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1 Introduction

The purpose of this study is to define and characterize a solution to a large class of job
assignment problems in terms of economic equity, fairness and efficiency. A particular
focus of our attention is to identify necessary and sufficient conditions for the existence
of this solution. Fair job assignment problems are encountered in various organizations.
For example, faculty members are assigned within several committees, a group of students
rent a house and decide how to assign rooms among themselves, and workers are asked to
do jobs with certain compensations, and parents contemplate a will to give their children
various properties and savings.

Formally, we are going to investigate the following general job assignment problem: A
set of indivisible objects (or simply objects) like jobs, tasks, houses, offices and a fixed
amount of money is to be assigned to a number of people. Indivisible objects are relatively
large and fractions of them cannot be assigned to the people. Furthermore, indivisible
objects can be desirable or undesirable as well. Here money will be treated as a perfectly
divisible commodity, since the value of a unit of money is relatively small compared with
one unit of indivisible objects. The amount of money can be positive or negative. A
particular constraint for allocations of objects is that every person should be assigned with
the same number of objects. This constraint is quite natural and justified if objects are
seen to be large and essential. One may interpret this constraint as a guarantee of equal
fundamental rights or obligations. For example, the number of committees each faculty
member participates is roughly the same. Family members are often assigned with the
same number of household chores. The preferences of people depend on the bundle of
objects and the quantity of money they take. The objective is to distribute the objects
and the money among the people in a way that is both as fair as possible to every individual
and is as efficient as possible to the group as a whole.

The concept of fairness is a provocative and widely accepted idea in the literature of
economic equity. It is introduced in Foley [4]. An allocation is said to be fair or envy-free if
no agent prefers any other agent’s bundle to his or her own. This idea is quite appealing and

interesting because it treats people equally and symmetrically in distributive justice, it is



ordinal in nature, and it compares welfare based on individual levels instead of interpersonal
levels. From the viewpoint of welfare economics, a major drawback of this concept is that
it is inconsistent with the Pareto optimality principle. In other words, a fair allocation
may not be (socially) efficient. The income-fairness concept is another important indicator
to measure economic equity. This concept is proposed by Pazner and Schmeidler [9]. An
allocation is defined to be income-fair if there exists a competitive equilibrium price vector
so that the allocation is in fact an equilibrium allocation and furthermore the income of
every agent is the same. This concept is obviously quite appealing in term of economic
equity. A problem with this idea lies in the fact that it is a hard-checking criterion and it is
also rather difficult to identify conditions for the existence of such solution. Other kinds of
concepts of fairness have also been developed and analyzed; see for example, Varian [16],
Pazner and Schmeidler [10], among others. All of this work has dealt with the case of
divisible goods. In the present study, we will treat large indivisible objects.

As it is well known, the presence of large indivisibilities poses a serious challenge for
economic analysis; see for example, Arrow and Hahn [2], Scarf [11]. Nevertheless, a good
deal of progress has been made in understanding several special fair allocation problems
associated with indivisiblities. Svensson [15] observes that in a model if there are the
same number of people as objects and there is a fixed amount of money, and if each agent
consumes exactly one object and a certain amount of money, then every fair allocation is
efficient. He further shows that such allocations will exist if all the objects are desirable
and there is enough money. See also Maskin [7] for a similar model. Alkan, Demange and
Gale [1] have shown that fairness still implies efficiency as long as every agent consumes
only one object no matter how many objects are present. They provide several sufficient
conditions for the existence of fair allocations. Su [13] and Yang [17] present more general
existence conditions.

The model studied in this paper is more general than those mentioned above. In par-
ticular, we allow each agent to take more than one object. In the light of complexity
theory, the problem of finding just an optimal assignment in the current model is substan-
tially more difficult than the problem of finding an optimal assignment in a model where

each agent just takes one object. It is therefore not surprising as it may be somewhat



surprising that the present model has not received much attention in the literature. As
one easily understands, because each agent is allowed to take more than one object, the
various interactions among objects will generate new phenomena which do not arise in a
model where every agent is required to take only a single object. In the example to be
given in Section 2, we find that the fairness idea is not consistent with the principle of
Pareto optimality anymore if each agent is going to take two objects. This is one primary
motivation for us to carry out our previous study (see Sun and Yang [14]) and the current
one to search for a new solution to this more general problem. In another example to be
given at Section 3, we observe that even if there exist fair and efficient allocations, no such
allocation is income-fair. This is another major motivation for us to undertake this study.
To find a solution which meets the fundamental principles of equity, fairness and efficiency,
we propose the concept of perfectly fair allocation. It is shown that every perfectly fair
allocation is fair and efficient, income-fair and furthermore gives every person a maximal
satisfaction. Then we establish a necessary and sufficient condition for the existence of a
perfectly fair allocation. It is shown that there exists a perfectly fair allocation if and only
if an associated linear program problem has a solution. As a result, we also provide a finite
method of finding a perfectly fair allocation.

The rest of the paper is organized as follows. In Section 2 the general fair job assignment
model is introduced, basic concepts are reviewed and the concept of perfectly fair allocation
is then defined. In Section 3 we derive several properties of the perfect fairness concept.
Those properties include efficiency, fairness, and income-fairness. An illustrative example
is also given. Finally, in Section 4 a necessary and sufficient condition is established for
the existence of a perfectly fair allocation and a quite general condition is also given for

the existence of efficient and fair allocations.

2 The model

We first introduce some notation. Let I be the set of the first k& positive integers and RF
the k-dimensional Euclidean space. Given a set 7', |T'| denotes the cardinality of the set 7.

Sometimes we also use R” to denote the |T'|-dimensional Euclidean space with coordinates



indexed by the elements of the set T. Furthermore, let z7 denote the term > j,cp xp, for
any set 1" and any vector x.

Now we describe the general fair job assignment model. There are n agents or people,
denoted by A = I, = {1,2,---,n}, and there are  times objects as many as people,
denoted by O = {1,2,---,yn}, and there is an amount M of money. The parameter -y
can be any positive integer and will be called a quota. Objects are inherently indivisible,
like jobs, tasks, houses, or offices. Objects can be desirable or undesirable. The amount
of money can be positive or negative. The agents’ preferences depend on the bundle of
objects and the quantity of money they take. The problem is to allocate all the objects
and all the money among all the agents in a way that is as fair and as efficient as possible
with a constraint that every agent should get the same number of objects.

An assignment of objects is a partition of objects among agents so that each agent gets
v objects. Such an assignment can be expressed as a vector 7 = (w(1),7(2),---,7(n))
satisfying 7(7) N7 (j) = 0 for all ¢ # j, and |7(:)| = ~ for all 4, and U ;7(i) = O. Let
II(A, O) represent the collection of all assignments of objects. A distribution of money is a
vector z in R® with > jeo T; = M. The j-th componenet of z means that the amount z; of
money is attached to object j. Let D(M) represent the collection of all distribution vectors
of money. An allocation (7, z) consists of an assignment 7 of objects and a distribution
x of money. At an allocation (7, x), agent ¢ is assigned with objects (i) and the amount
Tr(;) of money. (m(i), Zx() is called the bundle of agent i. In the case z¢; < 0, this means
agent i pays the amount |z, ;| of money.

Let O = {B | B C O with |B| = v}. The preference of each agent i € I, over
objects and money will be represented by a utility function u; : O x R — R. It is very
natural to assume that u;(D,m) is a continuous and nondecreasing function in money (i.e.,
inm) for alli € A and all D € O. This assumption implies that money is always desirable.

Money will be treated as a perfectly divisible commodity.

Definition 2.1  An allocation (7,z) € II(A, O) x D(M) is fair or envy-free if for every
i € A, it holds

uz(ﬂ—(z)uxﬂ(z)) > Uz(ﬂ-(])u xﬂ'(j))? fOT’ all .] €A



The definition says that at a fair allocation, no agent prefers the bundle of any other agent
to his own bundle. The normative significance of the fairness idea lies in the fact that it
treats people equally and symmetrically, it is ordinal in nature, and welfare comparisons
are made only on an individualistic basis instead of interpersonal basis. As shown later,
there is, however, one major drawback with this concept. It is inconsistent with the Pareto

optimality principle. The Pareto optimality principle is recalled below.

Definition 2.2 An allocation (m,x) is efficient or Pareto optimal if there is no other

allocation (p,y) which makes everyone at least as well as at (w,x) and at least one agent

strictly better off than at (m,x).

In the case when there are the same number of objects as people, i.e. v = 1, Svens-
son [15] has shown that the Pareto optimality is implied by envy freeness. This interesting
property does not hold anymore if people are allowed to consume more than one object,
as indicated by the following example.

Example 1. Consider the case in which there are two agents 1, 2 and there are four houses
A, B, C, and D, and total money (say, dollar) M is equal to 20. Each agent is entitled
to have two houses. The values assessed by the agents for the pairs of houses are given in

Table 1, and agents’ utility functions are given by u;(T,m) = V;(T) +m, i = 1, 2.

Table 1: The values of houses for both agents

AB | AC | AD | BC'| BD | CD
Agent 1| 3 4 5 3 7 8
Agent 2| 6 3 9 4 5 7

In this example the allocation in which agent 1 gets houses B and C and 12 dollars
and agent 2 gets houses A and D and 8 dollars is a fair allocation. But this allocation is
not Pareto optimal, since it is dominated by the allocation in which agent 1 gets houses C
and D and 9 dollars, and agent 2 gets houses A and B and 11 dollars.

Since a fair allocation may not always be efficient, a logical question naturally arises:

Is it possible to refine the concept of fair allocation so that the Pareto optimality will be

6



attained? This motivates us to propose the following new solution concept: perfectly fair

allocations.
Definition 2.3 An allocation (m,x) € II(A,O) x D(M) is perfectly fair if it holds
wi (7(2), Tri)) > wi(p(2), Tp)), for all i€ A and all p € 1I(A,O).

Clearly, the concept of perfectly fair allocation still retains symmetric, ordinal and individ-
ualistic properties as the fairness concept has. In the subsequent section we will investigate

various properties of this new concept which the fairness concept does not have.

3 Several basic properties

In this section we will derive several interesting properties of the concept of perfectly fair
allocation. The first lemma says that at a perfectly fair allocation, no agent envies any
other agent and what each agent gets is what he likes best. Thus, the concept of perfectly

fair allocation is indeed a proper refinement of fair allocation.

Lemma 3.1 Every perfectly fair allocation is a fair allocation and gives every agent

what he likes best.

Proof: Let (7, x) be a perfectly fair allocation. Then for every i € A and every set D € O,

we have
ui (7(2), Tri)) > wi(D, xp).

The inequality says that every agent gets what he likes best. In particular, for every i € A,

we have
uz(ﬂ—(z)uxﬂ(z)) > Uz(ﬂ-(])u Iﬂ(j))7 for a“uj € A
Thus, (7, z) must be a fair allocation. O

The following result shows that every perfectly fair allocation is (socially) efficient. This
property indicates that the concept of perfectly fair allocation is also quite appealing and

interesting from the viewpoint of welfare economics.
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Theorem 3.2 Every perfectly fair allocation is Pareto optimal.

Proof: Let (m,x) be a perfectly fair allocation. Now suppose to the contrary that (m,x)
is not efficient. Then there would exist another allocation (p,y) weakly preferred by all

agents and strictly preferred by at least one agent. That is, it holds that

Y Yy =M
icA
and
wi (p(2), Yp(iy) = ui(m(7), Tr(ay), Vi € A; (3.1)

and there is some j € A satisfying

Uj(P(j), yp(j)) > uj(ﬂ-(.j)v xw(j))' (32)

Note that since (7, z) is perfectly fair, we have

Y Tay =M

icA
and

Us(r(2), 2200) > (o) 200, Vi € A. (33)
It follows from (3.1) and (3.3) that

wi(p(), Yp(iy) = wi(p(i), Tp)), Vi € A.
Furthermore, it follows from (3.2) and (3.3) that

ui (P(7) Yot) > w(P(3); To())-

Since w;(7),-), i € A, T € O, are nondecreasing in money, we have that for all i € A,
Yp(i) = Tp(i)s

and

Yp(3) = Tp(j)-



This implies that
M= Ypm) > D Ty =M,
hcA hcA

yielding a contradiction. Therefore, (7, z) must attain Pareto optimality. a

In addition, we will show that the concept of perfectly fair allocation has yet another
remarkable property, namely, it is consistent with income-fairness. The concept of income-
fair allocation is suggested by Pazner and Schmeidler [9]. This concept can be reformulated
in the present model as follows. Given an allocation (m,x), we construct a pure exchange
economy E(7, z) in which the bundle (7(i), zx(;)) is viewed as agent #’s initial endowment.
We say that an allocation (7, z) is an income-fair allocation if there exists a vector (p',p?) €
R® x R such that (7, z) is a competitive equilibrium allocation, (p',p®) is a competitive
equilibrium price vector for the economy E(7, z), and the potential income is the same for

every agent.
Lemma 3.3 FEvery perfectly fair allocation is an income-fair allocation.

Proof: Let (7, z) be a perfectly fair allocation. Now define an economy in which agent ¢
initially owns the bundle (7 (¢), z(;)). Let p' = —z and p* = 1. Then the vector (p',p?) is a
competitive equilibrium price vector for the economy since for every agent i, perfect-fairness

implies that

In the economy, the potential income I(i) = x¢) + p}r(i) =0 for all i € A. Thus, (7, z) is

an income-fair allocation. O

In the above analysis, we have noted that, at a perfectly fair allocation, some agent
may have to pay a certain amount of money. In some situation, for example, when people
do not have any money, we have to require that no agent should pay anything, namely, the
amount x(;) > 0 for all agents. The following lemma states that if the total amount M of
money is sufficiently large, every perfectly fair allocation gives each agent a nonnegative

amount of money. This condition is similar to that given by Alkan et al. [1] for the case

v=1.



Lemma 3.4 Let the total amount M of money be so large that for every i € A and
every C, D C O with |C| = |D| =1,

u; (C, l) > w;(D,0).

n—1

Then for every perfectly fair allocation (,x) we have T > 0 for all i € A.

Proof: Recall that n in the formula is the number of agents. Let (7, z) be a perfectly fair
allocation. Suppose to the contrary that there exists some agent k € A with x4 < 0.
Then we have
M = Zxﬁ(i) <0+ Zxﬁ(i).
i€A ik
It is easy to see from this inequality that there exists some agent [ € A so that z,g) > %

Then by assumption we have

up(m(1), Zz0))

vV
<
o
—~
A
&
&
5
=

This means that agent k prefers the bundle of agent [ to his own, yielding a contradiction.

O

One may wonder if perfectly fair allocations exist. In Example 1 there indeed exists a

perfectly fair allocation. It is easily verified that the allocation
((ﬂ—(l)7 7T(2))7 (Z’A, IB,TC, xD)) = ((CD7 AB)7 (57 77 67 2))

is a perfectly fair allocation. However, perfectly fair allocations may not always exist as
shown in the following example.

Example 2. Consider the case in which there are two agents 1, and 2, and there are four
houses A, B, C, and D, and total money (say, dollar) M is equal to 20. Agents 1 and 2
each are entitled to have two houses. The values assessed by the agents for the pairs of
houses are given in Table 2, and agents’ utility functions are given by u; (T, m) = V;(T)+m,

i=1,2 3.
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Table 2: The values of houses for both agents

AB | AC | AD | BC | BD | CD
Agent 1| 6 8 5 4 2 8
Agent 2| 6 11 9 6 5 7

In this example there is a unique Pareto optimal assignment, namely, agent 1 gets
houses C' and D, agent 2 gets houses A and B. Suppose that this assignment can be

constructed as a perfectly fair allocation. Then, we must have
9<zc+xp <9.5, (3.4)

since a perfectly fair allocation is also fair. Furthermore, for agent 2, the following system

of inequalities must have a solution.

64+za+xzp > 1ll4+x4+ 20
6+za+azp > 94+z4+2p
6+z24+2zp > 6+x+ 20
6+x4+2p > S+xp+ap
za+axp = 20— (zc+xp).

It follows from the first four inequalities that
14+2(za+2p) >8+2(xc +xp).

Substituting 4 + v = 20 — (z¢ + xp) into the inequality, we obtain
ro+xp < 33/4 <9,

yielding a contradiction to the inequality (3.4). Thus there does not exist any perfectly fair
allocation in this example, even though there exists an efficient and fair allocation. This
example also shows that fairness together with efficiency does not imply perfect-fairness.
The reader can also verify that the unique efficient and fair allocation in this example is

not income-fair, either.
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4 Existence theorems

In this section we present both a general condition for the existence of an efficient and
fair allocation and a necessary and sufficient condition for the existence of a perfectly
fair allocation. We will restrict our attention to the case where every agent has quasi-
linear utilities in money. The analysis seems to be significantly more difficult without
this restriction. When agents have quasi-linear utilities in money, then agents’ utility
functions can be expressed as u;(T,x) = Vi(T) +z for alli € A, T € O, and =z € R.
In this case we will use &€ = ((V;,i € A),0, M) to represent the model. Given a model
E = ((Vi,i € A),0,M), we call an assignment m € II(A,O) an optimal assignment if
Sier, Vi(m(i)) > Y, Vi(p(?)) for every p € II(A, O). The problem of finding an optimal
assignment for v > 2 is a very difficult one from the computational complexity viewpoint,
because it is an NP-hard problem even for v = 2. See for example Papadimitriou and
Steiglitz [8] and Fujishige [5]. However, the problem of finding an optimal assignment for
v =1 is an easy one. This is the classical job assignment problem to be discussed shortly.

To show the existence of an efficient and fair allocation, we first recall the classical job
assignment problem; see Dantzig [3]. In this model there are n people and n tasks. Each
person is going to be assigned with one task. Let ¢(i,j) denote the profit for person i
to perform task j and let T = [t(i, j)] denote the n by n matrix. The goal is to find an
assignment of tasks among people so that the total profit is maximal. In this model, an
assignment is a permutation of the n elements of I,,. Let © be the collection of all assign-
ments. An assignment 7 € © is an optimal assignment if Y ,c; t(i,7(3)) > Yiep, t(3,7(7))
for every T € ©.

Recall the following duality theorem from linear programming (see Dantzig [3]), which
has been used by Koopmans and Beckman [6], Shapley and Shubik [12], and Alkan et al. [1]

for related models.

Lemma 4.1  Let T = [t(i,j)] be an n x n matriz. If T € © is an optimal assignment,

there exist two n-vectors v and w such that

12



and
Vi + Wr) = t(i,ﬂ'(i)), Vi e I,.

Theorem 4.2 Given a model € = ((V;,i € A),O, M), then there exists at least one
optimal assignment. For each optimal assignment m, there exists a distribution 2n-vector

x of money M such that (m,x) is an efficient and fair allocation.

Proof: The first statement is obvious, since there are only a finite number of assignments.
Now we prove the second part. Let m € II(A, O) be such an optimal assignment. We will
view the set 7(7) of objects as task ¢ and V;(7(j)) as the profit for agent i to perform task
j. Define t(i, ) = Vi(m(j)) and T = [t(, 7)] the n by n matrix. Thus, we have defined the
associated job assignment problem. Clearly, p = (p(1), p(2),---,p(n)) = (1,2,---,n) is an
optimal job assignment. Since p is an optimal assignment, it follows from Lemma 4.1 that

there exists v and w such that
v +w; > t(i, ), Vi, j €1,
and
v+ wpye) = t(4, p(i)), Vi € L.
From the above inequalities we obtain
(i pli)) — wpie = 45,5) = wy, Vi, j € L.

Lety; = —w;, 6 = (M =Y i1, yi)/n, and z; = y;+6 for each i € I,,. Define z = (21, - -, 2,).

Then we have
t(i, p(z)) + 2p0) 2> t(i,j) +z;, Vi,5 €1,

and

Z Zi = M.
i€ly,

Let + € D(M) so that x,; = z for all i € I,,. Clearly, (7, ) is an efficient and fair

allocation. O
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As Example 2 indicates that perfectly fair allocations may not always exist, this moti-
vates a natural question: Under what circumstance does a perfectly fair allocation exist?
The remaining section is to present a necessary and sufficient condition for the existence
of a perfectly fair allocation.

Given ) # S C Aand 0 # T C O, we say that S and T are compatible if there exists
some 7 € II(A, O) satisfying U;egm(i) = T. Obviously, A and O are compatible. Let S
and T be compatible and define

IS, T)={7 | 7= (w(i) | i € S) for some w € II(A,0) with Uesm(i) =T},
and
V(S,T) = maximizeweH(S,T){ZS Vi(m(3))}.
1€
We will associate the fair job assignment model £ with the following linear program

problem:
minimize > ;-4 Vs
subject to Y eqvi — X jerw; > V(S,T), for all compatible sets S C A, T'C O
Yjeor; =M.
Observe from the linear program that

- M + maxren(a,0) 2onea Vi(m(h))
- n

U;

for all 7 € A. This means that each v; is bounded below. Since we minimize the objective

function > ;c 4 v;, the problem will always have an optimal solution. It is also easy to see

that the optimal value of the linear program is no less than the value of M + V (A, O).
We are now ready to introduce the main existence result of this paper which states a

necessary and sufficient condition for the existence of a perfectly fair allocation.

Theorem 4.3 Given a model € = ((V;,i € A),0, M), there exists a perfectly fair
allocation if and only if the linear program has an optimal solution with its value equal to

M +V(A,0).

14



Proof: Let (v,z) be an optimal solution of the linear program with its value equal to

M +V (A, O). Then there exists an element m € II(A, O) so that

Dvi= ) @i+ Vi(n(i)) = M+ V(A,0).

€A jeO i€A

We can rewrite the equality as

dovi— D iy = Y Vi(w(d)). (4.5)

i€A i€A i€A

Furthermore, it follows from the linear program that for all pairs (S,T") of compatible sets

v = > x; > V(S,T).

€S jeT

In particular, it holds that for all i € A and all p € II(A4, O)
v — Zpa) 2> Vi(p(d)).

Of course, it is true that
Vi — Tn(i) = Vi(m (1))

for all i € A. This together with equation (4.5) implies that
Vi — Tr(i) = Vi(m(i))

for all i € A. Therefore we have
Tr(iy + Vi(m (i) = zp) + Vi(p(i))

for all i € A and all p € II(A, O). By definition (, z) is a perfectly fair allocation.
On the other hand, let (7, z) be a perfectly fair allocation. By definition, for all i € A
and all p € II(4, O), it holds

Vi(m (1)) + 2 2> Vi(p(2)) + 20

Let v; = Vi(m(i)) + @) for each i € A. Note that Y-;cox; = M. Let p be an arbitrary
element in II(A, O). Then it holds that

Vi(m(3)) + zry > Vi(p(d)) + zp0)

15



for all i € A. It follows that > ;4 Vi(7(i)) > Yica Vi(p(i)). This implies that > ;4 v; =
Siea(Vi(m (1)) + 22y) = M + V(A,0). We still have to show that (v,z) also satisfies the
first constraints of the linear program. Suppose to the contrary that some constraint is
violated. Then there would be a nonempty subset S of A and a subset T' of O compatible
so that

v =Y x; <V(S,T).

ieS jET
This implies that there exists some p € II(S,T) so that

> (Vi = zpe) < D_Vilp(i).

i€ i€

It is clear from the inequality that there is some i € S so that
v — Tpay < Vi(p(i)).
But this is impossible, since we have

vn = Vi(p(2)) + T pn)
for all h € A and all p € II(A4, O). This demonstrates the theorem. O

Given a perfectly fair allocation (m, ), we call Vi(7(i)) + 24 the mazimal attainable
share value of agent i. As shown in the theorem, agent i’s maximal attainable share value
is equal to v;, a solution of the linear program if the linear program has an optimal solution
(v, z) with its value equal to M +V (A, O). Knowing each agent’s maximal attainable share
value and the money distribution vector x, we can easily find an assignment 7 of objects
and so we find a perfectly fair allocation (7, z). It is somehow surprising that the linear
program turns out to be such a bliss to the resolution of the fair job assignment problem.

We will illustrate the above theorem with Example 1 and leave Example 2 to the
interested reader. With respect to Example 1 to see whether there is a perfectly fair

allocation or not we only need to check the following linear program problem:
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minimize v + vy

subject to vy —zy4 —axp >3
V1 —Tpa—2Tc >4
V| — X4 —Tp > 9D
V1 —Tp —Xc >3
v —Tp—xp>7T
v —xoc—xp > 8
Vg —x 4 —2xp > 6
Vg —TpA—To > 3
Vo —TqA—Xp > 9
V9 — T —xc > 4
Vg — g —Tp > O
Vo—To—Xp > T
V1 +Vy — g4 —Tp—xc—Tp > 14

Ta+xp+xo+ xp =20.

The value of V(A,O) is 14 and M = 20, and the linear program problem has an optimal
solution (vy,v9,24,%p,zc,xp) = (16,18,5,7,6,2) with its value 34 = M + V(A,0) =
20 4 14 = 34. According to Theorem 4.3, there exists a perfectly fair allocation.
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