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Abstract

This paper develops an asymptotic theory for time
series discrete choice models with explanatory variables gen-
erated as integrated processes and with multiple choices and
threshold parameters determining the choices. The theory
extends recent work by Park and Phillips (2000) on binary
choice models. As in this earlier work, the maximum like-
lihood (ML) estimator is consistent and has a limit theory
with multiple rates of convergence (n3/4 and n1/4) and mix-
ture normal distributions where the mixing variates depend
on Brownian local time as well as Brownian motion. An ex-
tended arc sine limit law is given for the sample proportions
of the various choices. The new limit law exhibits a wider
range of potential behavior that depends on the values taken
by the threshold parameters.
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1 Introduction

While it is often convenient to assume continuous dependent variables in
time series applications, a discrete dependent variable approach is also use-
ful. For example, recent monetary policy models allow for the determination
of an optimal policy rule by a central bank, given certain objectives relating
to inßation and economic growth. In such models, the �optimal� interest rate
is determined as a continuous function of other economic variables, much as
the Fisher relationship links the real rate, expected inßation and the nomi-
nal rate of interest in a continuous way. However, in practice, central banks
like the Federal Reserve implement policy by intervening in the money mar-
ket to achieve a target level for a short term interest rate, like the Federal
Funds rate in the case of the US. By convention, this target level is adjusted
in a discrete way by the monetary authority. In the US, the policy-making
Federal Open Market Committee (FOMC) has regularly scheduled meetings
eight times a year to direct the conduct of open market operations. Deci-
sions at these (and other unscheduled) meetings raise the target rate, cut
the target rate, or leave it unchanged. Such policy decisions are well suited
to discrete choice model formulations. In addition to such macroeconomic
applications, time series discrete choice models are a natural tool for mod-
eling individual agent participation behavior over time in Þnancial markets,
markets for durable goods, and labour markets. Discrete dependent vari-
able models are also applicable in modeling ordered data, such as ratings of
bonds and stocks.

Inference in binary and multiple choice models is a standard topic cov-
ered in many econometric texts. But in the time series applications just
mentioned, the covariates typically involve nonstationary data. For instance,
the macroeconomic fundamentals underlying decisions by the FOMC, the
history of stock prices underlying Þnancial investment decisions, and the
time proÞle of household income that affects labour market participation
decisions may all be expected to have nonstationary characteristics. In such
situations, the asymptotic theory of inference in discrete choice models may
be expected to have some differences from that of the traditional cross-
section textbook theory. The present paper is concerned to develop such an
asymptotic theory at a level of generality that will make it useful in practical
work, extending recent work of Park and Phillips (2000).

Park and Phillips developed a new limit theory for maximum likelihood
(ML) estimation of a binary choice model where the covariates are integrated
processes whose coefficients (β) are being estimated. One major Þnding in
their work is that there are two convergence rates for the coefficient esti-
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mator. There is a fast rate of convergence of n3/4 in a direction that is
orthogonal to that of the true coefficient vector and a slower rate of con-
vergence of n1/4 in other directions. This result, which differs substantially
from the stationary case, is the direct outcome of the nonlinear functions of
integrated variables that arise in discrete choice modeling. Park and Phillips
(2000) found further that the sample proportion of binary choices follows an
arc sine law asymptotically. This result is also very different from the sta-
tionary case, where a law of large numbers holds and the limit proportion is
a constant. When applied to market intervention data (such as central bank
monetary policy intervention) the Park-Phillips arc sine limit law indicates
that policy is likely to occur in streams of intervention or no intervention,
rather than more irregular policy shifting.

The present work extends this research to a framework that is better
suited to empirical applications. In particular, we allow for multiple dis-
crete choices and parameterize the choice settings. These extensions mean
that our theory accommodates more interesting empirical examples like the
FOMC policy decisions on intervention, where there are three outcomes
(rate cut, rate hike, or no-change) and it involves estimable parameters (µ)
that set the thresholds determining the various choices. The main conclu-
sions of our work are consistent with the binary case. We provide a limit
theory for ML estimation in the discrete choice model, giving asymptotics
for both the regression coefficient estimator �βn and the threshold estimator
�µn. We Þnd a convergence rate of n

3/4 for �µn, in contrast to the n
1/2 rate

that applies in the stationary case and we Þnd that, although �βn and �µn
have different convergent rates in multiple choice models with integrated
regressors, they are in general asymptotically dependent. We also provide
an asymptotic theory for the sample proportions of the various choices and
Þnd an �extended arc sine� limit law that these sample proportions follow.
This limit law permits much more ßexibility than the binary case and it
is better suited for empirical implementation. For instance, in the case of
market intervention, it seems particularly useful to be able to estimate the
thresholds that determine decisions.

The paper is organized as follows. Section 2 outlines the model, assump-
tions and gives some preliminary results. Section 3 gives the main results
on the limit theory of the ML estimator. Section 4 considers the case where
the covariates may have a deterministic trend. Section 5 illustrates the ef-
fects of nonstationarity on estimation and Section 6 concludes. Some useful
lemmas are given in Appendix A, Appendix B gives proofs of the main
theorems, Appendix C summarizes notation and Appendix D lists various
special functions that are used in the paper.
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2 The Model, Assumptions, and Preliminary Re-
sults

Our set up is analogous to that of Park and Phillips (2000), but we allow
for polychotomous choice. In particular, we consider the regression model
given by

y∗t = x
0
tβ0 − ²t, for t = 1, . . . , n (1)

where xt is a (m × 1) vector of explanatory variables and ²t is an error. The
dependent variable y∗t in (1) is unobserved. Instead, what is observed is the
indicator yt, which takes the following possible (J + 1) values

yt = 0 if y∗t ∈ (−∞,
√
nµ10] (2)

= 1 if y∗t ∈ (
√
nµ10,

√
nµ20]

...

= J − 1 if y∗t ∈ (
√
nµJ−10 ,

√
nµJ0 ]

= J if y∗t ∈ (
√
nµJ0 ,∞).

The threshold parameters in (2) are scaled by
√
n so that the thresholds

have the same order of magnitude as the dependent variable y∗t in (1) when
the covariates xt are integrated time series. This avoids trivial results and
means, in effect, that the threshold levels adjust according to the sample size
of the data. This seems realistic in a model where the covariates are allowed
to be recurrent time series like integrated processes. Some modiÞcations to
this speciÞcation may be needed when the covariates also have deterministic
trends and this is discussed later in the paper.

We assume that xt is predetermined, i.e., xt+1 is adapted to some Þltra-
tion (Ft) with respect to which ²t is measurable. The theory of the discrete
choice model in (1) and (2) when xt is a stationary and ergodic process
and when the thresholds are Þxed is obtained by standard methods. In this
paper, xt is taken to be an integrated time series with integration order
unity. The error process ²t is assumed to be iid conditionally on Ft−1 with
marginal distribution F , which is assumed to be known and standardized,
like a standard normal (leading to the probit model) or the standard logistic
(leading to the logit model). Thus, the model given by (1) and (2) is taken
as correctly speciÞed. The parameters are assembled in the vector θ, whose
true value θ0 = (β00, µ00)0 is an interior point of a subset of Rm+J which we
assume to be compact and convex.
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In the general discrete choice model with error distribution F , the prob-
ability distribution of yt, P (yt = j) = Pj(xt; θ0) is given by

P0(xt; θ0) = 1− F (x0tβ0 −
√
nµ10)

Pj(xt; θ0) = F (x0tβ0 −
√
nµj0)− F (x0tβ0 −

√
nµj+10 ) for j = 1, . . . , J − 1

PJ(xt; θ0) = F (x0tβ0 −
√
nµJ0 )

The corresponding conditional expectation of yt is:

m(xt; θ0) = E(yt|Ft−1) =
JX
j=0

j · Pj(xt; θ0)

=
JX
j=1

F (x0tβ0 −
√
nµj0).

Throughout this work, let ft = f(xt; θ0) for any function f(xt; θ) evalu-
ated at the true value θ0. If ut is deÞned as the residual in the equation

yt =mt + ut =
JX
j=1

F (x0tβ0 −
√
nµj0) + ut, (3)

then (ut,Ft) is a martingale difference with conditional moments:
σk(xt; θ0) = E(ukt |Ft−1)

=
JX
j=0

(j −mt)k · Pj(xt; θ0) = σkt, say.

DeÞne zkt as zk(xt; θ0) = ukt − σkt. Then, (zkt,Ft) is also a martingale
difference with conditional second moments ηkl(xt; θ0) = E(zkt · zkl|Ft−1).
Obviously, σ1t = 0 and z1t = ut. Further, deÞne τkl,t = E(zktzlt − ηkl,t)2,
giving fourth conditional moments for zkt.

For our asymptotic development we need more precise assumptions on
the process generating xt and the following condition is helpful. In particu-
lar, the linear process structure and the moment conditions on the innova-
tions assist in the use of embedding arguments that allow for a stochastic
process representation of key partial sum processes, as in Lemma 1 below,
which was given in Park and Phillips (2000).
Assumption 1

Let xt = xt−1 + vt with x0 = 0 and where

vt = Π(L)et =
∞X
i=1

Πiet−i,
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with Π(1) nonsingular and
P∞
i=0 ikΠik < ∞. The innovations et are iid

with mean zero and Eketkr <∞ for some r > 8, have a distribution that is
absolutely continuous with respect to Lebesgue measure and have character-
istic function ϕ(t) which satisÞes limktk→∞ktkκϕ(t) = 0 for some κ > 0.
Lemma 1 Let Assumption 1 hold. Then there exists a probability space
(Ω,F ,P) supporting sequences of random variables Unt and Vnt satisfying
the following:

(a) Jointly for all 1 ≤ t ≤ n,
(U1,nt, . . . , Uk,nt, . . . , UK,nt, Vnt)

=d

Ã
1√
n

tX
i=1

z1i, . . . ,
1√
n

tX
i=1

zki, . . . ,
1√
n

tX
i=1

zKi,
1√
n

tX
i=1

vi

!
.

(b) For k = 1, . . . ,K, there exists a representation

Uk,nt = U

µ
Tk,nt
n

¶
,

with standard Brownian motion Uk and time changes Tk,nt in (Ω,F ,P).
Let Tk,nt =

Pt
i=1 ζk,ni and deÞne Fnt = σ((Uk(r))

Tk,nt/n
r=1 , (Vns)

t+1
s=1).

Then E(ζk,nt|Fn,t−1) = E(z2k,t|Ft−1) and E(ζrk,nt|Fn,t−1) ≤ crE(|zt|2r|Ft−1)
for all r ≥ 1, where cr is some constant depending only upon r.

(c) DeÞning

Vn(r) =
nX
t=1

Vnt1

½
t− 1
n

≤ r < t

n

¾
,

then Vn →a.s. V in D[0, 1]m, the m-fold Cartesian product of the space
D[0, 1] endowed with the uniform topology, where V is Brownian mo-
tion in (Ω,F ,P) with variance matrix Σ.

As in Park and Phillips (2000), we rotate the regressor space to help
isolate the effects of the nonlinearities. In particular, we assume that β0 6= 0
and rotate the regressor space using an orthogonal matrix H = (h1, H2)
with h1 = β0/(β

0
0β0)

1/2. Let (α10,α
20
0 )
0 = α0 = H 0β0. Then we can write (1)

as:

y∗t = x0tβ0 + ²t
= x0tHH

0β0 + ²t
= (H 0xt)0H 0β0 + ²t
= x1tα

1
0 + x

0
2tα

2
0 + ²t,
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where
x1t = h

0
1xt and x2t = H

0
2xt,

α10 = h
0
1β0 = (β

0
0β0)

1/2 and α20 = H
0
2β0 = 0.

Accordingly, we now deÞne

V1 = h
0
1V and V2 = h

0
2V,

which are Brownian motions of dimensions 1 and (m−1), respectively. Our
subsequent theory involves the local time of the scalar process V1, which we
denote by LV1(t, s), where t and s are the temporal and spatial parameters.
LV1(t, s) is a stochastic process in time (t) and space (s) and represents the
sojourn density of the process V1 around the spatial point s over the time
interval [0, t]. The reader is referred to Revuz and Yor (1994) for an intro-
duction to the properties of local time and to Phillips (1998, 2001), Phillips
and Park (1998), Park and Phillips (1999) for discussion and applications
of this process in econometrics. In our analysis, it is more convenient to use
the scaled local time of V1 given by

L1(t, s) = (1/σ11)LV1(t, s),

where σ11 is the variance of V1.
Now we come back to the estimation of the multiple choice model. Let

Λ(t, j) =

Q
i=0,...,J & i6=j(yt − i)Q
i=0,...,J & i6=j(j − i)

. (4)

It is easy to verify that Λ(t, j) = 1{yt = j}, the indicator function (Λ(t, j) =
1 if yt = j and Λ(t, j) = 0 otherwise). The log likelihood function can be
written as:

logLn(θ) =
nX
t=1

JX
j=0

Λ(t, j)logPj(xt; θ).

Let the Þrst derivative of F be denoted f and the second derivative be
denoted úf . The elements of the score function Sn(θ) = (Sn(β)0, Sn(µ)0)0 =³
∂logLn
∂β0 ,

∂logLn
∂µ0

´0
are

∂logLn
∂β

=
nX
t=1

JX
j=0

Λ(t, j)

Pj(xt; θ)
pj(xt; θ)xt (5)

∂logLn
∂µj

=
√
n

nX
t=1

Ã
Λ(t, j − 1)
Pj−1(xt; θ)

− Λ(t, j)

Pj(xt; θ)

!
f(x0tβ −

√
nµj) (6)

7



where

p0(xt; θ) = −f(x0tβ −
√
nµ1),

pj(xt; θ) = f(x0tβ −
√
nµj)− f(x0tβ −

√
nµj+1) for j = 1, . . . , J − 1,

pJ(xt; θ) = f(x0tβ −
√
nµJ).

Note that the ratio Λ(t, j)/Pj appears in both (5) and (6). SinceE(Λ(t, j)|Ft−1)
= Pj(xt; θ0), the expected value of the ratio Λ(t, j)/Pj is 1. The ratio can
be written as a sum of martingale differences, as is clear from the following
calculation:

Λ(t, j)

Pj(xt; θ0)
=

1

Pj(xt; θ0)

Q
i=0,...,J & i6=j(yt − i)Q
i=0,...,J & i6=j(j − i)

=
1

Pj(xt; θ0)

Q
i=0,...,J & i6=j(mt + ut − i)Q

i=0,...,J & i6=j(j − i)

=
JX
k=1

gk(xt; j, θ0))(u
k
t − σkt(xt; θ0)) + 1

=
JX
k=1

gk(xt; j, θ0))zkt + 1,

where gk(j) is deÞned to be the coefficient associated with zkt for a given j
and where zkt = ukt − E(ukt |Ft − 1), which is a martingale difference. The
binary choice case is much simpler. Here, J = 1 and we have either yt = 0,
with probability P0(xt; θ0) = 1−F (x0tβ0−

√
nµ10) or yt = 1, with probability

P1(xt; θ0) = F (x0tβ0 −
√
nµ10). The indicator functions are Λ(t, 0) = 1 − yt

and Λ(t, 1) = yt. The ratio of Λ(t, j)/Pj is then simply

Λ(t, 0)

P0(xt; θ0)
=

1− (0 · P0(xt; θ0) + 1 · P1(xt; θ0) + ut)
P0(xt; θ0)

= − 1

1− F (x0tβ0 −
√
nµ10)

z1t + 1

Therefore, in a binary choice case, g1(xt; 0, θ0) = −1/(1 − F ) and simi-
larly, g1(xt; 1, θ0) = 1/F . Using the above results, rewrite the score functions
(5) and (6) as

∂logLn
∂β

=
nX
t=1

JX
k=1

Ak(xt; θ)zk(xt; θ)xt, (7)

∂logLn
∂µj

=
√
n

nX
t=1

JX
k=1

Bk(xt; j, θ)zk(xt; θ), (8)
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where

Ak(xt; θ) =
JX
j=0

gk(xt; j, θ)pj(xt; θ),

and
Bk(xt; j, θ) = (gk(xt; j − 1, θ)− gk(xt; j, θ))f(x0tβ −

√
nµj).

Again, in the binary choice example, it is easy to see that A(xt; θ) = f/(1−
F ) and B(xt; 1, θ) = −f/(F (1 − F )). Taking second derivatives of the log
likelihood function with respect to β and µ gives the Hessian matrix Jn(θ).
To present the elements of this matrix, we let M(i, j) denote the (i, j)�th
element of the matrix M and let M(j) denote its j�th column. Then

Jn(θ) =

Ã
Jn,11(θ) Jn,12(θ)
Jn,21(θ) Jn,22(θ)

!
, (9)

where

Jn,11(θ) =
∂logLn
∂β∂β0

= −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlxtx
0
t +

nX
t=1

JX
k=1

Cββ,kzkxtx
0
t,

Jn,12(θ)(j) =
∂logLn
∂β∂µj

= −√n
nX
t=1

JX
k=1

JX
l=1

AkBl(j)zkzlx
0
t +

√
n

nX
t=1

JX
k=1

Cβµj ,kzkx
0
t,

Jn,22(θ)(i, i) =
∂2logLn
∂2µi

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i)zkzl − n
nX
t=1

JX
k=1

Cµiµi,kzk,

Jn,22(θ)(i, i− 1) = ∂logLn
∂µi∂µi−1

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i− 1)zkzl for i = 2, . . . , J

Jn,22(θ)(i, i+ 1) =
∂logLn
∂µi∂µi+1

= −n
nX
t=1

JX
k=1

JX
l=1

Bk(i)Bl(i+ 1)zkzl for i = 1, . . . , J − 1

Jn,22(θ)(i, j) = 0 for j > i+ 1 and j < i− 1

9



where we omit the arguments (xt; θ) in the functions A,B,C and z for
simplicity and where

Cββ,k(xt; θ) =
JX
j=0

gk(xt; j, θ) úpj(xt; θ),

Cβµj ,k(xt; θ) = gk(xt; j, θ) úpj(xt; θ),

Cµiµi,k(xt; θ) = (gk(xt; i− 1, θ)− gk(xt; i, θ)) úf(x0tβ −
√
nµi).

We show in the next section that the Hessian matrix has elements with
different stochastic orders and the matrix converges to a random limit matrix
after proper normalization.

The ML estimator involves nonlinear functions of the integrated process
xt and it is helpful to be speciÞc about the functions we need to consider.
In the analysis below, we use the approach of Park and Phillips (1999) in
studying nonlinear transformations of integrated processes. A function f :
R→ R is called regular if it is bounded, integrable, and differentiable with
bounded derivative. We denote by FR the class of regular functions. We also
consider the class FI of bounded and integrable functions and the class F0 of
functions that are bounded and vanish at inÞnity. Clearly, FR ⊂ FI ⊂ F0.
We make the following assumption about the distribution F of ²t.
Assumption 2

F is three times differentiable. Further, for k, l = 1, . . . , J:

(a) ηklAkBl, ηklAkAl, ηklBkBl ∈ FR
(b) ηkkAk, ηkkBk ∈ FI
(c) τkkA2k, τkkB

2
k, ηkkCk ∈ F0

To check whether probit and logit function satisfy these assumptions,
note that each of the products in condition (a) are sums of terms in the
form of F (x)k f(x)

2

P (x) . (For example, in the binary choice case, ηA
2 = F ·

f2/(1 − F ), ηB2 = f2/(F (1 − F )) and ηAB = −f2/(1 − F )). In a logit
model, F (x) = ex/(1 + ex). Let P (x) = 1− F (x) (as in the case of P0(x)),
then

F (x)k
f(x)2

1− F (x) =
e(k+2)x

(1 + ex)k+3
,

which is clearly bounded, integrable and differentiable and actually its deriv-
ative goes to zero as x→ ±∞. Therefore, condition (a) is satisÞed. Condi-
tions (b) and (c) can be checked in the same way.
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In the probit model, let ϕ(x) denote the standard normal density func-
tion and Φ(x) denote the corresponding cumulative distribution function.
Note that Φ(x)kϕ(x)2/(1−Φ(x)) ≤ ϕ(x)2/(Φ(x)(1−Φ(x)), and using Mills
ratio we have

ϕ(x)2

Φ(x)(1−Φ(x)) =


xϕ(x)
Φ(x) [1 +O(x

−2)] if x→∞
−xϕ(x)
1−Φ(x) [1 +O(x

−2)] if x→−∞ ,

so ϕ(x)2/(Φ(x)(1 − Φ(x)) is regular and satisÞes condition (a). Therefore,
Φ(x)kϕ(x)2/(1−Φ(x)) also satisÞes condition (a) and its derivative actually
goes to 0 as x → ±∞. Conditions (b) and (c) follow similarly upon some
further calculations.

3 Main results

Let �θn = (�β
0
n, �µ

0
n)
0 be the maximum likelihood estimator of θ0 = (β00, µ00)0 in

(1) and (2). As usual in ML limit theory, the asymptotic distribution of �θn
will be obtained from the expansion

0 = Sn(�θn) = Sn(θ0) + Jn(�θn)(�θn − θ0), (10)

or in partititioned form

0 =

Ã
Sn(�βn)
Sn(�µn)

!
=

Ã
Sn(β0)
Sn(µ0)

!
+

Ã
Jn,11(�θ) Jn,12(�θ)

Jn,21(�θ) Jn,22(�θ)

!Ã
�βn − β0
�µn − µ0

!
,

where �θ is on the line segment between �θn and θ0. Corresponding to the
rotation in the regressors and parameters, deÞne

G =

Ã
H 0
0 IJ

!

and let θ = (α0, µ0)0. Then the score function and Hessian matrix for the
new parameter are obtained from Sn(θ) = G

0Sn(θ) and Jn(θ) = G0Jn(θ)G.
Pre-multiplying (10) by G0 we have:

0 = Sn(�θn) = Sn(θ0) + Jn(�θn)(�θn − θ0). (11)

The next two lemmas provide a limit theory for sample moments and
covariance functions which assist in analyzing the asymptotic behavior of
the score function (7), (8) and Hessian (9). These are analogous to similar
results in Park and Philllips (2000).
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Lemma 2 Let Assumption 1 hold, and f : R → R be regular. Then we
have

1√
n

nX
t=1

f(x1t) → dL1(1, 0)
Z ∞

−∞
f(s)ds,

1

n

nX
t=1

f(x1t)x2t → d

Z 1

0
V2(r)dL1(r, 0)

Z ∞

−∞
f(s)ds,

1

n3/2

nX
t=1

f(x1t)x2tx
0
2t → d

Z 1

0
V2(r)V2(r)

0dL1(r, 0)
Z ∞

−∞
f(s)ds,

jointly as n→∞.

Lemma 3 Let Assumption 1 hold, and assume for k, l,= 1, . . . , J, AkAlηkl,
BkBlηkl, AkBlηkl ∈ FR, and Akηkk, Bkηkk ∈ FI , for Ak, Bk : R → R.
Then we haveÃ

n−3/4
Pn
1

PJ
k=1Ak(x1t)zktx2t

n−1/4
Pn
1

PJ
k=1Bk(x1t, j)zkt

!
→d M

1/2W (1),

where

M =

Ã R 1
0 V2(r)V2(r)

0dL1(r, 0)
R∞
−∞ f11(s)ds

R 1
0 V2(r)dL1(r, 0)

R∞
−∞ f12(s, j)dsR 1

0 dL1(r, 0)V2(r)
0 R∞
−∞ f12(s, j)ds L1(1, 0)

R∞
−∞ f22(s, j)ds

!
,

with

f11(s) =
JX
k=1

JX
l=1

Ak(s)Al(s)ηkl(s),

f12(s, j) =
JX
k=1

JX
l=1

Ak(s)Bl(s, j)ηkl(s),

f22(s, j) =
JX
k=1

JX
l=1

Bk(s, j)Bl(s, j)ηkl(s),

and W is m-dimensional Brownian motion with covariance matrix I, which
is independent of V.

As remarked in Park and Phillips (2000), if we let V2.1 = V2−σ21σ−111 V1,
where σ11 and σ12 are respectively the variance of V1 and V2, then we haveZ 1

0
V2(r)dL1(r, 0) =

Z 1

0
V2.1(r)dL1(r, 0) a.s.,
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Z 1

0
V2(r)V2(r)

0dL1(r, 0) =
Z 1

0
V2.1(r)V2.1(r)

0dL1(r, 0) a.s.,

since
R 1
0 V1(r)dL1(r, 0) = 0 a.s. as {r : V1(r) = 0} is the support of the

measure dL1(r, 0). The limiting distribution in Lemma 3 is mixed Gaussian
and the mixing variates are dependent upon the local time L1 of V1 as well
as V2. We write the limit distribution in the form MN(0,M).

It is also pointed out in Park and Phillips (2000) that if x2t were re-
placed by a stationary variate (as it would in some directions were x2t to be
cointegrated), then the norming would be

√
n instead of n. Thus, suppose

x3t is stationary, satisÞes the same conditions as vt in Assumption 1 and is
independent of ut. Then we have:

1√
n

nX
t=1

fk(x1t)x3tx
0
3t →d L1(1, 0)

Z ∞

−∞
fk(s)dsΣ33,

where Σ33 = E(x3tx03t) and

n−1/4
nX
t=1

fk(x1t)x3tzkt →d MN

µ
0, L1(1, 0)

Z ∞

−∞
f2k (s)ηkkdsΣ33

¶
.

DeÞne
Dn = Diag(n

1/4, n3/4Im+J−1)

then D−1n Sn(θ0) would be

n−1/4
Pn
1

PJ
k=1Ak(x1t; θ)zktx1t

n−3/4
Pn
1

PJ
k=1Ak(x1t; θ)zktx2t

n−1/4
Pn
1

PJ
k=1Bk(x1t; 1, θ)zkt
...

n−1/4
Pn
1

PJ
k=1Bk(x1t; j, θ)zkt
...

n−1/4
Pn
1

PJ
k=1Bk(x1t; J, θ)zkt


Using Lemma 3 and the above notion, we are now able to characterize

the limit forms of the score function (7), (8) and the Hessian (9), which are
given in Theorem 4.

Theorem 4 Let Assumptions 1 and 2 hold. Then

D−1n Sn(θ0)→d Q
1/2W (1) and D−1n Jn(θ0)D

−1
n →d −Q

13



jointly, where Dn = Diag(n1/4, n3/4Im+J−1) and Q is the symmetric matrix

Q =

 q11 q12 q13
q21 q22 q23
q31 q32 q33

 , (12)

with

q11 = L1(1, 0)
Z ∞

−∞
s2f11(s)ds,

q12 =
Z 1

0
dL1(r, 0)V2(r)

0
Z ∞

−∞
sf11(s)ds,

q13(j) = L1(1, 0)

Z ∞

−∞
sf j12(s)ds,

q22 =
Z 1

0
V2(r)V2(r)

0dL1(r, 0)
Z ∞

−∞
f11(s)ds,

q23(j) =
Z 1

0
dL1(r, 0)V2(r)

0
Z ∞

−∞
f j12(s)ds,

q33(i, j) = L1(1, 0)
Z ∞

−∞
f ij22(s)ds,

and where

f11(s) =
JX
k=1

JX
l=1

Ak(s)Al(s)ηkl(s),

f j12(s) =
JX
k=1

JX
l=1

Ak(s)Bl(s, j)ηkl(s),

f ij22(s) =
JX
k=1

JX
l=1

Bk(s, i)Bl(s, j)ηkl(s),

and W is deÞned as in Lemma 3.

If ²t has a symmetric distribution, as in the probit and logit models, f11
and f12 are even functions. We therefore haveZ ∞

−∞
sf11(s)ds = 0, and

Z ∞

−∞
sf i12(s)ds = 0,

so that q12, q13, q21, q31 = 0 and Q reduces to a block diagonal matrix.

14



The asymptotic results for Sn(θ0) and Jn(θ0) in Theorem 4 help deliver
the limit distribution of �θn. From the expansion (11), we expect that the
normed and centered estimator satisÞes

Dn(�θn − θ0) = −(D−1n Jn(θ0)D−1n )−1D−1n Sn(θ0) + op(1), (13)

a result that is established in the proof of Theorem 5 below.

Theorem 5 Let Assumptions 1 and 2 hold. Then there exists a sequence
of ML estimators for which �θn →p θ0, and

Dn(�θn − θ0)→p Q
−1/2W (1),

in the notation introduced in Theorem 4.

Remarks: 1. Partition the matrix Q according to the different conver-
gence rates, i.e

Q =

Ã
Q11 Q12
Q21 Q22

!
,

where

Q11 = q11 Q11 =

Ã
q22 q23
q32 q33

!
,

Q12 =

Ã
q13
q23

!
Q21 =

³
q13 q23

´
.

Let �αn = (�α1n, �α
20
n )
0. When Q12 = Q21 = 0, as in the case where ²t has a

symmetric distribution, we have the limits

n1/4(�α1n − α10)→d Q
−1/2
11 W1(1), (14)

n3/4
Ã

�α2n
�µn − µ0

!
→d Q

−1/2
22 W2(1) (15)

where W = (W1,W
0
2)
0 for W deÞned in Theorem 5. Therefore, in this case,

�α1n becomes asymptotically independent of �α
2
n and �µn conditional on xt.

2. From Theorem 5 we get

DnG
0(�θn − θ0)→d Q

−1/2W (1) = MN(0, Q−1). (16)

Setting En = Diag(n1/4Im, n3/4IJ) and K = Diag((h1, 0), IJ), we have

(DnG
0E−1n )−1 → Diag((h1, 0), IJ) = K.

15



Therefore

En(�θn − θ0)→d KQ
−1/2W (1) = MN(0, (KQ−1/2)(KQ−1/2)0)

= MN(0,KQ−1K0)

which we formalize as follows.

Corollary 6 Under Assumptions 1 and 2, as n→∞,Ã
n1/4(�βn − β0)
n3/4(�µn − µ0)

!
→d MN(0,KQ

−1K 0).

The conditional covariance matrix of �θn can be estimated by the Hessian
inverse −Jn(�θn)−1, or the more commonly used alternative Jn(�θn)−1, where

Jn(�θn) =

Ã
Jn11(�θn) Jn12(�θn)

Jn21(�θn) Jn22(�θn)

!
,

where Jn,ij excludes the term in Jn,ij that involves martingale differences,
i.e.

Jn,11(θ) = −
nX
t=1

JX
k=1

JX
l=1

AkAlzkzlxtx
0
t,

Jn,12(θ)(i) = −√n
nX
t=1

JX
k=1

JX
l=1

AkBlzkzlx
0
t,

Jn,22(θ)(i, i) = −n
nX
t=1

JX
k=1

JX
l=1

BkBlzkzl,

and other terms in J are the same as in J .

Theorem 7 Under Assumptions 1 and 2,

−[E−1n Jn(�θn)E
−1
n ]−1, −[E−1n Jn(�θn)E

−1
n ]−1 →d KQ

−1K 0,

as n→∞.

Furthermore, in the case of the probit or logit model and where ² has a
symmetric distribution and Q is block diagonal, we have

n1/4(�βn − β0)→d MN(0, (h1, 0)Q
−1
11 (h1, 0)

0),
n3/4(�µn − µ0)→d MN(0,Q−122 ),
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and, in this case, �βn and �µn are asymptotically independent.
We are also interested in �Pj(xt; �θn), the predicted probability of the

choice yt = j, and the estimated marginal effect of xt on �Pj(xt; �θn) which
is denoted by �γj,x = �pj(xt; �θn)�βn. To analyze these quantities, we deÞne a
matrix R(0) = Diag(Im, ι01) where ιj is a vector of length J with the jth
element 1 and other elements zero. Similarly, R(J) = Diag(Im, ι0J) and for
1 ≤ j ≤ J − 1, R(j) = Diag(Im, (ιj, ιj+1)0). It is easy to see thatÃ

�βn − β0
�µ1n − µ10

!
= R(0)

Ã
�βn − β0
�µn − µ0

! Ã
�βn − β0
�µJn − µJ0

!
= R(J)

Ã
�βn − β0
�µn − µ0

!
and for 1 ≤ j ≤ J − 1, �βn − β0

�µjn − µj0
�µj+1n − µj+10

 = R(j)Ã �βn − β0
�µn − µ0

!
.

Corollary 8 Let Assumptions 1 and 2 hold. Given xt = x, for j = 0, . . . , J,
the predicted probabilities of yt = j (j = 0, ..., J) have the following asymp-
totic distributions as n→∞

�Pj(xt; �θn) ∼d MN
µ
Pj(x; θ0),

1√
n
Γ0(j)KQ−1K 0Γ(j)

¶
,

where

Γ(j) = pj(x; θ0)R
0(j)

Ã
x
−1

!
for j = 0, ..., J

and

Γ(j) = R0(j)

 pj(x; θ0)x

−f(x0β0 −
√
nµj0)

f(x0β0 −
√
nµj+10 )


for 1 ≤ j ≤ J − 1.
Corollary 9 Let Assumptions 1 and 2 hold. Given xt = x, for j = 0, . . . , J,
the estimated marginal effects �γj,x = �pj(x; �θn)�βn have the following asymp-
totic distributions as n→∞

�γj,x ∼d MN
µ
γj(x; θ0),

1√
n
Ψ0(j)KQ−1K 0Ψ(j)

¶
,

where γj(x; θ0) = pj(x; θ0)β0 and

Ψ(0) = R0(0)
Ã
− úp0(x; θ0)β0x0 + p0(x; θ0)Im

úf(x0β0 −
√
nµ10)β

0
0

!
,
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Ψ(J) = R0(J)
Ã
− úpJ(x; θ0)β0x0 + pJ(x; θ0)Im

úf(x0β0 −
√
nµJ0 )β

0
0

!
,

and

Ψ(j) = R0(j)

 − úpj(x; θ0)β0x0 + pj(x; θ0)Im
− úf(x0β0 −

√
nµj0)β

0
0

úf(x0β0 −
√
nµj+10 )β00


for 1 ≤ j ≤ J − 1 and where úf(·) denotes the Þrst derivative of f(·).

Finally, it is of interest to study the asymptotic behavior of the empirical
average of rn(j) = 1

n

Pn
t=1 1{yt = j}. The quantity rn is an aggregate

proportion and measures the proportion of yt = j outcomes in the sample
data. It can also be used in a predictive manner to forecast the proportion
of yt = j choices given a sequence of data on the covariates, say, X = {Xt :
t = 1, . . . , n}. In this case, we can deÞne

y0,t(X) = 1{X 0
tβ0 ≤

√
nµ10 + ²t}

yj,t(X) = 1{√nµj0 + ²t < X 0
tβ0 ≤

√
nµj+10 + ²t} for j = 1, . . . , J − 1

yJ,t(X) = 1{X 0
tβ0 >

√
nµJ0 + ²t}.

Since yj,t is unobserved, we could use the estimated quantities �rn(j,X) =
n−1

Pn
t=1

�Pj(Xt; �θn) instead. The following result gives the limit theory for
these empirical averages.

Theorem 10 Let Assumptions 1 and 2 hold and deÞne ω2x = β
0
0Σβ0. Sup-

pose the time series X = {Xt : t = 1, . . . , n} is drawn independently of
xt from a process with properties equivalent to those of xt as given in As-
sumption 1. Then the sample proportion rn(j) = 1

n

Pn
t=1 1{yt = j}, the

predicted proportion rn(j,X) = 1
n

Pn
t=1 1{yt(X) = j}, and the estimated

proportion �rn(j,X) = n−1
Pn
t=1

�Pj(Xt; �θn) all have the following limit be-
havior as n→∞:

rn(0), rn(0, X), �rn(0,X) → d

Z 1

0
1

(
W (r) <

µ10
ωx

)
dr,

rn(J), rn(J,X), �rn(J,X) → d

Z 1

0
1

(
W (r) >

µJ0
ωx

)
dr,

rn(j), rn(j,X), �rn(j,X) → d

Z 1

0
1

(
µj0
ωx

< W (r) <
µj+10

ωx

)
dr

for j = 1, . . . , J − 1.
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Borodin and Salminen (1996) give explicit forms for the probability dis-
tributions of the above limit quantities, which represent the time spent by a
Brownian motion above or below certain boundaries and in certain bounded
intervals. Assume that W (0) = 0, µ10 < 0, µJ0 > 0 and 0 ∈ ( µ

j̄
0
ωx
, µ

j̄+1
0
ωx
), so

that µj0 > 0 for j > j̄ and µ
j
0 < 0 for j ≤ j̄. Also, for simplicity, let ajx = µj0

ωx
.

Then, we have the following expressions for the probability densities of these
limits:

Density of
Z 1

0
1{W (r) > aJx} dr : p(y) =

1

π
p
y(1− y)e

−|aJx |2/2(1−y) (17)

Density of
Z 1

0
1{W (r) < a1x} dr : p(y) =

1

π
p
y(1− y)e

−|a1x|2/2(1−y) (18)

Density of
Z 1

0
1{ajx < W (r) < aj+1x } dr, for j > j̄ (19)

= 2

Z ∞

0
h1−y(0, v + ajx)cey

Ã
0, 0,

aj+1x − ajx
2

, 0, v

!
dv +

Z ∞

0
h1−y(0, v + ajx)

×
Ã
ecy

Ã
−1, 1, a

j+1
x − ajx
2

,−a
j+1
x − ajx
2

, v,

!
− ecy

Ã
−1, 1, a

j+1
x − ajx
2

,
aj+1x − ajx

2
, v,

!!
dv,

Density of
Z 1

0
1{aj̄x < W (r) < aj̄+1x } dr, (20)

= 2
Z ∞

0
h1−y(0, v)ec(1)y

Ã
aj̄+1x + aj̄x

2
,
aj̄+1x − aj̄x

2
, 0, v

!
dv

+
1

2

Z ∞

0
h1−y(1, v)

Ã
ecy

Ã
−1, 2, a

j̄+1
x − aj̄x
2

,−aj̄+1x , v

!
− ecy

Ã
−1, 2, a

j̄+1
x − aj̄x
2

, aj+1x , v

!

+ecy

Ã
−1, 2, a

j̄+1
x − aj̄x
2

, aj̄x, v

!
− ecy

Ã
−1, 2, a

j̄+1
x − aj̄x
2

,−aj̄x, v
!!

dv,

Density of
Z 1

0
1{ajx < W (r) < aj+1x } dr, for j < j̄ (21)

= 2

Z ∞

0
h1−y(0, v − aj+1x )ecy

Ã
0, 0,

aj+1x − ajx
2

, 0, v

!
dv +

Z ∞

0
h1−y(0, v − aj+1x )

×
Ã
ecy

Ã
−1, 1, a

j+1
x − ajx
2

,−a
j+1
x − ajx
2

, v,

!
− ecy

Ã
−1, 1, a

j+1
x − ajx
2

,
aj+1x − ajx

2
, v,

!!
dv.
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Figure 1: The density for
R 1
0 [W (r) > a] dr

DeÞnitions of the special functions h1−y and ecy that are included in
the last three formulae above are given in Appendix D. They involve recur-
sions and are needed for the more complex case of the density of the time
spent by Brownian motion in a bounded interval. These formulae are used
subsequently in our computations.

Park and Phillips (2000) show that in the nonstationary binary choice
case the sample proportion converges to a random variable that follows the
arc sine law with probability density 1/(π

p
y(1− y)) on [0, 1]. This case

applies when aJx = 0 in (17) or when a1x = 0 in (18)1. In the general
multiple choice case, the limit results are much more complex and offer a
range of interesting possible outcomes that extend the arc sine limit law
outcome. Correspondingly, we refer to them as �extended arc sine� laws.

As the formulae for the limit densities are quite complicated, we draw
the following Þgures to illustrate the densities when W (0) = 0 and for sev-
eral different parameter conÞgurations. These reveal how the shape of the
density changes as the boundary limits change and give some idea of the

1For example, these outcomes apply in the present case when the threshold parameters
in (2) are Þxed rather than of O(

√
n).
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Figure 2: The density for
R 1
0 [−a < W (r) < a] dr

range of possibilities beyond the special case of the U-shaped arc sine den-
sity. Figure 1 shows the density (17). Observe that as the parameter a
approaches zero, the density begins to take on the form of the U-shaped
arc sine density although the density for a = 0.2 rapidly approaches zero
at unity unlike the arc sine law. Figure 2 shows (20), giving the density of
the time spent in the (symmetric) interval [−a, a] about the origin. When
a is small, the distribution of time spent is fairly evenly spread for y ≤ 0.5,
but the density tails off for y ∈ (0.5, 1]. When a takes larger values (here
a = 0.6, 1.0) the density is increasing with y. Figure 3 depicts the density
(19) for intervals [a1, a2] away from the origin, where, as we might expect,
the density decreases from the origin. Note that the pair (17) and (18), and
the pair (19) and (21) have the same form, so we only depict one in each
pair. Also note that the difference between (19), (20) and (21) depends on
the relative position of the initial position of W (0) to the spatial interval we
are interested in. If we set W (0) = 0, then (19) applies when the interval
is above 0, (20) applies when the interval covers 0, and Þnally, (21) applies
when the interval is below 0.

Apparently, a wide range of possible behavior can be captured with this
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class of densities, depending on the precise values of the parameters deter-
mining the boundary values. In the binary choice case of Park and Phillips
(2000), the arc sine law gave the limit density of the average sample pro-
portion of 0, 1 choices, corresponding to the limit Brownian motion process
(arising from the limit of the normalized index β00xt/

√
n ) being on one side

of the origin or the other. This is a very special case. When there are
multiple choices with thresholds determining those choices, then the limit
density of sample proportions of the choices depends on the thresholds and
the variance of the Brownian motion. The probability distribution of the
time spent by the limit process in any particular interval (and, correspond-
ingly, the limit distribution of the sample proportions of a certain choice)
can then take on a wide range of shapes. This means that in an empiri-
cal application (such as market intervention) of polychotomous choice with
nonstationary covariates, we need not necessarily expect behavior such as
persistent runs of the same choice.

Figure 3: The density for
R 1
0 [a1 < W (r) < a2] dr
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4 Covariates With a Deterministic Time Trend

In Assumption 1, we assume that xt is an integrated process without drift
or deterministic trend. However, many economic and Þnancial time series,
such as GDP and stock prices, show evidence of drift or trend over time.
This section extends the earlier discussion by including such behavior. We
re-specify the model for xt as

xt = δ0t+ xt (22)

where xt =
Pt
i=1 vi, or equivalently,

xt = xt−1 + δ0 + vt

where vt satisÞes the conditions of Assumption 1. The behavior of xt is
dominated by δ0t. Correspondingly, in the model (1) and (2), the observed
dependent variable yt takes a constant value (viz., 0 or J) with probability
approaching unity as t→∞. In particular, the conditional probability

P (yt = J |Ft) = P
³
εt <

√
nµJ0 − tβ00δ0 − xt|Ft

´
= F

³√
nµJ0 − tβ00δ0 − xt

´
→
(
0 β00δ0 > 0
1 β00δ0 < 0

with a similar expression for P (yt = 0|Ft) . Consistent estimation of the
parameters is impossible in such cases because there is insufficient data on
the various outcomes. In practice, of course, a model of the type (1) and
(2) will be of interest when the choice outcomes are observed with some
regularity in the sample. For this to be so in the present case, the data
need to be detrended. Equivalently, the thresholds need to be adjusted to
incorporare the trend. For practical applications, this is analogous to the
decision maker detrending the data. For example, if (1) and (2) are used
to model money market intervention by a central bank, where decisions are
affected by the time path of variables with trends, the authority (either
explicitly or implicitly) must be considering, not the levels of the covariates
xt, but the ßuctuations of xt about its trend path (or estimated trend paths)
in making its decisions.

Suppose, therefore, we Þrst estimate δ0 in (22) and detrend xt using this
estimate. The (difference) least squares estimator of δ0, which is asymptot-
ically efficient (i.e., equivalent to generalized least squares) is

�δn = n
−1

nX
t=1

(xt − xt−1) = δ0 + n−1
nX
t=1

vt,
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Figure 4: Probit Model: densities of estimators of β01 = 1,β
0
2 = 0; I(1) case

and as n→∞, we have
√
n(�δn − δ0) = n−1/2

nX
t=1

vt → V (1),

where V (·) is the Brownian motion deÞned in Lemma 1.
The detrended series, �xt, is

�xt = xt − �δt = xt + (δ0 − �δn)t,

hence

n−1/2�xt = n−1/2xt −
√
n(�δn − δ0) t

n

→ V (r)− rV (1) = �V (r)

as n → ∞. Therefore, in the case of unit root process with deterministic
trend, we can work with the detrended series �xt and approximate n−1/2�xt
with the Brownian bridge process �V (r).
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5 Simulation Evidence of the Effects of Nonsta-
tionarity

This section provides some simulation evidence on the Þnite sample perfor-
mance of ML estimation of a polychotomous choice model under nonsta-
tionarity. We consider a model such as (1) and (2) with m = 2 explanatory
variables and J = 2, giving a triple-choice dependent variable yt. The gen-
erating mechanism for the exogenous data is the systemÃ

x1t
x2t

!
=

Ã
a11 0
0 a22

!Ã
x1t−1
x2t−1

!
+

Ã
v1t
v2t

!
,

with vt = (v1t, v2t)0 = iid N(0, I2). Both unit root (aii = 1, i = 1, 2)
and stationary (aii = 0.5, i = 1, 2) cases were considered. The coefficient
parameter vector was set at β0 =(1, 0)

0 and µ0 = (µ10, µ
2
0) = (−0.5, 0.5)0.

Thus x0tβ0 = β
0
1x1t = x1t and the direction orthogonal to β0 is (0, 1), giving

the coefficient β02 = 0 of x2t, so that this set up is analogous to that of the
simulation study in Park and Phillips (2000). The number of replications
was 5, 000.

Figure 5: Probit Model: densities of estimators of µ20 = 0.5; I(1) case
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Figure 4 and Figure 5 depict kernel estimates of the sampling distribution
of the probit estimates of the coefficients β0 and µ

2
0 in the I(1) case. The

different convergence rate for bβ1 and bβ2 is apparent in Figure 4. Figure 6
gives kernel estimates of the probit estimates of the coefficient µ20 in the I(0)
case for comparison purposes. From Figure 5 and Figure 6, it is evident
that the estimator of µ0 is more concentrated and converges faster in the
nonstationary case than in the stationary case, corroborating the asymptotic
theory.

Figure 6: Probit Model: densities of estimators of µ20 = 0.5; I(0) case

6 Conclusion

Discrete dependent variable modeling has proved to be a powerful tool in
microeconometric analysis. Even though there is little empirical work to
date, there appear to be plenty of potential applications of the approach
to economic time series, including some in time series macroeconomics with
nonstationary data. The present paper develops an asymptotic theory for
maximum likelihood estimation of these models that allows for integrated
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explanatory variables, extending the work of Park and Phillips (2000) on
binary choice to the case of polychotomous choice where there are threshold
parameters to be estimated. We Þnd different convergence rates (n1/4 and
n3/4) for the coefficient estimates, just as in the Park-Phillips study, and a
convergence rate of n3/4 for the threshold parameters. In general, the two
sets of estimates are asymptotically dependent and follow a mixed normal
limit distribution which means that conventional methods of inference are
possible.

A new Þnding in the present paper is that the sample proportion of
choices of each type has a limit distribution that belongs to a family of ex-
tended arc sine laws. These laws have a wide range of possible distributional
forms and thereby allow for some ßexibility in applications. One application
that the authors are studying in related research (Hu and Phillips, 2001) in-
volves the practice of monetary policy and is concerned with modeling the
discrete decision making structure of federal fund targeting by the Federal
Reserve.

APPENDIX A: USEFUL LEMMAS AND PROOFS

Lemma 11 Let Assumption 1 hold, and f : R → R. Denote by xκ2t the
κ-times tensor product of x2t with itself. DeÞne:

1M
κ
n =

nX
t=1

f(x1t)x
κ
2t, 2M

κ
n =

nX
t=1

f(x1t)x
κ
2tzkt,

3M
κ
n =

nX
t=1

f(x1t)x
κ
2t(z

2
kt − ηkk,t).

(a) For f ∈ F0, 1Mκ
n = op(n

1+κ/2). Moreover, if f ∈ FI , then 1M
κ
n =

Op(n
(1+κ)/2).

(b) If ηkkf2 ∈ F0, then 2M
κ
n = op(n

(1+κ)/2).

(c) If τklf2 ∈ F0, then 2M
κ
n = op(n

(1+κ)/2)

Proof of Lemma 11:
Let V = (V1, V 02)0. Note that

sup
1≤t≤n

°°°° x2t√n
°°°°κ =d sup

1≤t≤n
kV2n(r)kκ ≤ sup

0≤r≤1
kV2(r)kκ + 1 <∞ a.s.

for all large n. For f ∈ F0, we have n−1
Pn
t=1 |f(x1t)| →d 0, as shown

in Park and Phillips (1999). If f ∈ FI , it follows from Lemma2 that
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n−1/2
Pn
t=1 |f(x1t)|→d Op(1) since f is bounded by a regular function. The

stated results in part (a) follow. For part (b), note that

n−(1+κ)Ek2Mκ
nk2 = E

Ã
1

n1+κ

nX
t=1

f(x1t)
2ηkk(x1t)kx2tk2κ

!

= E

Ã
1

n

nX
t=1

(ηkkf
2)(x1t)

°°°° x2t√n
°°°°2κ

!

≤ E

ÃÃ
sup
0≤r≤1

kV2(r)k2κ + 1
!Z 1

0
(ηkkf

2)(
√
nV1n(r))dr

!
,

→p 0

by part (a) and dominated convergence. Similarly, for part (c),

n−(1+κ)Ek3Mκ
nk2 = E

Ã
1

n1+κ

nX
t=1

f2(x1t)τkk(x1t)kx2tk2κ
!

= E

Ã
1

n

nX
t=1

(τkkf
2)(x1t)

°°°°x2t√n
°°°°2κ
!

≤ E

ÃÃ
sup
0≤r≤1

kV2(r)k2κ + 1
!Z 1

0
(τkkf

2)(x1t)(
√
nV1n(r))dr

!
→p 0.

Q.E.D.

Lemma 12 Let Assumption 1 hold. Assume ηkkfk, ηkkgk ∈ FI and τkkf2k , τkkg2k ∈
F0 for fk, gk : R→ R. DeÞne

1N
2
nt = n

−3/4fk(x1t)z2kt 2N
2
nt = n

−5/4gk(x1t)x2tz2kt.

Then, for i = 1, 2 we have, as n→∞,

sup
1≤t≤n

°°°°°
tX
s=1

iN
2
ns

°°°°°→p 0.

Proof of Lemma 12:
By part (a) in Lemma 11,

fk(x1t)ηkk,t = Op(n
1/2) and gk(x1t)x2tηkk,t = Op(n).

Next, by part (c) in Lemma 11,

1N
2
nt = n−3/4fk(x1t)z2kt = n

−3/4fk(x1t)ηkk,t + op(n
−1/4)→p 0,

2N
2
nt = n−5/4gk(x1t)x2tz2kt = n

−5/4gk(x1t)x2tηkk,t + op(n
−1/4)→p 0.

Q.E.D.
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APPENDIX B: PROOF OF THE MAIN THEOREMS

Proof of Lemmas 1 and 2
See Park and Phillips (2000).

Proof of Lemma 3:
We set m = 2 for notational simplicity (so both x1t and x2t are scalars).

Also, since the results hold for any j = 1, . . . , J in Bk(x1, j), we omit j for
simplicity. For any c = (c1, c2) ∈ R2. We let

Ckn(x1, x2) = c1n
−1/4Bk(x1) + c2n−3/4Ak(x1)x2,

and deÞne

Mkn(rk) =
√
n
t−1X
i=1

Ckn(
√
nVni)

µ
Uk

µ
Tk,ni
n

¶
− Uk

µ
Tkn,i−1
n

¶¶
(23)

+
√
nCkn(

√
nVnt)

µ
Uk(rk)−Uk

µ
Tkn,t−1
n

¶¶
.

Thus, for k = 1, . . . , J , Mkn is a continuous martingale such that

nX
t=1

Ckn(x1t, x2t)zkt =d Mkn

µ
Tk,nn
n

¶
(24)

Therefore, Mn =
PJ
k=1Mkn is also a continuous martingale such that

JX
k=1

nX
t=1

Ckn(x1t, x2t)zkt =d

JX
k=1

Mkn

µ
Tk,nn
n

¶
. (25)

Let Dkl,n(x1, x2) = ηkl(x1)Ckn(x1, x2)Cln(x1, x2). Then the quadratic
covariation process [Mkn,Mln] of Mkn and Mln is given by

[Mkn,Mln](r)

= n
t−1X
i=1

Ckn(
√
nVni)Cln(

√
nVni)

µ
Uk

µ
Tk,ni
n

¶
−Uk

µ
Tln,i−1
n

¶¶
·
µ
Ul

µ
Tl,ni
n

¶
− Ul

µ
Tln,i−1
n

¶¶
+nCkn(

√
nVnt)Cln(

√
nVnt)

µ
rk − Tkn,t−1

n

¶µ
rl − Tln,t−1

n

¶
=

nX
t=1

Dkl,n(
√
nVnt)1

½
r ≥ min

½
Tk,nt
n
,
Tl,nt
n

¾¾
+ op(1),
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uniformly in r ∈ [0, 1]. Consequently,

[Mn](r) =
JX
k=1

JX
l=1

[Mkn,Mln](r).

Therefore, we have

[Mn](r)→p c
0M(r)c, (26)

uniformly in r ∈ [0, 1], where

M =

Ã R 1
0 V2(r)V2(r)

0dL1(r, 0)
R∞
−∞ f11(s)ds

R 1
0 V2(r)dL1(r, 0)

R∞
−∞ f12(s, j)dsR 1

0 dL1(r, 0)V2(r)
0 R∞
−∞ f12(s, j)ds L1(1, 0)

R∞
−∞ f22(s, j)ds

!
,

due to the results in Lemma 2, where

f11(s) =
JX
k=1

JX
l=1

Ak(s)Bl(s)ηkl(s),

f12(s) =
JX
k=1

JX
l=1

Ak(s)Bl(s)ηkl(s),

f22(s) =
JX
k=1

JX
l=1

Bk(s)Bl(s)ηkl(s).

Moreover, if we let σuv(k) be the covariance of Uk and V and

Ekn(x1, x2) = ηkk(x1)Ckn(x1, x2),

then the quadratic covariation process [Mkn, V ] of Mkn and V is:

[Mkn, V ](r) =
√
n
t−1X
i=1

Ckn(
√
nVni)

µ
Tkn,i
n

− Tkn,i−1
n

¶
σuv(k)

+
√
nCkn(

√
nVnt)

µ
r − Tkn,t−1

n

¶
σuv(k)

= σuv(k)
nX
t=1

Ekn(
√
nVnt)1

½
r ≥ Tkn,t

n

¾
+ op(1)→p 0,

uniformly in r ∈ [0, 1], by Lemma 12. It follows, in particular, that for
k = 1, . . . , J − 1,

[Mkn, V ](ρkn(r))→p 0, (27)
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where ρkn(r) = inf{s ∈ [0, 1] : [Mkn](s) > r} is a sequence of time changes.
The asymptotic distribution of the continuous martingale Mn in (23) is

completely determined by (26) and (27), as shown in Revuz and Yor (1994,
Theorem 2.3). Now deÞne

Wkn(r) =Mkn(ρkn(r)).

The processWkn is the DDS (or Dambis, Dubins-Schwarz) Brownian motion
(see Revuz and Yor, 1994) of the continuous martingaleMkn. It follows that
(V,Mkn) converges jointly in distribution to two independent standard linear
Brownian motions (V,Wk), say. Therefore,

Mn =
JX
k=1

Mkn

µ
Tkn,n
n

¶
→d W (c

0Mc),

which, in view of (25), completes the proof.
Q.E.D.

Proof of Theorem 4
The results for the score function directly follow lemma 3. For the

Hessian matrix Jn(θn) = G
0Jn(θn)G, we partition the matrix as Jn,11(θ0) Jn,12(θ0) Jn,13(θ0)

Jn,21(θ0) Jn,22(θ0) Jn,23(θ0)
Jn,31(θ0) Jn,32(θ0) Jn,33(θ0)

 (28)

Since the matrix is symmetric we consider the upper-right triangular block:

Jn,11(θ0) = −
nX
t=1

JX
k=1

JX
l=1

Ak(x1t)Al(x1t)zktzltx
2
1t +

nX
t=1

JX
k=1

Cββ,k(x1t)zktx
2
1t,

Jn,12(θ0) = −
nX
t=1

JX
k=1

JX
l=1

Ak(x1t)Al(x1t)zktzltx1tx
0
2t +

nX
t=1

JX
k=1

Cββ,k(x1t)zktx1tx
0
2t,

Jn,22(θ0) = −
nX
t=1

JX
k=1

JX
l=1

Ak(x1t)Al(x1t)zktzltx2tx
0
2t +

nX
t=1

JX
k=1

Cββ,k(x1t)zktx2tx
0
2t,

Jn,13(θ0)(i) = −√n
nX
t=1

JX
k=1

JX
l=1

Ak(x1t)Bl(x1t, i)zktzltx1t +
√
n

nX
t=1

JX
k=1

Cβµi,k(x1t)zktx1t,

Jn,23(θ0)(i) = −√n
nX
t=1

JX
k=1

JX
l=1

Ak(x1t)Bl(x1t, i)zktzltx
0
2t +

√
n

nX
t=1

JX
k=1

Cβµi,k(x1t)zktx
0
2t,

Jn,33(θ0) = Jn,22(θ0).
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Then, D−1n Jn(θ0)D−1n has the form n−1/2Jn,11(θ0) n−1Jn,12(θ0) n−1Jn,13(θ0)
n−1Jn,21(θ0) n−3/2Jn,22(θ0) n−3/2Jn,23(θ0)
n−1Jn,31(θ0) n−3/2Jn,32(θ0) n−3/2Jn,33(θ0)

 .
First, note that all the terms with zk are op(1) by Lemma 11, i.e.

n−1/2
Pn
t=1

PJ
k=1Cββ,k(x1t)zktx

2
1t n−1

nX
t=1

JX
k=1

Cββ,k(x1t)zktx1tx
0
2t,

n−3/2
Pn
t=1

PJ
k=1Cββ,k(x1t)zktx2tx

0
2t n−1/2

nX
t=1

JX
k=1

Cβµi,k(x1t)zktx1t,

n−1
Pn
t=1

PJ
k=1Cβµi,k(x1t)zktx

0
2t n−1/2

nX
t=1

JX
k=1

Cµiµi,k(x1t)zkt

are all op(1) by Lemma 11. The asymptotic results of the remaining terms
then follow Lemma 2 .

Q.E.D.
Proof of Theorem 5:

As in Park and Phillips (2000), we can apply Theorem 10.1 of Wooldridge
(1994) to show that (13) holds and thus there is a consistent local solution
to the likelihood equation. The proof follows precisely as in theorem 2 of
Park and Phillips (2000) and is not repeated here.
Proof of Theorem 7:

Write

−[E−1n Jn(�θn)E
−1
n ]−1 = −EnD−1n G[D−1n G0Jn(�θn)GD−1n ]−1G0D−1n En

= −EnD−1n G[D−1n Jn(�θn)D−1n ]−1G0D−1n En.
By Theorem 4 and 5 we have

−D−1n Jn(�θn)D−1n = −D−1n Jn(θ0)D−1n + op(1)→d Q,

and we have that EnD−1n G→ K. Therefore,

−[E−1n Jn(�θn)E
−1
n ]−1 →d KQ

−1K 0,

as expected. In the case −[E−1n Jn(�θn)E
−1
n ]−1, as shown in the proof of

Theorem 4, we have

D−1n Jn(�θn)D
−1
n = [D−1n Jn(�θn)D

−1
n ]

−1 + op(1),
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so that the same results hold.
Q.E.D.

Proof of Corollary 8
First consider j = 0 :

�P0 = P0(x; θ0) +
³

∂P0(x;θn)
∂βn

∂P0(x;θn)
∂µ1n

´Ã �βn − β0
�µ1n − µ10

!
,

and we have

∂P0(x; θn)

∂βn
= p0(x; θn)x,

∂P0(x; θn)

∂µ1n
= −√np0(x; θn),

Ã
�βn − β0
�µ1n − µ10

!
= R(0)

Ã
�βn − β0
�µn − µ0

!
.

Then

n1/4( �P0 − P0(x; θ0)) = Γ(0)
Ã
n1/4(�βn − β0)
n3/4(�µn − µ0)

!
.

The approach is similar for 1 ≤ j ≤ J , except that in analyzing �Pj(x; �θn)
we also need to take derivatives with respect to µj+1n for 1 ≤ j ≤ J − 1.

Q.E.D.
Proof of Corollary 9

For j = 0,

�γ0,x = γ0(x; θ0) +
³

∂γ0(x;θ0)
∂β0

∂γ0(x;θ0)
∂µ10

´Ã �βn − β0
�µ1n − µ10

!
,

and

∂γ0(x; θ0)

∂β0
= −p00(x; θ0)β0x0 + p0(x; θ0)Im,

∂γ0(x; θ0)

∂µ10
= f 0(x0β0 −

√
nµ10)β0.

Then,

n1/4(�γ0,x − γ0(x; θ0)) = Ψ(0)
Ã
n1/4(�βn − β0)
n3/4(�µn − µ0)

!
.

Again, it would be the same for 1 ≤ j ≤ J , except that for �γj(x; �θn) we also
need to take derivatives with respect to µj+1n for 1 ≤ j ≤ J − 1 .
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Q.E.D.
Proof of Theorem 10

Since the zkt are martingale differences, we have

rn(j) =
1

n

nX
t=1

Λ(t, j)

=
1

n

nX
t=1

Pj(xt; θ0) +
1

n

nX
t=1

Ã
Pj(xt; θ0)

JX
k=1

gk(xt; j, θ0)zkt

!

=
1

n

nX
t=1

Pj(xt; θ0) + op(1).

Therefore,

rn(0) = 1− 1

n

nX
t=1

F (x0tβ0 −
√
nµ10)) + op(1)

=
1

n

nX
t=1

1{x0tβ0 <
√
nµ10}+ op(1)

=
1

n

nX
t=1

1

½
x0tβ0√
n
< µ10

¾
+ op(1).

By virtue of Assumption 1, we have xt√
n
→d V (r) =d BM(Σ), and then

x0tβ0√
n
→d β

0
0V (r) =d BM(β

0
0Σβ).DeÞne ωx such that ωxW (r) =d BM(β

0
0Σβ0).

Therefore,

rn(0) =
1

n

nX
t=1

1

½
x0tβ0√
n
< µ10

¾
+ op(1)→d

Z 1

0
1

(
W (r) <

µ10
ωx

)
dr.

Similarly, for 1 < j < J ,

rn(j) =
1

n

nX
t=1

F (x0tβ0 −
√
nµj0)−

1

n

nX
t=1

F (x0tβ0 −
√
nµj+10 ) + op(1)

→d 1−
Z 1

0
1

(
W (r) <

µj0
ωx

)
dr +

Z 1

0
1

(
W (r) <

µj+10

ωx

)
dr

=
Z 1

0
1

(
µj0
ωx

< W (r) <
µj+10

ωx

)
dr,
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and

rn(J) =
1

n

nX
t=1

F (x0tβ0 −
√
nµJ0 ) + op(1)

→d 1−
Z 1

0
1

(
W (r) <

µJ0
ωx

)
dr

=

Z 1

0
1

(
W (r) >

µJ0
ωx

)
dr,

as expected.
The proof for the predicted proportion rn(j,X) = 1

n

Pn
t=1 1{yt(X) = j}

follows in the same manner. In the estimated case, �rn(j,X) = n−1
Pn
t=1

�Pj(Xt; �θn).
By the mean value expansion as in the proof of Corollary 9,

�rn(j,X) = rn(j,X) +Op(n
−1/4),

and thus �rn(j,X) has the same limit as rn(j,X).
Q.E.D.

APPENDIX C: NOTATION

→a.s almost sure convergence.

→p convergence in probabitlity.

→d weak convergence.

op(1) tends to zero in probabitlity.

=d distributional equivalence.

∼d asymptotically distributed as.

W,V1, V2 standard Brownian motions.

LV (t, s) Local time of V at time t and spatial point s

MN(0, V ) mixed normal distribution with variance V.

k · k Euclidean norm in Rk.

FR class of reguar functions.

FI class of bounded integrable functions.

F0 class of bounded functions vanishing at inÞnity.

L−1γ inverse Laplace transform with respect to γ.
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APPENDIX D: SPECIAL FUNCTIONS

Hen(x) := (−1)nex2/2 d
n

dxn
(e−x

2/2)

hv(n, x) := L−1γ ((2γ)n/2−1/2e−v
√
2γ) =

e−v2/2x√
2πx(n+1)/2

Hen

µ
v√
x

¶
, 0 < v

1F1 (a, b; z) =
∞X
j=0

(a)j
(b)j j!

zj , (a)j = a (a+ 1) ... (a+ j − 1)

Dv(x) = 2
v
2 e−x

2/4

"
Γ(12)

Γ(v+12 )
1F1

Ã
−v
2
,
1

2
;
x2

2

!
+
x

2
1
2

Γ(−12)
Γ(−v2)

1F1

Ã
1

2
− v
2
,
3

2
;
x2

2

!#

cy(µ, ν, t, z) = 2
ν
∞X
k=0

(−1)kΓ(ν + k)e−(νt+z+2kt)2/4y√
2πy1+µ/2Γ(ν)k!

Dµ+1

Ã
νt+ z + 2kt√

y

!
for ν ≥ 0, νt+ z > 0
ecy(µ, ν, t, x, z) =

∞X
k=0

(−z)k
k!

cy(µ+ k, ν + k, t, x+ z + kt), ν ≥ 0, νt+ x+ z > 0

ce(1)y (ν, t, x, z) =
1

2
ecy(0, 1, t, x− ν, z) + 1

2
ecy(0, 1, t, x+ ν, z)

for t+ x+ z − ν > 0, t > 0
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