20 2% < |pl2¥
. —0—

n/‘7 SpSn . nG 1/231/2 Op 0— 2n] _ (jp/n) 1/2p 3/2 Sp 3/2'

)

For Uap, = ((=0)n/n!) > 0~ LemAi Sy, ., first, we rewrite the sum as

n—1 P n n n k
Z €_ip>\j Zuniq — Z ei(n—p))\j Z uniq — Zuk‘ Z eiCI)\j
p=0 q=0 n—p=1 n—q=n—p k=1 ¢=1
k=1 -
= = e’)‘ﬂ Zuk — 27m)1/2wu()\j). (72)
k=1
Since (—8),/n! = O(n=9"1) uniformly in 0 € [~1/2,1/2] and (1 —eN)~1 = O(nj ™),
E supy |n?=1/251/2-01,,12 = O(1) follows from (68) and E|w, (A )| = ( ) (Robm—

son, 1995b, p.1637). W

5.5 Lemma

For k € (0,1) and C € (1,00), as m — oo,

(a) sup |~ i <%>7/’:$de =0 (m™),

—C<y<Cc |,
== j=[xm]

(b) { SUD_cy<c Mt YTy (3/m) ] = O (1),

lim inf,;, o0 inf_c<y<o(m™ Z;”:[Hm} (7/m)7) >¢e > 0.

5.6 Proof

Note that [km] > 3 for large m. For part (a), since

B L) [

their difference is bounded uniformly in by, for sufficiently large m,

moopi/m K
Z / w”dm—/ xVdzx,
[km)] (G=1)/m ([xm]=1)/m

m j/m i\ K c j -0-1
B0 el [ S5 o
o] [V G=1)/m AT w=(2/m) T ) N "

by the mean value theorem. Part (b) follows immediately from part (a). W
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5.7 Lemma

For p ~m/e as m — oo, € € (0,0.1), and A € (0,1/(2e¢)), there exists k € (0,1/4)
such that, for all fized k € (0,R] and sufficiently large m,

(@)  inf  — <l> >1+2, (b) inf — Y <l> > 1+ 2.
—C<y<-142A M ] P 1§7§ij e P
J=|km =|Km

5.8 Proof

From Lemma 5.5, we obtain, for large m,

S I IR S OS5 510
—C<y<—142Aa M P —C<y<-1+2Aa M P m P

[km)] [km)] [km)]

1 1 _ 2A

N _/ a1y 1 (ke) ’

€ Jue 2Ae
1 m . Y (0%
inf —" <l> ~ inf =S (- > S0 - k),
1<v<Cem o) \P 1<v<Cy+1 2

where the last inequality holds because €7 /(v + 1) is monotone increasing for v > 1.
Since 2Ae < 1, choosing x sufficiently small gives the stated results. H

5.9 Lemma

For k € (0,1), C € (1,00) and m = o(n), as n — oo,

ag[-C.Cl | Sl m
5.10 Proof
Summation by parts gives
m N m—1 o r m
1 j 1 T\ r+1 1
m (E) wu(Aj) = m Z [(E) - ( m ) ] ' wu()‘J)‘i‘E Z wu(Aj)-
[km)] r=[km] j=[rm] [km)]
Note that, uniformly inr=1,...,m — 1 and «,

T\ r+1\“ T\ r\—C1
—) - =(—) N-0+1/M%< —) -, 73
'(m) <m>‘ (m) | (—|—/r)|_c(m r (73)
because sup,, | (1 4+ z)* — 1] < C2¢ for 0 < x < 1. The results in Robinson (1995b,
p. 1637) imply that Elw,()\;) — C(e™)w:(A\;)|?> = O(j 'log(j + 1)) uniformly in
j=1,...,m, giving

B (Zéfz[m] wu(Aj)’Q = O(rlog(r+1)), r=[km],...,m. (74)
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From (73), (74) and Lemma 5.5, E'sup,¢[_c,c) |m =1 > ) (4/m)wu(A;)] is bounded
by
m S (r/m) " e P logr +m T 2 logm = O(m Y ? logm),

giving the required result. W

5.11 Lemma

Define J,, (L) = S"7_, L¥/k and D,(L;d) = 7_ 0 ’“Lk Then

(@) Ju(L) =Ty () + Jor (e7L) (e7L - 1),
(b)  Ju (L) Dy (L;d) = J ( M) Dy, (€*;d) + Dy (€5d) Jox (e7L) (e7L — 1)
Dy (e L; d) (e’“‘L — 1) ,

where ~ A L~ A N
Jax (€7AL) = 3020 dwe ALY, = S 1€
D (67i/\L3 d) = ZZ;S drpe ™ PALP, dy, = ZZH %‘em/\
5.12 Proof

For part (a), see Phillips and Solo (1992, formula (32)). For part (b), from Lemma
2.1 of Phillips (1999) we have D,,(L;d) = D, (e”;d) + Dyx(e " L;d)(e L — 1), and
the stated result follows immediately. W

5.13 Lemma
Let Ju(e?) = Sp_, €k and jy, = D h=pi1 e /k, as defined in Lemma 5.11.

Then, uniformly in p=0,...,.n—1and j=1,...,m with m=o0(n), as n — oo,
(a) Jn(e™) = —log \j + = ( -X)+0 (M) +0(G),
() Jap = O (min{[p|'nj " logn}) .

5.14 Proof

For (a), first we have

| 1 . 1
Jn(ez/\J) — Eezk)\g — Z Eezk)\J o Z E ik (75)
k=1 k=1 k=n+1

Aj 1

Since 2sin (\;/2) = \j + O(\2) = \j(1 + O(Az)), the right hand side is equal to

1
—log)\j—log(l—i-O()\?))+2'§(7T—)\j) —log\; +0 (\3) + (W—AJ).

2
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For the second term on the right of (75), summation by parts gives

[e%e) 1 n+N-—1 1 1 T 1 n+N
Z Lown| — | im [ Z <_ _ > Z ROV Z ez‘k,\j]
k=n+1 Nooo | Sy \r r+ 1) 2 nt N S

< Ol X r "+ =007,
giving (a). (b) follows from the fact that |},\jp| < (p+1) "' max,i1<n<n| Zi\;pﬂ e |
and jx;p = O(Xi_o [k[71). W
5.15 Lemma
Suppose Yy = (1 — L)o w I{t > 1}. Under the assumptions of Theorem 2.6, we have
(@) = wiog-ryy (Aj) = Ja(€™9)Dn(e™;0)wy (A;) + 12 Ve (6),
(0)  —wiogi-pyu (A) = Ja(¢M)wa (Ag) = C (1) (2mn) 2 Jun, (67 L)en + 1,

(©) Waog(i-1))2y Nj) = Jn(€™)2Dp(e™;0)wy (Nj) +n~ 20,5 (0)
where, uniformly in j =1,...,m, as n — 00,

=o(1)+0(j ),

2 2
Esupy ‘n9*1/2j1/2*9an (0)’ = O((log n)4), E ‘jlmrnj‘

2

E supy ‘n6_1/2j1/2_9\11nj (9)‘ = O((log n)ﬁ).

5.16 Proof

Define w; = ugI{t > 1} so that Y; = Dy_1 (L;0)w, = D, (L;0)u; for t < n. Since
Y; =0 for t <0, we have

log(1-L)Y;=(-L—L?/2—-L3/3—...)Y; = —J,(L)Y;.
For part (a) and (b), from Lemma 5.11 (b) we have
Clog(1—L)Yi = Ju (L) Da (L:0) T
= Ju(€9)Dy(e™;0)T; + Dy (e™;0) Jpn, (€M L) (e N L — 1)ay
+Jn (L) Dy, (€7 L; ) (e 7™M L — 1),
Since >, € (e7*N L — 1)u; = —7y, taking the d.f.t. of the right hand side gives
Tn(€29) Dy (€3 0)wy, () — (20) "V/2 Dy (e50) T, (€= LY,
—(21n) Y2, (L) Dy, (€= L; ). (76)
Note that Lemma 5.2 (b) gives | D, (e*;0)| < c)\g. Therefore, part (a) follows if

2

E\Jo (e L), = O(nj™"), (77)

~ . 2
Esupy [n0251/20 1, (L) Dor (e N Li 07, = O((logn)?).  (78)
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First we show (77). Define a;, = },\]pe*”’/\ﬂ' = D hepil k~1e!k=PAi 5o that

T —iXNj T\ — sl n—1 . .
Jnx; (€N L)y, = Zp 0 Qpln—p = Zp 0 @pUn—p- Then, summation by parts gives

n—2 P n—1

T —iA T\ r_ /

Jnx; (€7 L)y, = g (ap, —apiq) g Up—q + Gy E Un—g-
p=0 q=0 q=0

Observe that

n n
1. 1.
ot = 3 et 35 Lo
k=p+1 k=p+2
n—1
_ Z |:l _ 1 :| z(k—p)AJ 4 Ze ’Lp)xj
Pt ko kE+1 n
n—1 1
— Z i(k—p)X; + e A
k=p+1 k(k+1)
Define ¢y, = Z;;H mei(k*p))‘j, then since a/,_; = n~ e~V we obtain
jn)\j(e_i’\fL)ﬂn = Z anun ¢+ = Ze‘”’)‘ Zun q—i-—e —i(n—1)A Zun q
p=0
n—2
S IC SUSERS SED S
p=0
n—2 )\
= Z% 0t Z 7 (2mn) ()
p=0 k=1
= Jin+ Jzn, (79)
where the third line follows from (72). E |jgn|2 O(nj~2%) in view of the order of
magnitude of E| > 7 ug|> and E|w,(A;)|?. For Ji,, since
n—1 1 p+N
— ’L(k‘ p)/\ < ik < —2 .—1
lnpl kzl—k<k+1) p3* max. ;e 7| < ClplPni
=p+

el < |3 T | < Ol
k=p+1

we have
lenpl < Cmin{|pl Y, p|?nj Y. (80)
Therefore, it follows from (68) and Minkowski’s inequality that

2
n/j

ElJw2=0 Z pl7? + Z PR =omi, (81)

n/J
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and hence (77) follows. N
Now we move to the proof of (78). When 6 = 0, then Dn,\j(e_“‘J L;0) =0, and
(78) follows immediately. Assume 6 # 0. If we have, uniformly in r = 0,1, ...,

Esupy [n? Y2200 Dy (e7™ Ly 0),|* = O((logn)?), (82)

then (78) follows because Minkowski’s inequality gives

~ . 2
Esupy |n’~/2j1270.1, (L) Dua, (™™ L; 0),

n—1
< B (S p s w220 1B e 0y,
=1
n—1 _ ' o\ 1/2
< Zp_l <E sup ‘ne_l/le/Q_GLpDn,\j(e_”‘jL; 0)u, ) = O((logn)b).
— 0 '

We proceed to show (82). For r > n, (82) follows immediately because Lrﬁn)\j (e7™N L; 0)u, =
0. For r =0,...,n — 1, using a decomposition similar to (67) gives

—1 P
)
) Lr§ :6 zp)\JE ﬂn—q
p=0 q=0

n—2

p
LDy, (7™ L;0)a, = anp ’"Z—
= Uln( )+U2n( )

where by,,(0) is defined in (66). For Uy, (0), since E(L" Y ¢ _ tn— )= (|p\1/2) the
arguments in the proof of Lemma 5.3 go through and Esup,, [n~1/2§1/2-0U7 (9)|? =
O((logn)?) holds. For U, (6), using a decomposition similar to ( 72) gives

/ (=0)n e —_ (=0)n e - ik j—
Uan 6) = Tl——e“jyzuk_ m »J-L’”Z@’ i

_ ( e zr)\ zq)\]
= 3y ; Y €7 Uq
n! L —e = n! 1-—e po

Since E(37_7 ui)? = O(n'/?) for any r, Esupy|n?~/251/2-0U4 (0)|> = O(1) and
(82) follow if, for m = o(n),

r 2
(2mr) 72> e = 0(1). (83)

k=1

max max F
1<r<n1<j<m

We establish (83) to complete the proof of part (a). An elementary calculation
gives
2

E — [ hOVEO - Aj)dA,

T
(27_”,,)—1/2 Z eik?/\j Uk,
k=1
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where K,.(\) = (27r)7 1320 S0, €09 is Fejér’s kernel. From Zygmund (1977,
pp. 88-90), [™ |K;(A\)|dA < A and |K,(X)| < Ar~'A"? for a finite constant A.
Furthermore, from Assumption 1 there exists 7 € (0, 7) such that supye(_y , [fu(A)] <
C, and inf |55, [A — Aj| > n/2 if A; < /2. It follows that, for sufficiently large n,

LK - A = /m FOVEO =i+ [ FOE - A
-7 <n

n<[A<7

< AC+ Ar_l(n/2)_2/ fu(N)dA < o0,
n<[A|<m
uniformly in j =1,...,m, and (83) follows. _
For part (b), in view of (76), D, (e*;0) = 1, and Dn)\].(e—i/\iL; 0) = 0, part (b)
follows if, as n — oo, uniformly in j =1,...,m,
~ , 2
E ‘ F2nT 2T (TN L)@, — C(1)en)| = o(1) + 06, (84)

Using the same decomposition as (79), write j1/2n_1/2jn>\j (e L) (T, — C(1)ey,) as

n—2 1/2
Z \/—Cnpz Un—q — 571*11) (85)
'1/2 Py n 1/2 i \/%
- o —C(De. —_ o1
Wﬁl_ew ;(un k= C)en-p) = =T [wa(h) = C(Dwe()]
(86)
If we have
2 O(|p|+), uniformlyinp=0,...,n—1
P _ _ ) y 9 9
E {Zq:(’(unfq C(l)sn,q)} B { o(p), asp— oo, (87)

then it follows from Minkowski’s inequality and the order of ¢, given by (80) that

(E|(85)])1/2
n/j
= (j/m)"/? Z 72 | o | G/mY2 ST p V2w (i/m) 1/22 372
/i n/J
= (J/n 1/4 (1) =0(1),

because \/n/j > y/n/m — oo from Assumption 4’. To prove (87), note that when
p =0, (87) follows immediately. When p > 1, observe that

2

B[S0 (g~ CWeng)| <28 [0y +28 [CO) D20y
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Since the first term on the right is uniformly O(p) from (68) and the second term on
the right is equal to 2C(1)%(p + 1), the first part of (87) holds. For the second part
of (87), note that the left hand side of (87) is equal to (v, = Euiuiiq)

T+ 1= Iy = 2C(1) 200 Xhg g + (p+ (1)
= @+ D)X mp Y — 22207 + 2010+ 1) 3oys s o — 20(1) T ey

If >~ a, converges, then Z|r‘>p 410 tends to 0 as p — oo, thus the first and
third terms are o(p) because both >-> ~, and > > ¢, converge. The second and
fourth terms are o(p) from Kronecker’s Lemma, and the second part of (87) follows.
Obviously E|(86)]* = O(j71), and (84) follows.

For part (c), first from Lemma 2.1 of Phillips (1999) and Lemma 5.11 we have

Tn (L) = Jn (L) [Ju(€?) + Jur(e L) (€7 L — 1)
Tn (L) Jn(€™) + Jn (L) Jyr(e7 L) (€™ L — 1)
= Tu(€)? + Tu(€?) Tur(e L) (e L = 1)
+J (L)i (e L) (e L = 1),
Dy (L;0) = Dp(e;0) + Dux(e ™ L; 0)(e7 L — 1).

It follows that
(log (1—L)*Y; = Ju(L)* Dy (L;0)T
= Ju(e?)2D, (e 0)Ty
D (e 0)[Jn(e) + Ty (L)) Jua(e A L) (e™ L — 1w
+Jn (L)? Dpx(e™L; 0) (e 7L — 1)a,.
Taking its d.f.t. gives

Jn<ei/\j)2Dn(eMj’ 0)wu ( ])
—(2mn) T2 Dy (€ 0) [ (€9) + i (L)] T, (67N L)y,
—(2n) Y27, (L)? Dy, (e L; ).

By the same argument as the ones used in showing (77) and (82), we obtain
BIL1 T, (6™ L2 = O(ng™), q=0.1,...

In conjunction with J,,(e"A) = O(logn), Minkowski’s inequality, and (82), it follows
that
E supy ngfl/zjl/zfoDn(ei’\f 2 0) [T (€M) + T, (L)]jm]. (e"™NL)a,| = O((logn)?),

" = O((logn)®),

Esupy |n?=1/21/270 5 (L) l~)n,\j (e"N L; 0)a,

for j =1,...,m, giving the stated result. B
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5.17 Lemma

Let Qi, k =0,...,3, be any real numbers, k € (0,1/8), and 1/m +m/n — 0 as
n — oo. Then, there exists n > 0 not depending on Qy such that, for sufficiently
large n,

(a) m YT e [(1 = €%9)2Q3 + (1 — €)?Q2 + (1 — €)@ + Qo
> n(mn6Q§+mn4Q2+mn2Q1+Qo)
(B w11 =€) T Qs 4 (1= €M) T2Qa + (1 — ) PQ
+(1 = ) TQo > > n(m™2n?Q32 + m Q% + m5n°Q? + m3n8Q3).

5.18 Proof
Define ' ' '
AN = (1= €?)’Q3 + (1 —€)?Qa + (1 — e™)Q1 + Qo
Since 1 — e = —iX 4+ O(\?) as A — 0, we have
AN) = iX%Q3 — A2Qa — iAQ1 + Qo + O(A)Q3 + ON)Q2 + ONH)Q1.  (88)

Applying 2|a||b| < |a|? + |b? to the product terms involving the reminder terms, we
obtain

[AN = (V@2 — Qo)* + (A*Q3 = AQ1)* + R(N), (89)
where R(\) = O(A\)Q32 + O(\*)Q3% + O(\*)Q? + O(N) Q3. First we show that
m Y (AFQ2 — Q0)? > n(mnTiQ3 + Q7). (90)

When sgn(Q2) # sgn(Qo), then (90) holds from Lemma 5.5. When sgn(Q2) =
sgn(Qo), without loss of generality assume Q2,Qo > 0. Note that )\?Qg is an in-
creasing function of j. Now suppose ()\m/Q)QQg — Qo > 0. Then, since ()\3m/4)2 =
(9/4)()\m/2)2, we have, for j =3m/4,...,m,
NQa—Qo > (9/4)(Any2)’Q2— Qo
(1/4) (Any2)* Q2 + 2(An/2)*Q2 — Qo > (1/4) (A /2)*Q2 + Qo.

Now suppose (A m/2> Q2 — Qo < 0. Then, since ()\m/4)2 = (1/4)()\m/2)2, we have, for
j=1,...,m/4,

NQ2—Qo < (1/4)(Any2)*Q2 — Qo
= —(1/4)(Any2)?Q2 + [(1/2)(Any2)?Q2 — Qo]
< —(1/4)(Anj2)?Q2 — (1/2)Qo.

Therefore, either for j =1,...,m/4 or j =3m/4,..., m, we have

IAFQ2 = Qo| = (1/4)(A\ny2)?Q2 + (1/2)Q, (91)
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and (90) follows immediately. The same argument gives, if sgn(Q3) = sgn(Q1),
INJQ3 = X Q1] = X {(1/4) (A 2)*| Q] + (1/2)|@u ]}, (92)
either for j =1,...,m/4 or j =3m/4,...,m, and it follows from (91) and (92) that
m YT (A8Q3 — AjQ1)? = n(m®nT0QF + mPn Q7).
For R(A) in (89), it follows from Lemma 5.5 that
m1 > fem) B(A;) = O(m™n~NQ% + O(m°n~")Q% + O(m3*n3)Q% + O(mn™1)Q?,
and part (a) follows. For part (b), rewrite the term inside the summation as
(1= M)A P = [ATHL + Oy ) A .

Applying (88) and the following argument with (91) and (92 ) gives part (b). W
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