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Abstract

A predictor is asked to rank eventualities according to their plau-
sibility, based on past cases. We assume that she can form a ranking
given any memory that consists of finitely many past cases. Mild con-
sistency requirements on these rankings imply that they have a numer-
ical representation via a matrix assigning numbers to eventuality-case
pairs, as follows. Given a memory, each eventuality is ranked ac-
cording to the sum of the numbers in its row, over cases in memory.
The number attached to an eventuality-case pair can be interpreted
as the degree of support that the past case lends to the plausibility
of the eventuality. Special instances of this result may be viewed as
axiomatizing kernel methods for estimation of densities and for classi-
fication problems. Interpreting the same result for rankings of theories
or hypotheses, rather than of specific eventualities, it is shown that
one may ascribe to the predictor subjective conditional probabilities
of cases given theories, such that her rankings of theories agree with
rankings by the likelihood functions.
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1 Introduction

Prediction is based on past cases. As Hume (1748) argued, “From causes
which appear similar we expect similar effects. This is the sum of all our ex-
perimental conclusions.” Over the past decades Hume’s approach has found
re-incarnations in the artificial intelligence literature as reasoning by analo-
gies, reasoning by similarities, or case-based reasoning. (See Schank (1986)
and Riesbeck and Schank (1989).) Many authors accept the view that analo-
gies, or similarities to past cases hold the key to human reasoning. Moreover,
the literature on machine learning and pattern recognition deals with using
past cases, or observations, for predicting or classifying new data. (See, for
instance, Forsyth and Rada (1986) and Devroye, Gyorfi, and Lugosi (1996).)
But how should past cases be used? How does, and how should one resolve
conflicts between different analogies? To address these questions, let us first
consider a few examples.

Example 1: A die is rolled over and over again. One has to predict
the outcome of the next roll. As far as the predictor can tell, all rolls were
made under identical conditions. Also, the predictor does not know of any a-
priori reason to consider any outcome more likely than any other. The most
reasonable prediction seems to be the mode of the empirical distribution,
namely, the outcome that has appeared most often in the past. Moreover,
empirical frequencies suggest a plausibility ranking of all possible outcomes,
and not just a choice of the most plausible ones.!

Example 2: A physician is asked by a patient if she predicts that a
surgery will succeed in his case. The physician knows whether the procedure
succeeded in most cases in the past, but she will be quick to remind her

patient that every human body is unique. Indeed, the physician knows that

IThe term “likelihood” in the context of a binary relation, “at least as likely as”, has
been used by de Finetti (1937) and by Savage (1954). It should not be confused with
“likelihood” in the the context of likelihood functions, also used in the sequel. At this
point we use “likelihood” and “plausibility” informally and interchangeably.



the statistics she read included patients who varied in terms of age, gender,
medical condition, and so forth. It would therefore be too naive of her to
quote statistics as if the empirical frequencies were all that mattered. On
the other hand, if the physician considers only past cases of patients that are
identical to hers, she will probably end up with an empty database.

Example 3: An expert on international relations is asked to predict the
outcome of the conflict in the Middle East. She is expected to draw on her
vast knowledge of past cases, coupled with her astute analysis thereof, in
forming her prediction. As in Example 2, the expert has a lot of information
she can use, but she cannot quote even a single case that was identical to
the situation at hand. Moreover, as opposed to Example 2, even the possible
eventualities are not identical to outcomes that occurred in past cases.

We seek a theory of prediction that will permit the predictor to make use
of available information, where different past cases might have differential
relevance to the prediction problem. Specifically, we consider a prediction
problem for which a set of possible eventualities is given. This set may or
may not be an exhaustive list of all conceivable eventualities. We do not
model the process by which such a set is generated. Rather, we assume the
set given and restrict attention to the problem of qualitative ranking of its

elements according to their likelihood.

The prediction rule Consider the following prediction rule for Example
2. The physician considers all known cases of successful surgery. She uses
her subjective judgment to evaluate the similarity of each of these cases
to the patient she is treating, and she adds them up. She then does the
same for unsuccessful treatments. Her prediction is the outcome with the
larger aggregate similarity value. This generalizes frequentist ranking to a
“fuzzy sample”: in both examples, likelihood of an outcome is measured by
summation over cases in which it occurred. Whereas in Example 1 the weight
attached to each past case is 1, in this example this weight varies according

to the physician’s subjective assessment of similarity of the relevant cases.



Rather than a dichotomous distinction between data points that do and those
that do not belong to the sample, each data point belongs to the sample to
a certain degree, say, between 0 and 1.

The prediction rule we propose can also be applied to Example 3 as
follows. For each possible outcome of the conflict in the Middle East, and for
each past case, the expert is asked to assess a number, measuring the degree
of support that the case lends to this outcome. Adding up these numbers,
for all known cases and for each outcome, yields a numerical representation
of the likelihood ranking. Thus, our prediction rule can be applied also when
there is no structural relationship between past cases and future eventualities.

Formally, let M denote the set of known cases. For each ¢ € M and each
eventuality z, let v(z,c) € R denote the degree of support that case ¢ lends
to eventuality x. Then the prediction rule ranks eventuality x as more likely

than eventuality y if and only if

(o) Deenr V(T ¢) > D cpv(y, ).

Axiomatization The main goal of this paper is to axiomatize this rule.
We assume that a predictor has a ranking of possible eventualities given any
possible memory (or database). A memory consists of a finite set of past
cases, or stories. The predictor need not envision all possible memories. She
might have a rule, or an algorithm that generates a ranking (in finite time)
for each possible memory. We only rely on qualitative plausibility rankings,
and do not assume that the predictor can quantify them in a meaningful
way. Cases are not assumed to have any particular structure. However, we
do assume that for every case there are arbitrarily many other cases that
are deemed equivalent to it by the predictor (for the prediction problem at
hand). For instance, if the physician in Example 2 focuses on five parameters
of the patient in making her prediction, we can imagine that she has seen
arbitrarily many patients with particular values of the five parameters. The
equivalence relation on cases induces an equivalence relation on memories

(of equal sizes), and the latter allows us to consider replication of memories,



that is, the disjoint union of several pairwise equivalent memories.

Our main assumption is that prediction satisfies a combination axiom.
Roughly, it states that if an eventuality z is more likely than an eventuality
y given two possible disjoint memories, then x is more likely than y also given
their union. For example, assume that the patient in Example 2 consults two
physicians, who were trained in the same medical school but who have been
working in different hospitals since graduation. Thus, the physicians can
be thought of as having disjoint databases on which they can base their
prediction, while sharing the inductive algorithm. Assume next that both
physicians find that success is more likely than failure in the case at hand.
Should the patient ask them to share their databases and re-consider their
predictions? If the inductive algorithm that the physicians use satisfies the
combination axiom, the answer is negative.

We also assume that the predictor’s ranking is Archimedean in the follow-
ing sense: if a database M renders eventuality x more likely than eventuality
y, then for every other database N there is a sufficiently large number of
replications of M, such that, when these memories are added to N, they
will make eventuality z more likely than eventuality y. Finally, we need an
assumption of diversity, stating that any list of four eventualities may be
ranked, for some conceivable database, from top to bottom. Together, these
assumptions necessitate that prediction be made according to the rule sug-
gested by the formula (o) above. Moreover, we show that the function v in
(o) is essentially unique.

This result can be interpreted in several ways. From a descriptive view-
point, one may argue that experts’ predictions tend to be consistent as re-
quired by our axioms (of which the combination is the most important), and
that they can therefore be represented as aggregate similarity-based predic-
tions. From a normative viewpoint, our result can be interpreted as sug-
gesting the aggregate similarity-based predictions as the only way to satisfy

our consistency axioms. In both approaches, one may attempt to measure



similarities using the likelihood rankings given various databases.

Observe that we assume no a priori conceptual relationship between cases
and eventualities. Such relationships, which may exist in the predictor’s
mind, will be revealed by her plausibility rankings. Further, even if cases
and eventualities are formally related (as in Example 2), we do not assume

that a numerical measure of distance, or of similarity is given in the data.

Our decision rule generalizes several well-known statistical methods, apart
from ranking eventualities by their empirical frequencies. Kernel methods for
estimation of a density function, as well as for classification problems, are
special case of our rule. If the objects that are ranked by plausibility are
general theories, rather than specific eventualities, our rule can be viewed as
ranking theories according to their likelihood function. In particular, these
established statistical methods satisfy our combination axiom. This may be
taken as an argument for this axiom. Conversely, our result can be used to
axiomatize these statistical methods in their respective set-ups.

Methodological remarks The Bayesian approach (Ramsey (1931), de
Finetti (1937), and Savage (1954)) holds that all prediction problems should
be dealt with by a prior subjective probability that is updated in light of
new information via Bayes’ rule. This requires that the predictor have a
prior probability over a space that is large enough to describe all conceivable
new information. We find that in certain examples (as above) this assump-
tion is not cognitively plausible. By contrast, the prediction rule (o) requires
the evaluation of support weights only for cases that were actually encoun-
tered. For an extensive methodological discussion, see Gilboa and Schmeidler
(2001).

Since the early days of probability theory, the concept of probability serves
a dual role: one relating to empirical frequencies, and the other — to quantifi-
cation of subjective beliefs or opinions. (See Hacking (1975).) The Bayesian
approach offers a unification of these roles employing the concept of a sub-

jective prior probability. Our approach may also be viewed as an attempt to



unify the notions of empirical frequencies and subjective opinions. Whereas
the axiomatic derivations of de Finetti (1937) and Savage (1954) treat the
process of the generation of a prior as a black box, our rule aims to make a
preliminary step towards the modeling of this process.

Thus, our approach is complementary to the Bayesian approach at two
levels: first, it may offer an alternative model of prediction, when the in-
formation available to the predictor is not easily translated to the language
of a prior probability. Second, our approach may describe how a prior is
generated. (See also Gilboa and Schmeidler (1999).)

The rest of this paper is organized as follows. Section 2 presents the
formal model and the main results. Section 3 discusses the relationship to
kernel methods and to maximum likelihood rankings. Section 4 contains a
critical discussion of the axioms, attempting to outline their scope of appli-
cation. Finally, Section 5 briefly discusses alternative interpretations of the
model, and, in particular, relates it to case-based decision theory. Proofs are

relegated to the appendix.

2 Model and Result

2.1 Framework

The primitives of our model consist of two non-empty sets X and C. We
interpret X as the set of all conceivable eventualities in a given prediction
problem, p, whereas C represents the set of all conceivable cases. To sim-
plify notation, we suppress the prediction problem p whenever possible. The
predictor is equipped with a finite set of cases M C C, her memory, and her
task is to rank the eventualities by a binary relation, “at least as likely as”.

While evaluating likelihoods, it is insightful not only to know what has
happened, but also to take into account what could have happened. The
predictor is therefore assumed to have a well-defined “at least as likely as”

relation on X for many other collections of cases in addition to M itself.



Let M be the set of finite subsets of C. For every M € M, we denote the
predictor’s “at least as likely as” relation by 7—p; C X x X.

Two cases ¢ and d are equivalent, denoted ¢ ~ d, if, for every M € M such
that ¢,d &€ M, Zaugey=2muay- To justify the term, we note the following.
Observation: ~ is an equivalence relation.

Note that equivalence of cases is a subjective notion: cases are equivalent
if, in the eyes of the predictor, they affect likelihood rankings in the same
way. Further, the notion of equivalence is also context-dependent: two cases
c and d are equivalent as far as a specific prediction problem is concerned.

We extend the definition of equivalence to memories as follows. Two
memories M7, My € M are equivalent, denoted M; ~ M,, if there is a bijec-
tion f : M; — M, such that ¢ ~ f(c) for all ¢ € M;. Observe that memory
equivalence is also an equivalence relation. It also follows that, if M; ~ M,
then, for every N € M such that N N (M; U My) = &, Znum, =20 NUM, -

Throughout the discussion, we impose the following structural assump-

tion.

Richness Assumption: For every case ¢ € C, there are infinitely many
cases d € C such that ¢ ~ d.

A note on nomenclature: the main result of this paper is interpreted as
a representation of a prediction rule. Accordingly, we refer to a “predictor”
who may be a person, an organization, or a machine. However, the result may
and will be interpreted in other ways as well. Instead of ranking eventualities
one may rank decisions, acts, or a more neutral term, alternatives. Cases,
the elements of C, may also be called observations or facts. A memory M
in M represents the predictor’s knowledge and will be referred to also as a

database.

2.2 Axioms

We will use the four axioms stated below. In their formalization let =,; and

~)s denote the asymmetric and symmetric parts of 7Z,; , as usual. 77,/ is
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complete if x 7Zpr y or y 2y x for all z,y € X.

A1 Order: For every M € M, 7, is complete and transitive on X.

A2 Combination: For every disjoint M, N € M and every z,y € X, if
zxZmy (x=yy) and x T y, then z 7oy y(x =aun ).

A3 Archimedean Axiom: For every disjoint M, N € M and every z,y €
X, if  =p y, then there exists | € N such that for any Il-list (M;)!_; of
pairwise disjoint M,’s in M, where for all i < I, M; ~ M and M; NN = (),
T = u..unmun Y holds.

Axiom 1 simply requires that, given any conceivable memory, the predic-
tor’s likelihood relation over eventualities is a weak order. Axiom 2 states
that if eventuality x is more plausible than eventuality y given two disjoint
memories, x should also be more plausible than y given the union of these
memories. Axiom 3 is states that if, given the memory M, the predictor
believes that eventuality x is strictly more plausible than gy, then, no matter
what is her ranking for another memory, IV, there is a number of “repetitions”
of M that is large enough to overwhelm the ranking induced by N.

Finally, we need a diversity axiom. It is not necessary for representation

of likelihood relations by summation of real numbers. Theorem 1 below is an
equivalence theorem, characterizing precisely which matrices of real numbers
will satisfy this axiom.
A4 Diversity: For every list (z,y,z,w) of distinct elements of X there
exists M € M such that z =y y =y 2z =y w. If |X| < 4, then for any
strict ordering of the elements of X there exists M € M such that >,; is
that ordering.

2.3 Results

For clarity of exposition, we first state the sufficiency result.

Theorem 1 Part I — Sufficiency: Let there be given X, C, and {Zar}yem

satisfying the richness assumption as above. Then (i) implies (ii(a)):



(1) {Zon}em satisfy A1-A4;
(ti(a)) There is a matriz v: X x C — R such that:

for every M € M and every x,y € X,
(x)

rZmy iff Zce]VI v(w,c) > ZceMU(yac) )

In other words, axioms Al-A4 imply that {ZZas} ;. follow our prediction
rule for an appropriate choice of the matrix v. Not all of these axioms are,
however, necessary for the representation to obtain. Indeed, the axioms imply
special properties of the representing matrix v. First, it can be chosen in such
a way that equivalent cases are attached identical columns. Second, every
four rows of the matrix satisfy an additional condition. Existence of a matrix
v satisfying these two properties together with (%) does imply axioms Al-
A4. Before stating the necessity part of theorem, we present two additional

definitions.

Definition: A matrix v : X x C — R respects case equivalence (with respect
to {Zart ) if for every ¢,d € C, c~d iff o(-,¢) =v(-,d).

When no confusion is likely to arise, we will suppress the relations {2} yem
and will simply say that “v respects case equivalence”.

The following definition applies to real-values matrices in general. It will
be used for the matrix v : X x C — R in the statement of the theorem, but
also for another matrix in the proof. It defines a matrix to be diversified if no
row in it is dominated by an affine combination of any other three (or less)
rows. Thus, if v is diversified, no row in it dominates another. Indeed, the

property of diversification can be viewed as a generalization of this condition.

Definition: A matrix v : X x Y — R, where | X| > 4, is diversified if there
are no distinct four elements x,y, z,w € X and A\, p, 0 € R with A\+pu+60 =1
such that v(z,-) < Av(y,-)) + po(z, ) + 0v(w,-). If | X| < 4, v is diversified
if no row in v is dominated by an affine combination of the others.

We can finally state

10



Theorem 1 Part IT — Necessity: (i) also implies
(1i(b)) the matriz v is diversified; and
(ii(c)) the matriz v respects case equivalence.

Conversely, (ii(a,b,c)) implies ().
Theorem 1 Part III — Uniqueness: If (i) [or (ii)] hold, the matriz v

is unique in the following sense: v and w both satisfy (x) and respect case
equivalence iff there are a scalar A > 0 and a matriz 3 : X x C — R with
identical rows (i.e., with constant columns), that respects case equivalence,
such that v = \v + (3.

Observe that, by the richness assumption, C is infinite, and therefore
the matrix v has infinitely many columns. Moreover, the theorem does not
restrict the cardinality of X, and thus v may also have infinitely many rows.

Given any real matrix of order | X| x |C| , one can define for every M € M
a weak order on X through (x). It is easy to see that it will satisfy Al and
A2. If the matrix also respects case equivalence, A3 will also be satisfied.
However, these conditions do not imply A4. For example, A4 will be violated
if a row in the matrix dominates another row. Since A4 is not necessary for
a representation by a matrix v via (%) (even if it respects case equivalence),
one may wonder whether it can be dropped. The answer is given by the

following.

Proposition: Axioms Al, A2, and A3 do not imply the existence of a matrix
v that satisfies (x).

Some remarks on cardinality are in order. Axiom A4 can only hold if the
set of types, T = C/ ~, is large enough relatively to X. For instance, if there
are two distinct eventualities, the diversity axiom requires that there be at
least two different types of cases. However, six types suffice for X to have

the cardinality of the continuum.?

2The proof is omitted for brevity’s sake.
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Finally, one may wonder whether (x) implies that v respects case equiv-

alence. The negative answer is given below.

Remark: Condition (x) does not imply that v respects case equivalence.

3 Related Statistical Methods

3.1 Kernel estimation of a density function

Assume that Z is a continuous random variable taking values in R™. Having
observed a finite sample (2;);<,, one is asked to estimate the density func-
tion of Z. Kernel estimation (see Akaike (1954), Rosenblatt (1956), Parzen
(1962), Silverman (1986), and Scott (1992) for a survey) suggests the follow-
ing. Choose a (so-called “kernel”) function k& : R™ x R™ — R, with the
following properties: (i) k(z,y) is a non-increasing function of ||z — y||; (i)
for every z € R™, [o.. k(z,y)dy = 1.°> Given the sample (2;);<;, estimate the
density function by

f(y|217 "'7Zn) = %Zzgn k(zi7y)'

Consider the estimated function f as a measure of likelihood: f(y) > f(w)
is interpreted as saying that a small neighborhood around y is more likely
than the corresponding neighborhood around w. With this interpretation,
kernel estimation is clearly a special case of our prediction rule, with v(y, z) =
% k(z,y). Observe that kernel estimation presupposes a notion of distance
on R™, whereas our theorem derives the function v from qualitative rankings

alone.

3More generally, the kernel may be a function of transformed coordinates. The following
discussion does not depend on assumptions (i) and (ii) and they are retained merely for
concreteness.
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3.2 Kernel classification

Kernel methods are also used for classification problems. Assume that a
classifier is confronted with a data point y € R™, and it is asked to guess to
which member of a finite set A it belongs. The classifier is equipped with a
set of examples M C R™ x A. Each example (z,a) consist of a data point
x € R™, with a known classification a € A. Kernel classification methods
would adopt a kernel function as above, and, given the point y, would guess
that y belongs to a class a € A that maximizes the sum of k(z,y) over all
x’s in memory that were classified as a.

Our general framework can accommodate classification problems as well.
As opposed to kernel estimation, one is not asked to rank (neighborhoods of)
points in R™, but, given such a point, to rank classes in A. Assume a point
y € R™ is given, and, for a case (z,a) € M, define vy(b, (z,a)) = k(x,y)Llo—sp
(where 1, is 1 if a = b and zero otherwise). Clearly, the ranking defined by
v, boils down to the ranking defined by kernel classification.

As above, this axiomatization can be viewed as a normative justification of
kernel methods, and also as a way to elicit the “appropriate” kernel function
from qualitative ranking data. Again, our approach does not assume that a
kernel function is given, but derives such a function together with the kernel
classification rule.

A popular alternative to kernel classification methods is offered by near-
est neighbor methods. (See Fix and Hodges (1951, 1952), Royall (1966),
Cover and Hart (1967), Stone (1977), and Devroye, Gyorfi, and Lugosi
(1996).) It is easily verified that nearest neighbor approaches do not sat-
isfy the Archimedean axiom. Moreover, for k£ > 1 a majority vote among the
k-nearest neighbors violates the combination axiom. Thus, our axioms offer
a normative justification for preferring kernel methods to nearest neighbor
methods.

13



3.3 Maximum likelihood ranking

Our model can also interpreted as referring to ranking of theories or hypothe-
ses given a set of observations. The axioms we formulated apply to this case
as well. In particular, our main requirements are that theories be ranked by
a weak order for every memory, and that, if theory x is more plausible than
theory y given each of two disjoint memories, x should also be more plausible
than y given the union of these memories.

Assume, therefore, that Theorem 1 holds. Suppose that, for each case c,
v (z,c) is bounded from above. (This is the case, for instance, if there are
only finitely many theories to be ranked.) Choose a representation v where
v(z,c) < 0 for every theory x and case c¢. Define p(c|z) = exp (v (z,¢)), so

that log (p(c|z)) = v (z,¢). Our result states that, for every two theories
T,y:

(*) T MY iff ZceM v(z,c) > ZceM v(y, c),
which is equivalent to

exp (P ,ep v(@,¢)) = exp (P oep V(Y €))

or

HceMp (clz) > HceM plcly)

In other words, if a predictor ranks theories in accordance with Al-A4,
there exist conditional probabilities p (c|x), for every case ¢ and theory z,
such that the predictor ranks theories as if by their likelihood functions, un-
der the implicit assumption that the cases were stochastically independent.*

On the one hand, this result can be viewed as a normative justification of

4We do not assume that the cases that have been observed (M) constitute an exhaus-
tive state space. Correspondingly, there is no requirement that the sum of conditional
probabilities »°_,, p(c|z) be the same for all z.

14



the likelihood rule: any method of ranking theories that is not equivalent
to ranking by likelihood (for some conditional probabilities p (c|z)) has to
violate one of our axioms. On the other hand, our result can be descriptively
interpreted, saying that likelihood rankings of theories are rather prevalent.
One need not consciously assign conditional probabilities p (c|z) for every
case c¢ given every theory x, and one need not know probability calculus
in order to generate predictions in accordance with the likelihood criterion.
Rather, whenever one satisfies our axioms, one may be ascribed conditional
probabilities p (c|z) such that one’s predictions are in accordance with the
resulting likelihood functions. Thus, relatively mild consistency requirements
imply that one predicts as if by likelihood functions.

Finally, our result may be used to elicit the subjective conditional proba-
bilities p (c|x) of a predictor, given her qualitative rankings of theories. How-
ever, our uniqueness result is somewhat limited. In particular, for every case
¢ one may choose a positive constant (3. and multiply p (¢|x) by 3. for all the-
ories z, resulting in the same likelihood rankings. Similarly, one may choose
a positive number a and raise all probabilities {p (c|z)},, to the power of
a, again without changing the observed ranking of theories given possible
memories. Thus there will generally be more than one set of conditional
probabilities {p (c|z)},, that are consistent with {ZZar} e

The likelihood function relies on independence across cases. Conceptually,
stochastic independence follows from two assumptions in our model. First,
we have defined {ZZa} ;0 Where each M is a set. This implicitly assumes
that only the number of repetitions of cases, and not their order, matters.
This structural assumption is reminiscent of de Finetti’s exchangeability con-
dition (though the latter is defined in a more elaborate probabilistic model).
Second, our combination axiom also has a flavor of independence. In partic-
ular, it rules out situations in which past occurrences of a case make future

occurrences of the same case less likely.?

%See the clause “mis-specified case” in the next section.

15



4 Discussion of the Axioms

The rule we axiomatize generalizes rankings by empirical frequencies. More-
over, the previous section shows that it also generalizes several well-known
statistical techniques. It follows that there is a wide range of applications for
which this rule, and the axioms it satisfies, are plausible.

But there are applications in which the axioms do not appear compelling.
We discuss here several examples, trying to delineate the scope of applicabil-
ity of the axioms, and to identify certain classes of situations in which they
may not apply.

In the following discussion we do not dwell on the first axiom, namely,
that likelihood relations are weak orders. This axiom and its limitations
have been extensively discussed in decision theory, and there seems to be no
special arguments for or against it in our specific context.

We also have little to add to the discussion of the diversity axiom. While
it does not appear to pose conceptual difficulties, there are no fundamental
reasons to insist on its validity. One may well be interested in other assump-
tions that would allow a representation as in () by a matrix v that is not
necessarily diversified.

The Archimedean axiom is violated when a single case may outweigh any
number of repetitions of other cases. For instance, a physician may find a
single observation, taken from the patient she is currently treating, more
relevant than any number of observations taken from other patients.® In the
context of ranking theories, it is possible that a single case ¢ constitutes a
direct refutation of a theory x. If another theory y was not refuted by any case
in memory, a single occurrence of case ¢ will render theory z less plausible
than theory y regardless of the number of occurrences of other cases, even if

these lend more support to z than to y.” In such a situation, one would like to

6Indeed, the nearest neighbor approach to classification problems violates the
Archimedean axiom.
"This example is due to Peyton Young.
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assign conditional probability of zero to case c given theory x, or, equivalently,
to set v(x,c) = —oo. Since this is beyond the scope of the present model, one
may drop the Archimedean axiom and seek representations by non-standard
numbers.

We now turn to the combination axiom. As is obvious from the additive
formula in (x), our rule implicitly presupposes that the weight of evidence
derived from a given case does not depend on other cases. It follows that
the combination axiom is likely to fail whenever this “separability” property
does not hold. We discuss here several examples of this type. We begin
with those in which re-definition of the primitives of the model resolves the
difficulty. Examples we find more fundamental are discussed later.

Mis-specified cases Consider a cat, say Lucifer, who every so often dies
and then may or may not resurrect. Suppose that, throughout history, many
other cats have been observed to resurrect exactly eight times. If Lucifer had
died and resurrected four times, and now died for the fifth time, we’d expect
him to resurrect again. But if we double the number of cases, implying that
we are now observing the ninth death, we would not expect Lucifer to be
with us again. Thus, one may argue, the combination axiom does not seem
to be very compelling.

Obviously, this example assumes that all of Lucifer’s deaths are equiva-
lent. While this may be a reasonable assumption of a naive observer, the cat
connoisseur will be careful enough to distinguish “first death” from “second
death”, and so forth. Thus, this example suggests that one has to be careful
in the definition of a “case” (and of case equivalence) before applying the
combination axiom.

Mis-specified theories Suppose that one wishes to determine whether
a coin is biased. A memory with 1,000 repetitions of “Head”, as well as
a memory with 1,000 repetitions of “Tail” both suggest that the coin is
indeed biased, while their union suggests that it is not. Observe that this

example hinges on the fact that two rather different theories, namely, “the
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coin is biased toward Tail” and “the coin is biased toward Head” are lumped
together as “the coin is biased”. If one were to specify the theories more
fully, the combination axiom would hold.®

Theories about patterns A related class of examples deal with concepts
that describe, or are defined by patterns, sequences, or sets of cases. Assume
that a single case consists of 100 tosses of a coin. A complex sequence of 100
tosses may lend support to the hypothesis that the coin generates random
sequences. But many repetitions of the very same sequence would undermine
this hypothesis. Observe that “the coin generates random sequences” is
a statement about sequences of cases. Similarly, statements such as “The
weather always surprises” or “History repeats itself” are about sequences
of cases, and are therefore likely to generate violations of the combination
axiom.

Second-order induction An important class of examples in which we
should expect the combination axiom to be violated, for descriptive and
normative purposes alike, involves learning of the similarity function. For in-
stance, assume that one database contains but one case, in which Mary chose
restaurant z over y.° One is asked to predict what John’s decision would be.
Having no other information, one is likely to assume some similarity of tastes
between John and Mary and to find it more plausible that John would prefer
x to y as well. Next assume that in a second database there are no observed
choices (by anyone) between x and y. Hence, based on this database alone,
it would appear equally likely that John would choose x as that he would y.
Assume further that this database does contain many choices between other
pairs of restaurants, and it turns out that John and Mary consistently choose

different restaurants. When combining the two databases, it makes sense to

8Observe that if one were to use the maximum likelihood principle, one would have
to specify a likelihood function. This exercise would highlight the fact that “the coin is
biased” is not a fully specified theory. However, this does not imply that only theories that
are given as conditional distributions are sufficiently specified to satisfy the combination
axiom.

9This is a variant of an example by Sujoy Mukerji.
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predict that John would choose y over x.

This is an instance in which the similarity function is learned from cases.
Linear aggregation of cases by fixed weights embodies learning by a similarity
function. But it does not describe how this function itself is learned. In
Gilboa and Schmeidler (2001) we call this process “second-order induction”
and show that the additive formula cannot capture such a process.

Combinations of inductive and deductive reasoning Another im-
portant class of examples in which the combination axiom is not very rea-
sonable consists of prediction problems in which some structure is given.
Consider a simple regression problem where a variable z is used to predict
another variable y. Does the method of ordinary least squares satisfy our
axioms? The answer depends on the unit of analysis. If we consider the re-
gression equation y = a+ fx +¢ and attempt to estimate the values of o and
B given a sample M = {(z;, y;) }i<n, the answer is in the affirmative. Con-
sider, for instance, . Let a,a’ be two real numbers interpreted as estimates
of a. Define a 773s @' if a has a higher value of the likelihood function given
{(x:,y:) }i<n than does a’. This implies that -, satisfies the combination ax-
iom. Since the least squares estimator a is a maximum likelihood estimator
of the parameter o (under the standard assumptions of regression analysis),
choosing the estimate a is consistent with choosing a = ,;-maximizer.

Assume now that the units of analysis are the particular values of y,
for a new value of z,. That is, rather than accepting the regression model
y = a+ Pz + ¢ and asking what are the values of a and 3, suppose that one
is asked to predict (formulate 7Z5s) directly on potential values of y,. The
regression estimates a, b define a density function for y,, (a normal distribution
centered around the value a+bz,). This density function can be used to define
>, but these relations will generally not satisfy the combination axiom.

The reason is that the regression model is structured enough to allow
some deductive reasoning. In ranking the plausibility of values of y for a

given value of x, one makes two steps. First, one uses inductive reasoning
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to obtain estimates of the parameters a and b. Then, espousing a belief
in the linear model, one uses these estimates to rank values of y by their
plausibility. This second step involves deductive reasoning, exploiting the
particular structure of the model. While the combination axiom is rather
plausible for the first, inductive step, there is no reason for it to hold also for
the entire inductive-deductive process.

To consider another example, assume that a coin is about to be tossed
in an i.i.d. manner. The parameter of the coin is not known, but one knows
probability rules that allow one to infer likelihood rankings of outcomes given
any value of the unknown parameter. Again, when one engages in inference
about the unknown parameter, one performs only inductive reasoning, and
the combination axiom seems plausible. But when one is asked about partic-
ular outcomes, one uses inductive reasoning as well as deductive reasoning.

In these cases, the combination axiom is too crude.!’

In conclusion, there are classes of counterexamples to our axioms that re-
sult from under-specification of cases, of eventualities, or of memories. There
are others that are more fundamental. Among these, two seem to deserve
special attention. First, there are situations where second-order induction
is involved, and the similarity function itself is learned. Indeed, our model
deals with accumulated evidence but does not capture the emergence of new
insights. Second, there are problems where some theoretical structure is as-
sumed, and it can be used for deductive inferences. Our model captures some
forms of inductive reasoning, but does not provide a full account of inferential

processes involving a combination of inductive and deductive reasoning.

10We have received several counterexamples to the combination axiom that are, in our
view, of this nature. In particular, we would like to thank Bruno Jullien, Klaus Nehring,
and Ariel Rubinstein.
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5 Other Interpretations

Decisions Theorem 1 can also have other interpretations. In particular, the
objects to be ranked may be possible acts, with the interpretation of ranking
as preferences. In this case, v(z,¢) denotes the support that case ¢ lends to
the choice of act z. The decision rule that results generalizes most of the
decision rules of case-based decision theory (Gilboa and Schmeidler (2001)),
as well as expected utility maximization, if beliefs are generated from cases
in an additive way (see Gilboa and Schmeidler (1999)). Gilboa, Schmeidler,
and Wakker (1999) apply this theorem, as well as an alternative approach,
to axiomatize a theory of case-based decisions in which both the similarity
function between problem-act pairs and the utility function of outcomes are
derived from preferences. This model generalizes Gilboa and Schmeidler
(1997), in which the utility function is assumed given and only the similarity
function is derived from observed preferences.

Probabilities The main contribution of Gilboa and Schmeidler (1999) is
to generalize the scope of prediction from eventualities to events. That is, in
that paper we assume that the objects to be ranked belong to an algebra of
subsets of a given set. Additional assumptions are imposed so that similarity
values are additive with respect to the union of disjoint sets. Further, it is
shown that ranking by empirical frequencies can also be axiomatically char-
acterized in this set-up. Finally, tying the derivation of probabilities with
expected utility maximization, one obtains a characterization of subjective
expected utility maximization in face of uncertainty. As opposed to the be-
havioral axiomatic derivations of de Finetti (1937) and Savage (1954), which
infer beliefs from decisions, this axiomatic derivation follows a presumed cog-

nitive path leading from belief to decision.

21



Appendix: Proofs

Proof of Observation:

It is obvious that ~ is reflexive and symmetric. To show that it is tran-
sitive, assume that ¢ ~ d and d ~ e for distinct ¢, d,e. Let M be such that
ce g M. If d ¢ M, then Zyurg= Zmugay by ¢ ~ d and Zaofay= Zaroge
by d ~ e, and Zaugey= ZTmuge follows. If d € M, define N = M\{d}.
Since ¢,d ¢ N U {e}, ¢ ~ d implies - nuteyu{ey= Znufetufay- Similarly, since
d,e ¢ NU{c}, d ~ e implies ZZnu{cjufay= ZNufeufe- 1t follows that 2= augep=

ZNUfedt = ZoNU{ee}™= ZoNU{de}= 2oMufer-0

The Result is part of Theorem 1, and was stated only for expository

purposes. We therefore prove only Theorem 1.

Proof of Theorem 1: The strategy of the proof is as follows. The notion of
case equivalence allows us to reduce the discussion to vectors of non-negative
integers. We define the set of types of cases to be the ~-equivalence classes:
T = C/ ~. Assume, for simplicity, that there are finitely many types and
finitely many eventualities. Rather than referring to sets of specific cases
(memories M), we focus on vectors of non-negative integers. Such a vector
I : T — Z, represents many equivalent memories by counting how many
cases of each type are in each of these memories. Thus, instead of dealing
with subsets of the set C, most of the discussion will be conducted in the
space Z% . Next, using the combination axiom, we extend the family rankings
{=/} from I € ZT to I € Q.

Focusing on two eventualities, x and y, we divide the vectors I € QE to
those that render x more likely than y, and to those that induce the opposite
ranking. Completeness and combination are the key axioms that allow us to
invoke a separating hyperplane theorem. With the aid of the Archimedean
axiom, one can prove that the separating hyperplane precisely characterizes
the memories for which z is (strongly or weakly) more likely than y.

If one has only two eventualities, the proof is basically complete. Most of
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the work is in showing that the hyperplanes, which were obtained for each
pair of eventualities, can be represented by a single matrix. More concretely,
the separation theorem applied to a pair z,y yields a vector v™, unique up
to multiplication by a positive constant, such that x is at least as likely as y
given memory [ iff v*¥ - I > 0. One now wishes to find a vector v* for each
eventuality = such that v*¥ is a positive multiple of (v* —v¥) (simultaneously
for all z,y).

This can be done if and only if there is a selection of vectors {v**},,
(where each is given only up to a multiplicative constant) such that v** =
v™ + v¥* for every triple x,y,z. It turns out that, due to transitivity, this
can be done for every triple x, y, z separately. The diversity axiom guarantees
that this can also be done for sets of four eventualities, and the proof proceeds
by induction.

The final two steps of the proof deal with extensions to infinitely many

types and to infinitely many eventualities.

We finally turn to the formal proof. Let T = C/ ~ be the set of types of
cases.!! We prove the theorem in three steps. First we assume that there are
finitely many types, that is, that |T| < co. In this case the proof relies on
an auxiliary result that is of interest in its own right. Since the proof of this
theorem applies to an infinite set of eventualities X, we do not restrict the
cardinality of X in this case. Step 2 proceeds to deal with the case in which
|T| is unrestricted, but X is finite. Lastly, Step 3 deals with the general case
in which both | X| and |T| are unrestricted.

In all three steps, memories in M are represented by vectors of non-
negative integers, counting how many cases of each type appear in memory.
Formally, for every T C T define J; = Z1 = {I|I : T — 7Z.} where Z
stands for the non-negative integers. I € Jr is interpreted as a counter
vector, where I(t) counts how many cases of type t appear in the memory
represented by I. For I € Jp, if {¢t|I(t) > 0} is finite, define 72y C X x X

1€/ ~ is the set of equivalence classes of ~.

23



as follows. Choose M € M such that M C Ugpt (recall that ¢ C C is an
equivalence class of cases) and I(t) = #(M Nt) for all t € T, and define
~r="u. Such a set M exists since, by the richness assumption, [t| > ¥,
for all £ € T. For this reason, such a set M is not unique. However, if both
M, My € M satisfy these properties, then M; ~ My and 7=, =25, Hence
>~ is well-defined.

Moreover, this definition implies the following property, which will prove
useful in the sequel: if I € Jr and I’ € Jp» where T' C 17, I'(t) = I(t) for
t € Tand I'(t) = 0 for t € T'\T, then 7Z;=2"p. Another obvious observation,
to be used later, is that for every M € M there exist a finite 7' C T and
I € Jr such that M C Uiert and I(t) =#(M Nt) forallt e T.

Step 1: The case |T| < occ.

Denote the set of all counter vectors by J = Jr= ZE. For I € J, define
77 C X x X as above. We now re-state the main theorem for this case, in
the language of counter vectors. In the following, algebraic operations on J

are performed pointwise.

A1* Order: For every I € J, 7—; is complete and transitive on X.

A2* Combination: For every I,J € J and every z,y € X, if ¢ Z; y
(x=7y)and x 7y, then z 715y (=105 y).

A3* Archimedean Axiom: For every I,J € J and every z,y € X, if
x > vy, then there exists [ € N such that x >, ; y.

Observe that in the presence of Axiom 2, Axiom 3 also implies that for
every I,J € J and every z,y € X, if x > y, then there exists [ € N such
that for all £ > I, = =x;. 7 ¥.

A4* Diversity: For every list (x,y, 2z, w) of distinct elements of X there
exists I € J such that x >=; y =; z >=; w. If | X| < 4, then for any strict
ordering of the elements of X there exists I € J such that »; is that ordering.

Theorem 2: Let there be given X, T, and {Z;},.; as above. Then the

following two statements are equivalent:
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(i) i:[}[ej satisfy AT*-A4*;
(ii) There is a diversified matrix v : X x T — R such that:

for every I € J and every x,y € X,
()
vy it Y I)v(z,t) =D I()v(y, 1)

Furthermore, in this case the matrix v is unique in the following sense: v
and u both satisfy (xx) iff there are a scalar A > 0 and a matrix 5 : X xT — R

with identical rows (i.e., with constant columns) such that u = Av + (3 .

Theorem 2 is reminiscent of the main result in Gilboa and Schmeidler
(1997). In that work, cases are assumed to involve numerical payoffs, and
algebraic and topological axioms are formulated in the payoff space. Here,
by contrast, cases are not assumed to have any structure, and the algebraic
and topological structures are given by the number of repetitions. This fact
introduces two main difficulties. First, the space of “contexts” for which
preferences are defined is not a Euclidean space, but only integer points
thereof. This requires some care with the application of separation theorems.
Second, repetitions can only be non-negative. This fact introduces several
complications, and, in particular, changes the algebraic implication of the
diversity condition.

Before proceeding with the proof, we find it useful to present a condition
that is equivalent to diversification of a matrix. We will use it both for the
matrix v : X X T — R of Theorem 2 and the matrix v : X x C — R of
Theorem 1. We therefore state it for an abstract set of columns:

Auxiliary Proposition: Let Y be a set. Assume first | X| > 4. A matriz
v: X XY — R is dversified iff for every list (z,y,z,w) of distinct elements
of X, the convex hull of differences of the row-vectors (v(z,-) — v(y,-)),
(v(y,-) — v(z,%)), and (v(z,-) — v(w,-)) does not intersect RY. Similar

equivalence holds for the case | X| < 4.
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Proof: We prove the lemma for the case | X| > 4. The proof for | X| < 4 is
similar. Assume first that a matrix v is diversified. Assume that the conclu-
sion does not hold. Hence, there are distinct z,y,z,w € X and o, 3,7 > 0
with a + 3+ v = 1 such that

a(v(z,-) —v(y,-) + Bu(y,-) —v(z,)) +y(v(z,-) —v(w,-)) <0.
If & > 0, then
v(xv ) < af;ﬁv(ya ) + ﬁf;lv(z’ ) + 'Z?U(w’ )

which means that v(z, -) is dominated by an affine combination of {v(y, ), v(z, ), v(w, )},
in contradiction to the fact that v is diversified. If @ = 0, then, by a similar
argument, if § > 0, then v(y,-) is dominated by an affine combination of
{v(z,-),v(w,-)}. Finally, if « = § = 0, then v(z,-) is dominated by v(w, ).

For the converse direction, assume that the convex hull of {(v(z,-) —
v(y, ")), (v(y,-)—v(z,-)), (v(z,-)—v(w,-))} (over all lists (z, y, z,w) of distinct
elements in X) does not intersect RY but that, contrary to diversity of v,
there are distinct z,y, z,w € X and A\, i, 0 € R with A + p+ 6 = 1 such that

(+) vz, ) < Mo(y,-) + po(z,-) + Ov(w,-).

Since A + u + 6 = 1, at least one of A\, i, is non-negative. Assume,
w.l.o.g., that § > 0. Hence A + =1 — 6 < 1. This means that at least one
of A\, p cannot exceed 1. Assume, w.l.o.g., that A < 1. Inequality (+) can be

written as
v(@,-) = Av(y, ) — po(z,-) = fv(w,-) <0
or, equivalently,
(v(z,-) —o(y,)) + (1 =N (v(y,) —v(z,)) + (1= A= p)(v(z,) —v(w,-)) 0.

Since 1 — A >0and 1 — XA —p = 0 > 0, dividing by the sum of the

coefficients yields a contradiction to the convex hull condition.[]
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Proof of Theorem 2: We present the proof for the case | X| > 4. The
proofs for the cases |X| = 2 and |X| = 3 will be described as by-products
along the way.

We start by proving that (i) implies (ii). We first note that the following
homogeneity property holds:

Claim 1 For every I € ZE and every k € N, = ;=r;.

Proof: Follows from consecutive application of the combination axiom. [
In view of this claim, we extend the definition of 7~; to functions I whose

values are non-negative rationals. Given I € Qf, let k& € N be such that

kI € Z% and define ;= 7. 7 is well-defined in view of Claim 1. By the

definition and Claim 1 we also have:

Claim 2 (Homogeneity) For every I € QF and every ¢ € Q , ¢ > 0 :

in: i:l .

Claim 2, A1*, and A2* imply:

Claim 3 (The order axiom) For every I € QL , 7, is complete and tran-
sitive on X, and (the combination axiom) for every I,J € QL and every

r,y € X and p,q € Q , p,q > 0: if v Zry (x =1 y) and x Z; y, then
xz ,>\:pl+qJ Yy (,I >']DIJqu y) :
Two special cases of the combination axiom are of interest: (i) p=g¢ =1,

and (ii) p+ ¢ = 1. Claims 2 and 3, and the Archimedean axiom, A3*, imply

the following version of the axiom for the Q7 case:

Claim 4 (The Archimedean axiom) For every I, J € QT and every z,y €
X, if x =y, then there exists r € [0,1) NQ such that x >, 1-rs Y.

It is easy to conclude from Claim 3 and 4 that for every I,J € Q&
and every x,y € X, if x >=; y, then there exists r € [0,1) N Q such that

T = pr(1—p)s Y for every p € (r,1) N Q.
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The following notation will be convenient for stating the first lemma. For

every z,y € X let

A" ={I€Q} |z >y} and
B ={Ie€Q |z 7y}

Observe that by definition and Al1*: A® C B*, B" N AY = (), and
B* U AY* = QE. The first main step in the proof of the theorem is:

Lemma 1 For every distinct x,y € X there is a vector v*¥ € RT such that,

() B = {T € QT | v - 1> 0);
(i) A% ={I e Q} |v¥ -I>0};
(i) B¥* ={I € Q% | v*¥- I <0};
(i) A" ={I € Q% | v™¥ - I < 0};
(v) Neither v™¥ < 0 nor v*¥ > 0;
(vi) —v®Y = VY=,
Moreover, the vector v™¥ satisfying (i)-(iv), is unique up to multiplication by

a positive number.

The lemma states that we can associate with every pair of distinct even-
tualities =,y € X a separating hyperplane defined by v® - £ = 0 (¢ € RT),
such that x 77 y iff I is in the half space defined by v*¥-I > 0. Observe that
if there are only two alternatives, Lemma 1 completes the proof of sufficiency:
for instance, one may set v* = v*¥ and v¥ = 0. It then follows that x 7~ y iff
v I >0, ie., iff v*- I > v¥-I. More generally, we will show in the following
lemmata that one can find a vector v* for every alternative x, such that, for
every z,y € X, v®¥ is a positive multiple of (v* — v¥).

Before starting the proof we introduce additional notation: let B™ and
A®Y denote the convex hulls (in RT) of B and A®, respectively. For a

subset B of RY let int(B) denote the set of interior points of B.

Proof of Lemma 1: We break the proof into several claims.
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Claim 5 For every distinct v,y € X, A*Y N int(jzl\xy) #0 .

Proof: By the diversity axiom A™ # () for all z,y € X,z # y. Let I €
A% NZE and let J € Z3 with J(¢) > 1 for all t € T. By the Archimedean
axiom there is an | € N such that K =1 + J € A™. Let (@)f'ﬂ be the
2/l distinct vectors in RT with coordinates 1 and —1. For j, (j = 1,..., 21,
define n; = K + ¢;. Obviously, ; € Qf for all j. By Claim 4 there is an
r; € [0,1) N Q such that ¢; = r,K + (1 —r;)n; € A* (for all j). Clearly,
the convex hull of { ¢; | j = 1,...,2/T1}, which is included in E’”y, contains an

open neighborhood of K. [J

Claim 6 For every distinct x,y € X, B¥ N Z'nt(jfwy) =0.

Proof: Suppose, by way of negation, that for some £ € int(zzl\xy) there are
(n:)¥_, and (\)*_;, k € N such that for all i, n; € B¥, \; € [0,1], ZF_ N\ =1,
and & = ¥¥  \m;. Since £ € z'nt(;l\””y), there is a ball of radius € > 0 around &
included in A%Y. Let § = ¢/(25%,||n;||) and for each i let ¢; € QN [0, 1] such
that |¢;— \;| <& ,and XF_,¢; = 1. Hence,n = ¥ ¢m; € QF and |[n—¢]| <&,
which, in turn, implies n € Ay Q7. Since for all i : n; € BY*, consecutive
application of the combination axiom (Claim 3) yields n = ¥ q;n; € BY®.
On the other hand, 7 is a convex combination of points in A C Q7 and thus
it has a representation with rational coefficients (because the rationals are
an algebraic field). Applying Claims 3 consecutively as above, we conclude

that n € A* — a contradiction.[]

The main step in the proof of Lemma 1: The last two claims imply that
(for all z,y € X,z # y) B™ and A¥® satisfy the conditions of a separating
hyperplane theorem. (Namely, these are convex sets, where the interior of
one of them is non-empty and does not intersect the other set.) So there is

a vector v*¥ # 0 and a number ¢ so that

v . I >c forevery I € B

v . I <c¢ forevery I € Ave
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Moreover,

v .1 >c for every I € int(B*)

~

v . I < ¢ forevery I € int(AY") .

By homogeneity (Claim 2), ¢ = 0. Parts (i)-(iv) of the lemma are

restated as a claim and proved below.

Claim 7 For allz,ye X,z #y: BY={l € QL |v™¥ -1 >0}; A% ={I €
Tl I >0} B ={IeQY |vY-1<0}; and A ={I € Q] |v*™¥-I <
0}.

Proof: (a) B C {I € Q} | v™ - I > 0} follows from the separation result
and the fact that z = 0.

(b) A% C {I € Q} | v*¥ -1 > 0}: assume that z >; y, and, by way of
negation, v*¥-I < (. Choose a J € A% ﬂint(gyw). Such a J exists by Claim
5. Since z = 0, J satisfies v* - J < 0. By Claim 4 there exists r € [0,1) such
that r[+(1—r)J € A® C B*. By (a), v*¥-(rI4+(1—7)J) > 0. Butv®™-I <0
and v*¥ - J < 0, a contradiction. Therefore, A* C {I € Q% | v -1 > 0}.

(c) A¥* C {I € QF | v™-I < 0}: assume that y >; = and, by way of nega-
tion, v*¥-I > 0. By Claim 5 thereis a J € A®™ with J € int(A™) C int(B*).
The inclusion J € @'nt(ﬁwy) implies v*¥ - J > 0. Using the Archimedean ax-
iom, there is an r € [0,1) such that r1 4+ (1 — r)J € A¥*. The separation
theorem implies that v*- (r{+(1—r).J) < 0, which is impossible if v*¥-1 > 0
and v™¥ - J > 0. This contradiction proves that A% C {I € Q% | v*¥-I < 0}.

(d) B¥ c {I € Q% | v*¥ -1 < 0}: assume that y Z; z, and, by way
of negation, v™ - I > 0. Let J satisfy y >; z. By (c¢), v*¥ - J < 0. Define
r=(v"¥.I)/(—=v*-J) > 0. By homogeneity (Claim 2), y >, . By Claim 3,
I+rJ e A¥*. Hence, by (c), v*¥- (I +rJ) < 0. However, direct computation
yields v - (I +rJ) =v™ - [ +rv™ - J = 0, a contradiction. It follows that
B¥ c{I e Qi |v™¥-1<0}.

(e) B* > {I € Q} | v*¥-I > 0}: follows from completeness and (c).
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(f) A% > {I € Q% | v™ - I > 0}: follows from completeness and (d).
(g) A¥* > {I € QF | v*¥ - I < 0}: follows from completeness and (a).
(h) B¥ > {I € Q} | v™ - I < 0}: follows from completeness and (b). O

Completion of the proof of the Lemma.

Part (v) of the Lemma, i.e., v*¥ ¢ R} UR?T for z # y, follows from
the facts that A™ # @ and AY* # @&. Before proving part (vi), we prove
uniqueness.

Assume that both v™ and u™ satisfy (i)-(iv). In this case, u™ - £ < 0
implies v - £ < 0 for all £ € RY. (Otherwise, there exists I € QF with
u - I < 0 but v*¥ -1 > 0, contradicting the fact that both v*¥ and u*¥
satisfy (i)-(iv).) Similarly, «*¥ - £ > 0 implies v™ - £ > 0. Applying the
same argument for v*¥ and u*¥, we conclude that {{ € RY | v™ - ¢ = 0} =
{¢ e RL | u™ - & = 0}. Moreover, since int(A™) # @ and int(A¥) # @,
it follows that {¢ € RT | v - ¢ = 0} Nint(RT) # @. This implies that
{EeRT | v . £ =0} = {£ € RT | u® . & =0}, i.e., that v®¥ and u® have
the same null set and are therefore a multiple of each other. That is, there
exists  such that v = av™. Since both satisfy (i)-(iv), a > 0.

Finally, we prove part (vi). Observe that both v*¥ and —v¥%" satisfy (i)-
(iv) (stated for the ordered pair (x,y)). By the uniqueness result, —ov™ =
av¥® for some positive number «. At this stage we redefine the vectors
{v™}; yex from the separation result as follows: for every unordered pair
{z,y} C X one of the two ordered pairs, say (y,z), is arbitrary chosen and
then v® is rescaled such that v*¥ = —o¥*. (If X is uncountable the axiom of
choice has to be used.)O

Lemma 2 For every three distinct eventualities, x,y, z € X, and the corre-
sponding vectors v*¥ v¥* v** from Lemma 1, there are unique o, 3 > 0 such
that:

av™ + Go¥* = v
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The key argument in the proof of Lemma 2 is that, if v** is not a linear
combination of v*¥ and v¥*, one may find a vector I for which > is cyclical.

If there are only three alternatives x,y,z € X, Lemma 2 allows us to
complete the proof as follows: choose an arbitrary vector v** that separates
between x and z. Then choose the multiples of v and of v¥* defined by the
lemma. Proceed to define v* = v**, v¥ = Gv¥?, and v* = 0. By construction,
(v* —v?) is (equal and therefore) proportional to v**, hence x =~; z iff v*- I >
v* - I. Also, (v¥ — v*) is proportional to v¥* and it follows that y =—; z iff
vY - [ > v®-I. The point is, however, that, by Lemma 2, we obtain the
same result for the last pair: (v® — v¥) = (V™% — Sv¥?) = ™ and = 77; y iff
v¥ - I > Y. ] follows.

Proof of Lemma 2:

First note that for every three distinct eventualities, z,y,z € X, if v™¥
and v¥* are colinear, then for all I either z >; y & y >y zorz > y &
z »; y. Both implications contradict diversity. Therefore any two vec-
tors in {v™¥, v¥% v*#} are linearly independent. This immediately implies the

uniqueness claim of the lemma. Next we introduce

Claim 8 For every distinct x,y,z € X, and every A\, u € R, if Ao™ + po¥* <
0, then A = p = 0.

Proof: Observe that Lemma 1(v) implies that if one of the numbers A,
and p is zero, so is the other. Next, suppose, per absurdum, that Ay # 0,and
consider A\v™ < po®¥. If, say, A, u > 0, then v™-I > 0 necessitates v*¥-1 > 0.
Hence there is no I for which z >=; y > z, in contradiction to the diversity
axiom. Similarly, A > 0 > p precludes x >; z =5 y; ¢ > 0 > X precludes
y =1« > z; and A\, < 0 implies that for no I € QT is it the case that
z =1y > x. Hence the diversity axioms holds only if A = = 0. [

We now turn to the main part of the proof. Suppose that v*¥, v¥*, and

zZx

v*® are column vectors and consider the |T| x 3 matrix (v®, v¥* v*") as a

2-person 0-sum game. If its value is positive, then there is an £ € A(T) such
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that v - £ > 0, v¥*- £ > 0, and v** - £ > 0. Hence there is an I € QT N A(T)
that satisfies the same inequalities. This, in turn, implies that = >; y, y >, z,
and z >=1 x - a contradiction.

Therefore the value of the game is zero or negative. In this case there are
A, p, ¢ > 0, such that Ao™ 4+ po¥? + (v** < 0 and A + g+ ¢ = 1. The claim
above implies that if one of the numbers A, 4 and ( is zero, so are the other
two. Thus A, u,( > 0. We therefore conclude that there are « = A/ > 0
and § = p/¢ > 0 such that

(1) av™ 4 ¥ < oP?

Applying the same reasoning to the triple z,y, and x, we conclude that
there are ~,6 > 0 such that

(2) Yo 4 6v¥t < v,
Summation yields
(3) (a—6)v™ + (B —y)v¥* <O0.

Claim 8 applied to inequality (3) implies @ = 6 and 8 = ~. Hence
inequality (2) may be rewritten as av™ + fv¥* < v®* which together with

(1) yields the desired representation.[]

Lemma 2 shows that, if there are more than three alternatives, the like-
lihood ranking of every triple of alternatives can be represented as in the
theorem. The question that remains is whether these separate representa-

tions (for different triples) can be “patched” together in a consistent way.

Lemma 3 There are vectors {v™}, yex azy, as in Lemma 1, such that for

any three distinct acts, x,y,z € X, the Jacobi identity v*¥ + v¥* = v™* holds.
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Proof: The proof is by induction, which is transfinite if X is uncountably
infinite. The main idea of the proof is the following. Assume that one has
rescaled the vectors v™¥ for all alternatives x,y in some subset of acts A C X,
and one now wishes to add another act to this subset, w £A. Choose x € A
and consider the vectors v**, v¥* for x,y € A. By Lemma 2, there are unique
positive coefficients «, § such that v*¥ = av™ + Gv*Y . One would like to
show that the coefficient @ = o, does not depend on the choice of y € A.

We will show that, if o, did depend on y, one would find that there are

w zZWw

x,y,z € A such that the vectors v**, v¥* v*¥ are linearly dependent, and

this would contradict the diversity axiom.

Claim 9 Let A C X, |A| > 3, w € X\A. Suppose that there are vectors
{v™} 4 yeawty, as in Lemma 1, and for any three distinct acts, x,y,z € X,
v +¥* = v®* holds. Then there are vectors {v™}; yc AU{w}ey, @S i Lemma

1, and for any three distinct acts, x,y,z € X, v*¥ + v¥* = v** holds.

Proof: Choose distinct z,y,z € A. Let v** oY%, and 9** be the vectors
provided by Lemma 1 when applied to the pairs (z,w), (y,w), and (z,w),
respectively. Consider the triple {z,y,w}. By Lemma 2 there are unique
coefficients A({z,w},y), A\({y, w},z) > 0 such that

(1) v = A({z,w}, y)0** + A{y, w}, z)o*¥

Applying the same reasoning to the triple {z, z,w}, we find that there
are unique coefficients A({z, w}, z), A({z, w}, z) > 0 such that

v = AN{z,w}, 2)0™ + A({z, w}, z)0"=.
or

(I1) v** = A({z,w}, 2)0"* + A({z, w}, x)0**.
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We wish to show that A({z,w},y) = A({z,w}, z). To see this, we con-
sider also the triple {y, z, w} and conclude that there are unique coefficients
A{y,w}, 2),\({z,w},y) > 0 such that

(IIT) v¥* = A({y, w}, 2)0¥* + A({z,w}, y)o*=.
Since z,y, z € A, we have
v oY+ =0

and it follows that the summation of the right-hand sides of (I), (II), and

(III) also vanishes:

P‘({m’ ’U)}, y) - )‘({xv ’U)}, z)]@xw + P‘({yv w}v Z) - A({ya ’U)}, x)]{)yw_‘_
[A{z, w}, 2) = AM({z, w}, y)]o* = 0.

If some of the coefficients above are not zero, the vectors {v*¥, d¥* ¥}
are linearly dependent, and this contradicts the diversity axiom. For instance,
if 9" is a non-negative linear combination of v¥* and v**, for no [ will it be
the case that y =7 z =7 w >y .

We therefore obtain A({z,w},y) = A({z,w}, z) for every y,z € A\{z}.
Hence for every x € A there exists a unique A\({z,w}) > 0 such that, for
every distinct z,y € A v = A\({z,w})?™ + A({y, w})9*¥. Defining v™* =
A{z, w})v*™ completes the proof of the claim.[]

To complete the proof of the lemma, we apply the claim consecutively.
In case X is not countable, the induction is transfinite (and assumes that X

can be well ordered).l

Note that Lemma 3, unlike Lemma 2, guarantees the possibility to rescale
simultaneously all the v*¥-s from Lemma 1 such that the Jacobi identity will
hold on X.
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We now complete the proof that (i) implies (ii). Choose an arbitrary act,
say, g in X. Define v9 = 0, and for any other alternative, x, define v* = v*9,
where the v*9-s are from Lemma 3.

Given I € QT and z,y € X we have:

oy I>0 (W9 +0") 1 >0&
(=) I >00v" - T =0 - 1>00" - I >0Y ]

The first implication follows from Lemma 1(i), the second from the Jacobi
identity of Lemma 3, the third from Lemma 1(vi), and the fourth from the
definition of the v*-s. Hence, (*x*) of the theorem has been proved.

It remains to be shown that the vectors defined above are such that
conv({v® —v¥, v¥ —v? v —v¥}) NRTY = (). Indeed, in Lemma 1(v) we have
shown that v® — v¥ ¢ R™. To see this one only uses the diversity axiom for
the pair {z,y}. Lemma 2 has shown, among other things, that a non-zero
linear combination of v¥* —v¥ and v¥ —v* cannot be in R*, using the diversity
axiom for triples. Linear independence of all three vectors was established
in Lemma 3. However, the full implication of the diversity condition will be
clarified by the following lemma. Being a complete characterization, we will
also use it in proving the converse implication, namely, that part (ii) of the
theorem implies part (i). The proof of the lemma below depends on Lemma
1. It therefore holds under the assumptions that for any distinct x,y € X
there is an I such that x >; y.

Lemma 4 For every list (z,y,z,w) of distinct elements of X, there exists
I € J such that

r=ry>=rz=rw iff conv({v™¥ v ¥ NRE =0 .

Proof: There exists I € J such that « >; y =; z =; w iff there exists I € J
such that v*¥ - I, v¥* . [, v** . I > 0. This is true iff there exists a probability
vector p € A(T) such that v™ - p,v¥* - p,v*” - p > 0.
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Suppose that v™¥, v¥* and v*" are column vectors and consider the |T| x 3
matrix (v%, v¥% v*¥) as a 2-person 0-sum game. The argument above implies
that there exists I € J such that x >=; y >=; z >; w iff the maximin in this
game is positive. This is equivalent to the minimax being positive, which
means that for every mixed strategy of player 2 there exists t € T that
guarantees player 1 a positive payoff. In other words, there exists I € J such
that  >=; y =, z »=; w iff for every convex combination of {v™¥, v¥* v**} at
least one entry is positive, i.e., conv({v®, v¥* v**}) NRTY = (. O

This completes the proof that (i) implies (ii). [

Part 2: (ii) implies (i)

It is straightforward to verify that if {Z},cqr are representable by {v* }zex

as in (*x), they have to satisfy Axioms 1-3. To show that Axiom 4 holds, we

quote Lemma 4 of the previous part. [J

Part 3: Uniqueness

It is obvious that if u* = av® + 3 for some scalar a > 0, a vector 3 € R”,
and all x € X, then part (ii) of the theorem holds with the matrix u replacing
v.

Suppose that {v*},cx and {u®},cx both satisfy (xx), and we wish to
show that there are a scalar & > 0 and a vector 3 € RT such that for all
x € X, u* = av” + (. Recall that, for x # y, v* # MY and u® # Au¥ for all
0# ) €R by Ad.

Choose x # g (z,g € X, g satisfies vY = 0). From the uniqueness part of
Lemma 1 there exists a unique o > 0 such that (u* —u9) = a(v* —0v9) = av®.
Define 3 = u¥.

We now wish to show that, for any y € X, u¥ = av¥ + 3. It holds for
y = g and y = x, hence assume that x # y # ¢g. Again, from the uniqueness

part of Lemma 1 there are unique v, > 0 such that



Summing up these two with (u* —u?) = a(v® — v9), we get
0=a(v”—v?)+y(Y —0v°)+6(v? —1vY) = av® + y(v?¥ —v®) — 6v¥.

Thus

(=) +(y =06 =0.

Since v* # v9 = 0, v¥ # v9 = 0, and v* # MY if 0 # A € R, we
get a = v = 6. Plugging a = v into (u¥ — u*) = y(v¥ — v®) proves that
u =av¥+ (. 0

This completes the proof of Theorem 2. L[]

We now turn to complete the proof of Step 1. First we prove that (i)
implies (ii). Assume that {=,/}, satisfy Al-A4. Tt follows that {=;};
satisfy A1*-A4*. Therefore, there is a representation of {%=;}; by a matrix
v: X XT — R as in (x*) of Theorem 2. We abuse notation and extend
v to specific cases. Formally, we define v : X x C — R as follows. For
z € X and ¢ € C, define v(z,c) = v(z,t) for t € T=C/ ~ such that
¢ € t. With this definition, () of Theorem 1 holds. Obviously, ¢ ~ d
implies v(-,¢) = v(-,d). The converse also holds: if v(-,¢) = wv(-,d), (%)
implies that ¢ ~ d. Finally, observe that, for every distinct four eventualities
z,y,z,w € X, the vectors v(z,-),v(y,),v(z,-),v(w,-) € R® are obtained
from the corresponding vectors in R* by replication of columns. Since v :
X x T — R is diversified, we also get that v : X x C — R is diversified.

We now turn to prove that (ii) implies (i). Assume that a diversified
matrix v : X x C — R, respecting case equivalence, is given. One may then
define v : X x T — R by v(x,t) = v(z,c) for t € T = C/ ~ such that ¢ € t,
which is unambiguous because v(-,¢) = v(-,d) whenever ¢ ~ d. Obviously,
(+%) of Theorem 2 follows from (%) of Theorem 1, and v : X x T — R is
diversified as well. Defining {%=;}; by the matrix v : X X T — R and (), we
find that {=;}; satisfy A1*-A4*. Also, »>y='"=,, for every M € M. Hence
{=n}nr satisfy Al-A4.
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To see that uniqueness holds, assume that v,u : X x C — R both satisfy
(*) of Theorem 1, and respect case equivalence. Define v,u: X x T — R as

above. The uniqueness result in Theorem 2 yields the desired result. L[]

Step 2: The case of arbitrary |T| and finite | X]|.

We first prove that (i) implies (ii). Observe that a representation as in (ii)
is guaranteed for every finite 7' C T, provided that T is rich enough to satisfy
the diversity axiom A4. We therefore restrict attention to such sets T', and
show that the representations obtained for each of them can be “patched”
together.

For every ordered list (z,y, z,w) € X, choose M € M such that = >,
Yy >=wm 2 =y w. Such an M exists by A4. Let M, be the union of all sets M
so obtained. Since X is finite, so is M, i.e., My € M. Let T be the set of
types (equivalence classes) of cases in My. Choose g € X. Apply Theorem
2 to obtain a representation of {i=;}scy, by vy, : X X Ty and (x*) for all
I € Jy, = Z2, such that vy, (g,-) = 0. For every finite ' C T such that
Ty C T, apply Theorem 2 again to obtain a representation of {=;}cy, by
vr : X x T and (*x) for all I € Jr = Z%, such that vy(g,-) = 0 and such
that vy extends vy,. vr is uniquely defined by these conditions. Moreover,
itT CcTiynNTy, Ty C T, and T} and T, are finite, then the restriction of vy,
and of vy, to T coincide. The union of {vy} <o defines v : X x T — R
satisfying (#x) for all I € Jr for some finite 7" C T. Defining v on X x C
as above yields a function that satisfies (%) of Theorem 1 and that respects
case equivalence.

We now turn to prove that (i) implies (i). Given a representation via
a matrix v : X x C — R as in (x), it follows that {=,/} satisfy Al and
A2. A3 also holds since v respects case equivalence. It remains to show
that the above, for a diversified v, imply A4. Assume not. Then there are
distinet (x,y, z,w) € X such that for no finite memory M is it the case that
T =y Y a2 -y w. We wish to show that this condition contradicts the
fact that v is diversified.
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By diversification of v we know that

convf{(v(z,) = v(y,"), (v(y,") = v(z,")), (v(z,") = v(w,))} NRE = @.

This implies that, for every vector («, 3, ) in the two-dimensional simplex
A2, it is not the case that

a(v(e,) = v(y,-) + B(y, ) —v(z,-) +7(v(z,) = v(w,)) <0.

In other words, for every (o, 3,7) € A? there exists a case ¢ € C such
that

a(v(z,c) = v(y, ) + Buly, ¢) = v(z ) +7(v(z; ) = v(w,¢)) > 0.

Thus

{ (o, 3,7) €
A?la(v(z,c) —v(y,c) + B(v(y, c) — v(z,¢)) +y(v(z,¢) — v(w,c)) > O}eec

is an open cover of A? in the relative topology. But A? is compact in this
topology. Hence it has an open sub-cover. But this implies that there is a
finite memory M € M such that, restricting v to X x M,

conv{(v(z,-) — v(y, ), (v(y,) — v(z,)), (W(z, ) — v(w, )} NRY = 2.

Let T be the set of types of cases appearing in M. Define v : X xT — R

as above. It also follows that

COTLU{(’U(L ) - U(y, ))a (U(ya ) - v(zv ))a (’U(Z, ) - v(wv ))} N RZ = .

By Theorem 2 this implies that there exists I € J; for which z >=; y >,
z =5 w. Let M’ be a set of cases such that I(t) = #(M'Nt), and M’ C Usert.
It follows that x >, y > 2 = w, a contradiction.

Finally, uniqueness follows from the uniqueness result in Step 1. [
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Step 3: The case of infinite X, T.

We first prove that (i) implies (ii). Choose e, f,g,h € X. For Ay =
{e, f,g,h} there exists a diversified function vy, : Ay x C — R satisfying (x)
and respecting case equivalence, as well as vy, (e, ) = 0. Moreover, all such
functions differ only by a multiplicative positive constant. Fix such a function
U4,. For every finite set A C X such that Ay C A, there exists a diversified
function v4 : A x C — R satisfying (%) and respecting case equivalence.
Moreover, there exists a unique v, that extends v4,. Let us denote it by v4.
We now define v : X x C — R. Given x € X, let A be a finite set such
that AgU{z} C A. Define v(z,-) = D(x,-). This definition is unambiguous,
since, for every two finite sets A; and Ay such that AgU{z} C A;, Ay, we have
VA, (T,+) = Vayua, (T, +) = Va,(x, ). To see that v satisfies (x), choose z,y € X
and consider A = Ay U {z,y}. Since v(x,-) = va(x,-), v(y,) = va(y,-) and
U4 satisfies (%) on A, v satisfies (x) on X. Next consider respecting case
equivalence, namely, that v(-,c¢) = v(-,d) iff ¢ ~ d. The “if” part follows
from the fact that, if ¢ ~ d, then for every finite A, v4(-,¢) = Va(+,d). As
for the “only if” part, it follows from the representation by (x) as in Step 1.
Finally, to see that v is diversified, let there be given x,y, z,w and choose
A= AgU{z,y,z,w}. Since 14 is diversified, the desired conclusion follows.

The that (ii) implies (i) is follows from the corresponding proof in Step 2,
because each of the axioms A1-A4 involves only finitely many eventualities.

Finally, uniqueness is proven as in Step 1. L]

Proof of Proposition — Insufficiency of A1-3:

To see that without the diversity axiom representability is not guaranteed,
let X = [0,1]? and let =, be the lexicographic order on X.'? Define, for
every non-empty M € M, ==, and Zg= X x X. It is easy to see

that {7 as}amem satisfy A1-3. However, there cannot be a representation as

12 A1-3 do not suffice for the existence of a representation as in (x) even if X is finite. See
Gilboa and Schmeidler (1997) for an example with |X| = 4, which can be easily adapted
to the present set-up.
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in (x) since for any non-empty M, 7~,; is not representable by a real-valued

function..]

Proof of Remark:

Consider an example in which {Z,/} s rank eventualities by relative fre-
quencies, with a tie-breaking rule that is reflected by small additions to the
value of v. These small additions, however, vary from case to case and their
sum converges. Specifically, let X = {1,2,3,4}. Define T = {1,2,3,4}. T
will indeed end up to be the set of types of cases, as will become clear once
we define {75/ }as. For the time being we will abuse the term and will refer
to elements of T as “types”. Let the set of cases be C=T x N. We now
turn to define v : X x C—»R. Forz € X, ¢t € T, and i € N, if x # ¢,
v(z, (t,3)) = 0. Otherwise (i.e., if x = 1), if x € {1,2,3}, then v(z, (¢,7)) = 1.
Finally, v(4, (4,7)) = 1+ 5 for i € N. Define {ZZa}a by v via ().

We claim that two cases (¢,1), (s,j) € T x N are equivalent ((,7) ~ (s, 7))
iff t = s. Tt is easy to see that if t # s, then (¢,7) and (s, j) are not equivalent.
(For instance, ¢ ()} s but s (s t.) Moreover, if t = s € {1,2,3}, then
v(-, (7)) =v(- (s,7)). By (%), (t,4) ~ (s,7). It remains to show that, for all
i,7 €N, (4,i) ~ (4,7) despite the fact that v(-, (4,7)) # v(-, (4,7)).

Observe, first, that {7} 1 agree with relative frequency rankings. Specif-
ically, consider a memory M € M. Let I, € Zi be defined by Iy, (t) = #{i €
N|(t,3) € M} fort € {1,2,3,4}. For any s,t € {1,2,3,4}, if In;(t) > I (s),
it follows that ¢ =, s. Also, if Iy (t) = Ip(s) and s,t < 4, then t ~y; s.
Finally, if, for ¢t € {1,2,3}, Iy;(t) = I3(4), then 4 >, t.

Let there be given M € M such that (4,i),(4,5) ¢ M. The memories
MU{(4,7)} and MU{(4, j)} agree on relative frequencies of the types, that is,
Tnvugay = Ivuga,g)y- Hence Zaugaiy =2 muq,j)y and (4,4) ~ (4, j) follows.

Thus v satisfies (*) but does not respect case equivalence.!3]

130bserve that the relations {=as}as satisfy Al and A2 (as they do whenever they are
defined by some v via (x)), as well as A4, but not A3. Indeed, such an example cannot be
generated if A3 holds as well. Specifically, one can prove the following result: if {Zas} s
are defined by v via (%), and satisfy A3 and A4, then v(z,¢) — v(y, ¢) = v(x,d) — v(y,d)
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