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Abstract

A decision maker faces a decision problem, or a game against na-
ture. For each probability distribution over the state of the world
(nature’s strategies), she has a weak order over her acts (pure strate-
gies). We formulate conditions on these weak orders guaranteeing that
they can be jointly represented by expected utility maximization with
respect to an almost-unique state-dependent utility, that is, a matrix
assigning real numbers to act-state pairs. As opposed to a utility
function that is derived in another context, the utility matrix derived
in the game will incorporate all psychological or sociological determi-
nants of well-being that result from the very fact that the outcomes
are obtained in a given game.

1 Introduction

1.1 Motivation

Do players maximize expected utility when playing a game? The experimen-
tal outcomes involving ultimatum and dictator games might seem to suggest

that they do not. (See Guth and Tietz (1990) and Roth (1992) for surveys.)
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For instance, a player who moves second in an ultimatum game, and rejects
an offer of a positive amount of money, evidently does not maximize her
monetary payoff. Similarly, a dictator in a dictator game, who chooses to
leave some money to her dummy opponent, fails to maximize her payoff un-
der conditions of certainty, let alone her expected payoff under conditions of
uncertainty.

Some authors argue that these experimental results constitute a violation
of game theoretic predictions. Indeed, if one insists that the utility function
be defined over monetary payoffs alone, such a conclusion appears unavoid-
able. But many game theorists hold that the utility function need not be
defined on monetary prizes alone. Indeed, an “outcome” should specify all
the relevant features of the situation, including feelings of envy, guilt, prefer-
ences for fairness, and so forth. Moreover, recent developments in economic
theory call for explicit modeling of such determinants of utility. (See, for in-
stance, Frank (1989), Elster (1998), Rabin (1998), and Loewenstein (2000).)
Further, if one adopts a purely behavioral approach, one has no choice but
to incorporate into the utility function all psychological and sociological ef-
fects on well-being. The very fact that, say, a dictator prefers taking less
money to taking more money implies that the utility of the former exceeds
that of the latter. As long as players satisfy the axioms of von-Neumann
and Morgenstern (vNM, 1944), they can be described as if they are maxi-
mizing the expected value of an appropriately chosen utility function. From
this viewpoint, the experimental results of dictator and ultimatum games
might challenge the implicit assumption that monetary payoff is the sole de-
terminant of utility, but not the assumption of expected utility maximization
itself.

We find that this argument is essentially correct: the debate aroused by
dictator and ultimatum games is about determinants of the utility function,
not about expected utility theory (EUT). Yet, we do not believe that vNM’s

axiomatic derivation of EUT is a very compelling argument in this context.



vINM’s result assumes a preference relation over lotteries with given probabili-
ties, and derives a utility function over outcomes, such that the maximization
of its expectation represents preferences over lotteries. vNM then assumed
that, when players evaluate mixed strategies in a game, they use the same
utility function for the calculation of expected payoff, and attempt to maxi-
mize this expectation. Thus, the vNM derivation implicitly assumes that the
utility function that one obtains in the context of a single person decision
problem will apply to the context of a game.

This assumption seems implausible precisely in the context of games
such as ultimatum and dictator, where utility is heavily dependent on inter-
personal comparisons and interactions. For instance, if player two considers
an outcome of 10% of the pie, she cannot ignore the fact that player one is
about to pocket 9 times as much. Similarly, player one (the dictator) in a
dictator game cannot be assumed to treat the outcome “I get $90” as equiv-
alent to “I chose to take $90 and to leave $10 to my opponent.” Preferences
over fairness distinguish the former from the latter. Moreover, the very fact
that the dictator has chosen a particular division of the money implies that
she might experience guilt even if she has no preference for fairness per se.
Finally, suppose that player two in an ultimatum game chooses to reject an
offer not because it is unfair, but because she finds it insulting. That is, she
does not envy player one, but she finds that he should be punished for his
greed. In this case, she distinguishes between “I get $10, player one gets $90,
and this was decided by Nature” and “I get $10, player one gets $90, and
this was decided by Player one.” Such distinctions are precisely about the
difference between a single-player decision problem and a game. If one were
to measure a player’s utility over such outcomes in a laboratory, one would
have to generate outcomes that simulate all the interactive effects of a game.
That is, one would have to measure utility in the context of the game itself.

Similar issues arise when a single player is concerned. Consider, for in-

stance, the effect of regret. It has long been argued that regret may color



the way individuals evaluate outcomes. (See, for instance, Luce and Raiffa
(1957), Loomes and Sugden (1982), and Gul (1991).) Thus, the utility func-
tion of a certain outcome, when measured in isolation, may not reflect the
way this outcome is perceived in a game. “Getting $10” is not the same
as “Getting $10 when I could have gotten $20.” In order to measure the
relevant utility of the latter, one would have to simulate the entire choice
situation, that is, to measure utility in the context of the game.

In order to defend the expected utility paradigm in face of experimental
evidence as well as of the theoretical considerations mentioned above, it does
not suffice to show that it can explain the data with an appropriate definition
of the utility function. One needs to show that this new definition also relies
on sound axiomatic foundations. That is, one needs an axiomatic derivation
of EUT that would parallel that of vNM, but will only use preferences in the

game itself as data.

1.2 The present contribution

In this paper we axiomatize expected utility maximization in a two-person
game. We assume that every player can rank his pure strategies, given any
mixed strategy of the other player. That is, we assume that for every mixed
strategy of the opponent, the player has a weak order over her pure strate-
gies. Equivalently, one may consider a single person decision problem under
uncertainty (a “game against nature”), where, for each vector of probabili-
ties over the state of nature (representing the decision maker’s beliefs), the
decision maker has a weak order over the possible acts. The set of acts may
be finite or infinite, and it is not assumed to have any algebraic, topological,
or other structure.

Pairs of acts and states (or combinations of pure strategies) can be thought
of as defining outcomes. We do not assume that the player can compare any
pair of lotteries defined over the possible outcomes. Rather, we assume that

the decision maker can compare only lotteries derived from two rows in the



matrix for the same probability vector over the columns. In particular, the
data assumed in our results will not include a comparison of a certain out-
come (i.e., a degenerate lottery) to a non-degenerate lottery.

We assume that the rankings over the acts (the player’s pure strategies)
satisfy two axioms that relate preferences given different beliefs (different
mixed strategies of the opponent): first, we assume converity: if act a is
preferred to b given probability p, as well as given probability ¢, then the
same preference will be observed for any convex combination of p and q.
Second, we assume continuity: if a is strictly preferred to b given belief p,
the same preference should hold in a neighborhood of p. Finally, we also
need an axiom of diversity, requiring that any four pure acts can be ranked,
in any given strict order, for at least one belief vector p.! These axioms
imply that there is a utility matrix, such that, for every belief (opponent’s
mixed strategy) p, the decision maker (player) ranks her acts (pure strategies)
according to their expected utility, computed for the relevant p.

The utility matrix we obtain treats every entry in the game as a different
outcome. More precisely, the formal model does not have a separate notion
of outcomes. Utility is defined over act-state pairs (pairs of pure strategies).
In this sense, the utility function we derive is state-dependent. (See Dreze
(1961) and Karni, Schmeidler, and Vind (1983).) This also implies that there
is some freedom in the choice of the utility function: one may add a separate
constant to each column in the matrix without changing the expected utility
rankings. Indeed, our utility matrix is unique up to such shifts, and up to
multiplication of the entire matrix by a positive number.

The diversity axiom implies that the matrix we obtain satisfies a certain
condition, which we dub “diversification”: no row in the matrix is dominated
by an affine combination of (up to) three other rows in it. In particular, it
does not allow domination relations between pure strategies. However, in

the absence of the diversity assumption, the other axioms do not imply the

1See the following section for a more precise formulation of the axioms.



existence of the numerical representation we seek.

2 Results

The results presented in this section are reminiscent of the main results in
Gilboa and Schmeidler (1997, 1999). All these results derive a representation
of a family of weak orders by a matrix of real numbers, as follows. The objects
to be ranked corresponds to rows in the matrix. A “context”, which induces
a weak order over these objects, is defined by a vector, attaching a real
number to each column. Given such a context, the ranking corresponding to
it is represented by the inner products of the context with each of the rows
in the matrix. While our new results are similar in spirit to those in previous
papers, some differences exist. In particular, the extension of our result to

an infinite state space is new.

2.1 The result for finite spaces

Assume that a decision maker is facing a decision problem with a non-empty
set of acts A and a finite, non-empty set of states of the world . Such
problems are often represented by a “decision matrix”, or a “game against
nature”, attaching an outcome to each act-state pair (a,w). We do not
assume any knowledge about this set of outcomes or about the structure of
the matrix, and hence suppress it completely. (Equivalently, one introduces
a formal set of abstract outcomes that is simply the set of pairs A x €2.) Let
A = A(Q) be the set of probability distributions on €. We assume that, for
every probability vector p € A, the decision maker has a binary preference

relation /7, over A. We now formulate axioms on {77, }pea:
A1 Order: For every p € A, 7, is complete and transitive on A.

A2 Combination: For every p,q € A and every a,b € A, if a 77, b
(CL ~p b) and a i:q b? then a i:oaer(lfa)q b (CL >Oép+(1704)q b) for every a € (07 1)



A3 Archimedean Axiom: For every a,b € Aand p € A, if a >, b,
then for every ¢ € A there exists o € (0,1) such that, a >=ap1 1-a)q b

A4 Diversity: For every list (a,b,c,d) of distinct elements of A there
exists p € A such that a >, b >, ¢ >, d. If |A| < 4, then for any strict
ordering of the elements of A there exists p € A such that >, is that ordering.

We need the following definition: a matrix of real numbers is called di-
versified if no row in it is dominated by an affine combination of three (or

less) other rows in it. Formally:

Definition: A matrix u : AXY — R, where |A| > 4, is diversified if there
are no distinct four elements a,b,c,d € Aand \,u,0 € Rwith A\+u+60=1
such that u(a,-) < Au(b,-)) + pu(e, ) + Qu(d,-). If |[A| < 4, u is diversified if

no row in u is dominated by an affine combination of the others.

Theorem 1 : The following two statements are equivalent:

(i) {ip}pGA satisfy Al - A4;

(ii) There is a diversified matriz u : A x Q — R such that:

for every p € A and every a,b € A,
(*)

azpb M Yeap(@)u(a,w) > ¥, pw@)ulb,w) |

Furthermore, in this case the matriz u s unique in the following sense: u
and w both satisfy (%) iff there are a scalar X > 0 and a matrizv : AxQ — R

with identical rows (i.e., with constant columns) such that w = Au+ v .

Theorem 1 follows easily from its more general version, Theorem 2 below.
We do not know of a set of axioms that are necessary and sufficient for
a representation as in (%) by a matrix u that need not be diversified. We do
know that dropping A4 will not do. (The counter-examples in Gilboa and
Schmeidler (1997, 1999) can be easily adapted to our case.) It will be clear
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from the proof that weaker versions of A4 suffice for a representation as in (x).
Ashkenazi and Lehrer (2001) also offer a condition that is weaker than A4,
and that also suffices for such a representation. The diversity axiom is stated
here in its simplest and most elegant form, rather than in its mathematically

weakest form.

2.2 The general result

Assume that a decision maker is facing a decision problem with a non-empty
set of acts A and a measurable space of states of the world (2, X), where X is
a o-algebra of subsets of §2. Further, assume that ¥ includes all singletons.
Let B (€2, X) be the space of bounded ¥-measurable real-valued functions on
Q. Recall that ba (£2,Y), the space of finitely additive bounded measures on
Y, is the dual of B (€2,3). Let P denote the subset of ba (2, %) consisting of
finitely additive probability measures on Y. Assume that, for every proba-
bility measure p € P, the decision maker has a binary preference relation -,

over A. The axioms on {7, },cp now take the following form:?

A1 Order: For every p € P, 7, is complete and transitive on A.

A2 Combination: For every p,q € P and every a,b € A, if a 77, b
(a>pb) and a Zq b, then @ Zapi(1-a)g b (@ =api(1-a)q b) for every a € (0,1).

A3* Continuity: For every a,b € A the set {p € P|a >, b} is open in
the relative weak™® topology.

A4 Diversity: For every list (a,b,c,d) of distinct elements of A there
exists p € P such that a >, b >, ¢ >, d. If |A] < 4, then for any strict
ordering of the elements of A there exists p € P such that >,is that ordering.

We can now state

Theorem 2 : The following two statements are equivalent :

2 Axioms 1,2, and 4 are literally identical to those of the finite case (apart from the
space of probability distributions over Q). They are also denoted as above.



(1) { Zpltrer satisfy A1,A2,A3% A4;

(ii) For every a € A there exists a u(a,-)€B (2, X) such that:

for every p € P and every a,b € A,
()
azZpb iff [, u(a,-)dp> [,u(b,-)dp,

and the matriz u(-,-) is diversified.

Furthermore, in this case the functions {u(a,-)}aca are unique in the fol-
lowing sense: {u(a,-)}aea and {w(a,-)}aca both satisfy (xx) iff there are a
scalar A > 0 and a function v€B (2, X) such that w(a,-) = Mu(a,-) + v for
all a € A.

The proof of this theorem is given in an appendix.

3 Discussion

Fishburn (1976) and Fishburn and Roberts (1978) provide derivations of
expected utility maximization in the context of a game. In these papers, a
player is assumed to have preferences over lotteries that are generated by her
own mixed strategies and by mixed strategies of the opponents. These results
do not suffice for our purposes for two reasons. First, they assume that all
lotteries, obtained by independent mixed strategies, can be compared. But
each player in a game can only choose her own strategies. Thus, to make
such preferences observable one would, again, have to resort to experimental
settings that are external to the game. Second, a player’s preference over her
own mixed strategies has been criticized as shaky data. It is not clear when
a player’s actual choices (of pure strategies) reflect preferences over mixed
strategies. Moreover, it has been argued that players never actually play
mixed strategies. (See Rubinstein (2000).)

Our results are limited in other ways, however. First, as mentioned above,

our result can only produce “diversified” utility matrices. Second, our result



for a 2-person game assumes that a player’s preferences are given for all
mixed strategies of her opponent. In an n-player game, this would include all
correlated strategies of the (n—1) opponents, and not only those obtained by
independent mixing. Third, because our result does not assume preferences
over a player’s own mixed strategies, it cannot represent such preferences.
Thus, it does not imply that the utility matrix we obtain for a given player
can be used to evaluate a mixed strategy of that player, should she consider
actual randomization.

The last two restrictions do not pose major difficulties if one views a mixed
strategy of a player merely as the beliefs of other players regarding her (pure
strategy) choice. (See Aumann and Brandenburger (1995).) Adopting this
interpretation, a player’s belief about her opponents’ joint strategy need not
reflect independent mixing on part of the other players. Rather, each player
may believe that the other players actions depend on some correlation device,
and that they are independent only given the outcome of this device. This
implies that the set of possible beliefs contains all correlated strategies of
the opponents. More concretely, if there is an experiment scenario in which
a player can be made to believe that the other players play according to
a joint distribution p, and another scenario that induces belief ¢, one can
easily generate a scenario in which the player would be led to have beliefs
ap+ (1 —a)q: the player should be told that the first scenario was played out
with probability «, and the second — with the complementary probability.
Thus, according to this interpretation of mixed strategies, a player need not
have preferences over her own mixed strategies, but she should be able to
entertain any beliefs over the strategies of her opponents.

The assumption that a player can rank pure strategies given any belief
over the opponents’ strategies introduces another limitation. If a player is
matched with another player, whom she knows, there might be beliefs p
that the player would not entertain regarding her opponent. For instance,

if Mary is happily married to John, and the two are matched to play an
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ultimatum game, Mary might be convinced that John, as player 1, will never
make an ungenerous offer. In this case, we will never know what she would
do if she did believe that John is ungenerous. In particular, we will not
be able to tell whether Mary is nice to John because he is generous in his
dealings with her, or because she will like him even if he treats her badly. But
if players are anonymously matched with other players, and each player is
given statistical data regarding past plays of the game by other players from
the same population, it is reasonable that any probability vector p might be

induced as a player’s beliefs.
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Appendix: Proof

Proof of Theorem 2:

Theorem 2 is reminiscent of the main results in Gilboa and Schmeidler
(1997, 1999). Although the spaces discussed are different, some steps in the
proof are practically identical. For the sake of completeness, we provide here
a complete proof.

We present the proof for the case |A| > 4. The proofs for the cases |A| = 2
and |A| = 3 will be described as by-products along the way. For v € B (2, X)
and p € P, let u - p denote [, udp.

The following notation will be convenient for stating the first lemma. For

every a,b € A let

Y ={peP|a»,b}and
W = (pe Pl a, b}

Observe that by definition and Al: Y% c W W NYy® = (), and
W UY? = P. The first main step in the proof of the theorem is:

Lemma 1 For every distinct a,b € A there exists u® € B (Q,X) such that,

(i) W ={peP|u® p=>0}

(ii)) Y® ={peP|u® p>0};

(iii) Wb = {p e P | utt - p < 0};

(iv) Yoo ={peP|u® p<0};

(v) Neither u® < 0 nor u® > 0;

(vi) —u® = uba.
Moreover, the function u® satisfying (i)-(iv), is unique up to multiplication
by a positive number.

The lemma states that we can associate with every pair of distinct acts
a,b € A a separating hyperplane defined by u® - p = 0 (p € P), such that
a 7, b iff p is on a given side of the plane (i.e., iff u® - p > 0). Observe that

if there are only two acts, Lemma 1 completes the proof of sufficiency: for
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instance, one may set u® = u® and u® = 0. It then follows that a 7, b iff
u®.p >0, i.e., iff u®-p > u®-p. More generally, we will show in the following
lemmata that one can find a function u® for every act a, such that, for every
a,b € A, u® is a positive multiple of (u® — u®).

For a subset B of P let int(B) denote the set of interior points of B
(relative to P).

Proof of Lemma 1:

The continuity axiom implies that the sets Y are open (in the relative
topology). This, in turn, implies that the sets W are closed and therefore
compact in the weak* topology. This allows the use of a (weak) separating
hyperplane theorem between two disjoint and convex sets, one of which is
compact: the convex hull of W and the origin (i.e., {ap| a € [0,1],p €
W41) on the one hand, and {ap| @ € (0,1], p € Y**} on the other. That
is, we obtain a non-zero function u® € B(,X) such that u® .- p > 0 for
all p € W% and u® - p < 0 for all p € Y. Further, we argue that u®
does not vanish on W U Y* = bal(Q,%). If it did, then it would also
vanish on ba(£2,Y), and therefore also on ba_(2,%). But in this case it
would vanish on all of ba({2, X)), in view of Jordan’s decomposition theorem,
in contradiction to the fact that u® is non-zero.

We argue that for some p € Y*, v® .p < 0. If not, u® -p = 0 for
all p € Y%, Since u® does not vanish on W% U Y, there has to exist a
q € W with u® - ¢ > 0. But then for all £ > 0, u® - (eq + (1 — ¢)p) > 0,
while eq + (1 — €)p € Y for small enough ¢ by the continuity axiom. Next,
we argue that for all ¢ € Y% we have u® - ¢ > 0. Indeed, if u®.q = 0
for g € Y% u® . (ep + (1 — €)q) < 0 for all € > 0. By a similar argument,
u®.p <0 for all p € Y,

Thus Y% C {p|u® - p < 0}. Since we also have W C {p|u® -p > 0},
Yt > {p|u®-p < 0}. That is, Y** = {p|u®-p < 0} and W = {p|u®-p >
0}. We have also shown that Y% C {p|u® - p > 0}. To show the converse
inclusion, assume that u® - p > 0 but a =, b. Choose ¢ € Y". By the

13



combination axiom, ap + (1 — a)g € Y for all a € (0,1). But for « close
enough to 1 we have u® - (ap + (1 — a)q) > 0, a contradiction. Hence
Y = {p|u®-p>0}and W = {p|u®-p < 0}.

Observe that 4% can be neither non-positive nor non-negative due to the
diversity axiom (applied to the pair a,b).

We now turn to prove uniqueness. Assume that u®, v% € B(, X)) both
satisfy conditions (i)-(v) of Lemma 1. Consider a two-person zero-sum game
with a payoff matrix (u®, —v®). Specifically, (i) the set of pure strategies
of player 1 (the row player) is €; (ii) the set of pure strategies of player
2 (the column player) is {L, R}; and (iii) if player 1 chooses w € €, and
player 2 chooses L, the payoff to player 1 will be u®(w), whereas if player 2
chooses R, the payoff to player 1 will be —v®(w). Since both u®, v® satisfy
conditions (i)-(iv), there is no p € P for which u®-p > 0, —v®.p > 0. Hence
the maximin in this game is non-positive. Therefore, so is the minimax. It
follows that there exists a mixed strategy of player 2 that guarantees a non-
positive payoff against any pure strategy of player 1. In other words, there
are o, 3 > 0 with a + 3 = 1 such that cu®(w) < Bv®(w) for all w € Q.
Moreover, by condition (v) a, 3 > 0. Hence for v = 8/a > 0, u® < yov®.
Applying the same argument to the game (—u®, v%), we find that there
exists § > 0 such that u® > 6v®. Therefore, yv® > u® > §v® for v,6 > 0.
In view of part (v), there exists w € Q with v%(w) > 0, implying v > §. By
the same token there exists ' €  with v%(w’) < 0, implying v < §. Hence
v =6 and u® = yv?.

Finally, we prove part (vi). Observe that both u® and —u®® satisfy (i)-(iv)

b _ aub“

(stated for the ordered pair (a,b)). By the uniqueness result, —u®
for some positive number . At this stage we redefine the functions {u“b}mbe A
from the separation result as follows: for every unordered pair {a,b} C A
one of the two ordered pairs, say (b, a), is arbitrarily chosen and then u® is
rescaled such that u®® = —u®®. (If A is of an uncountable power, the axiom

of choice has to be used.)O
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Lemma 2 For every three distinct acts, f,g,h € A, and the corresponding

vectors u/9, u" u/ from Lemma 1, there are unique o, 3 > 0 such that:
aul? + ﬁugh =ull .

The key argument in the proof of Lemma 2 is that, if u/* is not a linear
combination of u/9 and u9", one may find p € P for which =, is cyclical.

If there are only three acts f,g,h € A, Lemma 2 allows us to complete
the proof as follows: choose a function u/" € B(2, X) that separates between
f and h. Then choose the multiples of u/9 and of u9" defined by the lemma.
Proceed to define u/ = u/?, w9 = Bu?", and v* = 0. By construction,
(uf — u") is (equal and therefore) proportional to u/", hence f =, h iff
uw - p > ul-p. Also, (u9 — uP) is proportional to u9" and it follows that
g 7=p hiff w9 -p > u"-p. The point is, however, that, by Lemma 2, we obtain
the same result for the last pair: (u/ —u?) = (W —Bud") = avw/9and f =, ¢
iff u/ - p > w9 - p follows.

Proof of Lemma 2:

First note that for every three distinct acts, f,g,h € A, if u/9 and u9" are
colinear, then for all p either f >, g < g >, hor f >, g & h =, g. Both im-
plications contradict diversity. Therefore any two functions in {u/9, u9", u/"}
are linearly independent. This immediately implies the uniqueness claim of

the lemma. Next we introduce

Claim 1 For every distinct f,g,h € A, and every \, u € R, if Auf9 + push <
0, then A = p = 0.

Proof: Observe that Lemma 1(v) implies that if one of the numbers A,
and p is zero, so is the other. Next, suppose, per absurdum, that Ay # 0,and
consider M\u/9 < pu. If, say, A, . > 0, then v/9-p > 0 necessitates v9-p > 0.
Hence there is no p for which f >, g >, h, in contradiction to the diversity

axiom. Similarly, A > 0 > p precludes f >, h >, g; © > 0 > X precludes
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g >=p [ >p h; and A\, < 0 implies that for no p € A is it the case that
h =, g =p f. Hence the diversity axioms holds only if A = = 0. O

We now turn to the main part of the proof. Consider a 2-person 0-sum
game in which player 1 chooses a strategy w € (), player 2 chooses a strategy
u € {u/9, u uh'} resulting in a payoff u(w) for player 1. If the value of this
game is positive, then there is an p € P such that /9 - p > 0, u9" - p > 0,
and u" - p > 0. This, in turn, implies that f =, g, g =, h, and h =, f — a
contradiction.

Therefore the value of the game is zero or negative. In this case there are
A, 1, ¢ >0, such that Au/9 + pud" + Cu < 0and A + p+ ¢ = 1. The claim
above implies that if one of the numbers A, 4 and ( is zero, so are the other
two. Thus A, u,¢ > 0. We therefore conclude that there are « = A/ > 0
and = p/¢ > 0 such that

(%) auf9 + fudt < ulh

Applying the same reasoning to the triple h, g, and f, we conclude that
there are v,6 > 0 such that

() yul + sudt < uhf.
Summation yields
(% * %) (a — &)ul9 + (B — y)udh <0.

Claim 1 applied to inequality ( * *) implies « = ¢ and 5 = v. Hence
inequality (*) may be rewritten as au/9 + Bu?® < u/" which together with

(*) yields the desired representation.[]

Lemma 2 shows that, if there are more than three acts, the ranking of
every triple of acts can be represented as in the theorem. The question that
remains is whether these separate representations (for different triples) can

be “patched” together in a consistent way.
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Lemma 3 There are functions {u®}apenazy C B(Q,X), as in Lemma 1,
and for any three distinct acts, f,g,h € A, the Jacobi identity u’9+u?" = u/*
holds.

Proof: The proof is by induction, which is transfinite if A is uncountably
infinite. The main idea of the proof is the following. Assume that one has
rescaled the functions u® for all acts a, b in some subset of acts X C A, and
one now wishes to add another act to this subset, d ¢ X. Choose a € X and

4 ub for a,b € X. By Lemma 2, there are unique

consider the functions u®
positive coefficients «, 3 such that u® = au® + Bu® . One would like to
show that the coefficient @ does not depend on the choice of b € X. Indeed,
if it did, one would find that there are a,b,¢ € X such that the vectors

1, 14 u are linearly dependent, and this contradicts the diversity axiom.

Claim 2 Let X C A, |X| > 3, d € A\X. Suppose that there are functions
{u}openazs C B(Q,X), as in Lemma 1, and for any three distinct acts,
f,g,h € X, ul9+ud = u'" holds. Then there are functions {u™} o pexutdrans C
B(Q,Y), as in Lemma 1, and for any three distinct acts, f,g,h € X U{d},

wl9 + w9 = ul™ holds.

Proof: Choose distinct a,b,c € X. Let u® u’, and u* be the functions
provided by Lemma 1 when applied to the pairs (a,d), (b,d), and (c,d),
respectively. Consider the triple {a,b,d}. By Lemma 2 there are unique
coefficients A({a, d},b), \({b,d},a) > 0 such that

(1) u® = A({a,d},b)u® + \({b,d}, a)u®

Applying the same reasoning to the triple {a, ¢,d}, we find that there are
unique coefficients A({a, d},c), A({¢,d},a) > 0 such that

u™ = \({a,d}, c)u™ + \({c, d}, a)u’®.
or
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(I1) u* = X({a,d}, c)u? + X({c,d}, a)u.

We wish to show that A({a,d},b) = A({a,d},c). To see this, we con-
sider also the triple {b,c,d} and conclude that there are unique coefficients
A({b,d}, ), A\({c,d},b) > 0 such that

(IIT) wbe = A({b,d}, c)u’® + A({c, d}, b)ue.
Since a,b,c € X, we have
uab +ubc + u® =0

and it follows that the summation of the right-hand sides of (I), (II), and

(ITI) also vanishes:

P‘({aa d}a b) - )‘({av d}v C)]uad + [)‘({bv d}v C) - )‘({b’ d}v a)]ubd_l_
A({c,d},a) — A({c,d}, b)]Jud = 0.

If some of the coefficients above are not zero, the vectors {u®, u*® v} are
linearly independent, and this contradicts the diversity axiom. For instance,
if 4% is a non-negative linear combination of u*® and u¢, for no p will it be
the case that b >, ¢ >, d >, a.

We therefore obtain A({a,d},b) = A({a,d},c) for every b,c € A\{a}.
Hence for every a € X there exists a unique A({a,d}) > 0 such that, for
every distinct a,b € X, u® = A\({a,d})u + X\({b,d})u®. Defining u** =
A{a,d})u® completes the proof of the claim.[]

The lemma is proved by an inductive application of the claim. In case A

is not countable, the induction is transfinite.[]

Note that Lemma 3, unlike Lemma 2, guarantees the possibility to rescale
simultaneously all the u®-s from Lemma 1 such that the Jacobi identity will
hold on A.

18



We now complete the proof that (i) implies (ii). Choose an arbitrary act,
say, e in A. Define u¢ = 0, and for any other act, a, define u* = u*, where
the u®-s are from Lemma 3.

Given p € P and a,b € A we have:

azpbsu® p>0e uW+u?) p>0s

(u —u®) . p>0u'-p—u’-p>0cu-p>ul-p

The first implication follows from Lemma 1(i), the second from the Jacobi
identity of Lemma 3, the third from Lemma 1(vi), and the fourth from the
definition of the u®-s. Defining u(a,-) = u®(-), (**) of the theorem has been
proved.

It remains to be shown that the functions defined above form a diversified
matrix. First, we quote the following result from Gilboa and Schmeidler
(1999, revised version — 2001):

Proposition 3 LetY be a set. Assume first |[A| > 4. A matrivu: X XY —
R is diversified iff for every list (a,b, ¢, d) of distinct elements of A, the convex
hull of differences of the row-vectors (u(a,-) — u(b,-)), (u(b,-) —u(c,-)), and
(u(e, ) —u(d,-)) does not intersect RY . Similar equivalence holds for the case

|A| < 4.

Thus, we need to show that the functions {u®},c 4 defined above are such
that conv({u® — u®,u® — u¢,u¢ — u?}) NR? = . Indeed, in Lemma 1(v) we
have shown that u® — u® ¢ R. To see this one only uses the diversity axiom
for the pair {a,b}. Lemma 2 has shown, among other things, that a non-zero
linear combination of u® —u® and u® —u¢ cannot be in R, using the diversity
axiom for triples. Linear independence of all three vectors was established
in Lemma 3. However, the full implication of the diversity condition will be
clarified by the following lemma. Being a complete characterization, we will
also use it in proving the converse implication, namely, that part (ii) of the

theorem implies part (i). The proof of the lemma below depends on Lemma
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1. Tt therefore holds under the assumptions that for any distinct a,b € A
there is an p such that a >, b.

Lemma 4 For every list (a,b,c,d) of distinct elements of A, there exists
p € P such that

a>=pb=pc=p,d iff  conv({u® u* u}) NRE =9 .

Proof: There exists p € P such that a >, b >, ¢ =, d iff there exists p € P
such that u® - p,u® - p,u® - p > 0.

Consider a 2-person 0-sum game in which player 1 chooses a strategy
w € §, player 2 chooses a strategy u € {u®,ub u®}, resulting in a payoff
u(w) for player 1. The argument above implies that there exists p € P such
that @ >, b =, ¢ >, d iff the maximin in this game is positive. This is
equivalent to the minimax being positive, which means that for every mixed
strategy of player 2 there exists w € {2 that guarantees player 1 a positive
payoff. In other words, there exists p € P such that a >, b >, ¢ >, d iff for

be 4} at least one entry is positive, i.e.,

every convex combination of {u® u
conv({u® v u) NR? = (. O
This completes the proof that (i) implies (ii). O
Part 2: (ii) implies (i)
It is straightforward to verify that if {7~ };cp are representable by {u(a, -)}aca C
B(Q2,Y) as in (%), they have to satisfy Axioms 1-3. To show that Axiom 4

holds, we quote Lemma 4 and Proposition 3 of the previous part. [J

Part 3: Uniqueness

It is obvious that if w(a,-) = au(a,-) + v for some scalar o > 0, a
function v € B(2,%), and all a € A, then part (ii) of the theorem holds with
the functions w(a, -) replacing u(a, -).

Suppose that {u(a,-)}aca and {w(a, ) }aca both satisfy (xx), and we wish
to show that there are a scalar o > 0 and a function v € R® such that for

all a € A, w(a,-) = au(a,-) +v. Denote u* = u(a,-) and w* = w(a,-)
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(ut, w* € B(Q,X).) Recall that, for a # b, u® # b and w® # A’ for all
0# X €R by Ad.

Choose a # e (a,e € A, e satisfies u¢ = 0). From the uniqueness part of
Lemma 1 there exists a unique o > 0 such that (w*—w®) = o(u*—u®) = au®.
Define v = w*.

We now wish to show that, for any b € A, w® = au® + v. It holds for
b = e and b = a, hence assume that a # b # e. Again, from the uniqueness

part of Lemma 1 there are unique v, > 0 such that
w?)
(w® —w’)

(1w — w) = 5(u* — u)

S(u® —ub) .

Summing up these two with (w® — w®) = a(u® — u®), we get
0= a(u® —u®) +y(u’ —u®) + §(u® —u’) = au® + y(u® — u®) — sul.

Thus

(a—y)u"+ (y—8)u’ =0.

Since u® # u® = 0, u® # u® = 0, and u® # Ml if 0 # X\ € R, we
get @ = v = §. Plugging a = v into (w® — w®) = y(u® — u®) proves that
w’ = au® +v. O

This completes the proof of the Theorem. L[]
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