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Abstract

We apply a discrete choice approach to model the empirical behav-
ior of the Federal Reserve in changing the federal funds target rate, the
benchmark of short term market interest rates in the US. Our methods
allow the explanatory variables to be nonstationary as well as station-
ary. This feature is particularly useful in the present application as
many economic fundamentals that are monitored by the Fed and are
believed to affect decisions to adjust interest rate targets display some
nonstationarity over time. The empirical model is determined using
the PIC criterion (Phillips and Ploberger, 1996; Phillips, 1996) as a
model selection device. The chosen model successfully predicts the
majority of the target rate changes during the time period considered
(1985-2001) and helps to explain strings of similar intervention deci-
sions by the Fed. Based on the model-implied optimal interest rate,
our findings suggest that there a lag in the Fed’s reaction to economic
shocks and that the Fed is more conservative in raising interest rates
than in lowering rates.
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1 Introduction

The timing of monetary policy intervention is of widespread general interest
in economic affairs, capturing substantial attention in the media as well
as academic, commercial and financial circles. In the United States the
Federal Reserve Board has a policy-making Federal OpenMarket Committee
(FOMC) that meets regularly eight times a year to discuss open market
operations. The FOMC decisions that attract the most attention are the new
targets that it may set for the federal funds rate, the benchmark of short term
market interest rates in the US. Similar meetings by monetary authority
committees are held in other countries, two notable examples being the
Monetary Policy Meetings (MPM) of the Bank of Japan and the meetings
of the Monetary Policy Committee (MPC) of the Bank of England.

The present work is concerned with modeling the timing of monetary
policy intervention and it reports an empirical analysis of interest rate de-
cision making dynamics for the US. The method we propose is equally well
suited for analyzing monetary policy implementation by other central banks
and it can also be applied to other forms of market intervention such as
exchange rate intervention.

There is a vast literature studying monetary policy, its implementation,
interest rates rules and the dynamic behavior of interest rates. Walsh (1998)
provides a recent overview of the extensive theory and empirical evidence
relating to the practical operating procedures of monetary policy. It is ap-
parent from this overview and the huge literature that it is impossible to
develop a single model capable of describing all aspects of monetary policy.
The present work, therefore, has a limited perspective that focuses on the
issue of the timing of monetary intervention. In doing so, the main charac-
teristics of this study are its implementation of a discrete choice framework
for the decision making intervention, the allowance for potentially nonsta-
tionary series that are monitored by the Fed in its decision making capacity,
and the use of model selection criteria to determine a suitable empirical
model.

Many macroeconomic models specify an ‘optimal’ interest rate in a con-
tinuous way, the most prominent example being the ‘Taylor rule’ (Taylor,
1993, 1998, 2001, Solow et al, 1998, and Fair, 2001). The Taylor rule pro-
vides a contingency plan for policy and to do so it specifies an optimal
interest rate r∗ in the form

r∗t = ®+ ¯(¼t ¡ ¼∗) + °(zt ¡ z∗t ); (1)

where ¼t and zt are measures of inflation and output respectively, ¼∗ is the
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Fed target rate of inflation and z∗t is a measure of potential output. Fair
(2001) proposed including additional regressors like unemployment and the
money supply as well as a dummy variable to capture (and test for) potential
structural breaks in policy. Another popular approach uses VAR’s to model
the interest rate as a continuous process in studying the actions of the Fed
(e.g. Sack 1998).

In practice, of course, the federal funds target rate is adjusted in a dis-
crete way, both in timing and in magnitude. The timing of Fed decisions
is seen by many to be of great importance, is watched by the media and is
closely monitored by both government and the private sector. Since 1990,
the majority of target rate changes took place on the pre-scheduled meet-
ing days of the FOMC, and the magnitude of the adjustments have been
in multiples of 25 basis points (bp). Consequently, if there is a true (unob-
served) optimal target rate that varies continuously with other variables, it
is unlikely to exactly match the announced target rate.

In estimating a continuous model such as (1), it is generally assumed
that the announced target rate equals the actual optimal rate. But this
can be misleading because the process of determining the optimal interest
rate r∗t is mixed in with the discrete intervention process of adjusting the
Federal funds rate. For example, there is frequent discussion of Fed inertia
in policy or Fed attempts to smooth policy, although these may not be part
of the Fed’s real goals in monetary policy . Instead, these features relate
more to actual Fed behavior in adjusting rates and can be distinguished
from a rule such as (1) that determines an optimal rate r∗t ; which can be
regarded as a contingency plan for Fed policy (Taylor, 1998). It is hard to
make this distinction effective in a continuous model. The present paper,
therefore, uses a discrete choice model for Fed decision making to treat the
dynamic of the decisions and to provide an underlying contingency plan
for policy. With this approach, the observed series of announced target
rates and an estimated series of optimal interest rates can be used together
to capture both the policy plan and the intervention decisions themselves,
thereby revealing more detail about the Fed operating procedure.

Following standard procedure in discrete dependent variable models we
estimate a linear index (this corresponds here to the contingency plan equa-
tion (1) for the optimal interest rate), but we draw information about it
from the announced target rate series and its dynamic path as well as the
explanatory variables that may figure in Fed policy thinking via a rule such
as (1). The discrete rate adjustments are classified into categories by empir-
ically calibrating the index against a set of threshold parameters, according
to the extent of the deviation of the estimated optimal rate from the actual
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lagged target rate. The regression parameters and threshold parameters
are estimated jointly by maximum likelihood (ML) using probit and logit
regressions.

The simplest classification of the categories is a ‘triple choice’ approach,
which means that we classify rate changes only in terms of decisions to
‘decrease’, ‘increase’ or make ‘no change’. More sophisticated alternatives
are possible. For instance, we could classify adjustments in terms of the
magnitude of the change giving the finer classifications ‘increase 50 bp and
more’, ‘increase less than 50 bp’, ‘no change’, ‘decrease less than 50 bp’,
‘decrease 50 bp and more’. In the current work, we describe decisions in
terms of the simple triple classification ‘rate cut, rate hike, or no change’.
These classifications are sufficient to capture the essence of Fed operating
policy and, in addition to these, we use a range of variables characterizing
economic fundamentals that potentially influence Fed decisions.

In some related work, Dueker (1999) also proposed a probit model ap-
proach to estimate the dynamics of federal funds target rate changes. His
model assumes stationarity in the data and specifies the optimal interest
rate in terms of an autoregressive process. The estimates for the target rate
thresholds in Dueker’s model imply symmetry in monetary policy rate hikes
and rate cuts. In other work, Balduzzi, Bertola and Foresi (1996) inves-
tigated the effect of short term rate targeting by the Federal Reserve on
the term structure of interest rates and found that expectations of future
changes in the target rate is the main driving force of short term interest
rate dynamics. Applying different model specifications, we hope that our
work can shed further light on the empirical behavior of the monetary au-
thority by exploring asymmetry in Fed decision making, by permitting data
nonstationarity and by assessing model performance through in-sample and
out-of-sample forecasting exercises.

The empirical approach in this paper is partly based on results obtained
by Park and Phillips (2000) and further developed by the authors (2001) for
nonstationary choice models. It is very well known that many macroeco-
nomic variables, such as inflation, unemployment, consumer confidence and
various leading economic indicators display some characteristics of nonsta-
tionarity over time (e.g. random wandering behavior, the apparent absence
of a fixed mean, or even secular growth). When such variables appear in
a linear index (such as the right hand side of (1)) traditional asymptotic
theory does not justify probit or logit regressions. In that event, the the-
ory in the authors (2001) work is relevant. Moreover, if the explanatory
variables actually trend upwards over time and there is a fixed threshold
for determining decisions, then we would expect to eventually encounter an

4



uninterrupted string of identical decisions. In that event, the likelihood is
unbounded and has no maximum. The occurence of trending variables in
the system seems inevitable in the present case since the Fed monitors a
huge range of macroeconomic and financial data in making its evaluation
of the state of the economy and the need for intervention, and some of the
indicators they consider will certainly have nonstationary characteristics.
On the other hand, Fed intervention decision outcomes are mixed over time
although, as we know, there are periods where strings of similar decisions
appear. In consequence, therefore, some detrending of the data is neces-
sarily being undertaken by the Fed in making its decisions on intervention.
In principle the empirical form of that detrending might be discovered by
econometric model determination techniques through modeling the actual
intervention decisions by the Fed in conjunction with a range of different
trend elimination techniques.

There is also good reason to allow for some degree of nonstationarity
in interest rates. In the finance literature it has been common to model
short term interest rates or underlying state variables (factors) in terms
of mean-reverting Ornstein-Uhlenbeck processes (e.g. Vasicek, 1977, Cox,
Ingersoll and Ross, 1985, Dai and Singleton, 2000, among many others).
According to these models, if the current interest rate is high, we may expect
it eventually to fall, and if the current interest rate is low, we may expect it
to rise. This specification usually works better in the long run than in the
short run, especially in terms of its forecasting performance. For example,
Fama and Bliss (1987) found that the forecasting power of this model seems
to improve as the forecasting horizon is extended, due to the slow mean-
reverting property of the interest rate. However, in many situations, we
need to forecast in the short run and then we usually observe the opposite
of mean-reversion. Indeed, as far as our present application is concerned,
when the federal funds rate is increased, instead of expecting it to fall next
period, it appears more likely that there will be further increases in the near
future. The same is true for decreases in the rate. In summary, instead of
a uniform mix of increases and decreases in the funds rate, we are far more
likely to observe a sequence of rate adjustments in the same direction. The
phenomenon seems to apply over extended periods of time and is confirmed
by casual inspection of the evidence - see the lower panel of Fig. 1, which
shows monthly target rate adjustments in the Federal funds rate over the
period 1986:1-2001:6.

This feature of monetary intervention has been documented in the liter-
ature. For example, Rudebusch (1995) showed that one target rate change
is much more likely to be followed by another change in the same direc-
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tion, and Goodhart (1996) found similar patterns in other central banks’
behavior. There is an underlying theory that explains such behavior.

Park and Phillips (2000) showed that, in a binary (0; 1) choice model with
nonstationary covariates, the sample proportion of unit choices converges
to a random variable that follows an arc sine law with probability density
1=(¼

p
y(1¡ y)) on [0; 1]. This result provides some theoretical justification

for the empirical phenomenon just mentioned of a string of similar decisions
by the monetary authority about intervention. However, the Park-Phillips
result is too crude for empirical implementation since the arc sine law (which
was originally used to characterise the amount of time spent by a Brown-
ian motion on one side of the origin) often implies an unbroken sequence of
consecutive choices that are the same (just as a Brownian motion can stay
above the origin for a long time before returning to the origin). In monetary
intervention, while it is normal to observe a string of similar decisions by
the Fed, it is not usual to observe completely unbroken strings of consecu-
tive decisions that are the same. For example, although there have been 8
decisions to lower the rate target over 2001:1-2001:10, there have been some
months where no change has been made in the rate. Hu and Phillips (2001)
have extended the Park-Phillips framework to polychotomous choices with
parametric thresholds governing the choices. Their framework, which forms
the basis of the empirical implementation here, allows for an extended class
of arc sine laws in which many different distributional shapes are possible
and where strings but not necessarily unbroken strings of similar decisions
may occur.

The present paper also applies some econometric model determination
techniques discussed in Phillips (1996). For example, we use the posterior
information criterion (PIC) to choose which variables should be included in
the empirical regression out of a large number of potential candidates that
may be monitored by the Fed. We believe these techniques are hepful in
letting the data reveal more about the latent decision making behavior of
the Fed in the practice of the monetary policy.

The paper is organized as follows. Section 2 gives a brief introduction
of the background of monetary policy intervention in the US. Section 3
describes the model, data and presents econometric findings. Section 4
concludes. The Appendix briefly reviews some relevant theory from Hu
and Phillips (2001) on estimation and inference in potentially nonstationary
discrete choice models. Some time series graphics of the data are included
at the end of the paper.
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2 Background on FOMC and Monetary Policy in
Practice

To achieve its policy goals the Federal Reserve has multiple tools. Perhaps
the most powerful of these is its open market operations, for which the rele-
vant authority is the FOMC. The FOMC conducts open market operations
‘in a manner designed to foster the long-run objectives of price stability and
sustainable economic growth’1. The FOMC consists of twelve members and
holds eight regularly scheduled meetings each year. Occasionally, the FOMC
also holds unscheduled conferences and can change the interest rate target
at these meetings also, two recent examples being the rate cuts of April
18 (with a target reduction from 5% to 4:5%) and September 2001 (with a
target reduction from 4:0% to 3:5%). Once the FOMC sets the direction of
monetary policy, the policy is implemented through open market operations
at the trading desk of the Federal Reserve Bank of New York.

By law all depository institutions in the US must keep a percentage of
their transaction deposits as reserves. Banks may trade among themselves
to satisfy this requirement and the interest rate in this federal funds market
is called federal funds market rate. For example, banks in need of funds
may borrow overnight loans from banks with excess funds at the market
prevailing rate at that time. Large deviations of this market rate from the
target rate are transitory due to Fed open market operations. For example, if
the Fed wants to lower the federal funds rate, they can purchase US treasury
securities and increase supply of reserves. With greater supply of funds in
the market, the interest rate will fall. Similarly, the Fed can raise the rate
by selling the treasure securities. In this way, the federal funds market rate
is kept to be close to the target set by FOMC. For this reason, the Fed’s
target rate becomes the benchmark for short term market interest rate and
it also has significant effect on other interest rates in the economy (Cook
and Hahn, 1989, Rudebusch, 1995).

Shortly after each FOMC meeting, the FOMC issues a statement an-
nouncing the main decisions of the meeting together with some brief com-
ments. The minutes of each FOMC meeting are published shortly after the
next meeting. In the current paper, instead of relying on any macroeco-
nomic theory, we use those published FOMC statements and minutes as our
main reference in specifying the model and collecting the data.

Typically, a statement of the FOMC meeting first highlights the de-

1Detailed information about the FOMC can be sourced at
www.federalreserve.gov/FOMC/
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cision on the target rate. Then it gives a short assessment summarizing
prevailing economic conditions and the reason for the decision. The minutes
include more detail. The main content of the minutes is a discussion of the
economic and financial outlook based on the information that is garnered
from a broad range of economic indicators. The statistical and anecdotal
information considered include various price and inflation measures, data
on the labor market such as the unemployment rate and claims for unem-
ployment insurance, industrial production, productivity growth, consumer
expenditure, capital spending, contractual activity, inventory and shipment,
housing, consumer confidence, business confidence, and many others.

To model Fed decision making on intervention, we distinguish two group
of variables. The first group includes economic fundamentals that are be-
lieved to directly influence interest rate targets, such as the inflation rate
and industrial growth rate. This group of variables are included in most
regressions that are based on Taylor rule (1) formulations.

The second group of variables include many other indicators of economic
and financial conditions. While no macroeconomic theory directly supports
these variables as plausible Fed policy targets or as part of a monetary policy
rule for determining interest rates, many of these variables serve as leading
indicators that the Fed will consider in forming its outlook for the economy.
For example, consumer and business confidence might be included in this
group as useful indicators of future consumer expenditure and business in-
vestment. From congressional testimony by the Fed Chairman and FOMC
minutes, it is evident that such variables are considered by the Fed in its
deliberations.

Our approach takes the first group of variables as given for the regres-
sion index of the optimal interest rate and uses model selection methods to
determine empirically which other explanatory variables should be included
from a supplementary group that are likely to be monitored by the Fed.

3 The Model, Data and Estimation Results

3.1 The model

We propose the following model for the FOMC decisions on the target rate

r∗t = ¯0xt ¡ ²t (2)

y∗t = r∗t ¡ rt−1 (3)

where r∗t is the true but unobservable optimal target rate and xt is a vector of
exogenous explanatory variables, which may be I(0); I(d) or I(1) processes
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or a mixture of these. The lagged variable rt−1 is the target rate that
was set in the previous meeting. It is also the rate prevailing up to time
t¡. The latent variable y∗t measures the deviations between the underlying
optimal target rate r∗t and rt−1. Like r∗t ; y∗t is unobservable. We use a triple-
choice specification for our discrete choise model in which yt = ¡1 denotes
a decrease in the target rate, yt = 0 denotes no change and yt = 1 denotes
an increase. We observe

yt = ¡1 if y∗t < ¹1n0
yt = 0 if ¹1n0 ∙ y∗t ∙ ¹2n0
yt = 1 if y∗t > ¹2n0

(4)

where ¹1n0 and ¹2n0 are threshold parameters, which may be sample size (n)
dependent in case y∗t is nonstationary (c.f (7) in the Appendix). In the
present case, this would be appropriate if the unobserved optimal target
rate r∗t wandered randomly about the target rate rt−1 set at the previous
meeting. The Appendix provides more discussion of this issue and provides
empirical evidence of nonstationarity in our application.

The announced target rate at time t is

rt = rt−1 ¡¢t if yt = ¡1
rt = rt−1 if yt = 0
rt = rt−1 +¢t if yt = 1

(5)

No assumption is made about the magnitude of the change (¢t) in the target
rate at time t: So, we do not require that ¢t = y∗t or that the announced
target rate equals the optimal rate. In fact, our empirical findings indicate
that in most cases ¢t < jŷ∗t j.

Equations (2), (3) and (4)-(5) constitute our basic model. The Appendix
reviews some estimation and inference procedures from Hu and Phillips
(2001) on polychotomous nonstationary choice that are relevant when the
indicator variables are nonstationary. In the triple choice problem of the
present application, we have j = ¡1; 0; 1 and the indicator function ¤(t; j)
defined by (8) in the Appendix is simply

¤(t;¡1) =
yt(yt ¡ 1)

2
¤(t; 0) = 1¡ y2t

¤(t; 1) =
yt(yt + 1)

2
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The parameters, ¯ and ¹, can be estimated by either probit or logit
regression. In the present application, we use a probit specification and set
Pj(xt; µ) in (9) to the cdf of the standard normal distribution. Plugging
Pj(xt; µ) and ¤(t; j) into (9) and maximizing gives the maximum likelihood
estimate (MLE).

Besides the use of a discrete choice framework with potentially nonsta-
tionary regressors, another characteristic of the model (6) is that we have
not assumed an autoregressive process for the optimal target rate r∗t , which
is a common assumption in literature (for instance, Dueker (1999)). As dis-
cussed in the introduction, in a continuous model framework, the observed
target interest rate rt is commonly taken as the optimal interest rate r∗t .
Since the observed target rate rt is adjusted in small increments it may
be well approximated by a continuous process. An autoregressive repre-
sentation for rt (and, by implication, for r∗t ) then seems like a reasonable
assumption.

The view taken here is that the optimal interest rate is a tool for the Fed
in monitoring the economy and it should be determined by current economic
fundamentals and the Fed’s outlook for the economy in the near future. This
view is also the spirit in Taylor’s rule described in (1). In the discrete choice
approach taken here, we also let r∗t be determined in smooth way by variables
that reflect current economic conditions. However, in implementing policy,
the Fed should not be obliged to keep the target interest rate ‘smooth’ and
we know that in practice it is adjusted discontinuously. In other words,
we consider Fed behavior in determining the optimal interest rate and its
behavior in actually implementing that policy separately. We will come back
to this issue after we obtain estimated r∗t .

We include current economic fundamentals at time t in the regression
for r∗t , and also include the lagged difference of the target rate, ¢rt−1, in
the regression. This variable accounts for uncertainties faced by the Fed
in forming opinions on the proper level of interest rate. As is apparent
in the data (see the lower graph of Fig. 1), changes in target rates often
occur consecutively. Intuitively, if there are several target rate cuts in a
sequence, it is usually the first cut that is the hardest to predict, both in
timing and magnitude, and in this respect may be different from the others.
One explanation is that the Fed may hold back in order to be confident in
their assessment of prevailing economic conditions before they modify their
view of the desirable target rate and take action. In our specification, for
the first intervention in a sequence, the lagged rate change variable ¢rt−1
is zero, and so the information driving decisions comes only from prevail-
ing economic indicators (and some noise). After the first intervention, the
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deviations (from prevailing economic conditions) needed to induce further
actions in the same direction are less. So, for example, if we observe the first
rate cut of a sequence in January, then even if the economic indicators are
similar in December and February, the probability of a rate cut in December
might be smaller than that in February because of the greater uncertainty
in December. The lagged rate change ¢rt−1 helps to account for this factor.

3.2 Data

Our sample data includes monthly observations of the target rate and other
economic variables from January 1985 till June 2001. For the series that have
trending behavior, like industrial production index, we track the data back
as early as 1970. Because there are eight pre-scheduled FOMCmeetings each
year, we include the data for the months where there are scheduled meetings
and also months where there are unscheduled FOMC meetings2, thereby
avoiding noise from ‘non-meeting’ months. In each month, the target rate
in our data set is taken to be the end-of-month observation. In January
2001, the Fed cut the interest rate target by 50 bp twice in one month, with
the second cut being made on January 30-31. We adjusted the timing of this
second cut to February, so that instead of observing a single cut of 100 bp
in January we treat these Fed interventions as two cuts in two consecutive
months, each cut being 50 bp.

The consumer confidence index data are from the Conference Board.
Other economic data are retrieved from the Federal Statistics webpage3 and
the time series database of the Federal Reserve Bank of St. Louis4. Over the
time period 1985:1 to 2001:6 we have 149 observations of the federal funds
target rate, the remaining 49 months in this period being omitted because
there were no meetings on those months. Since the adjustment indicator
depends on the rate difference, we end up with 148 usable observations.
Among these 148 observations, the rate has been hiked 28 times and has
been cut 41 times. In Fig. 1 the upper graph depicts the federal funds
target rate and the lower graph depicts rate adjustments in terms of the
three classifications hike/cut/no change.

Many economic and business statistics are potential candidates for in-
clusion in the empirical model. Since we are restricted to monthly data,

2Differences between scheduled and non-scheduled meetings are not explored in the
present paper.

3http://www.whitehouse.gov/fsbr/esbr.html.
4http://www.stls.frb.org/fred/
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Figure 1: Federal Funds Target Rates and Target Rate Adjustments: 1985:1-
2001:6
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some series such as GDP cannot be used5. Of the remaining candidate vari-
ables, we included the following 11 series in the first estimation stage before
model selection: annual inflation (computed from the core consumer price
index), unemployment rate, initial claims for unemployment insurance, con-
sumer confidence index, NAPM purchasing index, average weekly working
hours, total industry capacity utilization percentage, consumer expectations,
new housing unit starts, industrial production index, and lagged target rate
changes.

The next section discusses how we use model selection methods to de-
termine an empirical model from this group of 11 base variables. The model
we end up selecting has the following 5 variables in the regression: inflation,
consumer confidence, initial claims for unemployment insurance, industrial
production growth, and the lagged target rate change. Since some of these
series (like inflation and consumer confidence) have nonstationary behavior,
we make use of spatial density estimation to summarize their main charac-
teristics and discuss this approach in detail in section 3.6.

In matching the Fed decisions on the target rate and prevailing economic
variables, we allow a lag of one month to take into account the time lag in
the arrival of economic statistics. Thus, for the rate cut decision in June
2001, the monthly economic statistics that were available were for May 2001
and these are the ones included in the regression. In this sense, the model
is in predictive format.

3.3 Model Selection and Estimation Results

A key issue in the empirical formulation of (2) is the choice of variables
to include as regressors. There is general agreement that some measure of
inflation and output growth should be included in a policy rule for the deter-
mination of interest rates. While recognizing that many other variables may
be relevant, there is less consensus about them. From a practical viewpoint,
it is clear from congressional testimony and FOMC policy statements that
many economic series and much financial data are considered in Fed decision
making and, correspondingly, all such variables are potential candidates for
inclusion. The determination of a suitable empirical model for Fed decision
making therefore needs to take into account the explanatory power of such
variables against the additional cost of including them.

5There is also a large category of data for inventories, shipments and orders that are
relevant but were excluded from the empirical regressions because of a major change in
classification in 1992.
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Figure 2: Actual Target Rate and Model Implied Optimal Target Rate:
1985.01-2001.06

A natural way to proceed in this assessment is to use model selection
methods to find a suitable empirical model. In the present application, we
used the PIC criterion (Phillips and Ploberger, 1996, and Phillips, 1996) of
model determination to select the ‘best’ set of explanatory variables. The
PIC criterion chooses the model that maximizes the penalized log likelihood,
viz. ln(µ̂n)¡ (1=2)lnjBnj, where ln(µ̂n) is the log likelihood evaluated at the
MLE and Bn is the sample information about the parameters. This criterion
is valid in models with stationary and nonstationary regressors. Including
all of the 11 variables listed above produces a probit likelihood of ¡115:88
and PIC value of ¡182:66. Applying the PIC criterion we then choose the
empirical model with the best 5 of these 11 variables in terms of penalized
likelihood. The log likelihood and PIC for the chosen model is ¡123:98
and ¡161:27 and the variables selected are: inflation, consumer confidence,
unemployment claims and industrial production growth.
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variable estimator std t-stat
Inflation 1.6355 0.0826 19.8073

Consumer Confidence 0.0580 0.0066 8.7492
Unemployment Claim -0.0067 0.0032 -2.0896
Industrial Growth 0.1193 0.0698 1.7097

¢rt−1 2.1884 0.3915 5.5905
¹1n -0.0068 0.0015 -4.5601
¹2n 0.0107 0.0015 7.2031

Table 1: Probit regression and threshold parameter estimates

The estimation results are shown in Table 1. The most significant vari-
able turns out to be inflation, as might be expected in an empirical model of
monetary policy intervention where there is inflation targeting. However, it
may be surprising that consumer confidence is also very significant. In fact,
it is the most significant variable after inflation. This is partly explained by
statements in the published minutes of the FOMC meetings. For example,
in the minutes of the unscheduled conference on January 3, 2001 when the
Fed made its first rate cut since November 1998, consumer confidence was
mentioned repeatedly. We quote the following comments from the minutes
of that meeting.

In the Committee’s discussion of current and prospective eco-
nomic developments, members commented that recent statisti-
cal and anecdotal information provided clear indications of sig-
nificant slowing in the expansion of business activity and also
pointed to appreciable erosion in business and consumer confi-
dence.

The estimates of the threshold parameters for market intervention are
also highly significant and they are asymmetric. Thus, the threshold for a
rate cut is 68 bp whereas for a rate hike it is 107 bp. In contrast, working
directly from the data, we compute that for a rate cut the average magnitude
is 35 bp and the largest movement is 75 bp; whereas, for a rate hike, the
average magnitude is 33 bp and the largest movement is also 75 bp. So
statistics for actual cuts and hikes are almost symmetric. Therefore, our
first conclusion is that the deviations (in the index) needed to induce a
change in the current target rate are greater than the average magnitude
of the actual changes and that greater deviations in the index are generally
needed to induce an increase than a decrease in the target rate. In other
words, the Fed is more conservative in raising the target interest rate.
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Figure 3: y∗t and Thresholds for Adjustment: 1985.01-2001.06

Figure 4: Actual and Predicted FOMC Decisions: 1985.01-2001.06
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Fig. 2 displays the model implied optimal interest rate r̂∗t (dashed line)
and the announced target rate rt (solid line). Comparing these two series,
we can see at least two features. First, r̂∗t is more volatile than rt. Sec-
ond, r∗t seems to lead rt by about one to three months. This lag in the
implementation of monetary policy seems to persist throughout the sample.

Fig. 3 shows deviations of the optimal rate from the lagged rate. The
solid line is ŷ∗t ; defined in (3), and the dashed lines are the estimated thresh-
olds for inducing rate hike and rate cut interventions. In Fig. 4, the upper
graph plots the actual decision yt from the data and the lower graph plots
the model predicted decision ŷt inferred from ŷ∗t and ¹̂in, i = 1; 2. Compar-
ing this two graphs, we see again that ŷt apparently leads yt by a short time
period, especially in the case of rate hikes.

Figure 5: Extended Arc Sine Limit Laws for the Sampe Proportions of
Intervention Decisions

From these estimation results it is possible to compute the sample pro-
portion of intervention decisions (and predicted decisions) in each category
(rate cut, rate hike and no-intervention). As Hu and Phillips (2001) show,
these sample proportions have limit distributions that follow an extended
class of arc sine laws. For example, if y∗t is I(1) then the limit laws of the
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sample proportion of rate cuts (rn(¡1); say), rate hikes (rn(1); say) and no-
intervention (rn(0); say) are extended arc sine laws with distributions given
by the following functionals of standard Brownian motion W (r)

rn(¡1) ! d

Z 1

0
1

(
W (r) <

¹10
!x

)
dr;

rn(1) ! d

Z 1

0
1

(
W (r) >

¹20
!x

)
dr;

rn(0) ! d

Z 1

0
1

(
¹10
!x

< W (r) <
¹20
!x

)
dr;

where ¹j0 = ¹jn0=
p
n (j = 1; 2) and !2x is the long run variance of y

∗
t : Using

estimated values of ¹j0 and !2x, the limit distributions of rn(¡1); rn(1) and
rn(0) are shown in Fig. 5.

As is apparent from these graphs, the density of rn(¡1) is greatest around
the origin, indicating that there is an appreciable chance of getting decisions
not to cut rates, but the density also has a peak near unity, showing that
there is an appreciable chance of getting a lot of rate cuts. The density of the
proportion of rate hikes is also greatest at the origin (again corresponding to
the decision not to hike rates) and falls off in a similar fashion to the density
of rn(¡1) except that there is no peak in the density as the proportion
approaches unity (the probability of getting lots of rate hikes is less than
that for rate cuts). This difference in the two distributions manifests the
asymmetry in Fed policy intervention between rate cuts, for which the Fed
appears to adopt a more liberal policy position, and rate hikes, over which
the Fed appears to be more conservative. It also helps to explain strings of
similar decisions in Fed policy intervention. The density of the proportion
of no intervention decisions is nearly uniform over the interval (0:1; 0:5) and
then falls off to zero at unity. Correspondingly, no-intervention decisions are
more evenly distributed through the sample than rate cuts and rate hikes
(c.f. Figs. 1 and 6).

3.4 Goodness of Fit

In analyzing the results of a forecasting exercise relating to a future event
or action, the following matrix recording successes and failures is useful in
the assessment.
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Action No action
Action was predicted A B

Action was not predicted C D

Outcomes in this table are preferred when entries A and D are large while
entries B and C are small. A ratio based on these quantities can then
be used as a criterion for goodness of fit. In evaluating the performance
of forecast indicators of currency crises, Kaminsky, Lizondo and Reinhart
(1997) recently used an ‘adjusted noise to signal ratio’ as a summary criterion
computed from the entries of this matrix according to the formula [B=(B+
D)]=[A=(A+C)]. This statistic is computed in Table 2, where we report the
results of our forecasts of Fed monetary policy intervention.

Cut at time t No Cut at time t Noise/signal ratio
Cut was predicted 27 14 19:87%

Cut was not predicted 14 93

Hike at time t No Hike at time t Noise/signal ratio
Hike was predicted 16 12 17:50%

Hike was not predicted 12 108
Table 2: Policy Intervention Predictions

In Table 2, the phrase ‘at time t’ in the headings emphasizes the timing
of the action. This is important because, as is apparent from Fig. 2, there
is evidence of a lag between the model implied target rate and the actual
target rate. Table 2 records as successful predictions only those cases where
the actions occurred exactly in the months where they were predicted to
take place. The percentage of correct predictions of cuts and hikes is then
67% and 57%; respectively. If we were to allow a two-month lag, then 36
out of 41 predicted cuts and 22 out of 28 predicted hikes took place within
three months from the time they were predicted. The ratio of ‘correctly’
predicted cuts and hikes would then be 88% and 79%; respectively.

In reporting within-sample forecasting performance of the model in Table
2, we use point estimates (not confidence interval limits) of the thresholds in
making decisions on rate cuts and rate hikes. When we report a predicted
change, we use a simple rule for ease of reporting — decision j is made because
it has the largest probability as a possible outcome. So in Table 2 we do
not distinguish, for instance, between cases where the estimated probability
of the action, Pj(xt; µ̂); is 0:51 or 0:99. In the practical use of our model in
forecasting Fed intervention, it may also be useful to report the probits or
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predicted probabilities of the various forms of intervention directly. These
calculations are given in Fig. 6 where the estimated probabilities of (rate cut
and rate hike) interventions are shown against the background of the actual
Fed decision.

Figure 6: Estimated Probabilities of Rate Cuts and Rate Hikes

3.5 Detrending

One of the variables chosen in the regression is industrial production growth.
Since Nelson and Plosser’s (1982) study, industrial production is commonly
assessed as a trend stationary (rather than difference stationary) series. In-
dustrial production growth can then be calculated by regression on a linear
trend, giving a constant (average) growth rate over the period or by recur-
sive calculations over shorter subperiods. In evaluating empirical evidence
on industrial production growth, observers such as the Fed will make ongo-
ing assessments of the latest realized growth rate against some benchmark
based on ‘recent’ as well as longer term evidence. Fig. 7 plots the semi-annual
growth rate of industrial production (quoted as an annual rate) estimated
recursively with a rolling period of four years against the benchmark average
growth rate estimated from the full data series over 1985-2001.
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It is apparent from Fig. 7 that growth rates estimated with a rolling
window fluctuate over time, so that the benchmark provided by recent ev-
idence on growth is itself evolving. To show how this time-varying growth
rate benchmark affects the interpretation of empirical evidence, consider the
following example. Suppose in year 1993, we observed a realized growth rate
of 2%. We might have assessed this growth rate as a bad indicator if it were
compared to the overall sample average of 2:9%. However, against ‘recent
evidence’ from the recursive estimate, we see that 2% growth is actually not
that bad because its expected value from the rolling assessment is less than
1% due to the 1991 recession.

Fig. 8 plots the deviations of the realized growth rate from its ‘recent’
expected value, as estimated recursively. We included this variable in our
final regression. The evidence of a downturn in realized growth against
recent expectations is very apparent in this figure, providing confirmation of
the recession downturns in 1991 and in 2001 which is less evident in Fig. 7.

Figure 7: Growth Rate Estimates for Industrial Production
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Figure 8: The Deviations of Realized Growth Rate from its Expectation

3.6 Some Spatial Density and Hazard Rate Calculations

For describing nonstationary time series data, Phillips (1998) introduced the
idea of using a spatial density estimate, which measures the amount of time
a series spends in the vicinity of each spatial point. The methods can be
applied to nonstationary data as well as stationary data, where upon rescal-
ing they correspond to time invariant probability density estimates. Some
empirical illustrations of the technique, including hazard function estimates
as well as spatial densities, were given in Phillips (2001) to which the reader
is referred for background discussion. The methods were applied here to
provide some additional perspective on the results of our probit analysis of
Fed intervention and the behavior of federal funds rate targets. Specifically,
we construct spatial density estimates for the fitted optimal interest rate
r∗t and its various components and hazard functions for rate cuts and rate
hikes.

Fig. 9 shows the estimated spatial density of the model implied opti-
mal interest rate r∗t ; showing that r∗t spends most of the time between 4%
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Figure 9: The Spatial Density of r∗t

to 8% with some significant peaks at higher levels. Using the same meth-
ods, Figs. 13- 16 show spatial densities for each of the component variables
included in r∗t : The most significant components of r∗t are inflation and con-
sumer confidence. Inflation shows two major peak densities around 2:5%
and 4:5%; and consumer confidence randomly wanders over its support with
numerous peak density levels.

Fig. 10 shows the estimated density of ŷ∗t . Using the estimated density
for ŷ∗t we calculate hazard functions for rate cuts and rate hikes and show
the results in Figs. 11 and 12 . Both hazard functions display several peaks,
but the overall shapes indicate that the higher is ŷ∗t the greater the chance
of a hike, and that the lower is ŷ∗t the greater the chance of a cut.

3.7 Out-of-sample Forecasting

All the results we have reported so far are from within-sample forecasting.
It is also of interest to check the model’s out-of-sample (ex ante) forecast-
ing performance by recursive estimation. The disadvantage of recursive
estimation is that the results inevitably suffer from small sample bias and
imprecision during the earlier years of the sample when there are only a few
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Figure 10: Spatial Densityof ŷ∗t

Figure 11: Hazard Function for Target Rate Cuts
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Figure 12: Hazard Function for Target Rate Hikes

observations of rate changes. Another shortcoming is that there are differ-
ences in how the Fed adjusted the target rate before 1990 and after 1990,
as will be discussed in the Conclusion. Since our sample time period is six-
teen and a half years, we used the first eight years (1985-1993) to calibrate
the likelihood and model and then checked out-of-sample performance over
the remaining eight and half years. We do not report detailed results here.
But, in general, the forecasting performance is not as good as it is in the
within-sample case. The model correctly predicted 6 out of the 12 cuts and
9 out of the 14 hikes during this period.

4 Conclusion

This paper proposes a discrete choice approach to model the dynamics of
federal funds target rates. Our methods permit the regressors to be nonsta-
tionary as well as stationary variables, we use model selection methods that
accommodate these data characteristics and we seek to let the data speak
about the determining factors in Fed decisions on market intervention. It
is usually hard to predict policy movements accurately with a single econo-
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metric model. This seems especially so in the case of monetary policy, where
the Fed admits its decisions are based on a broad range of statistical indica-
tors and even anecdotal information. However, the results indicate that the
empirical model approximates the market intervention decisions fairly well
using a small number of economic variables and they reveal the prominent
role played by inflation and consumer confidence in Fed intervention deci-
sions. For some periods like that of the year from June 2000 to June 2001,
we predicted all FOMC decisions correctly.

Several aspects of our work suggest further research. First, we assume
that monetary policy is consistent over the period 1985 - 2001. However,
regarding the adjustments made in target rates, there are some differences
between the 1980’s and 1990’s. The data suggest that there are more fre-
quent adjustments of smaller magnitude in the 1980’s and that rate cuts and
rate hikes are sometimes close to each other during that period. However,
since the early 1990’s, the Fed appears to have been more cautious in chang-
ing the target rate and the magnitude of adjustments has been in multiples
of 25 bp. Our model does not account for these factors. As time passes and
we have more data, we may be able to conduct tests of the consistency of
policy and determine whether the model needs to be adjusted for subperiods
like the 1980’s.

Second, this work is mostly concerned with the ‘qualitative’ side of Fed
intervention and focusses on whether there is a change in the target rate
and the direction of that change. The model as it presently stands does not
distinguish 25 bp and 50 bp changes. The main reason for not using finer
classifications of rate adjustments at the moment is to avoid small sample
bias and imprecision. Finer classifications mean smaller sample sizes for
each group. In our present data set, for example, there are only 8 hikes of
magnitude 50 bp or higher, compared with 148 observations in total.

Finally, the discrete choice approach to market intervention and its al-
lowance for potential nonstationarity in the data is well suited to the analysis
of other problems. For instance, the approach can be applied to study policy
intervention in the foreign exchange market. In these and other situations,
it is often useful to have a model that explains and predicts the decision to
intervene so that answers can be given to questions like when a change is
going to occur, what are the critical factors in precipitating a change and
what is the probability of a change occurring.
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Appendix: Nonstationary Discrete Choice

This section briefly reviews some recent results from Hu and Phillips (2001)
- hereafter HP- on estimation and inference in potentially nonstationary
discrete choice models. The model considered in that work has the form

y∗t = x0t¯0 ¡ ²t; for t = 1; : : : ; n (6)

where xt is a (m by 1) vector of explanatory variables and ²t is an error
taken to be iid with distribution function F: The dependent variable y∗t is
assumed to be unobserved and what we do observe is the indicator yt and

yt = 0 if y∗t 2 (¡1;
p
n¹10] (7)

= 1 if y∗t 2 (
p
n¹10;

p
n¹20]

...

= J ¡ 1 if y∗t 2 (
p
n¹J−10 ;

p
n¹J0 ]

= J if y∗t 2 (
p
n¹J0 ;1)

We assume that xt is predetermined and is an integrated time series: xt =
xt−1 + vt with x0 = Op(1) and

vt = ¦(L)et =
∞X
i=1

¦iet−i;

where the the coefficients ¦i; the iid innovations et; and F satisfy certain
regularity conditions laid out in HP. In (7) the threshold parameters are
¹jn0 =

p
n¹j0, which accords with the stochastic order of the indicator y

∗
t for

sample size t = O(n):
In the general discrete choice model, the probability distribution of yt,

written as P (yt = j) = Pj(xt; µ0); has the explicit form

P0(xt; µ0) = 1¡ F (x0t¯0 ¡
p
n¹10)

Pj(xt; µ0) = F (x0t¯0 ¡
p
n¹j0)¡ F (x0t¯0 ¡

p
n¹j+10 ) for j = 1; : : : ; J ¡ 1

PJ(xt; µ0) = F (x0t¯0 ¡
p
n¹J0 )

Let

¤(t; j) =

Q
i=0,...,J & i6=j(yt ¡ i)Q
i=0,...,J & i6=j(j ¡ i)

; (8)

and it is easy to verify that ¤(t; j) = 1fyt = jg, the indicator function for
yt = j: The log likelihood function can then be written as

logLn(µ) =
nX
t=1

JX
j=0

¤(t; j)logPj(xt; µ): (9)
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As is apparent from the definition, Pj(xt; µ0) involves the nonlinear func-
tion F (x0t¯0 ¡

p
n¹j0) of the I(1) process xt: This complication produces an

interesting feature in the asymptotics that ML estimates (^̄n; ¹̂n) of the pa-
rameters (¯0; ¹0) converge at different rates, with some components converg-
ing at the slower rate n1/4; others at the faster rate n3/4. More specifically,
HP show that as n ! 1 and under certain regularity conditionsÃ

n1/4(^̄n ¡ ¯0)

n3/4(¹̂n ¡ ¹0)

!
!d MN(0; V ); (10)

where the limit distribution is mixed normal with conditional covariance
matrix V whose distribution depends on the local time of a Brownian motion
arising from the limit process of a standardized version of the index x0t¯0.
Standard methods of inference are justified asymptotically by (10) because
as n ! 1

¡[E−1n Jn(µ̂n)E
−1
n ]−1 !d V

where En = Diag(n1/4Im; n
3/4IJ) and Jn(µ̂n) is the usual hessian matrix

evaluated at the MLE µ̂n = (^̄
0
n; ¹̂

0
n)
0:

Readers are refered to HP for proofs and discussion of these and other
results that are applicable in a nonstationary choice models. As discussed
in Park and Phillips (2000), if there are additional explanatory variables
that are stationary in the regression, then the scale for the estimation of the
coefficients of these variables is also n1/4 provided there is at least one I(1)
variable among the regressors. The Park-Phillips and HP techniques were
developed for models with I(1) and I(0) variables. Although we do not pro-
vide the extension here, these techniques extend to cases where the explana-
tory variables have long memory with memory parameter d 2 [0; 1]; with
changes in rates of convergence and the limit theory that reflect the order
of the regressors and probit functions of them. The case where d 2 (1=2; 1)
involves nonstationary long range dependence may be particularly impor-
tant in applications like the present one because earlier work (Phillips, 1998)
provides evidence that inflation and interest rates have memory parameters
in this range.

The particular application of these methods in the present paper involves
a decision rule that is based on the deviation, y∗t = r∗t ¡rt−1; between the
optimal rate and the lagged target rate. The nature of the asymptotics then
depends on the stochastic order of y∗t : ADF;Zα; and Zt unit root tests of
the fitted series ŷ∗t = x0t b̄ ¡ rt−1 all reject the null hypothesis of a unit root
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at the 5% level6. On the other hand, a KPSS test of stationarity rejects the
null of stationarity for ŷ∗t at the 5% level. Thus, there is some uncertainty
about the stochastic order of ŷ∗t : Since the observed series ŷ∗t shows evidence
of some random wandering behavior (see Fig. 3) and since both unit root
and stationary behavior were rejected, long memory behvior is an alternate
possibility. We therefore computed log periodogram (LP) and Whittle semi-
parametric estimates of the memory parameter, d; for the series ŷ∗t : Both
these estimators are known to be consistent (Kim and Phillips, 2000, and
Phillips and Shimotsu, 2000) for values of d in the interval [0; 1]; and this is
the range of values for d suggested by the empirical results of the unit root
and stationarity tests. The estimates obtained by these methods (using a
band of m = [n0.75] frequencies near the origin) are given in Table 3. Both
LP and Whittle estimates confirm that there is evidence of nonstationarity
in the series ŷ∗t .

Log periodogram Whittlebd 0.57 0.72
st. error 0.10 0.06

95% Confidence Band (0.37,0.76) (0.60,0.84)
Table 3: Memory Parameter Estimates for ŷ∗t
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Data and Spatial Densities

Figure 13: Monthly Year to Year Inflation Rate: 1985-2001
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Figure 14: Consumer Confidence Index: 1985-2001
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Figure 15: Initial Claims for Unemployment Insurance: 1985-2001
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Figure 16: Industrial Production Growth Rate (Deviation): 1985-2001
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