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Bootstrapping Macroeconometric Models

Ray C. Fair∗

Revised June 2003

Abstract

This paper outlines a bootstrapping approach to the estimation and analy-
sis of macroeconometric models. It integrates for dynamic, nonlinear, simul-
taneous equation models the bootstrapping approach to evaluating estimators
initiated by Efron (1979) and the stochastic simulation approach to evaluat-
ing models’ properties initiated by Adelman and Adelman (1959). It also
estimates for a particular model the gain in coverage accuracy from using
bootstrap confidence intervals over asymptotic confidence intervals.

1 Introduction

Consider a dynamic, nonlinear, simultaneous equations model of the following

form:

fi(yt , yt−1, . . . , yt−p, xt , αi) = uit , i = 1, . . . , n, t = 1, . . . , T , (1)

whereyt is ann–dimensional vector of endogenous variables,xt is a vector of

exogenous variables, andαi is a vector of coefficients. The firstm equations
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are assumed to be stochastic, with the remaining equations identities. The vector

of error terms,ut = (u1t , . . . , umt)
′, is assumed to beiid with mean zero. The

functionfi may be nonlinear in variables and coefficients. It is assumed that an

estimator is available for obtaining consistent estimates of the coefficients.

This specification is fairly general. It includes as a special case theVAR model.

It also incorporates autoregressive errors. If the original error term in equationi

follows arth order autoregressive process, saywit = ρ1iwit−1 + . . .+ρriwit−r +
uit , then equationi in (1) can be assumed to have been transformed into one withuit

on the right hand side. The autoregressive coefficientsρ1i . . . ρri are incorporated

into theαi coefficient vector, and additional lagged variable values are introduced.

This transformation makes the equation nonlinear in coefficients if it were not

otherwise, but this adds no further complications because the model is already

allowed to be nonlinear. The assumption thatut is iid is thus not as restrictive as

it would be if the model were required to be linear in coefficients.

This paper outlines a bootstrapping approach to the estimation and analysis of

the model in (1). Two somewhat separate literatures are relevant for this topic.

The bootstrap was introduced in statistics in 1979 by Efron (1979).1 The literature

that followed this classic paper stressed the use of the bootstrap for estimation

and the evaluation of estimators. Earlier, however, Adelman and Adelman (1959)

had introduced in economics the idea of drawing errors to analyze the properties

of econometric models. The literature that followed this classic paper stressed

the stochastic simulation of large scale macroeconometric models. The common

procedure in this literature has been to draw errors from estimated distributions

1See Hall (1992) for the history of resampling ideas in statistics prior to Efron’s paper.
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under the assumption of normality, although errors can just as easily be drawn from

the empirical distribution of the estimated residuals. The present paper focuses

exclusively on the idea of drawing errors from the estimated residuals, which is

distribution free, and it uses these draws for both estimation and analysis.

While there is by now a large literature on the use of the bootstrap in economics,

most of it has focused on small time series models. Good recent reviews are Li

and Maddala (1996), Horowitz (1997), Berkowitz and Kilian (2000), and Härdle,

Horowitz, and Kreiss (2001). The paper closest to the present work is Freedman

(1984), who considered the bootstrapping of the 2SLS estimator in a dynamic,

linear, simultaneous equations model. Runkle (1987) used the bootstrap to examine

impulse response functions in VAR models, and Kilian (1998) extended this work

to correct for bias. There is also work on bootstrapping GMM estimators (see,

for example, Hall and Horowitz (1996)), but this work is of limited relevance here

because it does not assume knowledge of a complete model.

In his review of bootstrapping MacKinnon (2002) analyzes an example of

a linear simultaneous equations model consisting of one structural equation and

one reduced form equation. He points out (p. 14) that “Bootstrapping even one

equation of a simultaneous equations model is a good deal more complicated that

bootstrapping an equation in which all the explanatory variables are exogenous

or predetermined. The problem is that the bootstrap DGP must provide a way to

generate all of the endogenous variables, not just one of them.” In this paper the

process generating the endogenous variables is the complete model (1). All the

nonlinear restrictions on the reduced form coefficients are accounted for.

As mentioned above, the standard procedure in the literature that followed the
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Adelman and Adelman (1959) paper has been to draw errors from estimated dis-

tributions. Also, in much of this literature coefficient uncertainty has not been

taken into account: coefficient estimates have been taken to be fixed. Early stud-

ies that drew from estimated error distributions and treated coefficient estimates

as fixed include Nagar (1969), Evans, Klein, and Saito (1972), Fromm, Klein,

and Schink (1972), Green, Leibenberg, and Hirsch (1972), Cooper and Fischer

(1972), Sowey (1973), Cooper (1974), Garbade (1975), Bianchi, Calzolari, and

Corsi (1976), and Calzolari and Corsi (1977). When coefficient estimates have

not been taken to be fixed, they have been drawn from estimated distributions of

the coefficient estimates. Studies that drewboth error terms and coefficients in-

clude Schink (1971), Haitovsky and Wallace (1972), Cooper and Fischer (1974),

Muench, Rolnick, Wallace, and Weiler (1974), Schink (1974), and Fair (1980a).

In a theoretical paper Brown and Mariano (1984) analyzed the procedure of

drawing errors from the estimated residuals for a static nonlinear econometric

model with fixed coefficient estimates. For the stochastic simulation results in Fair

(1998) errors were drawn from the estimated residuals for a dynamic, nonlinear,

simultaneous equations model with fixed coefficient estimates, and this may have

been the first time this distribution free approach was used for such models.

This paper makes two contributions. The first is to integrate for dynamic,

nonlinear, simultaneous equations models the bootstrap approach to evaluating

estimators and the stochastic simulation approach to evaluating models’properties.

The procedure in Section 4 for treating coefficient uncertainty has not been used

before for these kinds of models. The second is to estimate the gain in coverage

accuracy from using bootstrap confidence intervals over asymptotic intervals for
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a particular model (called the “US model”). It will be seen that the gain is fairly

large for this model.

This paper does not provide the theoretical restrictions on the model in (1)

that are needed for the bootstrap procedure to be valid. Assumptions beyondiid

errors and the existence of a consistent estimator are needed, but these have not

been worked out in the literature for the model considered here. This paper simply

assumes that the model meets whatever restrictions are sufficient for the bootstrap

procedure to be valid. Its contribution is to apply the procedure to the model in (1)

and to estimate the gain in coverage accuracy assuming the procedure is valid. It

remains to be seen what restrictions are needed beyondiid errors and a consistent

estimator. It is the case, however, that the bootstrap works well regarding coverage

accuracy when the US model is taken to be the truth. Given this, it seems likely

that the US model falls within the required conditions for validity.

Section 2 discusses the initial estimation and introduces the US model. Section

3 then discusses the use of the bootstrap to evaluate coefficient estimates, and it

uses the US model to estimate coverage accuracy. Section 4 discusses the use

of the bootstrap to analyze models’ properties, and Section 5 considers various

extensions, including the extension to models with rational expectations. The

bootstrap procedure is applied in Section 6 to the US model.

2 Initial Estimation and Example

Let α denote the vector of all the unknown coefficients in the model,α =
(α′

1, . . . , α
′
m)′, and letu denote the vector of errors for all the available periods,
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u = (u′
1, . . . , u

′
T )′, whereut is defined in Section 1. It is assumed that a consistent

estimate ofα is available, denoted̂α. This could be, for example, the 2SLS or 3SLS

estimate ofα. Given this estimate and the actual data,u can be estimated. Let̂u

denote the estimate ofu after the residuals have been centered at zero.2 Statistics of

interest can be computed. These can include t-statistics of the coefficient estimates

and possibleχ2 statistics for various hypotheses. For the result in Section 6 the

Andrews-Ploberger test statistic is examined, which tests for structural change.3 τ

will be used to denote the vector of estimated statistics of interest.

The example that is used for the empirical work is the US model in Fair

(1994). There are 29 stochastic equations, about 100 identities, and 164 coef-

ficients to estimate, counting autoregressive coefficients for the errors. The model

is dynamic, nonlinear, and simultaneous. The version used here is on the web-

site: http://fairmodel.econ.yale.edu.4 The estimation period is 1954:1–2002:3,

195 quarterly observations, and the estimation method is 2SLS. This version does

not have rational expectations.

2Freedman (1981) has shown that the bootstrap can fail for an equation with no constant term
if the residuals are not centered at zero. For all the results reported in this paper centering has
been done. From model (1),ûit , an element of̂u, is fi(yt , yt−1, . . . , yt−p, xt , α̂i) except for the
adjustment that centers the residuals at zero.

3See Andrews and Ploberger (1994).
4One of the demand for money equations in the model is estimated under the assumption of a

fourth order autorgressive error, and the sum of the autoregressive coefficients is close to one. For
the work in this paper this equation was dropped, leaving 29 stochastic equations rather than 30.
This equation is not important in the model because the short term interest rate is determined by
an estimated interest rate rule of the Fed.
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3 Distribution of the Coefficient Estimates

3.1 The Bootstrap Procedure

The bootstrap procedure for evaluating estimators for the model in (1) is:

1. For a given trialj , drawu
∗j
t from û with replacement fort = 1, . . . , T . Use

these errors and̂α to solve the model (1) dynamically fort = 1, . . . , T .5

Treat the solution values as actual values and estimateα by the consistent
estimator (2SLS, 3SLS, or whatever). Letα̂∗j denote this estimate. Compute
also the test statistics of interest, and letτ ∗j denote the vector of these values.

2. Repeat step 1 forj = 1, . . . , J .

Step 2 givesJ values of each element ofα̂∗j andτ ∗j . Using these values, confi-

dence intervals for the coefficient estimates can be computed (see below). Also,

for the originally estimated value of any test statistic, one can see where it lies on

the distribution of theJ values.

Note that each trial generates a new data set. Each data set is generated using

the same coefficient vector (α̂), but in general the data set has different errors for a

period from those that existed historically. Note also that since the drawing is with

replacement, the same error vector may be drawn more than once in a given trial,

while others may not be drawn at all. All data sets are conditional on the actual

values of the endogenous variables prior to period 1 and on the actual values of the

exogenous variables for all periods.

5This is just a standard dynamic simulation, where instead of using zero values for the error
terms the drawn values are used.
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3.2 Estimating Coverage Accuracy

Three confidence intervals are empirically examined here.6 Let β denote a partic-

ular coefficient inα. Let β̂ denote the base estimate (2SLS, 3SLS, or whatever)

of β, and letσ̂ denote its estimated asymptotic standard error. Letβ̂∗j denote the

estimate ofβ on thej th trial, and letσ̂ ∗j denote the estimated asymptotic standard

error ofβ̂∗j . Let t∗j equal the t-statistic(β̂∗j − β̂)/σ̂ ∗j . Assume that theJ values

of t∗j have been ranked, and lett∗r denote the value below whichr percent of the

values oft∗j lie. Finally, let|t∗j | denote the absolute value oft∗j . Assume that the

J values of|t∗j | have been ranked, and let|t∗|r denote the value below whichr

percent of the values of|t∗j | lie. The first confidence interval is simplŷβ ±1.96σ̂ ,

which is the 95 percent confidence interval from the asymptotic normal distribu-

tion. The second is (̂β − t∗.975σ̂ , β̂ − t∗.025σ̂ ), which is the equal-tailed percentile-t

interval. The third isβ̂ ± |t∗|.950σ̂ , which is the symmetric percentile-t interval.

The following Monte Carlo procedure is used to examine the accuracy of the

three intervals. This procedure assume that the data generating process is the model

(1) with true coefficientŝα.

a. For a given repetitionk, drawu∗∗k
t from û with replacement fort = 1, . . . , T .

Use these errors and̂α to solve the model (1) dynamically fort = 1, . . . , T .
Treat the solution values as actual values and estimateα by the consistent
estimator (2SLS, 3SLS, or whatever). Letα̂∗∗k denote this estimate. Use this
estimate and the solution values from the dynamic simulation to compute
the residuals,u, and center them at zero. Letû∗∗k denote the estimate ofu
after the residuals have been centered at zero.7

6See Li and Maddala (1996), pp. 118-121, for a review of the number of ways confidence
intervals can be computed using the bootstrap. See also Hall (1988).

7From model (1),̂u∗∗k
it , an element of̂u∗∗k, is fi(y

∗∗k
t , y∗∗k

t−1, . . . , y
∗∗k
t−p, xt , α̂

∗∗k
i ) except for the

adjustment that centers the residuals at zero, wherey∗∗k
t−h is the solution value ofyt−h from the

dynamic simulation (h = 0, 1, . . . , p).
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b. Perform steps 1 and 2 in Section 3.1, whereû∗∗k replaceŝu andα̂∗∗k replaces
α̂. Compute from theseJ trials the three confidence intervals discussed
above, wherêβ∗∗k replacesβ̂ andσ̂ ∗∗k replaceŝσ . Record for each interval
whether or notβ̂ is outside of the interval.

c. Repeat steps a and b fork = 1, . . . , K.

After completion of theK repetitions, one can compute for each coefficient and

each interval the percent of the repetitions thatβ̂ was outside the interval. For, say,

a 95 percent confidence interval, the difference between the computed percent and

5 percent is the error in coverage probability.

This procedure was used on the US model to examine coverage accuracy. For

this work bothJ andK were taken to be 350, for a total of 122,500 times the model

was estimated (by 2SLS). There were 847 solution failures out of the 122,500 trials,

and these failures were skipped. The job took about 40 hours on a 1.7 Ghz PC,

about one second per estimation. The results are summarized in Table 1. Rejection

rates are presented for 12 of the coefficients in the model. The average for the 12

coefficients is presented as well as the average for all 164 coefficients in the model.

The standard deviation for the 164 coefficients is also presented.

The average rejection rate over the 164 coefficients is .085 for the asymptotic

interval, which compares to .063 and .056 for the two bootstrap intervals. The

asymptotic distribution thus rejects too often, and the bootstrap distributions are

fairly accurate. Although not shown in Table 1, the results are similar if 90 percent

confidence intervals are used. In this case the asymptotic rejection rate averaged

across the 164 coefficients is .145 (standard deviation of .055). The corresponding

values for the two bootstrap intervals are .113 (standard deviation of .030) and .107

(standard deviation of .029). As noted in Section 1, given the good bootstrap
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Table 1
Estimated Coverage Accuracy for the US Model

Percent of Rejections using
95 Percent Confidence Intervals

a b c

CS equation
ldv .140 .066 .066
income .100 .049 .057

CN equation
ldv .123 .066 .066
income .126 .063 .043

CD equation
ldv .143 .051 .066
income .131 .086 .071

PF equation
ldv .074 .057 .049
PIM .069 .040 .040
UR .043 .037 .040

RS equation
ldv .074 .080 .066
inflation .089 .077 .069
UR .051 .057 .051

Average (12) .097 .061 .057

Average (164) .085 .063 .056
SD (164) .045 .022 .020

Notes:
a: Asymptotic confidence interval.
b: Bootstrap equal-tailed percentile-t interval.
c: Bootstrap symmetric percentile-t interval.
Average (12) = Average for the 12 coefficients.
Average (164) = Average for all 164 coefficients.
SD (164) = Standard deviation for all 164 coefficients
ldv: lagged dependent variable, CS: consumption of services,
CN: consumption of nondurables, CD: consumption of durables,
PF: private nonfarm deflator, RS: three-month Treasury bill rate,
PIM: import price deflator, UR: unemployment rate.

results it seems likely that the US model falls within the required conditions for

validity of the bootstrap.
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4 Analysis of Models’ Properties

The bootstrap procedure is extended in this section to evaluating properties of

models like (1). The errors are drawn from the residuals, which is contrary to

what has been done in the previous literature except for Fair (1998). Also, as in

Section 3.1, the coefficients are estimated on each trial. In the previous literature

the coefficient estimates either have been taken to be fixed or have been drawn

from estimated distributions.

When examining the properties of models, one is usually interested in a period

smaller than the estimation period. Assume that the period of interest iss through

S, wheres ≥ 1 andS ≤ T . The bootstrap procedure for analyzing properties is:

1. For a given trialj , drawu
∗j
t from û with replacement fort = 1, . . . , T .

Use these errors and̂α to solve the model (1) dynamically fort = 1, . . . , T .
Treat the solution values as actual values and estimateα by the consistent
estimator (2SLS, 3SLS, or whatever). Letα̂∗j denote this estimate. Discard
the solution values; they are not used again.

2. Drawu
∗j
t from û with replacement fort = s, . . . , S.8 Use these errors and

α̂∗j to solve the model (1) dynamically fort = s, . . . , S. Record the solution
value of each endogenous variable for each period. This simulation uses the
actual (historical) values of the variables prior to periods, not the values
used in computinĝα∗j .

3. Multiplier experiments can be performed. First solve the model for periods

throughS usingα̂∗j and the drawn errors. Record the solution values of the
endogenous variables. Then change one or more exogenous variables and
solve again. The difference between the second solution value and the first
for a given endogenous variable and period is the model’s estimated effect
of the change. Record these differences.

8If desired, these errors can be the same errors drawn in step 1 for thes throughS period. With
a large enough number of trials, whether one does this or instead draws new errors makes a trivial
difference. It is assumed here that new errors are drawn.
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4. Repeat steps 1, 2, and 3 forj = 1, . . . , J .

5. Step 4 givesJ values of each endogenous variable for each period. It also
givesJ values of each difference for each period if a multiplier experiment
has been performed.

A distribution ofJ predicted values of each endogenous variable for each period

is now available to examine. One can compute, for example, various measures of

dispersion, which are estimates of the accuracy of the model. Probabilities of

specific events happening can also be computed. If, say, one is interested in the

event of two or more consecutive periods of negative growth in real output in the

s throughS period, one can compute the number of times this happened in theJ

trials. If a multiplier experiment has been performed, a distribution ofJ differences

for each endogenous variable for each period is also available to examine. This

allows the uncertainty of policy effects in the model to be examined.9

If the coefficient estimates are taken to be fixed, then step 1 above is skipped.

The same coefficient vector (α̂) is used for all the solutions. Although in much

of the stochastic simulation literature coefficient estimates have been taken to be

fixed, this is not in the spirit of the bootstrap literature. From a bootstrapping

perspective, the obvious procedure to follow after the errors have been drawn is to

first estimate the model and then examine its properties, which is what the above

procedure does.

9The use of stochastic simulation to estimate event probabilities was first discussed in Fair
(1993b), where the coefficient estimates were taken to be fixed and errors were drawn from estimated
distributions. Estimating the uncertainty of multiplier or policy effects in nonlinear models was
first discussed in Fair (1980b), where both errors and coefficients were drawn from estimated
distributions.
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5 Extensions

Bias Correction

Since 2SLS and 3SLS estimates are biased, it may be useful to use the bootstrap

procedure to correct for bias. This is especially true for estimates of lagged de-

pendent variable coefficients. It has been known since the work of Orcutt (1948)

and Hurwicz (1950) that least squares estimates of these coefficients are biased

downwards even when there are no right hand side endogenous variables.

In the present context a bias-correction procedure using the bootstrap is as

follows.

1. From step 2 in Section 3.1 there areJ values of each coefficient available.
Compute the mean value for each coefficient, and letᾱ denote the vector of
the mean values. Letγ = ᾱ−α̂, the estimated bias. Compute the coefficient
vectorα̂−γ and use the coefficients in this vector to adjust the constant term
in each equation so that the mean of the error terms is zero. Letα̃ denote
α̂−γ except for the constant terms, which are as adjusted.α̃ is then taken to
be the unbiased estimate ofα. Let θ denote the vector of estimated biases:
θ = α̂ − α̃.

2. Usingα̃ and the actual data, compute the errors. Denote the error vector as
ũ. (ũ is centered at zero because of the constant term adjustment in step 1.)

3. The steps in Section 4 can now be performed whereα̃ replacesα̂ and ũ

replaceŝu. The only difference is that after the coefficient vector is estimated
by 2SLS, 3SLS, or whatever, it hasθ subtracted from it to correct for bias.
In other words, subtractθ from α̂∗j on each trial.10

10One could for each trial do a bootstrap to estimate the bias—a bootstrap within a bootstrap.
The base coefficients would beα̂∗j and the base data would be the generated data on trialj . This
is expensive, and an approximation is simply to useθ on each trial. This is the procedure used
by Kilian (1998) in estimating confidence intervals for impulse responses in VAR models. Kilian
(1998) also does, when necessary, a stationary correction to the bias correction to avoid pushing
stationary impulse response estimates into the nonstationary region. This type of adjustment is not
pursued here.
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The example in Section 6 examines the sensitivity of some of the results to the bias

correction.

Optimal Control

At the point where multiplier experiments are discussed above, optimal control

experiments can also be performed. Assume that the period of interest iss through

S and that the objective is to maximize the expected value ofW , whereW is

W =
S∑

t=s

gt (yt , xt ) (2)

Let zt be the vector of control variables, wherezt is a subset ofxt , and letz be

the vector of all the control values:z = (zs, . . . , zS). Under the assumption of

certainty equivalence, the control problem is solved at the beginning of periods

by setting the errors for periods and beyond equal to zero. If this is done, then

for each value ofz one can compute a value ofW by first solving the model

for ys, . . . , yS and then using these values along with the values forxs, . . . , xS

to computeW in (2). Stated this way, the optimal control problem is choosing

variables (the elements ofz) to maximize anunconstrained nonlinear function.

By substitution, the constrained maximization problem is transformed into the

problem of maximizing an unconstrained function of the control variables:

W = 	(z) (3)

where	 stands for the mappingz −→ ys, . . . , yS, xs, . . . , xS −→ W . Given this

setup, the problem can be turned over to a nonlinear maximization algorithm like

Davidon-Fletcher-Powell (DFP). For each iteration of the algorithm, the derivatives
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of 	 with respect to the elements ofz, which are needed by the algorithm, can be

computed numerically. An algorithm like DFP is generally quite good at finding

the optimum for a typical control problem.11

At each trialj one can solve this problem. Letz
∗j
s be the computed optimal

value ofzs on trial j . This is the value that would be implemented for periods

by the control authority.12 At the end one has a distribution of theJ values of

z
∗j
s , which can be examined. Note thatz

∗j
s varies across trials only because the

coefficient estimates vary. The errors that are drawn for trialj for periodss through

S don’t matter because of the use of certainty equivalence. The distribution of the

z
∗j
s values thus indicates how sensitive the control values are to the uncertainty in

the coefficient estimates.

Rational Expectations

Consider model (1) with rational expectations:

fi(yt , yt−1, . . . , yt−p, Et−1yt , Et−1yt+1, . . . , Et−1yt+h, xt , αi) = uit ,

(i = 1, . . . , n), (t = 1, . . . , T ),
(4)

whereEt−1 is the conditional expectations operator based on the model and on

information through periodt − 1.

The bootstrap procedure requires initial consistent estimates of theαi . It also

requires, of course, the ability to solve the model given a set of coefficient estimates.

Various modifications of the 2SLS estimator are available for estimating equations

11See Fair (1974) for various applications of this procedure.
12The control problem also calculates the optimal values for periodss + 1 throughS, but in

practice these would never have to be implemented because a new problem could be solved at the
beginning of periods + 1 after periods was realized. This is the “open-loop feedback” approach.
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with rational expectations, and so one of these could be used.13 There are also a

number of methods for solving rational expectations models like (4). One method

that generally works well is the “extended path” (EP) method in Fair and Taylor

(1983, 1990). The solution methods assume that agents form their expectations

at the beginning of periodt by setting the errors for periodt and beyond to zero

and then solving the model. Estimation and solution methods are thus available

for allowing the above bootstrap procedure to be used for models with rational

expectations.

When estimating or solving (4) for, say, periods 1 throughT , data beyond period

T are needed, and so the period analyzed must end before the actual end of the

historical data. It should also be noted that if a single equation estimation method

is used, the expectations used by the estimation method are not the expectations

that one gets when the overall model is solved after the coefficients have been

estimated. In other words, the expectations used by the estimation method are not

model consistent. This means that one has to be careful in computing the errors

(û) after the coefficients are estimated (α̂ computed). For example, the errors for

period 1 are computed by first solving the model to get the expectations. This

is done by using the historical data prior to period 1 and setting the errors for

period 1 and beyond to zero. Once the expectations are computed, the errors for

period 1 are computed using these expectation values and the actual values of

the endogenous variables for period 1. The process is then repeated for period 2,

where the expectations are computed using the historical data prior to period 2 and

setting the errors for period 2 and beyond to zero. The process continues through

13See Fair (1993a) for a review of these estimators.
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periodT . Onceû is computed, the bootstrap procedure can proceed as in Sections

3 and 4.

6 An Example

In this section the overall bootstrap procedure is applied to the US model, where

the estimation period is 1954:1–2002:3 and the estimation method is 2SLS.

The calculations were run in one large batch job. The main steps were:

1. Estimate the 29 equations by 2SLS for 1954:1–2002:3. Compute standard er-
rors of the coefficient estimates, and perform the Andrews-Ploberger (1994)
(AP) test on selected equations. Using the 2SLS estimates and zero values
for the errors, solve the model dynamically for 2000:4-2002:3 and perform a
multiplier experiment for this period. Using the actual data and the 2SLS es-
timates, compute the 29-dimensional error vectors for 1954:1–2002:3 (195
vectors).

2. Do the following 2000 times: 1) draw with replacement 195 error vectors
from the residual vectors for 1954:1–2002:3, 2) using the drawn errors and
the 2SLS estimates from step 1, solve the model dynamically for 1954:1–
2002:3 to get new data, 3) using the new data, estimate the model by 2SLS,
compute t-statistics for the coefficient estimates, and perform the AP tests,
4) reset the data prior to 2000:4 to the actual data, 5) draw with replacement
8 error vectors from the residual vectors for 2000:4–2002:3, 6) using the
new 2SLS estimates and the drawn errors, solve the model dynamically for
2000:4–2002:3 and perform the multiplier experiment for this period.

3. Step 2 gives for each equation 2000 values of each coefficient estimate, t-
statistic, andAP statistic. It also gives 2000 predicted values of each endoge-
nous variable for each quarter within 2000:4–2002:3 and 2000 differences
for each endogenous variable and each quarter from the multiplier experi-
ment. These values can be analyzed as desired. Some examples are given
below. Steps 4-6 that follow are the bias-correction calculations.

4. From the 2000 values for each coefficient, compute the mean and then sub-
tract the mean from twice the 2SLS coefficient estimate from step 1. Use
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these values to adjust the constant term in each equation so that the mean of
the error terms is zero. Using these coefficients (including the adjusted con-
stant terms), record the differences between the 2SLS coefficient estimates
from step 1 and these coefficients. Call the vector of these values the “bias-
correction vector.” Using the new coefficients and zero values for the errors,
solve the model dynamically for 2000:4–2002:3 and perform the multiplier
experiment for this period. Using the actual data and the new coefficients,
compute the 29-dimensional error vectors for 1954:1–2002:3 (195 vectors).

5. Do the following 2000 times: 1) draw with replacement 195 error vectors
from the residual vectors from step 4 for 1954:1–2002:3, 2) using the drawn
errors and the coefficients from step 4, solve the model dynamically for
1954:1–2002:3 to get new data, 3) using the new data, estimate the model
by 2SLS and adjust the estimates for bias using the bias-correction vector
from step 4, 4) reset the data prior to 2000:4 to the actual data, 5) draw
with replacement 8 error vectors from the residual vectors from step 4 for
2000:4–2002:3, 6) using the new coefficient estimates and the drawn errors,
solve the model dynamically for 2000:4–2002:3 and perform the multiplier
experiment for this period.

6. Step 5 gives 2000 predicted values of each endogenous variable for each
quarter within 2000:4–2004:1 and 2000 differences for each endogenous
variable and each quarter from the multiplier experiment.

The same sequence of random numbers was used for the regular calculations

(steps 1-3) as was used for the bias-correction calculations (steps 4-6). This lessens

stochastic simulation error in comparisons between the two sets of results. If the

model failed to solve for a given trial (either for the 1954:1–2002:3 period or the

2000:4–2002:3 period), the trial was skipped. No failures occurred for the regular

calculations, but there were 5 failures out of the 2000 trials for the bias-correction

calculations. Each trial takes about one second on a 1.7 Ghz PC using the Fair-

Parke (1995) program.

18



Table 2 presents some results from step 2 for the coefficient estimates. Results

for 12 coefficients from 5 equations are presented. The 5 equations are three

consumption equations, a price equation, and an interest rate rule. The coefficients

are for the lagged dependent variable in each equation, income in each consumption

equation, the price of imports and the unemployment rate in the price equation,

and inflation and the unemployment rate in the interest rate rule. These are some

of the main coefficients in the model.

The first three columns show the 2SLS estimate, the mean from the 2000

trials, and the ratio of the two. As expected, the mean is smaller than the 2SLS

estimate for all the lagged dependent variable coefficients: the 2SLS estimates of

these coefficients are biased downwards. The smallest ratio is 0.966, a bias of 3.4

percent.

Column 4 gives the asymptotic confidence intervals; column 5 gives the confi-

dence intervals using the equal-tailed percentile-t interval; and column 6 gives the

symmetric percentile-t interval using the absolute values of the t-statistics. These

columns show that the asymptotic intervals tend to be narrower than the bootstrap

intervals. In 19 of the 24 cases the left value for the asymptotic interval is larger

than the left value for the bootstrap interval, and in 19 of the 24 cases the right

value for the asymptotic interval is smaller than the right value for the bootstrap

interval. The asymptotic intervals will thus tend to reject more often than the boot-

strap intervals. It was seen in Section 3.2 that the asymptotic interval rejects too

often.
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Table 2
Confidence Intervals for Selected Coefficients

(1) (2) (3) (4) (5) (6)
β̂ β̄ (2)/(1) a b c

CS equation
ldv 0.7873 0.7609 0.966 0.7215 0.7449 0.7031

0.8531 0.8827 0.8716
income 0.1058 0.1163 1.099 0.0613 0.0458 0.0516

0.1504 0.1415 0.1601
CN equation
ldv 0.7823 0.7565 0.967 0.7219 0.7442 0.7026

0.8427 0.8718 0.8621
income 0.0973 0.1134 1.165 0.0575 0.0393 0.0461

0.1372 0.1241 0.1486
CD equation
ldv 0.3294 0.3720 1.129 0.2226 0.1755 0.1913

0.4362 0.3979 0.4675
income 0.1077 0.1218 1.131 0.0701 0.0532 0.0591

0.1453 0.1291 0.1564
PF equation
ldv 0.8806 0.8715 0.990 0.8487 0.8580 0.8426

0.9125 0.9246 0.9186
PIM 0.0480 0.0477 0.994 0.0440 0.0442 0.0438

0.0520 0.0525 0.0522
UR -0.1780 -0.1787 1.004 -0.2238 -0.2239 -0.2266

-0.1322 -0.1280 -0.1293
RS equation
ldv 0.9092 0.9026 0.993 0.8834 0.8870 0.8812

0.9349 0.9398 0.9371
inflation 0.0803 0.0848 1.057 0.0549 0.0520 0.0538

0.1056 0.1023 0.1067
UR -0.1128 -0.1123 0.995 -0.1699 -0.1716 -0.1713

-0.0558 -0.0545 -0.0543

Notes:
a: β̂ − 1.96σ̂ b: β̂ − t∗.975σ̂ c: β̂ − |t∗|.950σ̂

β̂ + 1.96σ̂ β̂ − t∗.025σ̂ β̂ + |t∗|.950σ̂

β̂ = 2SLS estimate;̂σ = estimated asymptotic standard error ofβ̂.
β̄ = mean of the values of̂β∗j , whereβ̂∗j is the estimate ofβ

on thej th trial.
t∗r = value below whichr percent of the values oft∗j lie,

wheret∗j = (β̂∗j − β̂)/σ̂ ∗j ,
whereσ̂ ∗j is the estimated asymptotic standard error ofβ̂∗j .

|t∗|r = value below whichr percent of the values of|t∗j | lie.
See Table 1 for variable notation.
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Table 3
Results for the AP Tests

Bootstrap Asymptotic
# of

Eq. coefs. AP 1% 5% 10% 1% 5% 10%

CS 9 21.18 17.47 13.84 12.15 11.16 8.96 7.77
CN 9 14.67 14.50 12.16 10.64 11.16 8.96 7.77
CD 9 12.76 16.48 12.76 11.23 11.16 8.96 7.77
IH 7 7.17 13.25 10.62 9.35 9.50 7.31 6.28
PF 6 12.77 10.72 8.07 6.85 8.70 6.51 5.58

Notes:
IH: Housing investment; see Table 1 for other notation.
Sample period: 1954:1–2002:3.
Period for possible break: 1970:1–1979:4.
Value ofλ = 2.29.
Asymptotic values from Andrews and Ploberger (1994), Table 1.

Table 3 presents results for theAP test for five equations: the three consumption

equations, a housing investment equation, and the price equation.14 The overall

sample period is 1954:1–2002:3, and the period for a possible break was taken to

be 1970:1-1979:4. (An advantage of the AP test is that the possible break point

can be specified to be within a period rather than a particular quarter.) Table 3

gives for each equation the computed AP value, the bootstrap confidence values,

and the asymptotic confidence values. The asymptotic confidence values are taken

from Table 1 in Andrews and Ploberger (1994). The value ofλ in the AP notation

for the present results is 2.29. The bootstrap confidence values for an equation

are computed using the 2000 values of the AP statistic. The 5 percent value, for

example, is the value above which 100 of the AP values lie.

There is a clear pattern in Table 3, which is that the asymptotic confidence

values are too low. They lead to rejection of the null hypothesis of stability too

14The test was not performed for the interest rate rule because the equation is already estimated
under the assumption of a change in Fed behavior in the 1979:4–1982:3 period.
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often. Relying on the asymptotic values for the AP test thus appears to be too

harsh.

Table 4 presents results for the simulations for 2000:4–2002:3. Results for

four variables are presented: the log of real GDP, the log of the GDP deflator, the

unemployment rate, and the three-month Treasury bill rate. Four sets of results

are presented: with and without coefficient uncertainty and with and without bias

correction.15 Consider the first set of results (upper left corner) in Table 4. The

first column gives the deterministic prediction (based on setting the error terms

to zero and solving once), and the second gives the median value of the 2000

predictions. These two values are close to each other, which means there is little

bias in the deterministic prediction. The third column gives the difference between

the median predicted value and the predicted value below which 15.87 percent of

the values lie, and the fourth column gives the difference between the predicted

value above which 15.87 percent of the values lie and the median value. For a

normal distribution these two differences are the same and equal one standard

error. Computing these differences is one possible way of measuring forecast

uncertainty in the model. The same differences are presented for the other three

sets of results in Table 4.

Three conclusions can be drawn from the results in Table 4. First, the left and

right differences are fairly close to each other. Second, the differences with no

coefficient uncertainty are only slightly smaller than those with coefficient

15The results without coefficient uncertainty were obtained in a separate batch job. This batch
job differed from the one outlined at the beginning of this section in that in part 6) of step 2 the
2SLS estimates from step 1 are used, not the new 2SLS estimates. Also, in part 6) of step 5 the
coefficients from step 4 are used, not the new coefficient estimates. For this job there were no
solution failures for the regular calculations and 3 failures for the bias-correction calculations.
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Table 4
Simulation Results for 2000:4–2002:3

Var. h Ŷ Y.5 left right Y.5 left right

No
Coefficient Uncertainty Coefficient Uncertainty

No Bias Correction
gdrp 1 7.746 7.745 0.562 0.5697.746 0.506 0.486

4 7.748 7.746 1.423 1.4347.748 1.248 1.240
8 7.778 7.774 1.719 1.7127.777 1.445 1.522

gdpd 1 4.681 4.681 0.275 0.3224.681 0.277 0.291
4 4.700 4.700 0.591 0.6214.700 0.513 0.589
8 4.718 4.717 0.886 0.9314.717 0.734 0.786

UR 1 4.146 4.152 0.365 0.3444.167 0.363 0.369
4 4.445 4.488 0.745 0.7574.491 0.687 0.651
8 4.642 4.748 0.863 0.9564.683 0.819 0.821

RS 1 5.970 5.974 0.545 0.5385.987 0.584 0.485
4 5.155 5.068 1.196 1.2005.102 1.112 1.162
8 5.002 4.829 1.428 1.4554.969 1.327 1.359

Bias Correction
gdpr 1 7.746 7.746 0.539 0.5717.746 0.516 0.515

4 7.750 7.750 1.542 1.5127.750 1.283 1.366
8 7.781 7.782 2.020 2.1057.781 1.658 1.709

gdpd 1 4.681 4.681 0.270 0.3244.681 0.281 0.303
4 4.699 4.699 0.609 0.6304.699 0.513 0.585
8 4.718 4.717 0.972 0.9864.717 0.742 0.804

UR 1 4.173 4.224 0.384 0.3584.195 0.347 0.346
4 4.482 4.600 0.858 0.8154.540 0.717 0.667
8 4.602 4.774 1.122 1.1004.664 0.910 0.885

RS 1 5.942 5.905 0.538 0.5515.948 0.538 0.503
4 5.162 5.060 1.228 1.2985.114 1.125 1.181
8 5.086 4.997 1.628 1.5675.077 1.425 1.395

Notes:
h = number of quarters ahead.
Ŷ = predicted value from deterministic simulation.
Yr = value below whichr percent of the values ofY j lie, whereY j is the

predicted value on thej th trial.
left = Y.5 − Y.1587, right =Y.8413− Y.5, units are percentage points.
gdpr: log of real GDP; gdpd: log of GDP deflator; see Table 1 for others.
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uncertainty, and so most of the predictive uncertainty is due to the additive errors.

Third, the bias-correction results are fairly similar to the non bias-correction ones,

which suggests that bias is not a major problem in the model. In most cases the

uncertainty estimates are larger for the bias-correction results.

Table 5 presents results for the multiplier experiment. The experiment was

an increase in real government purchases of goods of one percent of real GDP

for 2000:4–2002:3. The format of Table 5 is similar to that of Table 4, where

the values are multipliers16 rather than predicted values. The first column gives

the multiplier computed from deterministic simulations, and the second gives the

median value of the 2000 multipliers. As in Table 3, these two values are close to

each other. The third column gives the difference between the median multiplier

and the multiplier below which 15.87 percent of the values lie, and the fourth

column gives the difference between the multiplier above which 15.87 percent of

the values lie and the median multiplier. These two columns are measures of the

uncertainty of the government spending effect in the model.

Three conclusions can be drawn from the results in Table 5. First, the left and

right differences are fairly close to each other. Second, the differences are fairly

small relative to the size of the multipliers, and so the estimated policy uncertainty

is fairly small for a government spending change. Third, the bias-correction results

are similar to the non bias-correction ones, which again suggests that bias is not a

major problem in the model.

16The word ‘multiplier’ is used here to refer to the difference between the predicted value of a
variable after the policy change and the predicted value of the variable before the change. This
difference is not strictly speaking a multiplier because it is not divided by the government spending
change.
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Table 5
Multiplier Results for 2000:4–2002:3

Var. h d̂ d.5 left right d̂ d.5 left right

No Bias Correction Bias Correction
gdpr 1 1.010 1.035 .069 .0810.984 0.979 .065 .078

4 1.571 1.613 .075 .088 1.530 1.530 .067 .078
8 1.361 1.394 .080 .088 1.325 1.325 .079 .083

gdpd 1 .036 .034 .008 .009 .039 .039 .008 .008
4 .282 .279 .045 .048 .284 .279 .044 .046
8 .569 .578 .078 .081 .558 .514 .067 .075

UR 1 -.280 -.279 .037 .037 -.281 -.278 .039 .035
4 -.747 -.753 .072 .063 -.742 -.742 .074 .061
8 -.560 -.587 .072 .076 -.536 -.546 .074 .079

RS 1 .258 .261 .046 .054 .255 .251 .044 .052
4 .753 .759 .108 .109 .750 .747 .106 .105
8 .678 .664 .113 .117 .647 .650 .116 .124

Notes:
h = number of quarters ahead.
Ŷ a = predicted value from deterministic simulation, no policy change.

Ŷ b = predicted value from deterministic simulation, policy change.

d̂ = Ŷ b − Ŷ a

Y aj = predicted value on thej th trial, no policy change.
Ybj = predicted value on thej th trial, policy change.
dj = Ybj − Yaj

dr = value below whichr percent of the values ofdj lie.
left = d.5 − d.1587, right =d.8413− d.5, units are percentage points.
See Tables 1 and 4 for variable notation.

7 Conclusion

This paper has outlined a bootstrapping approach to the estimation and analysis of

dynamic, nonlinear, simultaneous equations models. It draws on the bootstrapping

literature initiated by Efron (1979) and the stochastic simulation literature initiated

by Adelman and Adelman (1959). The procedure in Section 4 has not been used
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before for these models. The procedure is distribution free, and it allows a wide

range of questions to be considered, including estimation, prediction, and policy

analysis.

The results in Section 6 are for illustration only, but they are suggestive of the

usefulness of the bootstrapping procedure for models like (1). Computations like

those in Table 3 can be done for many different statistics. Computations like those

in Table 4 can be used to compare different models, where various measures of

dispersion can be considered. These measures account for both uncertainty from

the additive error terms and coefficient estimates, which puts models on an equal

footing if they have similar sets of exogenous variables. Computations like those

in Table 5 can be done for a wide variety of policy experiments. Finally, the results

in Table 1 show that the bootstrap works well for the US model regarding coverage

accuracy.
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