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ABSTRACT

This paper studies fractional processes that may be perturbed by weakly dependent time
series. The model for a perturbed fractional process has a components framework in which
there may be components of both long and short memory. All commonly used estimates
of the long memory parameter (such as log periodogram (LP) regression) may be used in
a components model where the data are affected by weakly dependent perturbations, but
these estimates can suffer from serious downward bias. To circumvent this problem, the
present paper proposes a new procedure that allows for the possible presence of additive
perturbations in the data. The new estimator resembles the LP regression estimator but
involves an additional (nonlinear) term in the regression that takes account of possible
perturbation effects in the data. Under some smoothness assumptions at the origin, the
bias of the new estimator is shown to disappear at a faster rate than that of the LP estimator,
while its asymptotic variance is inflated only by a multiplicative constant. In consequence,
the optimal rate of convergence to zero of the asymptotic MSE of the new estimator is faster
than that of the LP estimator. Some simulation results demonstrate the viability and the
bias-reducing feature of the new estimator relative to the LP estimator in finite samples. A
test for the presence of perturbations in the data is given.

JEL Classification: C13; C14; C22; C51

Keywords: Asymptotic bias; Asymptotic normality; Bias reduction; Fractional compo-
nents model; Perturbed fractional process; Rate of convergence; Testing perturbations.



1 Introduction

Fractional processes have been gaining increasing popularity with empirical researchers in
economics and finance. In part, this is because fractional processes can capture forms of
long run behavior in economic variables that elude other models, a feature that has proved
particularly important in modelling inter-trade durations and the volatility of financial
asset returns. In part also, fractional processes are attractive to empirical analysts because
they allow for varying degrees of persistence, including a continuum of possibilities between
weakly dependent and unit root processes.

For a pure fractional process, short run dynamics and long run behavior are driven by
the same innovations. This may be considered restrictive in that the innovations that drive
long run behavior may arise from quite different sources and therefore differ from those
that determine the short run fluctuations of a process. To accommodate this possibility,
the model we consider in the present paper allows for perturbations in a fractional process
and has a components structure that introduces different sources and types of variation.
Such models provide a mechanism for simultaneously capturing the effects of persistent and
temporary shocks on the realized observations. They seem particularly realistic in economic
and financial applications when there are many different sources of variation in the data
and both long run behavior and short run fluctuations need to be modeled.

Specifically, a perturbed fractional process (zt) is defined as a fractional process (yt)
that is perturbed by a weakly dependent process (ut) as follows

zt = yt + µ+ ut, t = 1, 2, ..., n, (1)

where µ is a constant and

yt = (1− L)−d0wt =
∞∑
k=0

Γ(d0 + k)
Γ(d0)Γ(k + 1)

wt−k, 0 < d0 < 1/2. (2)

Here, yt is a pure fractional process and ut and wt are independent Gaussian processes with
zero means and continuous spectral densities fu(λ) and fw(λ), respectively. We confine
attention to the case where the memory parameter d0 ∈ (0, 1

2) largely for technical rea-
sons that will become apparent later. The case is certainly the most relevant in empirical
practice, at least for stationary series, but the restriction is an important one. To maintain
generality in the short run components of zt we do not impose specific functional forms
on fu(λ) and fw(λ). Instead, we allow them to belong to a family that is characterized
only by regularity conditions near the zero frequency. This formulation corresponds to the
conventional semiparametric approach to modelling long range dependence.

By allowing for the presence of two separate stochastic components, the model (1)
captures mechanisms in which different factors may come into play in determining long run
and short run behaviors. Such mechanisms may be expected to occur in the generation of
macroeconomic and financial data for several reasons. For example, time series observations
of macroeconomic processes often reflect short run competitive forces as well as long run
growth determinants. Additionally, economic and financial time series frequently arise
from processes of aggregation and involve errors of measurement, so that the presence of
an additive, short memory disturbance is quite realistic. For instance, if the underlying
volatility of stock returns follows a fractional process, then realized volatility may follow a
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perturbed fractional process because the presence of a bid-ask bounce adds a short memory
component to realized returns, with consequent effects on volatility.

Some empirical models now in use are actually special cases of perturbed fractional
processes. Among these, the long memory stochastic volatility model (LMSV) is growing in
popularity for modelling the volatility of financial time series (see Anderson and Bollerslev,
1997, Breidt, Crato and De Lima, 1998, and Deo and Hurvich, 2001). This model assumes
that log r2

t = yt + µ + ut, where rt is the return, yt is an underlying fractional process
and ut = iid(0, σ2), thereby coming within the framework of (1). Another example is a
rational expectation model in which the ex ante variable follows a fractional process, so
that the corresponding ex post variable follows (1) with ut being a martingale difference
sequence. Sun and Phillips (2000) used this framework to model the real rate of interest
and inflation as perturbed fractional processes and found that this model helped explain
the empirical incompatibility of memory parameter estimates of the components in the ex
post Fisher identity. The study by Granger and Marmol (1997) provides a third example,
addressing the frequently observed property of financial time series that the autocorrelogram
can be low but positive for many lags. Granger and Marmol explained this phenomenon
by considering time series that consist of a long memory component combined with a white
noise component that has a much larger variance, again coming within the framework of
(1).

The main object in the present paper is to develop a suitable estimation procedure for
the memory parameter d0 in (1). As we will show, existing procedures for estimating d0

typically suffer from serious downward bias in models where there are additive perturbations
like (1 ). The present paper therefore proposes a new procedure that allows for the possible
presence of such perturbations in the data.

The spectral density fz(λ) of zt can be written as fz(λ) = (2 sin λ
2 )−2d0f∗(λ), where

f∗(λ) = fw(λ) + (2 sin λ
2 )2d0fu(λ) is a continuous function over [0, π]. So, fz(λ) satisfies a

power law around the origin of the form fz(λ) ∼ G0λ
−2d0 as λ→ 0+, for some positive con-

stant G0. Therefore, we can estimate d0 by using the linear log-periodogram (LP) regression
introduced by Geweke and Porter-Hudak (1983). Building on the earlier work of Künsch
(1986), Robinson (1995a) established the asymptotic normality of the LP estimator. Sub-
sequently, Hurvich, Deo and Brodsky (1998) (hereafter HDB) computed the mean square
error of the LP estimator and provided an MSE-optimal rule for bandwidth selection.

The LP estimator has undoubted appeal. It is easy to implement in practice and has
been commonly employed in applications. However, when the spectral density of ut dom-
inates that of wt in a neighborhood of the origin, the estimator may be biased downward
substantially, especially in small samples. One source of the bias is the error of approximat-
ing the logarithm of f∗(λ) by a constant in a shrinking neighborhood of the origin. This
crude approximation also restricts the rate of convergence. The rate of convergence of the
LP estimator will be shown to be n−2d0/(4d0+1), which is quite slow, especially when d0 is
close to zero.

To alleviate these problems, we take advantage of the structure of our model and propose
to estimate the logarithm of f∗(λ) locally by c+βλ2d0 . Our new estimator is defined as the
minimizer of the average-squared-errors (ASE) in a nonlinear log periodogram regression of
the form

log Izj = α− 2d log λj + βλ2d
j + error, j = 1, 2, ...,m, (3)
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where

Izj = Iz(λj) =
1

2πn
|
n−1∑
t=0

zt exp(itλj)|2, λj =
2πj
n
, (4)

and m is a positive integer smaller than the sample size n. We will call our estimator
Nonlinear Log Periodogram (NLP) estimator hereafter.

The NLP estimator can be seen as a way of utilizing parametric information in a non-
parametric setting. We approximate the unknown function locally by a nonlinear function
instead of a constant. From a broad perspective, the NLP estimator has at least superficial
similarity to the local nonlinear estimator (Linton and Gozalo, 2000) in the nonparametric
literature. Linton and Gozalo (2000) found that the local nonlinear estimator had superior
performance compared to the local constant kernel estimator when the local nonlinear pa-
rameterization is close to the unknown function. Analogously, we expect the nonlinear log
periodogram regression estimator to work well in the presence of perturbations, especially
when the perturbations are relatively large.

Let (d̂, β̂) denote the NLP estimator that minimizes the concentrated ASE in which
the intercept α has been concentrated out. We show the consistency of d̂ by proving that
the concentrated ASE converges uniformly over (d, β)′ ∈ Θ to a function which has a
unique minimizer d0, where Θ is the parameter space to be defined later. To establish
the asymptotic normality of d̂, a typical argument would first establish the consistency of
β̂. But showing that β̂ is consistent is not straightforward, because the concentrated ASE
becomes flat as a function of β as n→∞. To circumvent this problem, we first show that
d̂ converges to d0 at some rate kn (meaning d̂−d0 = Op(kn)) without using the consistency
of β̂. We then show that, when |d− d0| ≤ Ckn, the flatness problem disappears if the ASE
is recentered and normalized by k2

n.
The flatness problem also appeared in Andrews and Sun (2000). It seemed that they

had difficulty in establishing a sufficient rate of convergence for their estimator d̂(r) without
resort to the consistency of θ̂, the subvector of the estimator that causes the problem. Their
way to overcome this problem is to define the estimator as the solution to the first order
conditions which comes closest to the minimizer of the criterion function. The present paper
proposes a new and simple approach to overcome the flatness problem that avoids having
to redefine the estimator.

We investigate both the asymptotic and finite sample properties of d̂. Asymptotic bias,
variance, asymptotic mean squared error (AMSE), and asymptotic normality are deter-
mined. We find that the asymptotic bias of d̂ is of order m4d0/n4d0 , provided that fw(·) and
fu(·) are boundedly differentiable around the origin, whereas that of the LP estimator d̂LP
has the larger order m2d0/n2d0 . The asymptotic variances of d̂ and d̂LP are both of order
m−1. In consequence, the optimal rate of convergence to zero of d̂ is of order n−4d0/(8d0+1),
whereas that of d̂LP is of the larger order n−2d0/(4d0+1). But when d0 is close to zero, the
rate of convergence of d̂ will still be quite slow. We find that d̂ is asymptotically normal
with mean zero, provided that m8d0+1/n8d0 → 0, whereas d̂LP is asymptotically normal
only under the more stringent condition m4d0+1/n4d0 → 0.

When the underlying process is a pure fractional process, we encounter a nonstandard
estimation problem as the true parameter β0 is on the boundary of the parameter set. In
this case, the limiting distribution of β̂ is truncated normal, and the limiting distribution of
d̂ is more complicated, involving a mixture distribution with the mixing probabilities that
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depend on the component distributions. We find that the asymptotic bias and variance of
d̂ are of the same orders as those of d̂LP . However, it is difficult to obtain exact expressions
for the asymptotic bias and variance. In consequence, it is hard to evaluate the performance
of d̂ relative to that of d̂LP in this case.

Some Monte Carlo simulations show that the asymptotic results of the paper capture
the finite sample properties of the NLP estimator quite well. For the fractional component
processes considered in the simulations, the NLP estimator d̂ has a lower bias, a higher
standard deviation, and a lower RMSE compared to the LP estimator d̂LP , as the asymptotic
results suggest. The lower bias leads to better coverage probabilities for d̂ over a wider range
of m than for d̂LP . On the other hand, the lower standard deviation of d̂LP leads to shorter
confidence intervals than confidence intervals based on d̂.

The properties of the NLP estimator are investigated under the assumption of Gaussian
errors. Gaussianity is usually assumed in the log-periodogram regression literature (e.g.,
Robinson, 1995a, and Andrews and Guggenberger, 1999) and the present paper is no ex-
ception. Nevertheless, Gaussianity is restrictive in some empirical applications and could
be relaxed following the lines of recent work by Velasco (2000) and Deo and Hurvich (2001),
although we have not done so here.

The paper by Andrews and Guggenberger (1999) is most related to our work. They
considered the conventional fractional model (i.e., var(ut) = 0) and proposed to approx-
imate log fw(λ) by a constant plus a polynomial of even order. Andrews and Sun (2000)
investigated the same issue in the context of a local Whittle estimator. Other related pa-
pers include Henry and Robinson (1996), Hurvich and Deo (1999) and Henry (1999). These
papers consider approximating log f∗(λ) by a more sophisticated function than a constant
for the purpose of obtaining a data-driven choice of m. The present paper differs from those
papers in that a nonlinear approximation is used in order to achieve bias reduction and to
increase the rate of convergence in the estimation of d0. Also, the nonlinear polynomial
function used here depends on the memory parameter d0 (whereas this is not so in the work
just mentioned) and the estimation procedure for d0 utilizes this information.

The rest of the paper is organized as follows. Section 2 formally defines the NLP estima-
tor. Section 3 outlines the asymptotics of discrete Fourier transforms and log-periodogram
ordinates, which are used extensively in later sections. Section 4 establishes consistency and
derives limiting distribution results for the NLP estimator. This section also proposes a test
for the pure fractional process against a perturbed fractional process. Section 5 investigates
the finite sample performance of the NLP estimator by simulations. Section 6 concludes.
Proofs are collected in the Appendix.

Throughout the paper, {E} is defined to be the indicator function for event E. C is a
generic constant.

2 Nonlinear Log Periodogram Regression

This section motivates the NLP estimator that explicitly accounts for the additive pertur-
bations in (1). Throughout, (1) is taken as the data generating process and then

fz(λ) = (2 sin
λ

2
)−2d0f∗(λ). (5)
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Taking the logarithms of (5) leads to

log(fz (λ)) = −2d0 log λ+ log f∗(λ)− 2d0 log(2λ−1 sin(
λ

2
)). (6)

Replacing fz (λ) by periodogram ordinates Iz(λ) evaluated at the fundamental frequencies
λj , j = 1, 2, ...,m yields

log(Izj) = −c0 − 2d0 log λj + log f∗(λj) + Uj +O(λ2
j ), (7)

where c0 = 0.577216... is the Euler constant and Uj = log[Iz(λj)/fz(λj)] + c0.
By virtue of the continuity of f∗(λ), we can approximate log f∗(λj) by a constant over

a shrinking neighborhood of the zero frequency. This motivates log-periodogram regression
on the equation

log(Izj) = constant− 2d log λj + error. (8)

The LP estimator d̂LP is then given by the least squares estimator of d in this regression.
If {Uj}mj=1 behave asymptotically like independent and identically distributed random vari-
ables, then the LP estimator is a reasonable choice. In fact, under assumptions to be stated
below, we establish that

√
m(d̂LP − d0) ∼ N(bLP , π

2

24 ) where bLP = O(m
2d0+1/2

/n2d0) and
‘∼’ signifies ‘asymptotically distributed.’ The ‘asymptotic bias’ of d̂LP itself is therefore
of order O(m2d0/n2d0), which can be quite large. To reduce the bias, we can approximate
log f∗(λj) by a simple nonlinear function of frequency under the following assumptions:

Assumption 1: Either (a) σu = var1/2(ut) = 0 for all t, so fu(λ) ≡ 0, for λ ∈ [−π, π]
or: (b) σu > 0 and fu(λ) is continuous on [−π, π], bounded above and away from zero with
bounded first derivative in a neighborhood of zero.

Assumption 2: fw(λ) is continuous on [−π, π], bounded above and away from zero. When
σu = 0, fw(λ) is three times differentiable with bounded third derivative in a neighborhood
of zero. When σu > 0, fw(λ) is differentiable with bounded derivative in a neighborhood of
zero.

Assumptions 1(b) and 2 are local smoothness conditions and hold for many models in
current use, including ARMA models. They allow us to develop a Taylor expansion of
log f∗(λ) about λ = 0 with an error of the order of the first omitted term. Specifically,
when σu = 0,

log f∗(λj) = log fw(0) +O(λ2
j ). (9)

When σu > 0,

log f∗(λj) = log fw(λj) + log[1 + (2 sin
λj
2

)2d0
fu(λj)
fw(λj)

]

= log fw(λj) + log
{

1 + λ2d0
j (1 +O(λ2

j ))
(
fu(0)
fw(0)

+O(λ2
j )
)}

= log fw(0) +
fu(0)
fw(0)

λ2d0
j +O(λ4d0

j ). (10)

So, in either case

log f∗(λj) = log fw(0) +
fu(0)
fw(0)

λ2d0
j +O(λrj) (11)
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where O(·) holds uniformly over j = 1, 2, ...,m, r = 4d0{σu > 0}+ 2{σu = 0}.
Combining (7) with (11) produces the nonlinear LP regression model:

log(Izj) = −2d0 log λj + α0 + λ2d0
j β0 + Uj + εj , (12)

where

α0 = log fw(0)− c0, β0 = fu(0)/fw(0), and

εj = log f∗(λj)− log fw(0)− β0λ
2d0
j − 2d0[log(2 sin

λj
2

)− log λj ]. (13)

The NLP estimator is then defined as the minimizer of the average-squared-errors in this
model, i.e.

(α̂, d̂, β̂) = arg min
α,d,β

ASE(α, d, β), (14)

where

ASE(α, d, β) =
1
m

m∑
j=1

[log(Izj)− α+ 2d log λj − λ2d
j β]2. (15)

Concentrating (15) with respect to α, we obtain

(d̂, β̂) = arg min
d∈D,β∈B

Q(d, β), (16)

with

Q(d, β) =
1
m

m∑
j=1

{(log Izj −
1
m

m∑
k=1

log Izk)

+2d(log λj −
1
m

m∑
k=1

log λk)− β(λ2d
j −

1
m

m∑
k=1

λ2d
k )}2. (17)

where B and D are parameter sets. We write θ = (d, β)′, Θ = D × B for convenience and
make the following assumption on the parameter space:

Assumption 3: (a) D = [d1, d2] where 0 < d1 < d2 < 1/2 and B = [0, b] where b > 0;
(b) The true parameter (d0, β0) ∈ (d1, d2)× [0, b).

In the above assumption, d1 and d2 can be chosen arbitrarily close to 0 and 1/2, respec-
tively, and b can be chosen arbitrarily large. When β0 = 0, the model becomes nonstandard
in the sense that the true parameter is on the boundary of the parameter set. Section 4
explores the implication of the boundary problem.

3 Log-periodogram Asymptotics and Useful Lemmas

To establish the asymptotic properties of the NLP estimator, we need to characterize the
asymptotic behavior of the log-periodogram ordinates Uj = log[Iz(λj)/fz(λj)] + c0. Define

Azj =
1√
2πn

n∑
t=1

zt cosλjt and Bzj =
1√
2πn

n∑
t=1

zt sinλjt, (18)

6



then

Uj = ln

(
A2
zj

fzj
+
B2
zj

fzj

)
+ c0, j = 1, ...,m. (19)

In view of the Gaussianity of Azj and Bzj , we can evaluate the means, variances,
and covariances of Uj , if the asymptotic behavior of the vector(
Azj/f

1/2
zj , Bzj/f

1/2
zj , Azk/f

1/2
zk , Bzk/f

1/2
zk

)
is known. The properties of this vector depend in

turn on those of the discrete Fourier transforms of zt, defined as w (λ) = (2πn)−1/2∑n
1 zte

itλ.
The asymptotic behavior of w (λ) is given in the following lemma, which is a variant of

results given earlier by several other authors (Robinson, 1995a, HDB, 1998, Andrews and
Guggenberger, 1999).

Lemma 1 Let Assumptions 1 and 2 hold. Then, uniformly over j and k, 1 ≤ k < j ≤ m,

m/n→ 0,

(a) E [w (λj)w (λj) /fz (λj)] = 1 +O
(
j−1 log j

)
,

(b) E [w (λj)w (λj) /fz (λj)] = O
(
j−1 log j

)
,

(c) E
[
w (λj)w (λk) / (fz (λj) fz (λk))

1/2
]

= O
(
k−1 log j

)
,

(d) E
[
w (λj)w (λk) / (fz (λj) fz (λk))

1/2
]

= O
(
k−1 log j

)
.

It follows directly from Lemma 1 that for 1 ≤ k < j ≤ m,

EA2
zj/fzj =

1
2

+O(
log j
j

), EB2
zj/fzj =

1
2

+O(
log j
j

),

EAzjBzj/fzj = O(
log j
j

), EAzjBzk/(fzjfzk)1/2 = O(
log j
k

). (20)

Using these results and following the same line of derivation as in HDB (1998), we can prove
Lemma 2 below. Since the four parts of this lemma are proved in a similar way to Lemmas
3, 5, 6 and 7 in HDB, the proofs are omitted here.

Lemma 2 Let Assumptions 1 and 2 hold. Then

(a) Cov (Uj , Uk) = O
(
log2 j/k2

)
, uniformly for log2m ≤ k < j ≤ m,

(b) limn sup1≤j≤mEU
2
j <∞,

(c) E (Uj) = O (log j/j) , uniformly for log2m ≤ j ≤ m,

(d) V ar (Uj) = π2/6 +O (log j/j) , uniformly for log2m ≤ j ≤ m.

With the asymptotic behavior of Uj in hand, we can proceed to show that the normalized
sums m−1

∑m
j=1 cjUj are uniformly negligible under certain conditions on the coefficients

cj . Quantities of this form appear in the normalized Hessian matrix below.
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Lemma 3 Let {cj(d, β)}mj=1 be a sequence of functions such that, for some p ≥ 0,

sup
(d,β)′∈Θ

|cj | = O(logpm) uniformly for 1 ≤ j ≤ m, (21)

and for some q ≥ 0,

sup
(d,β)′∈Θ

|cj − cj−1| = O(j−1 logqm) uniformly for 1 ≤ j ≤ m. (22)

Then

sup
(d,β)′∈Θ

∣∣∣∣∣∣ 1
m

m∑
j=1

cjUj

∣∣∣∣∣∣ = Op(
logmax(p,q)m√

m
). (23)

We can impose additional conditions to get a tighter bound. For example, if we also
require that sup(d,β)′∈Θ |cm| = O(1), then sup(d,β)′∈Θ

∣∣∣ 1
m

∑m
j=1 cjUj

∣∣∣ = Op(logqm/
√
m), as

is readily seen from the proof of the lemma. Further, the lemma remains valid if we remove
the ‘sup’ operator from both the conditions and the conclusion.

Let Vj(d, β) = 2(d − d0) log λj − βλ2d
j + β0λ

2d0
j , and V (d, β) = 1/m

∑m
j=1 Vj(d, β). We

can use an argument similar to the proof of Lemma 3 to establish the following corollary,
which will be used extensively in the consistency proof.

Corollary 1 Let D0 = {d : d ∈ D, |d− d0| ≤ C(m/n)γ}, for some constants C ∈ R+,

γ ∈ [0, 2d0], then

sup
(d,β)′∈D0×B

∣∣∣∣∣∣ 1
m

m∑
j=1

Uj
(
Vj(d, β)− V̄ (d, β)

)∣∣∣∣∣∣ = Op

(
(
m

n
)γ

1√
m

)
(24)

as 1/n+m/n→ 0.

The following lemma assists in establishing the asymptotic normality of the nonlinear
log-periodogram regression estimator.

Lemma 4 Let akn = ak be a triangular array for which

max
k
|ak| = o (m) ,

m∑
k=[1+m0.5+δ ]

a2
k ∼ ρm,

m∑
k=[1+m0.5+δ ]

|ak|p = O (m) , (25)

for all p ≥ 1, and 0 < δ < 0.5. Then,

1√
m

m∑
k=[1+m0.5+δ ]

akUk
d→ N

(
0,
π2

6
ρ

)
, (26)

where [·] denotes the integer part.

The proof of this lemma is based on the method of moments and involves a careful
exploration of the dependence structure of the discrete Fourier transforms. Robinson’s
argument (1995a, pp. 1067-70) forms the basis of this development and can be used here
with some minor modifications to account for differences in the models. Details are omitted
here and are available upon request.
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4 Asymptotic Properties of the LP and NLP Estimators

4.1 Asymptotic Properties of the LP Estimator

We establish the asymptotic properties for the LP estimator in the context of the com-
ponents model (1). Theorem 1 gives the limit theory and provides a benchmark for later
comparisons.

Theorem 1 Let Assumptions 1 and 2 hold. Let m = m(n)→∞ and

mr′+1/2

nr′
→ K ′σ{σu > 0}+K ′0{σu = 0} (27)

as n → ∞, where r′ = 2d0{σu > 0} + 2{σu = 0} and K ′σ,K
′
0 > 0 are positive constants.

Then
√
m(d̂LP − d0)⇒ N(bLP ,

π2

24
), (28)

where

bLP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2
K ′σ{σu > 0} − 2π2

9

(
f ′′w(0)
fw(0)

+
d0

6

)
K ′0{σu = 0}. (29)

When σu > 0, the ratio mr′+1/2/nr
′

= m2d0+1/2/n2d0 → K ′σ in (27). This delivers an
upper bound of order O(n4d0/(1+4d0)) on the rate at which m can increase with n and allows
for larger choices of m for larger values of d0. Intuitively, as d0 increases, the contamination
from perturbations at frequencies away from the origin becomes relatively smaller and we
can expect to be able to employ a wider bandwidth in the regression. To eliminate the
asymptotic bias bLP in (28) altogether, we use a narrower band and set m = o(n4d0/(1+4d0))
in place of (27). Deo and Hurvich (2001) established a similar result under the assumption
that ut is iid, but not necessarily Gaussian. Their assumption that m4d0+1 log2m/n4d0 =
o(1) is slightly stronger than the assumption made here.

When σu > 0, the limit distribution (28) involves the bias

bLP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2
K ′σ < 0, (30)

which is always negative, as one would expect, because of the effect of the short memory
perturbations. Correspondingly, the dominating bias term of d̂LP has the form

bn,LP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2

m2d0

n2d0
< 0. (31)

The magnitude of the bias obviously depends on the quantity fw(0)/fu(0), which is the ratio
of the long run variance of the short memory input of yt to that of the perturbation com-
ponent ut. The ratio can be interpreted as a long run signal-noise ratio (SNR), measuring
the strength in the long run of the signal from the yt inputs relative to the long run signal
in the perturbations. The stronger the long run signal in the perturbations, the greater
the downward bias and the more difficult it becomes to estimate the memory parameter
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accurately. One might expect these effects to be exaggerated in small samples where the
capacity of the data to discriminate between long run and short run effects is reduced.

When σu > 0, the asymptotic mean-squared error (AMSE) of d̂LP satisfies

AMSE(d̂LP ) = Op(
m

n
)4d0 +Op(

1
m

). (32)

So the AMSE-optimal bandwidth has the form mopt
LP = CLPn

4d0/(4d0+1) for some constant
CLP . When m = mopt

LP , AMSE(d̂LP ) = Op(n−4d0/(4d0+1)). In contrast, in the case σu = 0,
it is well known that when m = mopt

LP , AMSE(d̂LP ) = Op(n−4/5). Due to the presence of
the perturbations, the optimal AMSE of d̂LP converges to zero at a slower rate.

When σu = 0, the theorem contains essentially the same results proved in HDB. In this
case, the dominating bias of d̂LP is given by bn,LP = −2π2/9

(
f ′′w(0)f−1

w (0) + d0/6
)
m2/n2.

HDB showed that the dominating bias of d̂LP in the case of pure fractional process regression
is given by the expression −2π2/9

(
f ′′w(0)f−1

w (0)
)
m2/n2. The presence of the additional

factor d0/6 in the second term of our expression arises from the use of a slightly different
regressor in the LP regression. In particular, we employ −2 log λj as one of the regressors
in (3), while HDB use −2 log(2 sinλj/2). These regressors are normally considered to be
asymptotically equivalent. However, while the use of −2 log λj rather than −2 log(2 sinλj/2)
has no effect on the asymptotic variance, it does affect the asymptotic bias.

4.2 Consistency of the NLP estimator

To establish the limiting distribution of the NLP estimator, we first prove the consistency
of the NLP estimator.

Theorem 2 Let Assumptions 1 and 2 hold.

(a) If 1
m + m

n → 0 as m,n→∞, then d̂− d0 = op(1).

(b) If for some arbitrary small ∆ > 0, mn + n4d0(1+∆)

m4d0(1+∆)+1 → 0, as m,n → ∞, then d̂ − d0 =

Op
(
(mn )2d0

)
and β̂ − β0 = op(1).

Theorem 2 shows that d̂ is consistent under mild conditions. All that is needed is that
m approaches infinity slower than the sample size n. As shown by HDB, trimming out
low frequencies is not necessary. This point is particularly important in the present case
because, in seeking to reduce contamination from the perturbations, the lowest frequency
ordinates are the most valuable in detecting the long memory effects.

It is not straightforward to establish the consistency of β̂, because, as n → ∞, the
objective function becomes flat as a function of β. The way we proceed is, in fact, to show
first that d̂ converges to d0 at some slower rate, more precisely, d̂− d0 = Op((m/n)2d0). We
prove this rate of convergence stepwise. We start by showing that d̂ − d0 = op((m/n)d1/2)
for 0 < d1 < d0, using the fact that βλ2d

j = O(m/n)2d1 uniformly in (d, β)′ ∈ Θ. We can
then deduce that d̂− d0 = op((m/n)d0(1+∆)). With this faster rate of convergence, we have
better control over some quantities and can obtain an even faster rate of convergence for

10



d̂. Repeating this procedure leads to d̂ − d0 = Op((m/n)2d0), as desired. With this result,
we observe that (m/n)−4d0 (Q(d, β)−Q(d0, β0)) is no longer flat as a function of β for any
value of d such that |d− d0| ≤ C(m/n)2d0 . This observation can be readily seen from the
proof of the theorem. This approach to overcoming the problem of apparent flatness in the
objective function is likely to be applicable in other nonlinear estimation contexts when the
involved variables are integrated of different orders or have different stochastic orders.

We also prove the rate of convergence of d̂ without using the consistency of β̂. This is
unusual because in most nonlinear estimation problems it is common to prove the consis-
tency of all parameters first in order to establish rates of convergence. The approach is
successful in the present case because when d is close to d0, the regressor λ2d

j evaporates as
n→∞ and approaches zero approximately at the rate of (m/n)2d0 .

4.3 Asymptotic Distribution of the NLP Estimator

The asymptotic distribution of the NLP estimator depends on whether β0 is on the boundary
of the parameter set. In this section, we first establish the asymptotic properties of the
gradient and Hessian functions. These asymptotic results hold for any value of β0 ∈ B.
Using these results, we then investigate the asymptotic distribution of the NLP estimator for
the cases 0 < β0 < b and β0 = 0, respectively. We impose a somewhat stronger assumption:

Assumption 4: n4d0(1+∆)/m4d0(1+∆)+1 → 0 for some arbitrary small ∆ > 0 and

mr+1/2/nr → Kσ{σu > 0}+K0{σu = 0} (33)

as m,n→∞, where r = 4d0{σu > 0}+ 2{σu = 0}.

The two conditions in Assumption 4 are always compatible because r ≥ 4d0 and ∆ is
arbitrarily small. The lower bound on the growth rate of m ensures the consistency of d̂
and β̂. The upper bound on the growth rate of m guarantees that the normalized gradient
of Q(d, β) is Op(1), which is required for deriving the asymptotic distribution of (d̂, β̂).

When σu = 0, the upper bound becomes m = O(n4/5), which is the same as the
upper bound for asymptotic normality of the LP estimator for a pure fractional process.
When σu > 0, the upper bound becomes m8d0+1/n8d0 = O(1), which is less stringent than
the upper bound given in Theorem 1. It therefore allows us to take m larger than in
conventional LP regression applied to the fractional components model. In consequence,
by an appropriate choice of m, we have asymptotic normality for d̂ with a faster rate of
convergence than is possible in LP regression. However, for any 0 < d0 < 1/2, the upper
bound is more stringent than m = O(n4/5), the upper bound for asymptotic normality of LP
regression in a pure fractional process model. Hence, the existence of the weakly dependent
perturbations in (1) requires the use of a narrower bandwidth than LP regression for a pure
fractional process. Interestingly, as d0 approaches 1/2, the upper bound becomes arbitrarily
close to m = O(n4/5).

We now proceed to establish the asymptotic distribution of the NLP estimator. The
consistency result and Assumption 3 ensure that we only need to consider the constraint
β ≥ 0. Therefore, the first order conditions for (16) are:

Sn(d, β) = (0,Λ)′ (34)
Λβ = 0, (35)

11



where Λ is the Lagrangian multiplier for the constraint β ≥ 0,

Sn(d, β) = −
m∑
j=1

(
x1j(d, β)− x̄1(d, β)
x2j(d, β)− x̄2(d, β)

)
ej(d, β), (36)

x1j(d, β) = −2 log λj(1− βλ2d
j ), x̄1(d, β) =

1
m

m∑
k=1

x1k,

x2j(d, β) = λ2d
j , x̄2(d, β) =

1
m

m∑
k=1

x2k, and (37)

ej(d, β) = log Izj−
1
m

m∑
k=1

log Izk+2d(log λj−
1
m

m∑
k=1

log λk)−β (x2j(d, β)− x̄2(d, β)) . (38)

Expanding Sn(d̂, β̂) about Sn(d0, β0), we have

(0, Λ̂)′ = Sn(d0, β0) +Hn(d∗, β∗)(d̂− d0, β̂ − β0)′, (39)

where Hn(d, β) is the Hessian matrix, (d∗, β∗) is between (d0, β0) and (d̂, β̂). The elements
of the Hessian matrix are:

Hn,11(d, β) =
m∑
j=1

(x1j − x̄1)2 − β
m∑
j=1

ej
(
log λ2

j

)2
λ2d
j ,

Hn,12(d, β) =
m∑
j=1

(x1j − x̄1)(x2j − x̄2)−
m∑
j=1

ej
(
log λ2

j

)
λ2d
j , (40)

Hn,22(d, β) =
m∑
j=1

(x2j − x̄2)2.

Define the diagonal matrix Dn = diag(
√
m,λ2d0

m

√
m). We show in the following lemma

that the normalized Hessian D−1
n Hn(d0, β0)D−1

n converges in probability to a 2× 2 matrix
defined by

Ω =
(

4 −4d0/(2d0 + 1)2

−4d0/(2d0 + 1)2 4d2
0/
(
(4d0 + 1)(2d0 + 1)2

) ) , (41)

and the ‘asymptotic bias’ of the normalized score D−1
n Sn(d0, β0) is −b, where

b = {σu > 0}bσ + {σu = 0}b0, (42)

and

bσ =
(2π)4d0f2

w(0)Kσ

2f2
u(0)

(
8d0

(4d0 + 1)2
, − 8d2

0

(2d0 + 1)(4d0 + 1)(6d0 + 1)

)′
,

b0 = (2π)2K0

(
f ′′w(0)
fw(0)

+
d0

6

)(
−2

9
,

2d0

3 (2d0 + 3) (2d0 + 1)

)′
. (43)
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Before stating the lemma, we need the following notation. Let Jn(d, β) be a 2×2 matrix
whose (i, j)-th element is

Jn,ij =
m∑
k=1

(xik(d, β)− x̄i(d, β)) (xjk(d, β)− x̄j(d, β)) , (44)

and let Θn be a set defined by

Θn = {(d, β)′ : |λ−d0
m (d− d0)| < ε and |β − β0| < ε}. (45)

Lemma 5 Let Assumptions 1-4 hold. Then

(a) sup(d,β)′∈Θn ||D
−1
n (Hn(d, β)− Jn(d, β))D−1

n || = op(1),

(b) sup(d,β)′∈Θn ||D
−1
n [Jn(d, β)− Jn(d0, β0)]D−1

n || = op(1),

(c) D−1
n Jn(d0, β0)D−1

n → Ω,

(d) D−1
n Sn(d0, β0)⇒ N(−b, π2

6 Ω).

We now consider the asymptotic distribution when σu > 0. In this case, the true
parameter (d0, β0)′ is an interior point of the parameter space. Hence Λ̂ = 0 and (d̂, β̂) is
asymptotically normal.

Theorem 3 Let Assumptions 1-4 hold. If σu > 0, then

Dn

(
d̂− d0

β̂ − β0

)
⇒ N(bNLP ,

π2

6
Ω−1) (46)

where bNLP = Ω−1bσ and

Ω−1 =

(
(2d0 + 1)2 /

(
16d2

0

)
(2d0 + 1)2 (4d0 + 1) /

(
16d3

0

)
(2d0 + 1)2 (4d0 + 1) /

(
16d3

0

)
(4d0 + 1) (2d0 + 1)4 /

(
16d4

0

) ) . (47)

Remark 1 From the above theorem, we deduce immediately that when σu > 0, the
asymptotic variance of

√
m(d̂ − d0) is π2Cd/24, where Cd = 1 + (4d0 + 1)/(4d2

0) > 1.
Approximating log f∗(·) locally by a nonlinear function instead of a constant therefore
inflates the usual asymptotic variance of the LP regression estimator in a pure fractional
model by the factor Cd. This is to be expected, as adding more variables in regression
usually inflates variances.

Remark 2 When σu > 0, the limiting distribution (46) involves the bias bNLP . The
dominating bias term of (d̂, β̂)′ is thus equal to

D−1
n Ω−1bn = −(2π)4d0f2

w(0)
f2
u(0)

(
m

n
)4d0

(
d0 (2d0 + 1) /

(
(4d0 + 1)2 (6d0 + 1)

)
2 (2d0 + 1)2 / ((4d0 + 1) (6d0 + 1))

)
. (48)
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Remark 3 When σu > 0, according to (48) the asymptotic bias of d̂ is of order m4d0/n4d0 .
In contrast, the asymptotic bias of the LP estimator is of order m2d0/n2d0 , as shown above
in (31). The asymptotic bias of the NLP estimator is therefore smaller than that of the LP
estimator by order m2d0/n2d0 .

Remark 4 Following the previous remarks, the asymptotic mean-squared error (AMSE)
of d̂ has the form AMSE(d̂) = K2(m/n)8d0 + π2Cd/(24m), where

K = (2π)4d0β2
0

d0 (2d0 + 1)
(4d0 + 1)2 (6d0 + 1)

. (49)

Straightforward calculations yield the value of m that minimizes AMSE(d̂), viz.

mopt = [(
π2Cd

192d0K2
)1/(8d0+1)n8d0/(8d0+1)], (50)

where [·] denotes the integer part. When m = mopt, the AMSE of d̂ converges to zero at
the rate of n−8d0/(8d0+1). In contrast, when m = mopt

LP , the AMSE of d̂LP converges to zero
only at the rate of n−4d0/(4d0+1). Thus, the optimal AMSE of d̂ converges faster to zero than
that of d̂LP .

Remark 5 When d0 is close to zero, the asymptotic bias of d̂ is of order m4d0/n4d0 , which
is close to the order of the asymptotic bias of d̂LP . In addition, when d0 is close to zero, the
asymptotic variance of the d̂ will be large. Therefore, as d0 approaches zero, the advantage
of d̂ over d̂LP diminishes. This is expected as when d0 is close to zero, the downward bias of
d̂LP will be small and there is not much scope for d̂ to manifest its bias-reducing capacity.

Remark 6 β̂ converges more slowly by a rate of (m/n)−2d0 than d̂. Heuristically, the
excitation levels of the two regressors (log λj and λ2d0

j ) and thus their information con-
tent are different. More specifically, we have

∑m
j=1(log λj −

∑m
k=1 log λk/m)2 = O(m)

whereas
∑m

j=1(λ2d0
j −

∑m
k=1 λ

2d0
k /m)2 = O(mλ2d0

m ).

Next, we consider the asymptotic distribution when σu = 0. In this case, the parameter
β0 lies on the boundary of the parameter space. As a consequence, Λ may not equal zero
and we have a different limiting distribution.

Theorem 4 Let Assumptions 1-4 hold. If σu = 0, then

√
m(d̂− d0) ⇒ −

(
Ω̃11η1 + Ω̃12η2

){
Ω̃12η1 + Ω̃22η2 ≤ 0

}
−Ω−1

11 η1

{
Ω̃12η1 + Ω̃22η2 > 0

}
, (51)

√
mλ2d0

m

(
β̂ − β0

)
⇒ −

(
Ω̃12η1 + Ω̃22η2

){
Ω̃12η1 + Ω̃22η2 ≤ 0

}
, (52)

where Ω̃ = (Ω̃ij) = Ω−1, and η = (η1, η2)′ ∼ N(−b0, π2Ω/6).
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Remark 7 Theorem 4 shows that when the true parameter β0 = 0, i.e. in the case of a
pure fractional process, the limiting distribution of β̂ is truncated normal. The truncation
arises because the true parameter is on the boundary of the parameter set. Since the Hessian
matrix is not diagonal, the truncation also affects the limiting distribution of d̂, which
becomes a mixture distribution with the mixing probabilities depending on the component
distributions.

Remark 8 It follows easily from Theorem 4 that the dominating bias term of d̂ is of order
Op(m2/n2), the same order as that of d̂LP . Since its limiting distribution is a complicated
function of normal random variables, it is not easy to derive an exact expression for the
dominating bias term. Hence, it is quite difficult to compare the dominating bias term of d̂
with that of d̂LP in this case.

The following corollary follows from Theorem 4 by using a narrower frequency band.
The proof is straightforward and is omitted.

Corollary 2 Let Assumptions 1-3 hold . If n4d0(1+∆)/m4d0(1+∆)+1 +m5/n4 → 0 for some

arbitrary small ∆ > 0, then

√
mλ2d0

m

(
β̂ − β0

)
⇒ v(d0)τ{τ ≥ 0} (53)

where τ ≡ N(0, 1) and v(d0) = πd−2
0 (2d0 + 1)2

√
(4d0 + 1) /96.

4.4 A Test for Perturbations

The properties of the LP and NLP estimators depend on whether short memory pertur-
bations are present in the data. The limit theory can be used to construct a test for the
presence of perturbations, which can be formulated in terms of the hypotheses

H0 : β0 = 0 vs. H1 : β0 > 0,

with no perturbations under H0, and with short memory perturbations present under H1

whose intensity increases with β0.
Using Corollary 2, we can construct the t-statistic

t
β̂

=
√
mλ2d̂

m β̂/v(d̂). (54)

If Assumptions 1-3 hold and n4d0(1+∆)/m4d0(1+∆)+1 + m5/n4 → 0, then under the null
hypothesis,

t
β̂
⇒ τ{τ ≥ 0}. (55)

If Assumptions 1-3 hold and n4d0(1+∆)/m4d0(1+∆)+1 + m4d0+1/2/n4d0 → 0, then under the
alternative hypothesis that β0 = βA > 0, we have

t
β̂

=
√
mλ2d̂

m

(
β̂ − βA

)
/v(d̂) +

√
mλ2d̂

mβA/v(d̂)

= Op(1) +
√
mλ2d̂

mβA/v(d̂) (56)
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by Theorem 3. Since
√
mλ2d̂

m → ∞ when n4d0(1+∆)/m4d0(1+∆)+1 → 0, we deduce that
t
β̂
→ ∞ in probability and the test is therefore consistent. Note that m5/n4 → 0 implies

that m4d0+1/2/n4d0 → 0. We collect the results in the following corollary:

Corollary 3 If Assumptions 1-3 hold and n4d0(1+∆)/m4d0(1+∆)+1 +m5/n4 → 0, then

t
β̂
⇒ τ{τ ≥ 0} under H0 and t

β̂
→∞ in probability under H1.

Simulations, not reported here, indicate that for sample sizes less than 2048 the power
of the test is quite low.

5 Simulations

5.1 Experimental Design

This section investigates the finite sample performance of the NLP estimator in comparison
with conventional LP regression. The chosen data generating process is

zt = (1− L)−d0wt + ut, (57)

where {wt : t = 1, 2, ..., n} are iid N(0, 1), {ut : t = 1, 2, ..., n} are iid N(0, σ2
u) and {wt} are

independent of {ut}.
We consider the following constellation of parameter combinations

d0 = 0.25, 0.45, 0.65, 0.85, and (58)
σ2
u = 0, 4, 8, 16. (59)

In view of the fact that the LP estimator is consistent for both stationary fractional pro-
cesses (d0 < 0.5) and nonstationary fractional processes (0.5 ≤ d0 < 1) (see Kim and
Phillips, 2000), we expect the NLP estimator to work well for nonstationary fractional com-
ponent processes for this range of values of d0 as well as for stationary fractional component
processes over (0 < d0 < 0.5). Hence it is of interest to include some values of d0 that fall
in the nonstationary zone.

The value of σ2
u determines the strength of the noise from the perturbations. The long

run SNR increases as σ2
u decreases. When σ2

u = 0, zt is a pure fractional process with an
infinite long-run SNR. The inverse of the long run SNR, viz. fu(0)/fw(0), takes the values
0, 4, 8, 16. These are close to the values in Deo and Hurvich (2001). In their simulation
study, the ratio fu(0)/fw(0) takes the values 6.17 and 13.37.

We consider sample sizes n = 128, 512, and 2048. Because n has the composite form
2k (k integer) for these choices, zero-padding is not a concern when we use the fast Fourier
transform to compute the periodogram. For each sample size and parameter combination,
2000 replications are performed from which we calculate the biases, standard deviations and
root mean square errors of d̂ and d̂LP , for different selections of the bandwidth m. Then,
for each parameter combination, we graph each of these quantities as functions of m. The
results are shown in panels (a)-(c) of Figs. 1–6.
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In addition, we compute the coverage probabilities, as functions of m, of the nominal
90% confidence intervals (CI) that are obtained using the asymptotic normality results of
Theorems 1 and 3. When constructing these confidence intervals, we estimate the standard
errors of d̂ and d̂LP using finite sample expressions rather than the limit expressions, because
the former yield better finite sample performance for all parameter combinations and for
both estimators. Specifically, the standard error of d̂ is estimated by SEHJ = SEJ +
(SEH − SEJ) {H(d̂, β̂) > 0} where {H(d̂, β̂) > 0} = 1 if H(d̂, β̂) is positive definite, and

SEH = π/
√

6H1/2
22,n(d̂, β̂)

(
H11(d̂, β̂)H22(d̂, β̂)−H2

12(d̂, β̂)
)−1/2

, (60)

SEJ = π/
√

6J1/2
22,n(d̂, β̂)

(
J11(d̂, β̂)J22(d̂, β̂)− J2

12(d̂, β̂)
)−1/2

. (61)

The standard errors of d̂LP is estimated by

π/
√

24

 m∑
j=1

(
log λj −

1
m

m∑
k=1

log λk

)2
−1/2

. (62)

We calculate the average lengths of the confidence intervals as functions of m. For some
data generating processes, the coverage probabilities and the average lengths are graphed
against m in panels (d) and (e) of Figs. 1–2.

The idea of using the finite sample expression instead of the asymptotic expression has
been used in many papers (e.g. Andrews and Guggenberger, 1999, Andrews and Sun 2000).
The approximation (62) was originally suggested by Geweke and Porter-Hudak (1983) and
was used in Deo and Hurvich (2001). To verify that SEHJ is more accurate, we simulate the
mean and standard deviation of SEHJ for different parameter combinations, and compare
them with those of the asymptotic expression, i.e. SEA = π (2d0 + 1) /(

√
96d0m). To save

space, we only report the simulation results in Table 1 for the case n = 512, σ2
u = 8, d0 = 0.45

and m = [n1/2], [n2/3] and [n3/4]. The last row of the table presents the simulation standard
deviations of d̂. It is seen from Table 1 that SEHJ provides a much better approximation
than both SEJ and SEA. We find that SEJ is quite unreliable and SEA is even worse.
This is because when d̂ goes to zero, both SEJ and SEA approach infinity.

Table 1. Accuracy Comparison of Several Expressions for Standard Errors
m = n1/2 m = n2/3 m = n3/4

SEHJ Mean 0.385 0.191 0.145
Standard Error 0.255 0.081 0.061

SEJ Mean 0.898 0.527 0.246
Standard Error 7.461 6.186 1.082

SEA Mean 4835 2103 716
Standard Error 37172 22415 11996

SES 0.247 0.183 0.181

17



5.2 Results

We report results for the cases d0 = 0.45 and d0 = 0.85 in details, since these are represen-
tative of the results found in the other two cases, d0 = 0.25 and 0.65, respectively. Also, for
each value of d0, we discuss only the cases σ2

u = 0 and σ2
u = 8, as the results for the other

values of σ2
u were qualitatively similar. We will concentrate on the case n = 512.

We first discuss the results when d0 = 0.45 and σ2
u = 0. In this case, zt is a pure fractional

process. Fig. 1(a) shows that the bias of d̂ is positive and larger than that of d̂LP . The
positiveness of the bias of d̂ is not surprising. Intuitively, the two regressors λ2d

j and log λj
in the nonlinear log periodogram regression move together. When σu = 0, we have β0 = 0.
But β̂ is constrained to be positive, we thus expect d̂ to be biased upward. Fig. 1(b) shows
that the variance of d̂ is larger than that of d̂LP . Comparing RMSE’s in Fig. 1(c), we see
that the RMSE of d̂ is larger than that of d̂LP . The inferior performance of d̂ in this case is
not surprising since the LP estimator is designed for pure fractional processes, whereas our
estimator d̂ allows for additional noise in the system and is designed for perturbed fractional
processes. However, it is encouraging that the LP estimator outperforms the NLP estimator
only by a small margin. Apparently, the cost of including the additional regressor, even
when it is not needed, is small.

Next, we discuss the results when d0 = 0.45 and σ2
u = 8. Fig. 2(a) shows that the LP

estimator d̂LP has a large downward bias in this case, whereas the NLP estimator d̂ has a
much smaller bias. Apparently, the bias-reducing feature of d̂ established in the asymptotic
theory is manifest in finite samples. Fig. 2(b) shows that the standard error of d̂LP is
less than that of d̂ for all values of m, again consistent with the asymptotic results. For
each estimator, the standard error declines at the approximate rate 1/

√
m as m increases,

because m is the effective sample size in the estimation of d0. Fig. 2(c) shows that the
RMSE of d̂ is smaller than that of d̂LP over a wide range of m values. Fig. 2(d) shows that
the coverage probability of d̂ is fairly close to the nominal value of 0.9, provided that m is
not taken too large. In contrast, d̂LP has a true coverage probability close to 0.9 only for
very small values of m. This is due to the large bias of d̂LP . However, the larger standard
error of d̂ leads to longer confidence intervals on average, and this is apparent in Fig. 2(e).

The qualitative comparisons and conclusions made for the case d0 = 0.45 remain valid
for the case d0 = 0.25. For brevity, we do not present the figures but we comment on these
figures briefly. When d0 = 0.25 and σ2

u = 0, the bias and standard deviation of d̂LP remain
more or less the same as in Fig. 1 (a) and (b). Comparing with Fig. 1, the bias curve
of d̂ remains the same, but the standard deviation curve moves up, meaning that variance
inflation is more serious. When d0 = 0.25 and σ2

u = 8, the bias reduction of d̂ is slightly less
effective and the variance inflation is slightly larger than was shown in Fig. 2. Nevertheless,
the RMSE of d̂ is still smaller than that of d̂LP for a wide range of the m values.

We now turn to the results when d0 = 0.85 and σ2
u = 0. To save space, we only present

the bias, standard deviation and RMSE graphs analogous to graphs (a), (b) and (c) in
Fig. 1. Fig. 3 shows that both d̂LP and d̂ work reasonably well for nonstationary fractional
processes (1/2 ≤ d0 < 1). Compared with Fig. 1, we find that the difference in the standard
errors of these two estimators becomes smaller while the difference in the biases remains
more or less the same. Although d̂LP is still a better estimator than d̂ in this case, the
advantage of d̂LP has clearly diminished with the increase in d0.

Fig. 4 provides results for the case d0 = 0.85 and σ2
u = 8. Fig. 4(a) shows that the bias
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reduction from using d̂ is substantial. For example, when m = 40, the bias of d̂LP is −0.18,
while that of d̂ is only −0.02. The evidence seems to suggest that d̂ is effective in reducing
bias for stationary fractional component models as well as for nonstationary models. Fig.
4(b) shows that the standard error of d̂ is only slightly larger than that of d̂LP . The large
bias reduction and small variance inflation lead to a smaller RMSE for d̂ over a wide range of
m values, as shown in Fig. 4(c). Other simulations results (not reported in Figure 4) show
that the coverage probability based on d̂LP decreases very rapidly as m increases, whereas
that based on d̂ decreases much more slowly. In fact, the coverage probability based on d̂
is close to 0.9 over a wide range of m values.

The simulation results for d0 = 0.65 are qualitatively similar to those found for the
case d0 = 0.85. We omit the detailed discussion. Comparing the simulation results for
different values of d0, we find that d̂ is more effective in bias reduction for larger values of
d0. Intuitively, when d0 is small, the bias of d̂LP is small no matter what value σu may take.
For a large value of σu, the perturbation component dominates the fractional component,
so that d̂LP would be around 0. In this case, the bias of d̂LP is small only because the
true value of d0 itself is small. Also, for small values of σu, the bias from contamination is
naturally going to be small. Therefore, in both cases, the bias of d̂LP will be small when d0

is small and there is not much scope for d̂ to manifest its bias-reducing capacity.
We present a representative figure for the cases n = 2048 and n = 512. The qualitative

comparisons made and conclusions reached for the n = 512 sample size continue to apply
to n = 2048 and n = 128. The simulation results show that d̂ is more effective in bias
reduction when the sample size is smaller. This is because a smaller sample size implies a
larger finite sample bias of d̂LP and there is some scope for d̂ to manifest its bias-reducing
capacity.

To sum up, the simulations show that, for fractional component processes, the NLP
estimator d̂ has a lower bias, a higher standard deviation, and a lower RMSE in comparison
to the LP estimator d̂LP , corroborating the asymptotic theory. The lower bias generally
leads to improved coverage probability in confidence intervals based on d̂ over a wide range
of m. On the other hand, the lower standard deviation of d̂LP leads to shorter confidence
intervals than those based on d̂.

6 Conclusion

In empirical applications it has become customary practice to investigate the order of inte-
gration of the variables in a model when nonstationarity is suspected. This practice is now
being extended to include analyses of the degree of persistence using fractional models and
estimates of long memory parameters. Nonetheless, for many time series, and particularly
macroeconomic variables for which there is limited data, the actual degree of persistence
in the data continues to be a controversial issue. The empirical resolution of this problem
inevitably relies on our capacity to separate low-frequency behavior from high-frequency
fluctuations and this is particularly difficult when short run fluctuations have high vari-
ance. Actual empirical results often depend critically on the discriminatory power of the
statistical techniques being employed to implement the separation.

The model used in the present paper provides some assistance in this regard. It allows for
an explicit components structure in which there are different sources and types of variation,
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thereby accommodating a separation of short and long memory components and allowing
for fractional processes that are perturbed by weakly dependent effects. Compared to the
conventional formulation of a pure fractional process like (2), perturbed fractional processes
allow for multiple sources of high-frequency variation and, in doing so, seem to provide a
richer setting for uncovering latent persistence in an observed time series. In particular,
the model provides a mechanism for simultaneously capturing the effects of persistent and
temporary shocks and seems realistic in economic and financial applications when there
are many different sources of variation in the data. The new econometric methods we
have introduced for estimating the fractional parameter in such models take account of the
presence of additive disturbances, and help to achieve bias reduction and attain a faster
rate of convergence. The asymptotic theory is easy to use and seems to work reasonably
well in finite samples.

The methods of the paper can be extended in a number of directions. First, the nonlinear
approximation approach can be used in combination with other estimators, such as the local
Whittle estimator (Robinson 1995b), which seems natural in the present context because
the procedure already uses optimization methods. Second, the idea of using a nonlinear
approximation can be applied to nonstationary fractional component models and used to
adapt the methods which have been suggested elsewhere (e.g., Phillips, 1999, Shimotsu and
Phillips, 2001) for estimating the memory parameter in such models to cases where there
are fractional components.

7 Appendix of Proofs

Proof of Lemma 1. A spectral density satisfying Assumptions 1 and 2 also satisfies
Assumptions 1 and 2 of Robinson (1995a). In consequence, the lemma follows from Theorem
2 of Robinson (1995a). Since we normalize the discrete Fourier transform by the spectral
density f1/2

z (λ) instead of the power function C−1/2
g λ−d, (4.2) of Robinson (1995a) is always

zero and the extra term ( jn)min(α,β) in Robinson (1995a) does not arise in our case. �

Proof of Lemma 3. Note that

m−1
m∑
j=1

cjUj = m−1

[log2 m]∑
j=1

cjUj +m−1
m∑

j=[log2 m]+1

cjUj ≡ F1 + F2. (A.1)

But E sup(d,β)′∈Θ |F1| is less than

Em−1

[log2 m]∑
j=1

sup
(d,β)′∈Θ

|cj ||Uj | ≤ m−1 logpm
[log2 m]∑
j=1

(EU2
j )1/2 = O(logp+2m/m) (A.2)

by Lemma 2(b). Hence

sup
(d,β)′∈Θ

|F1| = Op(logp+2m/m) = Op(logpm/
√
m). (A.3)
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Let sr =
∑r

k=[log2 m]+1 Ur, r = [log2m] + 1, ...,m and s[log2 m] = 0. Then, from Lemma
2(a), (c) and (d), it follows that

Es2
r =

r∑
k=[log2 m]+1

EU2
k + 2

∑
[log2 m]+1≤k<j≤r

EUjUk

=
r∑

k=[log2 m]+1

(
π2

6
+ k−1 log k) + 2

r∑
[log2 m+1]≤k<j<r

O(k−2 log2 j) (A.4)

= O(r) +O(r log2 r/ log2m),

which implies sr = Op(r1/2). Using this result and partial summation, we have:

sup
(d,β)′∈Θ

|F2| ≤ sup
(d,β)′∈Θ

∣∣∣∣∣∣m−1
m∑

j=[log2 m]+1

cjUj

∣∣∣∣∣∣
= sup

(d,β)′∈Θ
m−1

∣∣∣∣∣∣
m∑

j=[log2 m]+1

sj−1(cj−1 − cj)

∣∣∣∣∣∣+ sup
(d,β)′∈Θ

m−1|smcm|

= m−1
m∑

j=[log2 m]+1

Op(j1/2)O(j−1 logqm) +Op(logpm/
√
m)

= logqm/m
m∑

j=[log2 m]+1

Op(j−1/2) +Op(logpm/
√
m)

= Op(logqm/
√
m) +Op(logpm/

√
m)

= Op

((
logmax(p,q)m

)
/
√
m
)
. (A.5)

Combine (A.3) with (A.5) to complete the proof. �

Proof of Corollary 1. Following the same steps as in the proof of Lemma 3, we compute
the orders of |Vj(d, β)− V̄ (d, β)|, |Vm(d, β)− V̄ (d, β)| and |Vj(d, β)− Vj−1(d, β)| as follows.
First,

sup
(d,β)′∈D0×B

|Vj(d, β)− V̄ (d, β)|

≤ 2 sup
(d,β)′∈D0×B

|d− d0| | log λj −
1
m

m∑
j=1

log λj |+ 2 sup
(d,β)′∈D0×B

|β||λ2d
j −

1
m

m∑
j=1

λ2d
j |

= 2 sup
(d,β)′∈D0×B

|d− d0| logm+O(λ2d0
m ){γ > 0}+O(1){γ = 0}

= O((m/n)γ logm) uniformly over j, (A.6)

where we have used the fact that when d ∈ D0 and γ > 0,

λ2d
m = λ2d0

m λ2d−2d0
m = λ2d0

m exp((2d− 2d0) log λm)
≤ Cλ2d0

m exp(λγm| log λm|) = O(λ2d0
m ). (A.7)
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Second,

sup
(d,β)′∈D0×B

|Vj(d, β)− Vj−1(d, β)|

≤ 2 sup
(d,β)′∈D0×B

|d− d0| | log(1− 1
j

)|+ 2 sup
(d,β)′∈D0×B

|βλ2d
j (1− (1− 1

j
)2d)|

= O((m/n)γ
1
j

) +Op

(
(m/n)2d0

1
j

)
{γ > 0}+O(

1
j

){γ = 0}

= O((m/n)γ
1
j

) for all j, (A.8)

where the final line follows from the fact that sup(d,β)′∈Θ |1− (1− 1
j )2d| = O(1

j ). Finally,

|Vm(d, β)− V̄ (d, β)|

= 2 sup
(d,β)′∈D0×B

|d− d0|| log λm −
1
m

m∑
j=1

log λm|+ 2 sup
(d,β)′∈D0×B

|β||λ2d
m −

1
m

m∑
j=1

λ2d
j |

= 2 sup
(d,β)′∈D0×B

|d− d0|| logm− 1
m

m∑
j=1

log j|+O(λ2d0
m ){γ > 0}+O(1){γ = 0})

= O((m/n)γ). (A.9)

The Corollary is now proved by invoking the same argument as in the proof of Lemma 3.
�

Proof of Theorem 1. When σu = 0, the theorem is essentially the same as results already
established in HDB. Only one modification is needed. HDB use −2 log(2 sinλj/2) as one of
the regressors while we employ −2 log λj . The use of −2 log λj rather than −2 log(2 sinλj/2)
has no effect on the asymptotic variance, but it does affect the asymptotic bias. This is
because the asymptotic bias comes from the dominating term in εj and this term is different
for different regressors. Using −2 log(2 sinλj/2) as the regressor yields

εj = log fw(λj)− log fw(0) =
(
f ′′w(0)
2f ′w(0)

)
λ2
j (1 + o(1)). (A.10)

In contrast, using −2 log λj as the regressor yields

εj = log fw(λj)− log fw(0)− 2d0

(
log(2 sin

λj
2

)− log λj

)
=

(
f ′′w(0)
2f ′w(0)

+
d0

12

)
λ2
j (1 + o(1)). (A.11)

With this adjustment, the arguments in HDB go through without further change.
Now consider the case σu > 0. Rewrite the spectral density of zt as fz(λ) = λ−2d0g(λ),

where g(λ) = (λ−12 sinλ/2)−2d0f∗(λ). Since

g(λ)− g(0) = (1 +O
(
λ2
)
)
(
fw(0) + λ2d0fu(0) +O(λ2)

)
− fw(0) = O(λ2d0) (A.12)
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as λ→ 0+, g(λ) is smooth of order 2d0. Combining this with our assumption that m→∞
and m4d0+1/n4d0 = O(1) verifies Assumptions 1 and 2 of Andrews and Guggenberger (1999).
Hence their Theorem 1 is valid with r = 0, s = 2d0 and q = 2d0. It is easy to show
that the term O (mq/nq) in their theorem is actually −fu(0)/fw(0)d0(2d0 + 1)−2λ2d0

m . An-
drews and Guggenberger established asymptotic normality under their Assumption 3 that
m4d0+1/n4d0 = o(1). In fact, asymptotic normality holds under our assumptionm4d0+1/n4d0 =
O(1) as long as an asymptotic bias of order O(1) is allowed. �

Proof of Theorem 2. Decompose Q(d, β)−Q(d0, β0) into two parts as follows:

Q(d, β)−Q(d0, β0) =
1
m

m∑
j=1

(Vj − V̄ )2 +
2
m

m∑
j=1

(Uj + εj)(Vj − V̄ ) (A.13)

where the dependence on (d, β) has been suppressed for notational simplicity.
Part (a) We prove part (a) by showing that 1/m

∑m
j=1(Uj + εj)(Vj − V̄ ) = op(1)

uniformly in (d, β)′ and 1/m
∑m

j=1(Vj − V̄ )2 converges uniformly to a function, which has
a unique minimizer d0.

First, using Corollary 1 with γ = 0, we have

sup
(d,β)′∈Θ

∣∣∣∣∣∣1/m
m∑
j=1

Uj(Vj − V̄ )

∣∣∣∣∣∣ = Op(1/
√
m). (A.14)

Next, we show that sup(d,β)′∈Θ | 1
m

∑m
j=1 εj(Vj(d, β) − V̄ (d, β))| = Op(λ4d0

m ). Under As-
sumptions 1 and 2,

εj = O(λrj) = O(λ4d0
j ), (A.15)

so we have, using (A.8) and (A.9) with γ = 0,

sup
(d,β)′∈Θ

| 1
m

m∑
j=1

εj(Vj(d, β)− V̄ (d, β))|

≤ sup
(d,β)′∈Θ

 1
m

∣∣∣∣∣∣
m∑
j=1

j−1∑
r=1

εr(Vj−1(d, β)− Vj(d, β))

∣∣∣∣∣∣+
1
m
|
m∑
j=1

εj ||Vm(d, β)− V̄ (d, β)|


= λ4d0

m

1
m

∣∣∣∣∣∣
m∑
j=1

j−1∑
r=1

Op(
r

m
)4d0(

1
j

)

∣∣∣∣∣∣+Op(λ4d0
m ) = Op(λ4d0

m ) = op(1). (A.16)

Finally,

1
m

m∑
j=1

(Vj − V̄ )2 =
1
m

m∑
j=1

(
2(d− d0)(log(

j

m
)− 1

m

m∑
k=1

log(
k

m
)) + o(1)

)2

= 4(d− d0)2

 1
m

m∑
j=1

log2(
j

m
)− (

1
m

m∑
k=1

log(
k

m
))2

+ o(1)

= 4(d− d0)2(1 + o(1)), (A.17)
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where o(·) holds uniformly over (d, β)′ ∈ Θ.
In view of (A.14), (A.16) and (A.17), we can complete the proof by using a standard

textbook argument.
Part (b) Compared with log λj , λ2d0

j is negligible since d0 > 0. Due to the difference
in the orders of magnitude of the regressors, it is not straightforward to establish the
consistency of β̂. In fact, we proceed by showing first that d̂ converges to d0 at some
preliminary rate and then go on to show that d̂− d0 = Op((m/n)2d0). We obtain this rate
sequentially.

First, we show that d̂− d0 = op((m/n)d1/2), where d1 is the lower bound of the interval
D. From Q(d̂, β̂)−Q(d0, β0) ≤ 0, we get

1
m

m∑
j=1

(Vj(d̂, β̂)− V̄ (d̂, β̂))2 (A.18)

≤ − 2
m

m∑
j=1

(Uj + εj)(Vj(d̂, β̂)− V̄ (d̂, β̂))

= Op(
1√
m

) +Op(λ4d0
m ) = op

(
(
m

n
)2d1

)
, (A.19)

where the last equality follows from the assumptions that n4d0(1+∆)/m4d0(1+∆)+1 = o(1)
and that d ≥ d1 > 0. But 1

m

∑m
j=1(Vj(d̂, β̂)− V̄ (d̂, β̂))2 equals

1
m

m∑
j=1

2(d̂− d0)(log(
j

m
)− 1

m

m∑
j=1

log(
j

m
)) +O(λ2d̂

m ) +O(λ2d0
m )

2

= 4(d̂− d0)2(1 + o(1)) +O(λ2d0
m ) +O(λ2d̂

m )

= 4(d̂− d0)2(1 + o(1)) +O
(

(
m

n
)2d1

)
. (A.20)

Therefore,
4(d̂− d0)2(1 + o(1)) +Op

(
(
m

n
)2d1

)
≤ op

(
(
m

n
)2d1

)
, (A.21)

which implies that d̂− d0 is at most Op((mn )d1). Thus d̂− d0 = op((mn )d1/2).
Second, we show that d̂ − d0 = op

(
(mn )d0(1+∆)

)
. Since d̂ − d0 = op((mn )d1/2), we only

need consider d ∈ D′n = {d : |d − d0| < ε(mn )d1/2} for some small ε > 0. Approximating
sums by integrals, we deduce that, for d ∈ D′n,

1
m

m∑
j=1

V 2
j (d, β)−

(
V̄ (d, β)

)2 = I1 + I2 (A.22)

where

I1 =

4(d− d0)2 +

(
2dβλ2d

m

(2d+ 1)
√

4d+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

)2
 (1 + o(1)) , (A.23)
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and

I2 =
8dd0ββ0λ

2d+2d0
m

(2d+ 1)(2d0 + 1)

(
1√

(4d+ 1)(4d0 + 1
− 1

2d+ 2d0 + 1

)
(1 + o(1)) . (A.24)

Therefore
1
m

m∑
j=1

V 2
j (d, β)−

(
V̄ (d, β)

)2 = 4(d− d0)2 +O(λ4d0
m ), (A.25)

where the o(·) and O(·) term in the above three equations hold uniformly over (d, β)′ ∈
D′n ×B. Using Q(d̂, β̂)−Q(d0, β0) ≤ 0 again, we have

1
m

m∑
j=1

(Vj(d̂, β̂)− V̄ (d̂, β̂))2 ≤ Op(
1√
m

) +Op(λ4d0
m ) = op

(
(
m

n
)2d0(1+∆)

)
, (A.26)

where the equality follows from the assumption n4d0(1+∆)/m4d0(1+∆)+1 = o(1). Combining
(A.25) and (A.26), we get

4(d̂− d0)2 + o(λ2d0(1+∆)
m ) ≤ op

(
(
m

n
)2d0(1+∆)

)
. (A.27)

Hence d̂− d0 = op((mn )d0(1+∆)).
Next, we show that d̂ − d0 = op

(
(mn )3d0(1+∆)/2

)
. From Corollary 1 and Equation

(A.16), we know that
∣∣∣ 1
m

∑m
j=1 Uj(Vj − V̄ )

∣∣∣ = Op
(
(mn )d0(1+∆)/

√
m
)

= Op
(
(mn )3d0(1+∆)

)
and

∣∣∣ 1
m

∑m
j=1 εj(Vj − V̄ )

∣∣∣ = op
(
(mn )3d0(1+∆)

)
uniformly in (d, β)′ ∈ D′′n × B, where D′′n =

{d : |d − d0| < ε(mn )d0(1+∆)}. In addition, it follows from (A.25) that when d ∈ D
′′
n,

1
m

∑m
j=1(Vj − V̄ )2 = 4(d − d0)2(1 + o(1)) + o(λ3d0(1+∆)

m ). Applying the same argument as
before, we get

4(d̂− d0)2(1 + o(1)) + o(λ3d0(1+∆)
m ) ≤ op

(
(
m

n
)3d0(1+∆)

)
, (A.28)

and so d̂− d0 = op
(
(mn )3d0(1+∆)/2

)
.

Repeating the procedure again we obtain d̂ − d0 = op
(
(mn )7d0(1+∆)/4

)
if

7(1 + ∆)/4 < 2. Further iterations of this procedure lead to d̂− d0 = op

(
(mn )(2−2−k)(1+∆)

)
,

k = 0, 1, 2, 3, ... if (2 − 2−k)(1 + ∆) < 2. We stop the iteration if we obtain d̂ − d0 =
op

(
(mn )(2−2−k0 )(1+∆)

)
for some k0 ≥ 0 such that (2−2−k0)(1+∆) < 2 and (4−2−k0)(1+∆) ≥

4. In this case, we have∣∣∣∣∣∣ 1
m

sup
(d,β)′∈D∗n×B

m∑
j=1

Uj(Vj − V̄ )

∣∣∣∣∣∣ = Op

(
(
m

n
)(2−2−k0 )(1+∆)d0

1√
m

)
= op

(
(
m

n
)4d0

)
, (A.29)

and

sup
(d,β)′∈D∗n×B

∣∣∣∣∣∣ 1
m

m∑
j=1

εj(Vj − V̄ )

∣∣∣∣∣∣ = op

(
(
m

n
)4d0

)
, (A.30)
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where D∗n = {d : |d− d0| < ε(mn )(2−2−k0 )(1+∆)}. Applying the same argument as before, we
deduce

4(d̂− d0)2(1 + o(1)) +O(λ4d0
m ) ≤ op

(
(
m

n
)4d0

)
. (A.31)

In consequence, d̂− d0 = Op
(
(mn )2d0

)
.

Now, since (2d+ 2d0 + 1)2 − (4d+ 1)(4d0 + 1) = 4d2 − 8dd0 + 4d2
0 = 4(d− d0)2 > 0, we

deduce from (A.22) that

1
m

m∑
j=1

(Vj − V̄ )2 ≥

(
2dβλ2d

m

(2d+ 1)
√

4d+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

)2

(1 + o(1)). (A.32)

for d ∈ D such that |d− d0| ≤ C(mn )2d0 . In view of 1
m

∑m
j=1(Vj(d̂, β̂)− V̄ (d̂, β̂))2 ≤ op(λ4d0

m ),
we obtain(

2d̂β̂λ2d̂
m

(2d̂+ 1)
√

4d̂+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

)2

(1 + o(1)) ≤ op(λ4d0
m ). (A.33)

Some algebraic manipulations show that when d̂− d0 = Op((mn )2d0),

2dβ̂λ2d̂
m

(2d̂+ 1)
√

4d̂+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1
=

2d̂λ2d̂
m

(2d̂+ 1)
√

4d̂+ 1

(
β̂ − β0

)
+ op(λ3d0

m ), (A.34)

So (
2d̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1

(
β̂ − β0

)
+ op(λ3d0

m )

)2

≤ op(λ4d0
m ). (A.35)

This implies that

4d̂λ4(d̂−d0)
m

(2d̂+ 1)2
(

4d̂+ 1
)(β̂ − β0)2 ≤ op(λ4d0

m ), (A.36)

from which we deduce that β̂ − β0 = op(1). �

Proof of Lemma 5
Part (a) The (2,2) element of supθ∈Θn ||D

−1
n (Hn(d, β) − Jn(d, β))D−1

n || is zero, so it
suffices to consider the (1,1) and (1,2) elements. Since

Izj + 2d log λj − βλ2d
j = α0 + Uj + εj + (d− d0) log λ2

j + β0λ
2d0
j − βλ2d

j ,

supθ∈Θn |
β
m

∑m
j=1 ej(log λ2

j )
2λ2d

j |, the (1,1) element, is bounded by L1 +L2 +L3 +L4, where

L1 = sup
θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
k)

2λ2d
k

)
Uj

∣∣∣∣∣∣ ,
L2 = sup

θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
k)

2λ2d
k

)
εj

∣∣∣∣∣∣ ,
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L3 = sup
θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
k)

2λ2d
k

)
(d− d0) log λ2

j

∣∣∣∣∣∣ , and

L4 = sup
θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
k)

2λ2d
k

)(
β0λ

2d0
j − βλ2d

j

)∣∣∣∣∣∣ .
(A.37)

We first show that L1 = op(1). Note that log2(λ2
j )λ

2d
j − 1

m

∑m
k=1 log2(λ2

k)λ
2d
k equals

4 log2 λm

(
λ2d
j −

1
m

m∑
k=1

λ2d
k

)
+ 8 log λm

(
log(

j

m
)λ2d
j −

1
m

m∑
k=1

log(
k

m
)λ2d
k

)

+4 log2(
j

m
)λ2d
j −

4
m

m∑
k=1

log2(
k

m
)λ2d
k . (A.38)

L1 is thus bounded by supθ∈Θn |4βλ
2d
m |(log2 λmL11 + 2|logλm|L12 + L13), where

L1i+1 = sup
θ∈Θn

∣∣∣∣∣∣ 1
m

m∑
j=1

(
(
j

m
)2d logi(

j

m
)− 1

m

m∑
k=1

(
k

m
)2d logi(

k

m
)

)
Uj

∣∣∣∣∣∣ , i = 0, 1, 2. (A.39)

It follows from Lemma 3 that L1i+1 = Op(logim/
√
m). The first condition is satisfied

because

sup
θ∈Θn

∣∣∣∣∣( jm)2d logi
(
j

m

)
− 1
m

m∑
k=1

(
k

m
)2d logi

(
k

m

)∣∣∣∣∣ = O(logi(m)). (A.40)

The second condition is satisfied because

sup
θ∈Θn

∣∣∣∣( jm)2d logi
(
j

m

)
− (

j − 1
m

)2d logi
(
j − 1
m

)∣∣∣∣
≤ sup

θ∈Θn

∣∣∣∣( jm)2d logi
(
j

m

)
− (

j − 1
m

)2d logi
(
j

m

)∣∣∣∣
+
∣∣∣∣(j − 1

m
)2d logi

(
j

m

)
− (

j − 1
m

)2d logi
(
j − 1
m

)∣∣∣∣
≤ sup

θ∈Θn

∣∣∣∣logi
(
j

m

)
(
j

m
)2d

∣∣∣∣ ∣∣∣∣1− (1− 1
j

)2d

∣∣∣∣
+ sup
θ∈Θn

(
(
j − 1
m

)2di

∣∣∣∣logi−1

(
j − 1
m

)
1

j − 1

∣∣∣∣) (A.41)

= O(j−1 logim) for all j.

Therefore

L1 = Op(
log2 λm√

m
λ2d1
m +

| log λm| logm√
m

λ2d1
m +

log2m√
m

λ2d1
m ) = o(1). (A.42)
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We then show L2 = op(1). For i = 0, 1, 2, define L2i as L1i is defined, but with Uj replaced
by εj . Since supθ∈Θn

1
m

∑m
j=1

∣∣(j/m)2d logi(j/m)− 1/m
∑m

k=1(k/m)2d logi(k/m)
∣∣ = O(1),

we have
L2 = Op

(
λ6d0
m (log2 λm + 2 log |λm|+ 1)

)
= op(1). (A.43)

We next show that L3 = op(1). Following a similar procedure, we bound L3 by
supθ∈Θn |8β(d− d0)λ2d

m |(log2 λmL31 + 2| log λm|L32 + L33), where

L3i+1 = sup
θ∈Θn

∣∣∣∣∣∣
 1
m

m∑
j=1

(
j

m
)2d logi+1(

j

m
)

−
 1
m

m∑
j=1

(
j

m
)2d logi(

j

m
)

 1
m

m∑
j=1

log(
j

m
)

∣∣∣∣∣∣ .
(A.44)

In view of 1/m
∑m

j=1(j/m)k log(j/m) = −(k + 1)−2 + o(1), k ≥ 0, it is easy to show that
L3i+1, i = 0, 1, 2 are bounded. Hence

L3 = Op

(
λ2d1
m (log2 λm + 2| log λm|+ 1)

)
= op(1). (A.45)

Continuing, we show that L4 = op(1). Since supθ∈Θn

∣∣∣β0λ
2d0
j − βλ2d

j

∣∣∣ = O(1), it is easy to
see that

L4 = Op

(
λ2d1
m (log2 λm + 2| log λm|+ 1)

)
= op(1). (A.46)

Therefore supθ∈Θn |β/m
∑m

j=1 ej(log λ2
j )

2λ2d
j | = op(1).

Following the same procedure, we can show that

sup
θ∈Θn

|λ−2d0
m m−1

m∑
j=1

ej
(
log λ2

j

)
λ2d
j | = op(1). (A.47)

The details are omitted.

Part (b) We consider the individual elements of sup(d,β)′∈Θn ||D
−1
n [Jn(d, β)−Jn(d0, β0)]D−1

n ||
in turn.

Since x1j = −2 log λj(1 + o(1)), the (1,1) element can be readily shown to be o(1).
Similarly, the (1,2) element can be written as sup(d,β)′∈Θn 2|L5 − L6|(1 + o(1)) where

L5 = − 1
m

m∑
k=1

(
(
j

m
)2d − 1

m

m∑
k=1

(
k

m
)2d

)(
log(

j

m
)− 1

m

m∑
k=1

log(
k

m
)

)
and

L6 = − 1
m

m∑
j=1

[(
(
j

m
)2d0 − 1

m

m∑
k=1

(
k

m
)2d0

)(
log(

j

m
)− 1

m

m∑
k=1

log(
k

m
)

)]
.

Approximating sums by integrals yields

L5 = − 4d
(2d+ 1)2

(1 + o(1)), and L6 = − 4d0

(2d0 + 1)2
(1 + o(1)). (A.48)

Therefore, the (1,2) element is

sup
(d,β)′∈Θn

2| 4d0

(2d0 + 1)2
− 4d

(2d+ 1)2
|(1 + o(1)) = o(1).
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Finally, the (2,2) element is

sup
(d,β)′∈Θn

∣∣∣∣∣∣ 1
m

m∑
j=1

(
(
j

m
)2d − 1

m

m∑
k=1

(
k

m
)2d

)2

− 1
m

m∑
j=1

(
(
j

m
)2d0 − 1

m

m∑
k=1

(
k

m
)2d0

)2
∣∣∣∣∣∣

= sup
(d,β)′∈Θn

∣∣∣∣ 4d2

(4d+ 1)(2d+ 1)
− 4d2

0

(4d0 + 1)(2d0 + 1)

∣∣∣∣ = op(1). (A.49)

Part (c) Part (c) holds by using x1j = −2 log λj(1 + o(1)) and x2j = λ2d0
j and approxi-

mating sums by integrals.

Part (d) Let ξj = (ξ1j , ξ2j)′, where

ξ1j = −2 log
j

m
+

2
m

m∑
k=1

log
k

m
, ξ2j = (

j

m
)2d0 − 1

m

m∑
k=1

(
k

m
)2d0 . (A.50)

Then, we can rewrite D−1
n Sn(d0, β0) as

D−1
n Sn(d0, β0) = − 1√

m

m∑
j=1

ξj(Uj + εj)(1 + o(1)). (A.51)

Note that
∑m

j=1 ξ1jεj equals

{σu > 0}λ4d0
m

∑m
j=1

(
−2 log j

m + 2
m

∑m
k=1 log k

m

)(
− f2

w(0)
2f2
u(0)

( jm)4d0

)
(1 + o(1))

+{σu = 0}λ2
m

∑m
j=1

(
−2 log j

m + 2
m

∑m
k=1 log k

m

)(
( jm)2( f

′′
w(0)

2fw(0) + d0
12)
)

(1 + o(1))

= {σu > 0}mλ4d0
m

f2
w(0)

2f2
u(0)

8d0
(4d0+1)2 (1 + o(1))− {σu = 0}mλ2

m

(
f ′′w(0)
fw(0) + d0

6

)
2
9(1 + o(1))

(A.52)

and
∑m

j=1 ξ2jεj equals

= {σu > 0}λ4d0
m

∑m
j=1

(
( jm)2d0 − 1

m

∑m
k=1( km)2d0

)(
− f2

u(0)
2f2
w(0)

( jm)4d0

)
(1 + o(1))

+{σu = 0}λ2
m

∑m
j=1

(
( jm)2d0 − 1

m

∑m
k=1( km)2d0

)(
( jm)2

(
f ′′w(0)
2fw(0) + d0

12

))
(1 + o(1))

= −{σu > 0}mλ4d0
m

f2
w(0)

2f2
u(0)

8d2
0

(2d0+1)(4d0+1)(6d0+1)(1 + o(1))

+{σu = 0}mλ2
m

(
f ′′w(0)
fw(0) + d0

6

)
2d0

3(2d0+3)(2d0+1)(1 + o(1)).

(A.53)

Therefore

D−1
n Sn(d0, β0) + b =

1√
m

m∑
j=1

ξjUj + o(1). (A.54)
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We now prove that for any vector v = (v1, v2)′, 1√
m

∑m
j=1 v

′ξjUj ⇒ N(0, π
2

6 v
′Ωv). Write

1√
m

m∑
j=1

v′ξjUj = T1 + T2 + T3, (A.55)

where

T1 =
1√
m

[log8 m]∑
j=1

ajUj , T2 =
1√
m

[m0.5+δ ]∑
j=[log8 m]+1

ajUj

T3 =
1√
m

m∑
j=[m0.5+δ ]

ajUj , aj = v′ξj , (A.56)

for some 0 < δ < 0.5.
Since max1≤j≤m |ξ1j | = O(logm) and max1≤j≤m |ξ2j | = O(logm), we have

max1≤j≤m |aj | = O(logm). Therefore the proofs in HDB that T1 = op(1) and T2 = op(1)
are also valid in the present case. We now show that T3 → N(0, π

2

6 v
′Ωv) by verifying

that the sequence {aj} satisfies (25) with ρ = v′Ωv. The first condition of (25) holds as
max1≤j≤m |aj | = O(logm) = o(m). The second condition holds because

m∑
j=[m0.5+δ+1]

a2
j =

m∑
j=1

a2
j −

[m0.5+δ ]∑
j=1

a2
j =

m∑
j=1

a2
j + o(m)

= mv′(
1
m

m∑
j=1

ξ′jξj)v + o(m) ∼ mv′Ωv. (A.57)

The last equality follows because we can show that limm→∞
1
m

∑m
j=1 ξ

′
jξj = Ω by approxi-

mating the sums by integrals. The third condition holds because

m∑
j=[m0.5+δ ]+1

|aj |p ≤ 2p|v1|
m∑

j=[m0.5+δ ]+1

|ξ1j |p + 2p|v2|
m∑

j=[m0.5+δ ]+1

|ξ2j |p

= O(m) + 2p|v1|
m∑

j=[m0.5+δ ]+1

|ξ2j |p

= O(
m∑

j=[m0.5+δ ]+1

|(2πj
m

)2d0 |p) +O


m∑

j=[m0.5+δ ]+1

 1
m

m∑
j=1

(
2πj
m

)2d0

p+O(m)

= O(m) +O(m) +O(m) = O(m). (A.58)

Here we have employed
∑m

j=[m0.5+δ ]+1 |ξ1j |p = O(m). See (A18) in HDB (1998).
The above results combine to establish part (d). �

Proof of Theorem 3
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Scaling the first order conditions, we have

−D−1
n Sn(d0, β0) = D−1

n Hn(d0, β0)D−1
n Dn(d̂− d0, β̂ − β0)′

+D−1
n [Hn(d∗, β∗)−Hn(d0, β0)]D−1

n Dn(d̂− d0, β̂ − β0)′.

(A.59)

Thus

Dn(d̂− d0, β̂ − β0)′

= −
{
D−1
n Hn(d0, β0)D−1

n +D−1
n [Hn(d∗, β∗)−Hn(d0, β0)]D−1

n

}−1
D−1
n Sn(d0, β0).

(A.60)

But since d̂ − d0 = Op((m/n)2d0), we know that (d̂, β̂) and (d∗, β∗) belong to Θn with
probability approaching one. Therefore,

||D−1
n [Hn(d∗, β∗)−Hn(d0, β0)]D−1

n ||
≤ sup

(d,β)′∈Θn

(
||D−1

n [Hn(d, β)− Jn(d, β)]D−1
n ||+ ||D−1

n [Hn(d0, β0)− Jn(d0, β0)]D−1
n ||

)
+ sup

(d,β)′∈Θn

||D−1
n [Jn(d, β)− Jn(d0, β0)]D−1

n ||

= op(1), (A.61)

by Lemma 5. Furthermore,

D−1
n Hn(d0, β0)D−1

n = D−1
n [Hn(d0, β0)− Jn(d0, β0)]D−1

n +D−1
n Jn(d0, β0)D−1

n

= Ω + o(1). (A.62)

Consequently,

Dn(d̂− d0, β̂ − β0)′ − Ω−1bn = −Ω−1
(
D−1
n Sn(d0, β0) + bn

)
+ op(1)

⇒ −Ω−1N(0,
π2

6
Ω) =d N(0,

π2

6
Ω−1). (A.63)

�

Proof of Theorem 4
Let δn = (δn1, δn2)′ = −H−1

n (d∗, β∗)Sn(d0, β0). It is easy to show that
(a) when δn2 ≥ 0,

Dn(d̂− d0, β̂ − β0)′ = −DnH
−1
n (d∗, β∗)Sn(d0, β0) = −Ω−1D−1

n Sn(d0, β0)(1 + op(1));

(b) when δn2 < 0, β̂ − β0 = 0 and
√
m(d̂− d0) = −

√
mH−1

n,11(d∗, β∗)Sn,1(d0, β0) = −Ω−1
11 m

−1/2Sn,1(d0, β0)(1 + op(1)).

Let ηn = (ηn,1, ηn,2)′ = D−1
n Sn(d0, β0), then

√
m(d̂− d0) = −

(
Ω̃11ηn1 + Ω̃12ηn2

){
Ω̃12ηn1 + Ω̃22ηn2 ≤ 0

}
(1 + op(1))

− Ω−1
11 ηn1

{
Ω̃12ηn1 + Ω̃22ηn2 > 0

}
(1 + op(1)) (A.64)

√
mλ2d0

m

(
β̂ − β0

)
= −

(
Ω̃12ηn1 + Ω̃22ηn2

){
Ω̃12ηn1 + Ω̃22ηn2 ≤ 0

}
(1 + op(1)) . (A.65)

The proof is completed by invoking the continuous mapping theorem. �
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