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1 Introduction

The objective of this paper is to address the existence problem of fair allocation or fair
division. In particular, we are concerned with the problem of how to distribute a number
of indivisible objects with an amount of money among a group of people (or agents) in a
fair way. As defined by Foley [5], an allocation is said to be envy-free if no agent prefers
another agent’s consumption bundle to his own, and an allocation is said to be fair if it
is both envy-free and Pareto optimal. Following Foley [5] there has been an extensive
literature dealing with the problem of fair division but most of this work was directed to
the case where all goods are assumed to be perfectly divisible (see e.g., Varian [14]).

The existence problem of fair allocation with indivisible objects was investigated by
Svensson [12], Maskin [10], Alkan, Demange and Gale [1], Su [11], and Yang [16]. A
common and crucial assumption in these papers is that each agent consumes exactly one
indivisible object. More precisely, both Svensson and Maskin required the same number of
agents and objects in their models. Svensson showed that if utility functions are continuous
and strictly increasing in money, and for every agent and every object, money can be
distributed in a way that the agent prefers the object with its corresponding amount of
money to any other object with its corresponding amount of money, then fair allocations
exist. Maskin obtained his existence result under the condition that utility functions are
continuous and strictly increasing in money, all objects are desirable, and every agent
prefers any object with an equal share of money to any other object without money.
Alkan, Demange and Gale presented a model without restriction on the number of agents
and objects and by allowing agents to pay money if necessary. In case there are more
objects than agents, Alkan et al introduced fictitious agents into their model so that there
are the same number of agents as objects. At a fair allocation they required that the total
amount of money obtained by real agents be equal to the initial amount of money. Because
of this requirement it appeared that the fixed point methods would not work for proving
existence. Nevertheless, they showed, by means of an ingenious argument, the existence
of fair allocation under certain conditions imposed on their model. The major tool they
used is the duality theorem of linear programming. Furthermore, Su and Yang provided
more general conditions for the existence of fair allocations in the above models. Whereas,
Aragones [2] and Klijn [8] focused their attention to the algorithmic aspect of the above
models and presented two polynomial-time algorithms for finding a fair allocation in a
setting where agents have quasi-linear utilities in money.

The purpose of this paper is twofold. One the one hand, we will consider a more general
model by relaxing some restrictive assumptions in the existing models. In particular,
we allow any number of agents and objects. All objects and money will be completely

allocated among agents so that no objects will be left unassigned. Recall that in the



models mentioned above each agent is assumed to consume exactly one object. So, if
there are more objects than agents, some objects will have to be left either unassigned
or assigned to fictitious agents. Obviously, this assumption is unrealistic and cannot be
satisfied in some real life situations. On the other hand, we will give a unified approach to
prove all the existing existence results. This is useful and interesting since the approaches
of Svensson, Maskin, and Alkan, Demange and Gale, appeared to be so different from each
other. Two mathematical tools we use for the existence are a fundamental fixed point
theorem of Browder [4] and the well-known theorem of Birkhoff and von Neumann from
discrete mathematics. Indeed, Alkan, Demange and Gale [1] state it seems impossible
to obtain their existence result by the usual fixed point argument. Nevertheless here we
will show that it is still possible to prove their existence result by a more advanced fixed
point argument. In fact, we will obtain existence results for their model under even weaker
conditions.

The rest of the paper is organized as follows. In Section 2 we formulate the economic
model and introduce the main solution concepts: envy-free and fair allocations. The model
consists of a vector W € Z7} | of indivisible objects, an amount M of money and m agents.
Thus, there are W; units of indivisible object j =1, - - -, n. We allow any number of agents
and objects. Objects could be desirable or undesirable and the amount M of money could
be negative as well. In case M is negative, it can be regarded as costs to be shared by
agents. The objects with the money will be completely distributed among the agents in a
way that each agent gets a bundle with at most one object if there are more agents than
objects, and gets a bundle with at least one object if objects are no less than agents. We
show by a simple example that if there are more objects than agents, then neither the set
of envy-free allocations is a subset of Pareto optimal allocations nor the converse is true.
This is in contrast to the case in which there are the same number of agents as objects,
where, as shown by Svensson [12], an envy-free allocation must be Pareto optimal, too.
Furthermore, we illustrate via two examples that in general, without proper assumptions,
fair allocations may fail to exist in case there are more objects than agents.

In Sections 3 and 4 sufficient conditions are given for the existence of fair allocations.
Those conditions are rather mild and intuitive. All existence theorems presented here are
based upon a mathematical theorem (i.e. Theorem 3.4), which states in a quite general
form that a collection of covering sets in IR™ will have a connected set of intersection points
under certain mild conditions. Theorem 3.4 substantially generalizes the classic lemma of
Knaster, Kuratowski and Mazurkewicz (KKM) in combinatorial topology. We further show
that the sufficient conditions introduced by the previous authors are special cases of our
general conditions. In the simplest case, it is shown that if utility functions are quasi-linear

in money, then a fair allocation always exists without any additional condition. This result



indicates that the conditions for the existence of fair allocations can be much weaker than
those for the existence of Walrasian equilibria.

In Section 5 we obtain a strict monotonicity property of fair allocations. This result
states that if utility functions are continuous and strictly increasing in money, then for any
given fair allocation there exists a connected set of fair allocations in which each allocation
makes every agent strictly better (worse) off when the total amount of money strictly
increases (decreases). This result strengthens the strict monotonicity result of Alkan,
Demange and Gale [1]. Finally in Section 6 we give several new sufficient conditions for
the existence of fair allocation in the model of Alkan, Demange and Gale and then we
show that their condition is a special case of the new conditions. Furthermore, a strict
monotonicity property of fair allocations is derived. As a result, we provide a new proof

for the results of Alkan, Demange and Gale.

2 The model of fair allocations

We first introduce some notation. Let I, be the set of first k positive integers, R* the
k-dimensional Euclidean space, and ZF the set of integral vectors in R*. Given a positive
integer k, e(i) denotes the i-th unit vector in R* for i € I, 0 and 1% the all-zero vector

and the all-one vector in R¥, respectively. For any given number ¢, define
H(t)={z e R™| > x; =t}.
i=1

Given two real numbers X and Y with X <Y, let H(X,)Y)={z e R" | X <YY" 2; <
Y'}. Furthermore, let S* = {z € R’ | ¥j_,x; = 1} be the (n — 1)-dimensional unit
simplex.

Our model consists of a finite number of agents, denoted by P = {1,2,---,m}, a bundle
W € Z7 | of n types of indivisible objects, and a fixed amount of money, denoted by M.
The jth component W; of W means that there are W; units of indivisible object j. Here
M can be any real number. If M is negative, this will be the case in cost sharing problems.
Each agent ¢ € P is assumed to have a preference relation u; : Z} x R + IR which is
continuous and nondecreasing in money. This assumption is weaker than those made in
the literature. Let & = (W, M, P, [u;]) represent the economy described here. The goal
is to allocate the objects with the money to the agents as fairly as possible. Here money
will be treated as a perfectly divisible good. Without loss of generality it is assumed
2<m <Y W, Incase 37 Wi < m, we may add m — 37 ; W; units of dummy
object (worthless and harmless objects) to the model. A feasible allocation or distribution

of objects is an assignment of objects to agents in such a way that all objects are completely



distributed among agents and furthermore each agent gets at least one unit of some object.
Thus the set of all feasible allocations of objects can be written as
O = {II = (I1(1),I1(2), - - - ,II(m)) | Y TI(¢) = W and 0" A1I1(i) € Z%, Vi € L.}
i=1
A vector x € R™ is called a distribution of money among agents. An m-vector x will be
called t-feasible (or feasible) if Y ,cp x; = t. Thus the set H(t) is the set of all t-feasible
distributions of money.

For a pair (II,z) € © x H(t), the interpretaion is that agent i receives a bundle of
goods (I1(7), z;) consisting of a bundle II(:) of objects and z; units of money. If z; < 0,
then agent ¢ pays others |z;| units of money. Given such an allocation, some agent may
not be pleased with his bundle of goods. We are interested in so called fair allocations
in which every agent likes his own bundle at least as well as that of anyone else and no

other allocation can make every agent better off. Formally these key solution concepts are
defined below.

Definition 2.1 An allocation (I1,z) € © x H(t) is envy-free if for all i,j € P it holds
w;(11(7), z:) > w; (TL(5), ).
At an envy-free allocation, no agent prefers any other agent’s bundle to his own.

Definition 2.2 An allocation (II,x) € © x H(t) is Pareto optimal if there is no other
allocation (E,y) € © x H(t) such that it holds

ui(1(4), ;) < wi(E(2), ys)-
for every i € P; and there is some j € P satisfying
U](H(j), ,I]) < UJ(E(.])a y])

Let PO(E) denote the set of all Pareto optimal allocations of the economy & for t = M.
Combining the above concepts leads to the notion of fairness which guarantees both

equity of individuals and social optimality.

Definition 2.3 An allocation (I, x) € © x H(t) is fair or t-fair if it is both envy-free

and Pareto optimal.

Thus, one can see the problem considered here is a complicated multiperson decision prob-
lem involved discrete and continuous optimization.
With respect to the economy &, we can construct its subeconomies as follows. For

any II € ©, the economy E = (II, M, P, [w;]) is called a subeconomy of the economy &,



where @; : {II(1),II(2),---,II(m)} x R + R is defined by @;(II(j),p) = w;(II(j),p) for
each j € I,,. Thus, we regard each set II(i) of objects as a single object for i € P.
In the sequel we will make no difference between @; and u;. Two subeconomies B! =
(Y, M, P, [w;]), E? = (1%, M, P, [u;]) are said to be identical if [T* and II? are permutation
of each other. For example, consider the case in which W = (1,1,1,1,1) and P = {1, 2, 3}.
Then the subeconomies constructed from IT' = ((1,1,0,0,0),(0,0,1,1,0),(0,0,0,0,1)),
% = ((0,0,0,0,1),(1,1,0,0,0),(0,0,1,1,0)) are identical.

It was shown by Svennson [12] that for the case m = n and W = 1", an envy-free

allocation is also Pareto optimal. However, the following simple example will show that
this is not the case if there are more objects than agents.
Example 1. Consider the case in which there are two agents 1, 2 and there are three
objects a, (3, and 7, and total money (say, dollar) M is equal to zero. Both agents have
quasi-linear utilities in money (i.e., u;(A,m) = V;(A) +m, i = 1, 2) and the values of the
agents for the different subsets of objects are given in Table 1.

In this example when agent 1 gets object 3 with 2% and agent 2 gets objects ay by
paying 28, this allocation is envy-free but not Pareto optimal, because another allocation
in which agent 1 gets objects a3 by paying 2.5% and agent 2 gets object v with 2.5% makes
both agents strictly better off.

On the other hand, a Pareto optimal allocation is not necessarily envy-free. For exam-
ple, when agent 1 gets objects a3 by paying 6$ and agent 2 gets object v with 6$, this

allocation is clearly Pareto optimal but not envy-free, because agent 1 envies agent 2.

Table 1: The values of objects for both agents

VNA| a |B| v |af|ay| By
Vi(A)[10[8| 2] 13|11 9
Va(A) | 8 | 5|10] 13| 14 | 13

In general, without proper assumptions on the economy, fair allocations may fail to
exist as indicated by the following two examples.
Example 2. Consider the case in which there are two agents 1, 2 and there are three
objects a, 3, and 7, and total money (say, dollar) M is equal to zero. The values of the
agents for the different subsets of objects are given in Table 2, and utility functions are
given by u;(A,m) = Vi(A) + f(m), and uz(A, m) = Va(A) + f(m), where f(m) = 2m for
m >0 and f(m) =m for m <0.

In this example the set of all envy-free allocations is equal to {(I[,0%) | IT € ©}. We
will show that each envy-free allocation is dominated by another feasible allocation and

thus is not Pareto optimal. Consider the case in which agent 1 gets object v (or af3) with
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0% and agent 2 gets objects a3 (or ) with 0$. But this allocation is strictly dominated by
the following allocation in which agent 1 gets object a (or B7) with m$ and agent 2 gets
objects 37 (or «) by paying m$ with m € (1/2,1). The remaining cases can be verified in

a similar way.

Table 2: The values of objects for both agents

VNA|la| 8 |v|aB | ay| By
Vi(4) | 0] —1 1| —=1] 0
Vo(A) [ 1| —=1]0| 0 |-1]1

—

Example 3. Consider the case in which there are two agents 1, 2 and there are three
objects «, 3, and 7, and total money (say, dollar) M is equal to zero. Utility functions
are given by u;(A,m) = V;(A) + k;(A)m, ¢ = 1, 2, which are different from those given in
Examples 2, and the values of the agents for the different subsets of objects are given in
Table 3.

In this example the set of all envy-free allocations is equal to {(I,0%) | IT € ©}. We
will show that each envy-free allocation is dominated by another feasible allocation and
thus is not Pareto optimal. Consider the case in which agent 1 gets object v (or o) with
0% and agent 2 gets objects a3 (or ) with 0$. But this allocation is strictly dominated by
the following allocation in which agent 1 gets object « (or Gv) with m$ and agent 2 gets
objects By (or «) by paying m$ with m € (1/2,1). The remaining cases can be verified in

a similar way.

Table 3: The values of objects for both agents

ViENA|al| B |v|af|ay|By
Vi(4) (o] =1|1] 1 [=1]|0
ki(A) [ 21051 1 [05] 2
Va(A) |1 =1]0] 0 |=1]1
ka(A) [ 1]05]2] 2 [05] 1

3 Existence of fair allocations: a basic case

In this section we will establish several existence theorems for fair allocations. We first deal

with the case where there are the same number of agents as objects (m =n and W = 17)



and then we move to more general cases in the next section. As mentioned earlier, one of
our basic tools used in our analysis is a fixed point theorem due to Browder [4] and Mas-
Colell [9] to be stated below. We remark that Browder proved the continuous function case

and Mas-Colell extended the result to the upper semi-continuous correspondence case.

Theorem 3.1  Let 5" = {x € R | XI_ x; = 1} be the (n—1)-dimensional unit simplex
and let 1 : S™ x [0,1] — S™ be an upper semi-continuous correspondence with nonempty,
convex and compact values. Then the set T = {(z,t) € S” x [0,1] | = € ¥(x,t)} contains
a connected set T such that TN (S™ x {0}) # 0 and TN (S™ x {1}) # 0.

In Herings, Talman and Yang [7] more general results than the above one are constructively
proved via a simplicial algorithm. From those results we will see that all existence results
in the current paper can be demonstrated in a constructive manner as well.

Before proceeding to our basic condition for the existence of fair allocations, we intro-
duce one simplified notation. In the case of m = n and W = 1", we use j to represent
e(g) for every j € I,,. Thus u;(j,p) stands for u;(e(j),p). Let I' denote the family of all
permutations 7 = (7(1),7(2),---,7(n)) of the elements of I,,.

Assumption 3.2 For any (i,j) € I,, X I, there exists a real number B(i, j) such that
if x € H(t) and its jth component x; < B(i,j), then

ui(J, ;) < hax ui(k, zy).

This assumption says that if B(i, j) is negative (positive), then |B(i,j)| could be loosely
seen as the maximum (minimum) amount of money agent i is willing to pay (accept) for
getting object j. We remark that B(i, j) is in general dependent on ¢. For ease of notation
we omit ¢. The following theorem says that if the total amount ¢ of money is a variable in
an interval [X,Y] and if Assumption 3.2 is satisfied, then there exists a connected set of
fair allocations linking both H(X) and H(Y'). In contrast, all previous existence results in

the literature are only concerned with a single fair allocation.

Theorem 3.3 If Assumption 3.2 holds for each t € [X,Y] with X <Y, then there
exists a connected set H in H(X,Y') such that HN H(X) # 0, HN H(Y) # 0, and for

each x € H, (m,x) is a (X1 1 z;)-fair allocation for some m € T.

Proof: For each t € [X,Y] and each (i,5) € I, x I, define M/(t) = {z € H(t) |
ui(j,x;) > wi(k,zy), Vk € I,,}. Clearly Assumptions (B1), (B2), and (B3) in Theorem 3.4
are satisfied by the assumptions made here. We will prove that Assumption (B4) is also
satisfied. For any given sequence {t*} C [X,Y] with ¥ — t*, suppose that =¥ € M (t")
and z¥ — z*. Note that 2 € M (t) means (7, x¥) > uy(k,x}). So by the continuity of



utility functions we have u;(j, x%) > wi(k, ;). That is 2* € M (t*). Thus we proved that
Assumption (B4) holds.

It follows from Theorem 3.4 that there exists a connected set H in H(X,Y) such that
HNHX) # 0, HNH(Y) # 0, and for each z € H, (m, z) is a (X1, z;)-equitable
allocation for some m € I'. Let t = 37, z;. We will show that (7, ) is t-fair. Since (7, )

is t-equitable, this implies that for all 7, j € I,, it holds

wi(m(2), Ta(iy) > wi(7(4), Ta(j))- (3.1)

Thus (7, x) is envy-free. Note that at (m,z) agent i gets object m(i) with z(; units of
money for each i € [,. Now suppose to the contrary that (m,z) is not Pareto optimal.
Then there would exist a feasible allocation (£, y) such that it holds

wi (7(2), Tri)) < wi(€(2), Ye(w))s (3.2)

for every i € P; and there is some j € P satisfying

uj(g(.j)vyﬁ(j)) > uj(ﬂ-(.j)vmw(j))‘ (33)

Note that 327, y; = t. The inequalities (3.1), (3.2) and (3.3) imply that for all i € P,

ui (€(7), Yey) = wi(§(2), Teqs))

and

u;i (§(5), yeiiy) > ui(€(5), ze))-

Since u;(j,), i € I, are nondecreasing in money, we have that for all i € I, ye) > 2¢()
and ye(j) > me(;). Note that 37 1 yeyy = 2271 y; and 300 4 weyy = 2074 x5 It follows that
t=01y; > Xjx; = t, ylelding a contradiction. Therefore, (7, z) must be Pareto

optimal as well. O

It is worth mentioning that in the above proof we only need Assumption 3.2 and
continuity for the existence of envy-free allocations. The weak monotonicity is for an envy-
free allocation to be Pareto-optimal. It will be shown that all previous sufficient conditions
in the literature satisfy Assumption 3.2. We note that previous authors all required strong
monotonicity.

Now we are going to introduce our main mathematical instrument upon which all
existence theorems presented are based. It will be proved by applying both the theorem of
Browder and Mas-Colell and the theorem of Birkhoff and von Neumann. Given two real
numbers X and YV with X <Y, recall that H(X,Y)={z e R" | X <>? ,z; <Y}. For
each i € I,, and t € [X,Y], there is a class {M](t) | j € I} of subsets M (t) of H(t). The
interpretation is as follows. If x € MF(t), this means that agent i likes the bundle (k,xy)

9



at least as well as any other bundle (j,z;). A pair (7,z) € I' x H(t) is called t-equitable if
x € Ny, M (t). Thus at a t-equitable allocation (,x) the bundle (7(¢),2()) is given
to agent i for ¢ € I,,. For the existence of equitable allocations, the following assumptions
will be made on the sets M/ (t):

(B1) For each i € I,, and t € [X,Y], Ujer, M} (t) = H(t);

(B2) M/ (t) is a nonempty and closed set for every i € I,,, j € I,,, and t € [X,Y];

(B3) For each (i,5) € I, X I, and t € [X,Y], there exists a real number B(z, j) such that
if 2 € H(t) and its jth component x; < B(i, ), then = & Mj (t);

(B4) For each (i,7) € I,, x I,,, M} (t) is upper semi-continuous in t € [X,Y].

1

Theorem 3.4 Under Assumptions (B1), (B2), (B3) and (B4), there exists a connected
set H in H(X,Y) such that HN H(X) # 0, HNH(Y) # 0, and for each x € H, (7, x) is

a (X0 x;)-equitable allocation for some m € T'.

Proof: Without loss of generality, we may assume that B(i,j) = 0 for all 7,5 € I,,. So
from Assumption (B1) we see that 0 < X <VY. Recall S = {z € R} | X", x; = 1}.
Define C* = {x € S" | z; > 1/n} for each i € I,,. Let V denote the set S™ x S™. For each
(i,7) € I, x I, and t € [X,Y], define

N (1) ={y=7 |z e M)}
and
CEI(t) = C" x N/(t).

Clearly, for each t € [X,Y], C%9)(t) is a closed set, and the collection of sets { C%9)(t) |
(i,5) € I, x I,,} is a covering of V. Moreover, it is not difficult to show that C®9)(¢) is
upper semi-continuous in t. If z € C)(¢t) then 21, > 0 and x5 ; > 0.

For each ¢ € I,,, let a’ denote the vector >}_; e(h)/n—e(i) in R™ and let e” = Y"1_; e(h)/n.
For each (i, j) € I, x I,,, define a vector (/) € R" x R™ by

Now let the point-to-set mapping F' from [X,Y] x V to the collection of subsets of
R™ x IR" be given by

F(t,z) = Conv({ ™) | z € CUD(t)}),

where Conv(D) denotes the convex hull of a set D. It is easy to see that F' is upper
semi-continuous. Moreover, Use(x v]zev F(t, z) is compact, and for each t € [X,Y] and

x € V the set F(t,x) is nonempty, convex and compact. Let W be a compact, convex
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set in R" x R"™ containing Uc[x v)zev F (¢, ). Then we define the point-to-set mapping G
from W to the collection of subsets of V' by

Gly)={z" eV | afy < (a7) Ty, Vo €8
23y < (3) Tya, Va2 € S}
Again, G is upper semi-continuous. Moreover, for any y € W the set G(y) is nonempty,
compact and convex. For (¢,z,y) € [X,Y] x V x W, let ¢(t,z,y) be defined as

o(t,z,y) = G(y) x F(t,x).

Then ¢ is an upper semi-continuous mapping from the set [ X, Y] x V x W into the collection
of nonempty subsets of V' x W satisfying that for every (¢,z,y) € [X,Y] x V x W, the set
¢(t, z,y) is nonempty, convex and compact. According to Browder’s fixed point theorem,
the set

T={(tz,y) € X, Y] xV xW](z,y) € ¢(t,z,y)}

contains a connected set 7¢ such that T°N{X} x VxW # D and T°N{Y} x V x W # 0.
Let (t,z(t),y(t)) be an element in T. Then we can write z(t) = (x1(t),z2(t)) where
z1(t), zo(t) € S™. In the following we will show that for each ¢ € [X,Y], (7, txa(t)) is
t-equitable for some 7 € I". Since t is fixed below, we denote z(t), y(¢t) by * and y*. So it
holds that

ziy; < (23)'yt, Vo, e S,
zyys < (23)'ys, Vs € S™

Let 31 be equal to (z3)Ty: and By equal to (23)Ty;. Then by taking x; equal to e, it
follows that 8; > 0, since 3>i_; y7; = 0. When we take x; successively equal to e(i) for

every ¢ € I, we obtain

On the other hand, if for some i € I, it holds that z7, > 0, by taking x; equal to
z]+ A(@] — (7)) for arbitrarily small A > 0, we obtain that y7; > 3,. Hence y7; = (3; when
zj; > 0.

Let the collection £ of elements of I,, x I,, be defined by

L={L = (i,iy) € I, x I, | * € CL(t)}.

Suppose that £ = {L',--- L'}, where L* = (i% k). Since y* € F(t,z*) there exist some

nonnegative numbers pq, ---, g with sum equal to 1 such that
! k
yt = "
k=1

11



Suppose that z}, = 0 for some h € I,. Then it implies that h # i} for every k =1, ---,
[ and hence y7, > 0. Since 3L, y7, = 0, we have that yj = 0. Similarly, we can prove
y5 = 0. So,

!
3 e =o0. (3.4)
k=1

It follows from (3.4) that

> tgla',a’) =0
(i,5)el
and that
> g =1
(i,5)eL
for certain p(; ;) > 0 for (4, 5) € L. Moreover, it holds that for each i € I,,, >, i) = 1/n
and that for each j € I,, ¥; pui;;) = 1/n. From this property it follows that the n x n
matrix U with entries v; ;) defined by v(; jy = np ;) if (4,7) € £ and v, 5 =01if (4,5) € £
is a doubly stochastic matrix and therefore U is a convex combination of permutation
matrices according to the theorem of Birkhoff and von Neumann. So, there exists an
elment 7 = (mw(1),m(2),---,m(n)) € I" such that for every i € I,,, it holds

v(i,m(i)) > 0.
Equivalently, for every ¢ € I,,, it holds
p(i, m(z)) > 0.
Consequently, for every ¢ € I, it holds
(i,m(i)) € L.
Since z(t) = z* € N,_,C"" (t), we have
tao(t) € NPy MI (1),
This completes the proof. O
The above theorem can be equivalently stated as follows.

Theorem 3.5  Let X and Y be any real numbers with X <Y and let {M} | i,j € I,}
be a collection of closed nonempty subsets of H(X,Y'). Suppose that (i) it holds U?ZlMij =
H(X,Y) foreveryi € I,; (ii) for each (i,j) € I, x I, there ezists a real number B(i, j) such
that x € H(X,Y) with its jth component x; < B(i,5) implies x ¢ M} . Then there exists a
connected set H in H(X,Y) such that HNH(X) # 0, HNH(Y) # 0, and for each x € H,
(m,2) is a (S0, x;)-equitable allocation for some m € T by defining M} (t) = M7 N H(t).
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Following immediately from Theorems 3.4 or 3.5, we have the next theorem which can be
seen as a generalization of Theorem 5 of Svensson [12], Lemma of Gale [6] and the classic

lemma of Knaster, Kuratowski and Mazurkewicz (KKM) in combinatorial topology (see
e.g. Todd [13] and Yang [15]).

Theorem 3.6  Given a real numbert, let {M(t) | i,j € I,} be a collection of nonempty
subsets of H(t) which satisfy (i) it holds U?ZlMij(t) = H(t) for every i € I,,; (ii) for each
(1,7) € I, X I,,, there exists a real number B(i,j) such that x € H(t) with its jth component
x; < B(i,j) implies v & M} (t). Then there exists a t-equitable allocation (m,x) € T' x H(t).

4 Existence of fair allocations: a general case

In this section we deal with the existence problem of fair allocation in more general cases.
Our first theorem states that there exists an fair allocation if for some subeconomy its
Pareto optimal allocations are also Pareto optimal with respect to the original economy
and if Assumption 3.2 holds for the subeconomy. The analysis seems significantly more

difficult without these assumptions.

Theorem 4.1 There exists a fair allocation if there is an element I € © such that
for the subeconomy E = (II, M, P, [u;]) it holds PO(E) C PO(E) and if the following
condition is satisfied: For any (i,j) € I, X Ly, there exists a real number B(i,j) such that
if v € H(M) and its jth component x; < B(i, ), then u;(I1(j),z;) < maxyey,, u;(II(k), zx).

Proof: Following the proof of Theorem 3.3 and applying Theorem 3.6 will yield the result.
O

Next we will give two different sufficient conditions by requiring utility functions to be
continuous and strictly increasing in money. In the first theorem, the second part of the
condition is reminiscent of inequality (16) of Alkan, Demange and Gale ( [1], p.1030), while
in the second theorem, the second part of the condition can be seen as a dual counterpart
of the condition in the first theorem.

Theorem 4.2 There exists a fair allocation if there is an element I € © such that for
the subeconomy E = (I, M, P, [u;]) it holds PO(E) C PO(E) and if the following condition
18 satisfied: The utility functions are continuous and strictly increasing in money and there
exists L > |M| such that u;(I1(5), L) > u;(IL(k),0) for alli,j, k € I,.

Proof: Let Y = mL + |M|. We will prove that for any ¢ € P and for any z € H(M), if
z; < —Y, then

ui(I1(7), ;) < max u;(11(h), o).

13



Since u; is strictly increasing in money, we have
wi(I1(j), ;) < wi(I1(5), =Y) < w(II(),0).

Because u;(II(1), L) > u;(II(h),0) for all h,i,l € I, then we have
wi(T(7), ;) < wi(1(1), L)

for all I € I,,,. Since > j*, x5, = M and z; < —Y, then there exists some k € I,,, such that
x > L. Thus,
w;(I1(4), ;) < w;(I(k), zx) < maxu;(II(h),zp).

h&lm

Theorem 4.3 There exists a fair allocation if there is an element I1 € © such that for
the subeconomy E = (I, M, P, [u;]) it holds PO(E) C PO(E) and if the following condition
18 satisfied: The utility functions are continuous and strictly increasing in money and there
exists L < —|M| such that u;(I1(j), L) < u;(1I(k),0) for alli,j,k € L.

Proof: Let Y = —m|M|+ L. Clearly, Y < L < 0. We will prove that for any i € P and
for any z € H(M), if ; <Y, then

wi(11(7), ;) < maxu;(I(h), zp).
Since Yp' ;o = M and z; <Y, then there exists some k € I,,, such that z;, > 0. Thus,
u; (IL(5), z;) < w;(IL(j), L) < u;(1(k),0) < w;(II(k), zx) < gn?xui(ﬂ(h),xh).

m

O

Now we turn to discuss a simple but interesting case where agents have quasi-linear
utility functions. That is, utilities functions are given by u,;(x,m) = Vi(z) + m, where V;

are called reservation value functions.
Corollary 4.4 There always exists a fair allocation in quasi-linear utility cases.

Proof: Let II be a solution of the following optimization problem

m

rﬁlgg;vj(ﬂ(m-

Construct a subeconomy E = (I, M, P, [u;]). Since u; is quasi-linear, it is easy to see that
every Pareto optimal allocation of F is also an Pareto optimal allocation of £. Furthermore,

Assumption 3.2 holds for E. Then the result follows immediately from Theorem 4.1. O
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Corollary 4.4 shows that in the quasi-linear utility cases fair allocations always exist no
matter what reservation value functions may be. It is in striking contrast to the equilibrium
results (see e.g. Bevia, Quinzii and Silva [3]) where strong conditions are required to impose
on reservation value functions.

In the above discussions the distribution vector = of money could have positive or
negative components. This means that at a fair allocation some agents may have to pay
others some amount of money. In other words, agents must initially have a certain amount
of money. In some situations one has to require that the distribution vector = of money be
nonnegative, for example, when all agents initially have no money at all, or are not willing
to pay any money. In this case we have the following theorem, stating that there exists an
fair allocation with a nonnegative distribution of money if for some subeconomy its Pareto
optimal allocations are also Pareto optimal with respect to the original economy and if any

state in the subeconomy without consumption is not preferable. Let M > 0. Define
AM)={z e R} | Z@:M}
i1

Theorem 4.5 There exists a fair allocation with a nonnegative distribution of money
if there is an element 11 € © such that for the subeconomy E = (II, M, P, [u;]) it holds
PO(E) C PO(E) and the following condition is satisfied: For any (i,j) € I, X I, and any
r e AM) ifx; =0, then u;(I1(5), ;) < maxger,, w;(IL(k), xx).

This result generalizes the results of Svensson [12] and Maskin [10]. One can easily verify
that their conditions satisfy the one stated in Theorem 4.5. In their models it is required
that there should be the same number of agents as objects and each agent consume exactly

one object.

5 Strict monotonicity in welfare

In this section we give a comparative statics analysis on the welfare of each agent when
the total amount of money is regarded as a variable and when there are the same number
of agents as objects (m = mn and W = 1"). So in this section we will adopt the notation
used in Section 3. The main result says that if utility functions are continuous and strictly
increasing in money, then for any given X-fair allocation (7*,z*) there exists a connected
set H in H(Z,Y) with (Z < X < Y) such that for each x € H, (7, z) is a (X0 z;)-
fair allocation for some m € I', and (m,x) makes every agent strictly better (worse) off
when Y7, z; > (<)>X7zf. In other words, as the total amount ¢ of money increases
(decreases), the welfare of each agent will be better (worse) off compared with the initial

fair allocation (7*, z*).
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Theorem 5.1 Let X, Y, Z be three real numbers with Z < X <'Y. Suppose that
the utility functions are continuous and strictly increasing in money and that (7*, x*) is an
X -fair allocation. Then there exists a connected set H in H(Z,Y') such that HNH(Z) # 0,
HNH(X)={z*}, HNH(Y) # 0, and for each x € H, (7, z) is a (31 x;)-fair allocation
for some m € I', and (m,x) makes every agent strictly better (worse) off when Y1 | x; >

(<) Xy @y

Proof: Without loss of generality, suppose that 7* satisfies 7*(i) = i for all ¢ € I,,. Let
uf = u;(i,z7). Then we see that uf > u;(j, z}) for all j € I,. Using the initial fair allocation
x*, we define functions ¢ and ¢ : R — R by

P(z) = maX{ui(j,«T; +z)—ul|i,j € L},
Y(x) = min{u; (i, 2] +x) — ] |1 € I}

It is clear that ¢ and ¢ are strictly increasing, and ¢(0) = ¥(0) = 0. Let ¢~! denote the
inverse function of ¢. Define £(x) = ¢! o 1)(z). We see that £ is strictly increasing and
£(0) = 0 as well. And, since ¢(&(x)) = ¢ o &(z) = () < ¢(x), we have that £(z) < x.
Using the above functions, we define function  : R — R by

n

() =togo--of(z) =10l (x)

Again, 7 is continous and strictly increasing with 7(0) = 0 and n(z) < ¥(z). Now define
new utility functions f;(j, z;) for all 4, j € I,, by
masc{us(j,3,), 62 + oy — a)} (for @ > )
filg,z5) = v (for z; = x7)

max{u;(j,;),uf +2n(z; —2})}  (for z; < z3).
Clearly, these functions are strictly increasing and continuous. In particular, we have that

max{u; (i, z;),u} + 3n(x; — a})}  (for ; > x7)
fi(i, ;) u} (for x; = x})
max{w;(i, z;),uf + 2n(z; —xf)} (for z; < xf).
max{u; (i, x;),u; +n(x; —xf)}
max{u; (i, x;), uf + (x; — x})}
max{w; (i, z;), u;(i,2;) }

VAN VANVAN

This is implies that f;(i, z;) = w;(4,z;) for all ¢ € I,, and x; € R. With these utility func-

tions, we obtain a new economy. We will show this new economy satisfies Assumption 3.2
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for every ¢. In fact, we can choose B(i,j) = min{z}, t — 1 — ¥, x5} for all 4 and j. If
z € H(t) and x; < B(i, j), then there is some j" € I, such that z; > z7. Thus we have

[i(Gozy) <uf < fily',zy) < kagxfi(k‘,xk)-

By Theorem 3.3, we see that there exists a connected set H in H(Z,Y) such that H N
H(Z)# 0, HNH(Y) # 0, and for each z € H, (7, ) is a (>1-; x;)-fair allocation of the
new economy for some 7 € I'. Notice that any allocation z of money satisfying z; >
and = < zj (or z; > z} and zp < x}) for some j and k cannot be a fair allocation of
money in the new economy. This can be seen as follows. Consider such an allocation (z, )
for any 7. Then we have f;(k,zy) < fi(k,z}) = uj = fi(j,2}) < fi(j,z;) for all 5. This
means that no agent likes to have the bundle (xy, k).

It follows from the above discussion that for any x € H N H(t) and j € I, it holds
z; > a for t > X5 z; = 2} for t = X; and z; < 2} for ¢ < X. Thus we have that
HNH(X) = {z*}. Now it remains to show that a fair allocation of the new economy is
also a fair allocation of the original economy.

Let = be an arbitrary element in H. Then (7,z) is a (X} ; z;)-fair allocation of the
new economy for some 7 € I'. We first consider the case Y7 z; > > " | f. We will show
that (7, x) must be a fair allocation of the original economy. For this purpose, it is enough
to show that f;(m(i), xr@)) = wi(7(i), Tx)) for all ¢ € I,. Suppose to the contrary that
there is some 7 such that fi(7m(), Tx;)) # wi(7(i), Tx(s)). Recall that fi(i,z;) = (4, ;).
This means 7 (i) # i. Then there exists the smallest integer k(1 < k < n) such that

Sy (@), Tonn(y) 7 iy (T (0), T ),

k

where, 7%(i) =7 o --- o (7). Thus we have that

u; + 577(%(2') — Zry) = film(i), Ta))

1
> fi(Trk—H (Z), .Tﬂ—kJrl(i)) > u + En(xﬂk+1(i) — l':.k-t,-l(,i)).

That is, Tx(;) — m;(i) > Tty — xjrkﬂ(i). In the same way we can show that z, ;) — x;(i) <
Trkt1(s) — xj‘rk+1(i). Consequently, we have that @) — Triy = Trpkti(y — xj‘rk+1(i).

Note that for any integer [ with 1 <[ < k we have

Frry (7 6), i ()) = oy (D), 21 )

Then by the definition of envy free allocations, we obtain that

u;krl(i) + 1/1(x7r1(,») - xjrl(i)) < Ugi(y (Wl(i)a %l(i)) = fﬂl(i) (Wl(i)7 %l(i))
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< frry (TT6), i) = Uty (7 (0), Trria) < Wy + H(@rivry — Thieagy)-

The first inequality and the last follow from the definition of ¢ and ¢, respectively. It
follows that

V(@r) — Trigy) < O(Tarri) — Treg),
and so
Triris) — Tarery 2 §(Tat(s) — Trigy)-
Repeating k£ — 1 times the last inequality above leads to
Ty = Trge) = €7 (@ne) — Trgp) = € (e — Trrngy). (*)

On the other hand, we have that

Wiy + V(Taniay — Thriy) < Uiy (T°(0), Takg) = Froiy (77(0), 2 )

1
< fwk(i) (7Tk+1(i)u x7r’“+1(i)) = U;k(i) + §U($nk+1(¢) - x;krk'f'l(i))'
This implies that

1
0 < Y(@rr) — Tragy) < 577($7rk+1(¢) — Tpra(yy)-

Consequently, we obtain that
* — 1 * — *
Trk(s) = Tokgy < (G 1(577(x7rk+1(¢) - xﬂk+1(i))) <9 l(n(xﬂk+1(i) - %kﬂ(i)))

e gn(mﬂk+1(i) — le'k""l(l)) S gkil(mﬂ—k-‘rl(i) — :Ejl'k"’_l(l))
This contradicts the fact (x). Therefore we have that for all 4, j € I,

Ui ((1), Tr(i)) = fi(7(8), Ta(ey) > fi(d, 25) = wilg, ;).

That is, (m,x) is a fair allocation of the original economy. Note that in this fair allocation,
each agent’s utility is strictly better off compared with its utility in the initial fair allocation.
For the case > 7', z; < > ;27 we can prove the result in a similar way by noting that
x; <z for all j € I,,. O

In the above proof we see that each fair allocation in the new economy must be an
fair allocation in the original economy. Note that the converse is in general not true. For
example, there may be multiple fair allocations at H(X) but the above proof shows that
there is only one fair allocation at H(X) in the new economy. In other words, due to the

introduction of new utility functions the concept of fair allocation is refined in some way.
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6 The model of Alkan, Demange and Gale and new

existence theorems

In this section we consider the model of Alkan, Demange and Gale [1] and analyse it in
the framework of the current paper and furthermore provide several new and more general
existence results for their model. Since it is not trivial to see how their model can be unified
in the current framework, we therefore give a brief description of their model and related
concepts. In brevity, their model consists of m agents and n objects, and money M (called
an mxn-economy) and is similar to the models of Svensson [12] and Maskin [10] in the
case that the number of objects is equal to or less than the number of agents and thus is
similar to the model presented in Section 2. When the number of objects is greater than the
number of agents (i.e. m < n), Alkan, Demange and Gale introduce n—m fictitious agents
in their model who value only money, so that there will be the same number of agents as
objects. If agent i is fictitious, then u;(j,z) = x for all j. The mxn-economy plus n —m
fictitious agents will be called an nxn-economy. An allocation of the mxn-economy is
strongly fair (strongly envy-free) in the sense of Alkan, Demange and Gale if and only if
it is fair (envy-free) in the nxn-economy such that the total amount of money obtained
by real agents is equal to M. Thus, at a strongly fair allocation, each (including fictitious)
agent gets exactly one object with some money and the total amount of money obtained
by real agents is equal to M. Let Pg and Pr denote real and fictitious agents, respectively.
Hence an allocation (7, z) of the mxn-economy is strongly X-fair (strongly envy-free) in
the sense of Alkan, Demange and Gale if and only if it is a Y-fair (envy-free) allocation
with > ep, Tr@ = X for some Y > X in the n X n-economy. In what follows we will
give several sufficient conditions for the existence of strongly fair allocations in this model
based on Theorems 3.3 and 5.1 and then we show that these conditions are weaker than
those given by Alkan, Demange and Gale. Furthermore, we derive a strict monotonicity
property of strongly fair allocation.

Now we introduce our first sufficient condition for the existence of a strongly fair allo-

cation in the model of Alkan, Demange and Gale.

Assumption 6.1 For each i € Pr and p € R, there exists a real number A(i,p) > p
such that if © > A(i,p) and y < p, then u;(j,z) > w;(j',y) for all j and j' € I,,.

This assumption says that no object is infinitely desirable compared with money. It is clear
that Assumption 6.1 holds when each utility function w;(j,z) satisfies lim, o u;(j, )

= 400 and hmwﬂfoo uz(]v 'I) = —o0.

Theorem 6.2 If Assumption 6.1 holds for all i € Pgr, then there exists a Z-fair allo-
cation (p,z) in the n X n-economy with Y ;cp,. 2y = M for some Z > M.
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Proof: Choose Y so that Y > M and =2 > maxep, A(i,25). We first show that
Assumption 3.2 is satisfied by Assumption 6.1 for each ¢t € [M,Y]. For each (i, j) € I, X I,,
choose B(i,j) = min{0,M — (n — 1)A(7,0)}. Then for any t € [M,Y] and = € H(t)
with «; < B(i,j), there exists some k € I, such that z; > oy > M;f(f’j) > A(i,0).

n—1 —

Hence, by Assumption 6.1 we have that u;(j, z;) < w;(k,zx) < maxpey, u;(h, z;). That is,
Assumption 3.2 holds for each ¢ € [M,Y]. It follows from Theorem 3.3 that there exists
a connected set H in H(M,Y') such that KN H(M) # 0, HN H(Y) # 0, and for each
r€H, (mx)is a (3 x;)-fair allocation for some 7 € I'. Thus, there exists a continuous
function x(#) for 6 € [0, 1] such that z(0) e HNH(M), z(1) e KN H(Y), and (7(0),z(0))
is a (30 z4(0))-fair allocation for some 7(f) € I'. It remains to to show that there is some
6 € [0, 1] satisfying > ;cp,, Tr(0,:)(0) = M.

First, by the definition of envy-freeness and the utility functions of fictitious agents, we
see that Y ;cp,. Tr(0,:)(0) < M. Second, we will show that > ;cp. ©x1,)(1) > M. Suppose
it is not true. Then there will be some i € Pg with z,1;(1) < % and some j € Pp
with 217 (1) > L2 > max;ep, A4, 2). Thus, it follows from Assumption 6.1 that
ui(m(1,2), 2r1,iy(1)) < wug(m(1,5), 2rq,5)(1)). This contradicts the fact that (7(1),z(1)) is
an envy-free allocation of the nxn-economy. So we have that Y ,cp, Tz = M. Finally,
by the definition of envy-freeness and the utility functions of fictitious agents, we have that
for each i € Pp and 6 € [0, 1], 2,9, (f) = max;cs, x;(#) which is a continuous function of
f. Therefore, the function

S Zrn(0) = Y Ta0)(0) = D Zre,)(0) = D Tron(0) — (n — m)max;ey, z;(6)
i€Pr i€ly i€Pr icly
is continuous in 6 € [0,1]. Then by the intermediate value theorem, we see that there

exists some 0 € [0, 1] satisfying >;cp, ®x(0,i)(¢) = M. This completes the proof. O

Note that in the above theorem besides Assumption 6.1 we only require utility functions
to be continuous and nondecreasing. For the existence of strongly envy free allocation we
do not need any monotonicity.

The next theorem says that if the utility functions of real agents are continuous and

strictly increasing in money, then for any given t*-fair allocation (7*,z*), by increasing
(or decreasing) the total money to a proper level Z we can obtain a Z-fair allocation
(p,z) with Y ep, 2p() = M which makes every agent strictly better (worse) off, when
Siepn Tre(iy < (>)M.
Theorem 6.3 Suppose that (7*,x*) is a t*-fair allocation in the nxn-economy. More-
over if the utility function wu; is continuous and strictly increasing in money for every
i € Pr, then the economy has a Z-fair allocation (p,z) with > ,cp, 2,y = M for some
Z > M. Furthermore, we have u;(p(i), zpi)) > (<)ui(7*(i), Tre(sy) for all i € Pr when
Siepn Tre(i) < (>)M.
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Proof: Without loss of generality, we may assume Y ,cp. Tr+(;y < M. Choose an arbitrary
Y with

Y >(m—m+1)M+(n— m)2::1|x;|.

Then, by Theorem 5.1, we have a connected set H C H(t*,Y') such that H N H(t*) = x*,

HNH(Y) # 0, and for each x € H, (m,z) is a (X, z;)-fair allocation for some 7 € T.

Moreover, it satisfies that x; > z7, u;(7(2), 2r()) > wi(7*(i), 2re(y) for all i € I,,, when
?:1 x; >t = Z?le;f. We have to consider the following two cases.

Case 1: Yicp, iy > M for every fair allocation (m,z) of the nxn-economy with
z € HNH(Y). In this case, following the proof of Theorem 6.2 we can show the existence
of a Z-fair allocation (p, z) with Y ,cp, 2,y = M in the nxn-economy.

Case 2: There is some Y-fair allocation (o,y) of the nxmn-economy in H N H(Y') such
that > ,cp,. Yos) = L < M. In this case, let us consider the mxm-economy consisting of
m real agents and m indivisible objects J = {o(i)|i € Pr}. Let § € R™ be the vector
whose components are y, ;) for all i € Pr and & whose components are o(7) for all i € Pg.
Let us consider the fair allocation (7, %) in this mxm-economy. Obviously, it is an L-fair
allocation of the mxm economy. Then by Theorem 5.1, we can show that there exists
an M-fair allocation (7, x) in the mxm-economy with the total money M satisfying that
x; > y; > o) and uy(7(i), Tray) > ui(0(7), Yoi)) > w7 (i), Trn(5)) for all j € J and i € Pp.
Note that 7(i) € J for all i € Pg as well. Let Z = M + (Y — L). From (7, z) and (o,y) we
will construct a Z-fair allocation (p, z) of the nxn-economy with >=;cp. 2, = M. In fact,
we can take 2,y = T(;) and p(i) = (i) for all i € Pg and z,(;) = yo(;) and p(j) = o(j) for
all j € Pr. On the one hand, we have

u;i(p(i), Zp(i)) = wim(2), Triy) = wilds z5) = w7, 25)

for all © € Pg and j € J. On the other hand, it holds

wi(p(i), 2p(s)) = wi(w(i), Ta(iy)) > wi(o (i), Yoriy) > wilJ, y5) = wi(d, 2)

for alli € Pgpand j €I, \ J.
Finally let z = max{z,|j € J}. We see that

FEMAY, ] < M+ Y [zl
Futhermore, for j € I, \ J = {o(h)|h € Pr}, we have that
Y- M S (n—m)M + (n —m)>5_; ||

n—m n—m

Thus, 2z, > z; for all i € Pr and j € I,,. This implies that the allocation (p, z) is a Z-fair

allocation of the nxmn-economy with > .cp,. 2,5 = M. O
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It follows from Theorem 6.3 that given a strongly X-fair allocation of the m xn-economy
and Y > X, then there exists a strongly Y-fair allocation in the economy which makes
every agent better off. Thus we also obtain an alternative proof for Theorem 4 of Alkan,
Demange and Gale ( [1], p.1033).

By specifying a sufficient condition for the existence of a t-fair allocation we immediately

obtain the following existence theorem from Theorem 6.3.

Theorem 6.4  If, for every i € Pg, utility function u; is continuous and strictly increas-
ing in money and Assumption 3.2 holds for some t, then there exists a Z-fair allocation

(p,z) in the nxn-economy such that 3 ;cp, zpw) = M.

One can easily verify that Assumption 3.2 holds for the utility functions of fictitious agents.
Since the sufficient conditions in Theorem 4.2 also satisfy Assumption 3.2, we are led to

the following result.

Theorem 6.5 If utility function u; is continuous and strictly increasing in money and
there exists L > M such that u;(j, L) > u;(k,0) for all i € Pg, j,k € I,,, then there exists
a Z-fair allocation (p, z) in the nxn-economy such that Y .cp, 2y = M.

Finally we remark that the main existence theorem (i.e. Theorem 2) of Alkan, Demange
and Gale ( [1], p. 1030) follows from Theorem 6.5, since the above conditions are weaker
than their conditions (1) and (2) on page 1026. This can be seen from their inequality (16)
on page 1030. It should be noted that they define fair allocations based on value functions

instead of utility functions.
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