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Abstract:

By taking sets of utility functions as a primitive description of agents, we define an
ordering over assumptionson utility functionsthat gaugestheir implicit measurement
requirements. Cardinal and ordinal assumptionsconstitutetwo typesof measurement
requirements, but severa standard assumptions in economics lie between these
extremes. We first apply the ordering to different theories for why consumer
preferences should be convex and show that diminishing marginal utility, which for
complete preferences implies convexity, is an example of a compromise between
cardinality and ordinality. In contrast, the Arrow-Koopmans theory of convexity,
although proposed as an ordinal theory, relies on utility functions that lie in the
cardina measurement class. In a second application, we show that diminishing
marginal utility, rather than the standard stronger assumption of cardinality, also
justifies utilitarian recommendations on redistribution and axiomatizes the Pigou-
Dalton principle. We aso show that transitivity and order-density (but not
completeness) characterize the ordinal preferences that can be induced from sets of
utility functions, present a general cardinality theorem for additively separable
preferences, and provide sufficient conditions for orderings of assumptionson utility
functions to be acyclic and transitive.



1. Introduction

Ordinal utility theory asserts that only those assumptions on utility functions that are preserved
under monotonically increasing transformations are proper primitives. Therationaleisthat any
property P that is not preserved under increasing transformations cannot be verified through
observations of choice behavior: if autility u satisfies P, there will exist another utility u’ that does not
satisfy P but that represents the same preferences as u. Nonordinal properties are therefore needlessly
restrictive: given anonordinal assumption, one may always make a weaker assumption with the same
implications for choice behavior. Itiscommon, therefore, to contend that the only role for cardinal
utility functions in economics is the normative one of representing interpersonal utility comparisons.

Ordinalism’ sfirst targets were diminishing marginal utility and concavity, which had long been
used as arguments for why preferences are normally convex. Neither DMU nor concavity is preserved
by increasing transformations and hence neither is an ordinal assumption. Rather, when a utility
analogue for the convexity of preferencesis necessary, the ordinal procedure is to assume that utility
functions are quasiconcave. Many pioneer ordinalists, e.g., Arrow (1951), claimed in addition that
diminishing marginal utility is tantamount to assuming that utility is cardinal. Arrow’s position in the
1950’ s was typical and remains predominant: either an assumption on utility isordinal or it iscardinal.

By taking sets of utility functions as primitive, | define afiner gradation of properties of utility
that alows for intermediate standards of measurement. Ordinal preference theory, which takes the
functions generated by all increasing transformations of a given utility function as primitive, lies at one
end of the spectrum. Cardinal theory, which takes the functions generated by all increasing affine
transformations of a given utility function as primitive, uses amuch smaller set of utility representations
and therefore leads to a stronger (more restrictive) theory. Outside of economics, ratio scales, which
take still smaller sets of functions as primitive (the functions generated by al increasing linear
transformations), are a'so common. But in addition to these well-known measurement scales, thereis
an infinity of intermediate cases. Diminishing marginal utility and concavity lie precisely in the middle
ground between cardinality and ordinality. The set of all concave representations of a given preference
relation is larger than any cardinal set of representations but smaller than the ordinal set. Concavity
thus presupposes an intermediate standard of measurement and does not, therefore, rely on cardinalist

foundations. Moreover, concavity isfar more natural as a primitive in economicsthanis
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guasiconcavity: concavity exactly captures the core presumptions of economic psychology.

Given that only ordinal properties of utility can be tested with choice behavior, what advantage
could there be in taking nonordinal properties of utility as primitive? One benefit is that nonordinal
properties can provide rationales for assumptions on preference relations. Diminishing marginal utility,
for instance, gives a psychological explanation of why preferences should be convex. To declare by fiat
that preferences relations are convex (or that utility is quasiconcave), in contrast, offers no
psychological rationale. This paper thus gives utility functions a purpose in positive preference theory,
whereas for ordinalists they serve only as a convenient shorthand for preference relations. A second
advantage is that we can order the strength of assumptions and thereby gauge just how nonordinal an
assumption is. Thisordering proves particularly valuable in socia choice theory, where the need for
nonordinal assumptionsis well-recognized but the ordinal/cardinal dichotomy prevails.

Weiillustrate our ordering of properties of utility by considering another celebrated rationale for
the convexity of preferences, Arrow’s (1951) argument (following Koopmans) that an agent’s leeway to
determine the precise timing of consumption implies that preferences must be convex. Arrow reasoned
that this rationale for convexity, unlike diminishing marginal utility, was free from any taint of
cardinality. We show, however, that the utility theory that lies behind the Arrow/K oopmans position is
cardinal. Bringing these results together, we see that the old neoclassical explanation, diminishing
marginal utility or concavity, rests on less a demanding standard of measurement.

We also apply concavity as a measurement scale to social decision-making, and take issue with
another common belief about measurement in economics, that utilitarian interpersonal comparisons rely
on cardinal utility scales. By taking a set of concave interpersonal utility functions as a primitive we
derive utilitarian conclusions about the benefits of redistributing utility from rich to poor. Indeed, the
ordering that arises from a set of concave utilities provide a better approximation of classical utilitarian
writings than the cardinalist approach of taking asingle interpersonal utility function and its affine
transformations as primitive. For instance, concave utilities characterize the famous Pigou-Dalton
principle, which adds egalitarian constraints to standard utilitarian orderings.

Our ordering of properties of utility draws on two literatures. The first is measurement theory
(see, e.g., Krantz et al. (1971) and Roberts (1979), and originally Stevens (1946)), which identifies

measurement classes with sets of transformations. Thus, ratio scales are defined by the set of increasing
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linear transformations, interval or cardinal scales by the set of increasing affine transformations, and
ordinal scales by the set of all increasing transformations. Measurement theory implicitly orders
measurement classes by set inclusion; notice that in the cases mentioned the sets of transformations are
nested. A set inclusion ordering of transformations has similarities to some of the orderings of
properties we consider (see section 6), and under some circumstances, our approach and the
measurement theory approach coincide. But traditional measurement theory considers only afew
prominent cases and fails to define a sufficiently rich array of measurement classes.

The second literature consists of social choice models that vary the set of admissible
transformations of utility functions according to the desired degree of interpersonal comparability (Sen
(1970), d Aspremont and Gevers (1977), Roberts (1980b)). These models, which employ multiple-
agent profiles of utility functions, place restrictions on what transformations can be applied to any
individual utility function and on whether transformations are permitted to vary across individuals.
Applying asmaller set of transformations imposes a tighter interpersonal comparability requirement.

The drawback of both literaturesis that they identify a standard of measurement or interpersonal
comparability with a set of transformations applied to utility functions. At first glance, this appearsto
be an advantage: any utility function can then be a member of any of the standard measurement classes.
But taking arbitrary sets of utility functions as primitive admits a greater variety of measurement
standards and is more flexible. For instance, the set of continuous utility functions defines a
measurement standard that cannot be characterized by the set of continuous transformations (since a
continuous transformation applied to a noncontinuous utility function will not generate a continuous
utility). Just asimportantly, taking sets of utility functions as primitive alows us to identify the implicit
measurement requirements of assumptions on utility functions and hence to compare the measurement
requirements of different assumptions. It might seem that taking sets of utilities as primitive would not
allow assumptions to be ordered except for trivial cases where assumptions o and S are such that « is
satisfied whenever g is. We will see, however, that debilitating incompleteness can be avoided and
measurement classes can be calibrated finely. Indeed, claimsthat at first appear nonsensical —e.g.,
“concavity” isaweaker assumption than “additive separability” — can be given a precise meaning.

The ordinalist approach to cardinal utility has always been a puzzle. Considerable work (e.g.,

Debreu (1960), Krantz et a. (1971)) has gone into specifying axioms on binary preference relations that
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ensure that preferences can be represented by a utility unique up to an increasing affine transformation.
But from the ordinal point of view the significance of such representation results remains limited. If
binary relations are the primitives of preference theory, the cardinal utility whose existenceis
established has no significance beyond the notational. But if utility is primitive, cardinality has an
immediate purpose: that an assumption on utility admits a cardinal set of representations indicates the
extent of the assumption’s nonordinality. Other nonordinal properties of utility (e.g., concavity and
continuity, which aso have plausible psychological foundations) admit larger sets of utility
representations and are thus weaker assumptions. Our ordering of properties can thus compare how
demanding are the measurement requirements of different assumptions.

Basu (1979) has also explored room for compromise between ordinal and cardinal utility theory.
In aspirit similar to the present paper, Basu contends that DMU resides in this middle ground and
remarks on the advantages of taking nonordinal assumptions as primitive. But Basu sticks to the
method of characterizing measurement classes via utility transformations. Furthermore, as Basu (1982)
shows, the middle ground that Basu (1979) linked to DMU ends up being equivalent to full-scale
cardinality in classical commodity spaces. Basu concludes that utility theory prior to the ordinal
revolution used assumptions that were tantamount to cardinality (even when, asin Lange's case, they
were attempting to rid themselves of cardinal assumptions). Using sets of utility functions to compare
measurement standards, in contrast, permits compromises between cardinality and ordinality that are
robust to the specification of the commodity space.

In sections 2 and 3, we consider sets of utility functions, which we call psychologies, our
orderings of psychologies and properties of utility, and cardinal and ordinal properties. We also provide
a sufficient condition that ensures that ordinal preferences can be induced by psychologies: outside of a
technicality, any transitive preference relation can be induced by some psychology. Section 4
establishes that concavity is weaker than any cardinal property of utility and stronger than any ordinal
property and shows that the Arrow/Koopmans utility theory is cardinal. Section 5 links sets of concave
interpersonal utility functions to standard utilitarian results on the optimality of redistributing utility.
The Pigou-Dalton principle then appears as a theorem rather than as an assumption. Section 6 specifies

conditions under which our orderings of properties are acyclic and transitive.



2. Psychologies and orderings of psychologies

Let X be anonempty set of consumption options and, for any nonempty A c X, let .7 , be the set
of functionsfrom Ato R. An agent is characterized by a nonempty set U c .7, which lists the utility
functions that accurately depict the agent’ s psychological reactionsto the optionsin X. We say that U is
a psychology and that X is the domain of U.

Preference relations on X emerge straightforwardly from psychologies. Call A < X decisive for
Uifandonly if, foral u,ve Uand x,y € A, u(x) > u(y) = v(x) > v(y). Definethebinary relation >,
c X x X, the induced preference relation of U, by:

X =y Y= {X Yy} isdecisive and there existsau € U such that u(x) > u(y).
Induced preference relations can satisfy most of the standard assumptions imposed on ordinal
preferences. For instance, >, iscomplete if Xisdecisivefor U. We will speak interchangeably below
of >, satisfying an assumption on binary relations and the underlying psychology U satisfying the same
assumption. Psychologies as we have defined them plainly cannot be intransitive. But, the theorem
below (which applies aclassical representation result in Richter (1966) to sets of utility functions)
shows that, outside of transitivity and a standard technicality, any binary relation can be induced by a
psychology. At the end of this section, we briefly show how to extend the definition of psychologies to
handle the intransitive and other cases not covered here.

A binary relation > on X is countably order-dense if there exists a countable Y < X such that for

al x,ze Xwithx > zand not z > x, thereexistsay e Ysuchthat x > y > z

Theorem 2.1 If the binary relation > on X istransitive and countably order-dense, there exists a

psychology U with domain X whose induced preference relation is ».

Proof: If - iscompletein addition to transitive and order-dense, the proof that there exists a U with >,
= » isthe standard existence theorem for utility functions. So assumethat > isnot complete. Let X/~
denote the indifference classes of > and define > on X/~ by | > Jif andonly if | # Jand x > y for some
xelandye J. Forany ze X, let 1(z) denote the indifference class that z belongsto. For any x,y € X
such that neither x > y nory > x holds, define two strict partial orders >, and >, on X/~ by > u (1(x),

[(y)) and > u (I(y), 1(X)) respectively. Let >; and >§, denote the transitive closures of >, and >,
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respectively.

By assumption, thereis a countable set of indifference classes, say Y, that is order-dense with
respectto >. LetY' =Y u {I(x),1(y)}. Toseethat Y’ isorder-dense with respect to >; and >ty,
suppose not. Then, to takethe case of ., thereexist |, J € X/~\'Y" suchthat | ~. J and such that for
al Ke Y, notl> K ~ J. Thatis, there are two indifference classes not in Y’ that are unranked
according to ~, but that are ranked according to >;. By the definition of atransitive closure, there must
exist afinite set of indifference classes, say I, ..., I suchthat | », 1, >, ... -, 1, >, J. Butsince -, is
transitive, at least one of the elements |, to I, hasto be I (x) or 1(y), which contradicts the assumption
that Y’ is not order-dense. By Theorem 3.2 of Fishburn (1979) (which generalizes Richter (1966)),
there exists a utility function u, , on X/~ such that L >; M impliesu(L) > u(M). Similarly, there exists
au,, on X/~ such that L >§, M impliesu(L) > u(M). Definethe utility functionsv, , and v, , by letting
each element of any indifference classinherit the utility number of itsindifference class given by u, ,

and u, , respectively. Let U bedefinedby ve Uif andonly if ve {v,, v, ,} for someXx, y € X such that

8%
not X > yandnoty > x. Itisimmediatethat >, = -. W

Theorem 2.1 differs from standard utility representation results only in that no completeness
assumption is present. Transitivity and countable order-density are retained without change. Ok
(1999) has also recently analyzed when an incomplete preference relation > can be represented by a set
of utility functions. Ok’s definition of representation is the same as ours, except that he concentrates on
the case where the set of utility functionsisfinite. Ok shows that transitivity and order-density by
themselves do not imply that a preference relation can be represented by afinite set of utilities and also
provides sufficient conditions that guarantee representation by an infinite set of utilities. Theorem 2.1
makes do with weaker conditions and indeed shows that infinite-dimensional representability requires
only the standard assumptions. See Dubra, Maccheroni, and Ok (2001) for infinite-dimensional
representability of possibly incomplete preferences on lotteries.

We now define the key ordering of psychologies. In this definition and in severa to follow, we
distinguish between complete and possibly incomplete psychologies. While the incomplete caseis
more general, the reader isinvited for concreteness to focus on complete psychologies. To cover the

incomplete case, let U|A (the restriction of U to A), where A is a subset of the domain of U, denote the

6



set{we .7,:w=u|Aforsomeue U}. A pair of psychologies U and V have the same decisive sets if

and only if, for al Ac X, Aisdecisivefor U < Aisdecisivefor V.

Definition 2.1:
(Complete case) Suppose U and V are complete. Then U isno stronger than V if and only if U o V.
(Incomplete case) U isno stronger than V if and only if U and V have the same decisive sets and, for

each decisive A, U|A> V| A.

Other natural orderings of psychologies may be defined. For example, we could say instead: U
is no stronger than V < for each A « X that isdecisivefor U, U|A >V |A. This ordering ranks more
psychologies, but the additional discrimination is unnecessary for our applications and so we use
Definition 2.1.

It isimmediate that the "no stronger than" relation on psychologiesis transitive and, when
|X| > 1, incomplete. We define a"weaker than" relation on psychologies as the asymmetric part of the
"no stronger than" relation: U isweaker than V if and only if U isno stronger than V and it is not the
casethat V is no stronger than U.

In closing this section, we point briefly out how to extend the above model of psychologies so
that psychologies can generate arbitrary binary preference relations (even intransitive ones). Instead of
each utility function in a psychology being defined on the same domain X, we instead allow utilitiesto
be defined on arbitrary subsets of some universal domain X. Specifically, an extended psychology U on
Xisafamily of functionssuch that u € U if and only if u e .7, for some A « X. Recall that for asimple
psychology U and aA « X, U| A (therestriction of U to A) istheset {w e .7 ,: w=u| A for someu €
U}. The same definition holds unchanged for extended psychologies. For any A< X, U |Ais
interpreted as the set of utility functions on A that accurately depict the agent’ s psychological reactions
to the consumption possibilitiesin A.

For any extended psychology U on X, let the extended domain of U denote{Ac X: A=
Domain u for someu € U}. If the extended domain of U is{ X}, then the extended psychology satisfies
our previous model and we say itissimple. We redefine A c X to be decisive for U if and only if, for al

X,y Aand al u, ve U suchthat {x, y} < Domainun Domainv, u(x) > u(y) < v(x) > v(y).
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Preference relations are induced by extended psychologies in the same way they are induced by
simple psychologies: given an extended psychology U, define R, by X R, y if and only if {x, y} is
decisive and there existsau € U such that u(x) > u(y). Itisclear that for any binary relation > on X,
there exists an extended psychology U on X such that R, = >. A suitable U can be assembled in many
ways: for instance, for each (x, y) € >, letu, ,: {x, y} — R beafunction that satisfiesu(x) > u(y) if and
onlyif x>y, andletU=U xy)e={ Uxy}- Extended psychologies therefore constitute a more general
model of agents than ordinal preferences.

Our ordering of psychologies extends straightforwardly: we can define the extended psychology
U to be weaker than the extended psychology V if and only if (1) U and V have the same decisive sets,
and (2) for any decisive A, U|A > V|A. Much of what follows, e.g., the theory of ordinal and cardinal
psychologies and ordinal and cardinal properties of utility (see Definitions 3.3 - 3.5 below), can be

recast in terms of extended psychologies. To keep notation simple, we stick to simple psychologies.

3. Properties of utility and orderings of properties
We now use the ordering over psychologies to generate orderings over properties of utility
functions. Formally, a property P issimply a set of functionsinto the real line. The domains of the

functionsin P may differ. A utility function u: A — R satisfies property P if and only if u € P.

Definition 3.1:

(Complete case) A complete U maximally satisfies property P if and only if (1) for eachu e U, u
satisfies P, and (2) 4 acomplete psychology V > U such that each v € V satisfies P.

(Incomplete case) U maximally satisfies property P if and only if (1) for each u € U and each A that is
decisive for U, there existsaB > A that is decisive for U such that u|B satisfies property P, and

(2) 4 V 2 U with the same decisive sets as U that meets condition (1).

In words, U maximally satisfies P if it is largest among psychologies that share the same family
of decisive sets and that, for each u in U and each decisive A, own adecisive B containing A such that u
satisfies P on B.

The “containing” sets B in Definition 3.1 are unavoidable: since some properties (e.g.,
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guasiconcavity or concavity) can only be satisfied on certain domains (convex sets), we cannot speak of
those properties as satisfied on arbitrary decisive sets. Also, note that the domain of a psychology may
determine whether it maximally satisfies some properties. For instance, if | X| isfinite, any psychology
maximally satisfies continuity, but not when, for example, X = R".

Our earlier ordering of psychologies suggests a natural ordering of properties of utility.
(Formally speaking, the complete case below defines a distinct ordering, which we include only as an

illustration; all explicit referencesto > g refer to theincomplete case.)

Definition 3.2:

(Complete case) Property P isno stronger than property Q, or P =g Q, if and only if for all U that
maximally satisfy P and all V that maximally satisfy Q, U nV # o impliesU o V.

(Incomplete case) Property P isno stronger than property Q, or P =5 Q, if and only if whenever U
maximally satisfies P, V maximally satisfies Q, U and V have the same decisive sets, and U/An V|A #
o for all decisive A, then U|A > V|Afor all decisive A.

(Both cases) P isweaker than Q, or P =, Q, if and only if P =g Q and not Q =g P.

In the incomplete case, the “weaker than” part of Definition 3.2 can be rephrased: P >, Q if and
only if P =g Q and there exists a U that maximally satisfies P and aV that maximally satisfies Q such
that U and V have the same decisive sets, U|An V|A # o for al decisive A, and U|A > V|A for some
decisive A.

Therelations >ygand =, need not be transitive or complete. Since psychologies do not have to
be nested, incompleteness is unremarkable. The incompleteness of -, can be particularly extensive
since P and Q are unranked by >, if P and Q areinconsistent, i.e., if Pn Q = . Theintransitivity of
=ns @nd =y, may come as more of asurprise. We defer this subject until section 6, where we discuss

domains on which >y, and other related orderings are transitive or at |east acyclic.

Definition 3.3 (Ordinality) Thefunctionsu and v agreeon Aif and only if, for al x, y € A, u(x) > u(y)
= V(X) > v(y). A psychology U with domain Xisordinal if and only if u e U impliesthat if ve .7y and

u and v agree on each A that isdecisivefor U, thenv € U.
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Equivalently, a psychology U with domain Xisordinal if andonly ifue U = (ve U = ve 7y and, for

each decisive A, there exists an increasing transformation g such that v|A= g u|A).

Definition 3.4 (Cardinality) A function g: E > R, where E c R, is an increasing affine transformation
if and only if there exist a> 0 and b such that, for al x € E, g(x) =ax + b. A psychology U with
domain Xiscardinal if andonly if ue U = (ve U = ve 7y and, for each decisive A, there exists an

increasing affine transformation g such that v|A =g o u|A).

We can now define properties of utility as ordinal or cardinal.

Definition 3.5 A property P isordinal (resp. cardinal) if and only if any U that maximally satisfiesP is
ordinal (resp. cardinal).

Most of the standard assumptions used nowadays in utility theory are ordinal properties. Asan
example, consider quasiconcavity. A function u: Z —> R isquasiconcave if Zisaconvex set and, for all
x,yeZand A € [0, 1], u(Ax + (1-2)y) > min{u(x), u(y)}. To confirm that quasiconcavity is an ordina
property of utility, let U maximally satisfy quasiconcavity, let u be an arbitrary element of U, and
suppose, for al decisive A, that u|A and v| A agree. For any decisive A, there existsadecisive B> A
such that u| B satisfies quasiconcavity (given Definition 3.1 (1)). Since B isdecisive, u|B and v|B
agree. Since u|B and v|B agree, thereis an increasing transformation f: Range u|B — R such that

foulB=v

B; sincefisincreasing, for all x, ye Band all 4 € [0, 1], v(Ax + (1-2)y) > min{v(x), v(y)}.
Since u| B satisfies quasiconcavity, B is convex; hence v|B satisfies quasiconcavity. So, by Definition
31(2),veU.

As an example of acardinal property, we consider additive separability, which will later be

important in our examination of the convexity of preferences.

Definition 3.6 A function u: A —> R satisfies additive separability if and only if, for someinteger n > 2,
there exist component spaces A;, i =1, ..., n,such that A= A; x ... x A, and functions u;: A; > R, i =1,

..., N, such that (1) for each x € A, u(x) = Zin:l u;(x;), (2) for each component i, cl Range u; isan
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interval, and (3) two of these intervals have nonempty interior.

The property of additive separability consists of the set of all functions that satisfy additive separability.

Theorem 3.1 Additive separability isacardinal property.

The proof, and all other proofs missing from the text, are in the appendix.

Two features distinguish Theorem 3.1 from the existing literature on additive separability (see
Debreu (1960) and Krantz et a. (1971)). First, since psychologies contain sets of functions — and those
functions need not be ordinally identically — Theorem 3.1 extends classical cardinality results;
specifically, incomplete preferences are covered. Second, the standard approach to additively separable
functions proves cardinality as a by-product of existence theorems that specify conditions on ordinal
preferences that imply the existence of an additively separable utility representation. The existence
question is difficult, however, and so this technique ends up imposing overly strong restrictions. By
separating cardinality from existence, Theorem 3.1 makes do with much weaker conditions relative to

the literature, which usually supposes that utility functions are continuous.

4. Convexity of preferences
4.1 Concavity asaprimitive

This section presents explanatory rationales for when one should expect preferences to be
convex. For complete preferences defined on a convex domain X, we define the convexity of a
preference relation > in the standard way: the binary relation > < X x X satisfies convexity if and only if,
foralye X theset{x e X: x>y} isconvex. To cover preference relations that can be incomplete, we
need an expanded definition. A binary relation > < X x Xiscompleteon A < Xif and only if, for al {x,
y} c A etherx > yory > x. Wesaythat > c Xx X satisfies generalized convexity if and only if, for
any convex set A c X such that > iscompleteon Aandanyy € X, {xe A: X = y} isconvex. If » c Xx X
is complete and satisfies generalized convexity and X is convex, then > obviously satisfies convexity.
Without completeness, however, a > that satisfies generalized convexity may fail to be convex, e.g., the

relation > = R? x R? defined by x > yif and only if (x; > y; and X, =y,) or (X; =y, and X, > y5).
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A function u: Z —~ R satisfies concavity if and only if Zisaconvex set and, for al x,y € Zand

alAe[0,1],u(Ax+(1-4)y) > Au(x) + (1-A)u(y).

Theorem 4.1 If psychology U maximally satisfies concavity, then >, satisfies generalized convexity.

Given the above example of a > that satisfies generalized convexity but not convexity, it should also be
clear that psychology can maximally satisfy concavity even though >, is not convex. But while
concavity of utility by itself does not imply that preferences are convex, Theorem 4.1 indicates that the

concavity and completeness of a psychology do.

Proof of Theorem4.1: Let U be a psychology that maximally satisfies concavity, let X denote the
domain of U, let u be an arbitrary element of U, and let A « X be an arbitrary convex set that is decisive
for U. Since Aisdecisive, there exists adecisive B > A such that u|B satisfies concavity. Since Ais
convex, u|A aso satisfies concavity. Foranyy € X, definey, ={xe A:foral ve U, v(x) > v(y)}. We
need to show that y, is convex. If not, therewould existz, ' € y,and 4 € [0, 1] suchthat Z =4z +
(1-4)Z' ¢y, Since Aisconvex, however, A> coy, (where“co” isthe convex hull) and therefore
ujco Yp satisfies concavity. Hence, for al ve U, v(Z) > Av(z) + (1-4)v(Z') > v(y). Therefore Z €

Y, W

Definition 4.1 For n apositive integer, property P hasrange > n if and only if, for each u € P,

|Range u| > n.

Definition 4.2 Property P intersects property Q if and only if there exists some U maximally satisfying
P and some V maximally satisfying Q such that U and V have the same decisive sets and, for each

decisve A, U/[AnV|A# o.

Theorem 4.2:

(1) Any ordinal property is no stronger than concavity and concavity is no stronger than any cardinal
property.
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(2) Concavity isweaker than any cardinal property with range > 2 that intersects concavity.
(3) Any ordinal property with range > 1 that intersects the property of being concave and continuousis

weaker than the property of being concave and continuous.

Theorem 4.2 confirms a simple intuition about concavity. Along aline, concavity as a
psychology assumes that an agent experiences each successive unit of consumption as delivering a
smaller increment of utility. But concavity does not require that each utility increment is a specific
fraction of the previous increment. Agents experience diminishing marginal utility but no additional
extra-ordinal precision. Cardinality, in contrast, requires that agents experience any pair of utility
increments as aprecise ratio. Cardinality thus imposes considerably more — implausibly more —
psychological structure.

Remark on Theorem 4.2 (3): due to the fact that a concave function need not be continuous on
the boundaries of its domain, there are nontrivial preferences — preferences that exhibit strict preference
between arbitrarily many pairs of consumption bundles —whose only utility representations are
concave. It followsthat there are ordinal properties with arbitrarily large range that are not weaker than
concavity.

By strengthening our ordering of properties, we can tighten Theorem 4.2 (2) and (3).

Definition 4.3 Property P is strictly weaker than property Q, or P =g, Q, if and only if P intersects Q
and whenever U maximally satisfies P, V maximally satisfies Q, U and V have the same decisive sets,

and U/AnV|A # ¢ for dl decisive A, then U isweaker than V.

In contrast, property P isweaker than Q if it is merely the case that P is no stronger than Q and thereis
some U that maximally satisfies P and some V that maximally satisfies Q, where U and V have the same
decisivesetsand U|An V|A # ¢ for dl decisive A, such that U is weaker than V.

One may show (by adapting the proof of Theorem 4.2 in the appendix):
(2") concavity is strictly weaker than any cardinal property with range > 2 that intersects concavity,
(3') any ordinal property with range > 1 that intersects the property of being concave and continuousis

strictly weaker than the property of being concave and continuous.
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Concavity can be ranked relative to some other classical assumptionsin utility theory. If Xisa
nonempty open subset of R", the property of continuity on X is no stronger than concavity on X and any
ordinal property is no stronger than continuity. Also, the property of being continuous and nonconstant
on X isweaker than concavity. These assertions follow from the fact that any concave function on an
open set is continuous, but not vice versa and the fact that any continuous increasing transformation
preserves continuity, but noncontinuous increasing transformations do not preserve continuity. We
omit the details, which vary only slightly from the proof of Theorem 4.2.

The property being concave and continuous and the property of being continuous are each
associated with a set of utility transformations, namely increasing concave and increasing continuous
functionsfrom R to R. Thisfeatureis by no means shared by all properties of utility (but see section 6).
Moreover, even for the cases at hand, the properties should not be confused with their associated
transformations: the transformation must be applied to afunction that satisfies the property in question.

For instance, an increasing concave transformation of a nonconcave utility need not be concave.

4.2 The Arrow/Koopmans theory

Arrow (1951), following unpublished remarks by Koopmans, argued that if an agent holds a
consumption bundle for a period of time, say [0, T], and can decide on the timing of how that bundleis
consumed, then the agent’ s preferences must be convex. Arrow’s reasoning implicitly supposed that
the agent’ stotal utility isthe integral of the utility achieved at each moment from O to T. An agent
holding consumption vector ze R" chooses afunction from [0, T] to R" that maximizes thisintegral.
The informal argument for convexity is that an agent holding the vector Ax + (1- 1)y, 4 € [0, 1], could
consume AXin AT unitsof timeand (1 - 4)y during theremaining (1 - 4) T time units. If the agent’s
utility at each instant is independent of the consumption at other instants, it seems plausible that 4 x
consumed in AT time units will deliver total utility that is A times the utility of x consumed in T time
units, and similarly for (1-4)y. So, if xand y areindifferent, 1x + (1- A)y will leave the agent at |east
aswell off asxory, that is, indifference curves are convex. Arrow argued that this explanation of
convexity, unlike the supposedly cardinalist stories that rely on diminishing marginal utility, isfree
from cardinal influences.

We follow Grodal’s (1974) formalization of the Arrow/K oopmans theory. Assume that the
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binary relation =, on R can be represented by a utility function U: R — R that takes the form

T T
U(2) = sup, f u(x(t), t) du(t) st fxi(t) du(t) < z,i = 1,..,n,
0 0

wherex: [0, T] > R", u: R" x [0, T] ~ R, p is Lebesgue measure, t > u(x(t), t) is Lebesgue integrable,

ze R", and the supremum is taken over all integrable x such that x;(t) > Oforall te [0, T],i=1, ..., n.
Theorem 4.3 U is concave and therefore > o, iS convex.

We turn to the measurement requirements of the utility function, f T u(x(t), t) du(t), that
0

underlies the above maximization problem. We generalize somewhat.

Definition 4.4 Let 4 denote the set of Lebesgue measurable functionsfrom [0, TItoR". AsetYc 4is
closed under a.e. replacement if and only if whenever ze 4 and, for ae. t € [0, T], thereexistsaxe Y

such that z(t) = x(t), thenze Y.

The obvious consumption sets for a consumer with the utility U defined above, e.g., {x € 4: 0 < x;(t) <
k;foreachi =1, ..., n,andeacht e [0, T]}, where each k; is a nonnegative real number, are closed

under a.e. replacement.

Definition 4.5 A function U: Y — R satisfies utility integrability if and only if, for some positive integer
n, (i) Y is closed under a.e. replacement, (i) thereexistsau: R” x [0, T] > R with t —> u(x(t), t)
integrable such that U(x) = fT u(x(t), t) du(t) for al x € Y, (iii) |RangeU| > 1.

0

For a psychology to maximally satisfy utility integrability, it must meet the conditions of Definition 3.1.
In the complete case, therefore, U maximally satisfies utility integrability if it isalargest complete
psychology such that each function U € U satisfies utility integrability. For the property of utility
integrability to qualify as cardinal it must be that every psychology U that maximally satisfies utility

integrability consists precisely of the functions that, when restricted to any decisive set A of U, arethe
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affine transformations of any functionin U |A.

Theorem 4.4 Utility integrability isacardina property.

Theorems 4.4 and 4.2 together imply that the Arrow/K oopmans theory imposes stricter
measurement requirements on agents than does concavity. Utility integrability hasrange > 2 and
intersects concavity; so Theorem 4.2 implies that concavity is weaker than utility integrability. Thus,
concavity, despite its preeminent place in preordinal utility theory, is nearer to ordinalist standards of

measurability.

5. Concave utilitarianism: between cardinal and ordinal interpersonal comparisons

It iscommon to think that although preference theory should be based solely on ordinal
assumptions, utilitarianism is necessarily acardinal enterprise. More generaly, formal social choice
theory concentrates on the standard set of measurement classes: ordinal scales, interval or cardinal
scales, and, occasionally, ratio scales. But asin the case of individual preference theory, arich terrain
lies between ordina and cardinal measurement. Specifically, the portions of utilitarianism that have
earned the widest consensus rely on a measurement scale that is weaker than cardinality: concave
psychologies reproduce the key utilitarian recommendation that income be redistributed from high-
utility agents with low marginal utilities of income to low-utility agents with low marginal utilities of
income. Not every utilitarian conclusion can be derived from concavity, but the missing results are the
anti-egalitarian recommendations that social choice theorists, and even many utilitarians, have often
regarded as ethically suspect: e.g., redistributions that harm the lowest-utility agents.

Let 7={1, ..., 1} beafinite set of agents and X a set of social choices. Asan example, we will
later consider the important case where X ¢ RL isaset of income profiles of the | agents. Our primitive
isapsychology U, where each u € U isauutility function from 7x Xto R. To keep the distinction
between social and individual choice in mind, call the current U’s social psychologies. Following
d’ Aspremont and Gevers (1977) (see also Suppes (1966) and Hammond (1976)), each u € U expresses
a set of interpersonal welfare comparisons: u(i, X) > u(j, y) meansthat agent i with social choice x is at

least as well off as agent j with social choicey. When combined with an aggregation rule, e.g.,
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Y., u(i, x) or min;_;u(i, x), au generates a binary relation on X. We also suppose, asis standard, that,
foreachi € 7, u(i,-) represents agent i’ sindividual preferences.

One may view the interpersonal judgments represented by u as the preferences of an individual
contemplating what it would be like to be various agents under various social outcomes. A socia
psychology is then interpreted in the same way as our earlier “individual” psychologies: it lists the
functions that accurately depicts preference judgments over a pertinent domain. For social
psychologies, the domain is 7x X rather than an arbitrary set.

We consider only social psychologies U that are complete: U contains only, though not
necessarily all, increasing transformations of some u € U. In the language of socia choice theory,
completeness implies that the minimum measurement standard that any resulting social welfare
functional satisfiesis coordinality (in Hammond (1976)’ s terminology) or ordinal level comparability
(in Roberts (1980b)’ s terminology). Since, however, we will not require U to contain all ordinally
equivalent utilities, our social psychologies can obey a stronger measurement standard.*

To specify socia choice rankings for more than a single psychology, we define three collections
of psychologies. Let I/ denote the set of functions from 7x Xto R, and let ©(¢/) denote the set of all
subsets of .

(1) Thecardinal collection of social psychologies:

Ce={U e PU):ue U= (ve U = there existsan increasing affine g such that v=g - u)},

with generic element U € Cp..

(2) Theordinal collection of socia psychologies:

Co={U e P(U):ue U= (ve U = thereexists an increasing g such that v =g o u), with

generic element Uy € C,.

To define the third collection, let u: 7x X — R be coordinately concave if and only if X is convex and,
for eachi € 7 u(i,-) is concave and continuous and let I/, denote the set of coordinately concave

functions.

! Some theories of social choice consider utility transformations that vary as afunction of the
agent i, and which in our framework translate into social psychologies that are not complete. For
example, invariance with respects to individual origins of utility, used by d’ Aspremont and Gevers
(1977) to axiomatize utilitarianism, admits affine transformations of the form au(i,) + b;.
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(3) The concave collection of socia psychologies:

Cec={U € ®(U): Uiscomplete, U c U, and A acompleteV = U such that V c U}, with

generic element U € Cic.

We consider utilitarian social welfare rankings, which order according to the sum of the utilities
Y., u(i, x). Givenasocial psychology U, the utilitarian ordering >, « X x Xisdefined by x >, y =
X ,v(i,x) > X._,v(i,y) foral ve U. Different social psychologies evidently generate different
utilitarian rankings. Call U and U cardinal and concave utilitarianism, respectively. To avoid an
oxymoron, we simply call U, ordinalism.

Cardinal utilitarianism is the standard utilitarianism: if we rank social choices according to the
sum of utilities, the ranking will be unchanged if we apply the same increasing affine transformation to
al individual utility functions. But cardina utilitarianism has the drawback that it rests on ademanding
standard of psychological measurement. Ordinalism, at the other extreme, relies on the weakest
possible measurement standard. Ordinalism’s drawback is that, since it requires any ranking of x over y
to pass alarger set of sum-of-utilities tests, it ranks fewer social choices than cardinal utilitarianism.
Indeed, ordinalism can often make only atrivial set of rankings. Since a concave socia psychology
U ¢ contains the utilities generated by the affine transformations of any u € U, and since the set of
all ordinal representations of u contains the concave representations, concave utilitarianism produces

more rankings than ordinalism but fewer rankings than cardinal utilitarianism. We record thisasa

theorem.

Theorem5.1 If Uz N U # o, then U © U and ZU 2 Tug If Usc N Ug # o, then U « Uy and
EUCC ) EUO.

Concave utilitarianism relaxes the stringent measurement requirements of cardinal
utilitarianism, and, as in the case of preference theory, concavity as a psychology precisely models the
characteristic neoclassical intuitions about economic psychology. But it remainsto see whether
concave utilitarianism retains the decisiveness and egalitarianism of cardinal utilitarianism.
Specifically, does concave utilitarianism recommend redistributions from rich to poor and does it rank

sufficiently many social choices?
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The ordering >, and au € U induce an ordering over utility vectorsin R' which will help
characterize - ;. Given asocial psychology U andu € U, defineR,. © R' xR by
VR,.yW <= JXxye Xsuchthat v = (u(l, x), ..., u(l, X)), w = (u(1,y), ..., u(l,y)) and x =, y.
We write that u isin the coordinate range of u, or u € Range{ u;} if and only if 3 x ¢ X such that u =
(u(1, x), ..., u(l, x)).
Not surprisingly, v is ranked higher than w according to any Rueuc if and only if the sum of the
coordinatesinv isat least aslarge asthe sum in w. Ordinalism isalso easily characterized. For any v €

R', let v* denote v with the coordinates placed in increasing order.

Theorem 5.2:

(1) Supposeu e Ucandv, w € Range{u;}. Thenv Ry W= XoVviz X w;

(2) Supposeue Ugandv, w e Range{u}. Thenv R, w < vi>w

Result 5.2 (2) says that ordinalism judges x g, Y if and only if, according to any u € U, the
ith best off agent under x is at least as well off astheith best off under y for al i € 7 Thus, modulo
utilitarianism’s anonymity requirement (which impliesthat if u and v merely rearrange indices without
changing the utility level of theith best off agent for any i then RUEUo ranks u and v asindifferent),
ordinalism recommends only Pareto improvements. So let us say that u is a (weak) anonymous Pareto
improvement over v if u” > v* (sometimesthisis called a Suppes-Sen improvement). In particular, the
redistributive conclusions of cardina utilitarianism are lost: ordinalism will never recommend atransfer
of wealth from a high-utility agent to alow-utility agent. Cardinal utilitarianism of course recommends
such transfers if the low-utility agent has a higher marginal utility of wealth (accordingto any u e U.)
than the high-utility agent.

Asfor concave utilitarianism, first recall the definition of aleast concave function. Let X be
convex and let V denote a nonempty (nonsocial) psychology consisting of al the continuous and
concave functionsv: X - R that represent afixed preferencerelation > on X. Thefunction v e Vis
least concave if and only if for every v € V there exists an increasing concave transformation
g: Range v ~> R suchthat v=g - v. Debreu (1976) proved that if V meets the above assumptions then

aleast concave v exists. The definition of least concavity does not apply to a concave social
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psychology U~ since the domain of each u € U is not convex. The definition can be generalized in

acouple of ways. Let co Sdenote the convex hull of aset S

Definition 5.1 Let U be aconcave social psychology. Then,

(1) u e Ugcisleast coordinately concave or Icc if and only if for all u € U there exists an increasing
transformation g: Range u —> R such that u=g - u and, for al i € 7, g| Range u(i, - ) is concave.

(2) disstrongly lccif and only if for &l u € U there exists an increasing transformation

g:co(Ranged) —~ R suchthat u=ge° U and g is concave.

Debreu’ s existence theorem does not itself imply that an lcc element in U~ exists, but his proof
extends easily. Strongly lcc utilities are in some respects the more powerful tool, but Example 5.2, at
the end of this section, shows that a concave social psychology can fail to have a strongly lcc element.
If U e Uccislccand any u e U satisfies the range condition that U, _, Int u(i, X) is convex, then u'is
strongly Icc. The range condition says that the range of each agent’s utility either directly or indirectly
overlaps the range of any other agent’ s utility. We discuss what this means and implies when we come
to Example 5.2.

For our purposes, the following sufficient condition will adequately distinguish concave
utilitarianism from cardinal utilitarianism and ordinalism. A simple characterization of concave

utilitarianism is possible when strongly Icc utilities exist, aswe also explain | ater.

Theorem5.3 Suppose U € Ucislccand v, w € Range{ u.}. Thenv e co{uc Range{ u}:u” > w'}

impliesv R;_, w.
cc

Hence, if one examines (u(1, x), ..., u(l, X)) and (u(1,y), ..., u(l, y))" and finds that the first vector is
aconvex combination of Pareto improvements of the second, then x “Uge V- The proof to follow needs

only notational changes to show that if G is strongly Icc, then the weaker condition v € co{u € R:u” >

w’} will imply v Ricug, W-

Proof of Theorem5.3: Giventhat v € co{u € Range{ 0.}: u” > w'}, thereexist 4%, ..., A" € [0, 1] and
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z', .., 2™ e Range{ 0} suchthat Xy , 2%=1,v =X, ¥z and each 2 > w". For any g: Range U
— R such that g| Range u(i, - ) is concave and increasing for each i € 1,

Ei,0v) =X 95, i z) = Eiez[ztlflrg(zr)] 2 Ziezz[zlzlflkg(wi)] =X, 9(w;).
Thefirst inequality follows from the concavity of g| Range u(i, - ) and the second from the fact that
Z“" > w". Sincev, w € Range{ u}, thereexist x, y € X such that v = (u(1, x), ..., u(l, x)) and w =

(u(l,y), ..., u(l,y)). Since u islcc, for each u € U thereisag meeting the above assumptions such

thatu=geo u. Hence X, u(i,x) > X u(i,y), x =y y,andv Ry, w.m

To seetherelations RUEUC, Rueuo’ and RUEUcc graphically, let | = 2, and suppose U, U, U
have acommon element u, whichislcc for U Fix somew € Range{ u.} and assumethat if v > w”

thenv € Range{ u.}. The upper contour sets{v: v Rw} for Re { RUEUC, Ricu . Rﬁeucc} are pictured

€Uy
in Figures 1 through 3. In thistwo-dimensional case, {v: v RUEUcc w} exactly coincides with the
convex hull given in Theorem 5.3 (see Theorem 5.4 below).

Figures 2 and 3 indicate that concave utilitarianism ranks aricher set of utility vectors than does
ordinalism. Not only are the anonymous Pareto improvements ranked superior to w, but any
redistribution of utility (with no net loss) from the utility-rich agent to the utility-poor agent is al'so
superior. On the other hand, in contrast to cardinal utilitarianism, concave utilitarianism does not
declare any utility vector that lowers the welfare of the worse-off agent to be superior to w. Indeed,
changes from w that harm the worse-off agent are the only orderings made by R;_ Ue but not by R, Uee”
Concave utilitarianism thus stakes out an egalitarian compromise between standard (cardinal)
utilitarianism and the narrow Paretian judgments made by ordinalism.

Cardinal utilitarianism has long been criticized for ignoring welfare levels and in particular for
recommending that low-utility agents should undergo arbitrarily large utility losses whenever those
losses lead to greater utility gains for high-utility agents. Concave utilitarianism does not suffer from
thisdefect. Moreover, concave utilitarianism does not arrive at its prohibition on harming the least
well-off by invoking an equity axiom (asin Hammond (1976)). The egalitarianism flows directly from
the psychological content of concavity.

To characterize this egalitarianism more precisely, consider the important Pigou-Dalton

principle (see, e.g., Moulin (1988)). Given autility u: 7x X — R, an ordering R over utility vectorsin
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Range{ u;} satisfiesthe Pigou-Dalton principleif, for any j, k e 7and any v, w € Range{ u;} such that
V=W forme {j, k}:
(5.1 Vi + V2 wj+weand min{vj, v} > min{w;, w,} = v Rw.
In words, R satisfies Pigou-Dalton if it recommends a change in utility levels affecting a pair of
individuals that both increases the sum of utilities and does not |eave the lower-utility person after the
change worse off than the lower-utility person before the change.

Figure 3 suggests that concave utilitarianism should satisfy the Pigou-Dalton principle. The

implication in (5.1) goes both ways, in fact. In this sense, concave utilitarianism characterizes Pigou-

Daton.

Theorem 5.4 Suppose U isastrongly Icc element of U, and let v, w € Range{ (.} beidentical in all
but two coordinatesj and k. Then,

VitV wj+weand min{vj, v} > min{w;, w,} = v RGEUCC w.
Weillustrate cardinal and concave utilitarianism’s common ground, and the paucity of

ordinalist rankings, with the classic problem of constructing awelfare ranking of income distributions.

Example 5.1. The set of socia choices X on which social psychologies are defined is then ]Ri'+ ,anda
policymaker with aggregate income « > 0 to distribute will choose from Q ={x ¢ RL: Y., X =}
Consider socia psychologiesU, U, and U~ that have a common element u such that each u(i, -) is
increasing, differentiable, and strictly concave in the ith coordinate of RL and constant in the remaining
| - 1 coordinates. (We suppress notation of all but the ith coordinate of ]Ri'+ when writing u(i, -).) Let
U ¢ have the strongly lcc element .

First, suppose al individuals areidentical: u(i, -) = u(j, ) forany i, j € Z Although the cardinal

and concave utilitarian orderings >, and y,, A€ not identical, they both rank e= ((1/n) o, ...,

Uc

(1/n) w) above any other distribution in L. For >, , in contrast, any unequal x € £ is unranked
o
relativeto e.

Next, adlow u(i, -) # u(j, -). Asin theidentical-agent case ranks the x such that D, u(i, x;)

=
" SUg

= D,u(], x;) to be superior to any other point in . WhilezUcc need not make the same ordering in this
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case, Theorem 5.4 implies, given some base distribution x, that some transfer of income from agent j to
agent i will be superior according to U if

D, U(i, x;) > D, d4(j, x;) and G(i, x;) < G(j, X;)-
Rather than the equal derivative condition, any x such that D (i(i, X) " isincreasing in i is undominated
according to U (where G( -, x)" denotes U( -, X) with the coordinates arranged in increasing order.)
Ordinalism again makes very few orderings. given some x € £, any change affecting only two agentsii
and j that raisesi’s welfare and hence lowersj’sis not ranked relative to x. For instance, any point in £2

that leads to equal utility levelsis always unranked relative to al other pointsin Q. =

Although the cardinal and concave utilitarian orderings are not identical, it is concave rather
than cardinal utilitarianism that provides the better rationale for classic utilitarian policy
recommendations. The connection to the Pigou-Dalton principleisreveaing. Pigou, the primary
architect of neoclassical welfare economics, considered himself both a cardinalist and a utilitarian: at
least in theory, each individual in society has a cardinal and interpersonally comparable utility function,
and policy choices should be evaluated by summing the utility numbers that these utilities assign to
policies. But Pigou (1932) recognized that analysts have no easy access to cardinal utility information,
and argued therefore that welfare economics should recommend only policy changes that would be
validated independently of that information. For instance, a policy that lowers the income of low-utility
individual by a$1 and raises the income of a high-utility individual by $x, where x > 1, could not be
unambiguously recommended, no matter how large x is, since the marginal utility of income might be
very small at high utility levels. On the other hand, if the low-utility agent gains by $x, x > 1, and the
high-utility agent loses by $1, then any sum-of-utilities test will recommend the policy change if agents
are represented by concave utilities (and assuming we aways hold to the same ordinal classification of
agentsinto high-utility and low-utility individuals). Concave utilitarianism isin substance identical to
Pigou’ s position, but it elevates the theoretical status of not having cardinal information about
individuals. According to concavity as a socia psychology, there is no unknown but nevertheless real
cardina utility function lurking out there — the most detailed information that theory might in principle
provide about interpersonally comparable utilities is that they are concave.

In closing, we return to the characterization of U Roberts (1980a) in effect brings up this
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issue and suggests that least concave utilities are the appropriate tool. (We should mention that Roberts
does not take sets of concave utility functions as primitive, but argues, like Pigou, that such aset is
useful only insofar asit is assumed to contain the one “true” cardinal welfare function.) Roberts
slightly misstates his characterization result and does not formally define least concavity, but the
proposition that Roberts has in mind, relying on atheorem of Hanoch and Levy (1969), is, in our
notation:

(5.2) VR We Xl viz Bl wifordine ”

wherev, w € Range{ u.}. Example 5.2 below shows that if we take u to be Icc, the equivalence (5.2)
does not hold. If u isstrongly Icc, on the other hand, then one may readily establish (5.2). But
Example 5.2 also shows that concave social psychologies do not always have strongly Icc elements, in

which case, of course, for u € Uec, U, Int u(i, X) cannot be convex.

Example5.2. Let X=[0, 1] and | = 2. Let U contain thelcc utility u defined by
u(l, x)=2x, u(2,x)=-x+4.
We then have (u(1, 1), u(2, 1)) = (2, 3) and (u(1, 0), u(2, 0)) = (0, 4). So (2, 3) RUCC(U) 0, 4)
according to (5.2) and therefore 1 U 0. But theu € U defined by
u(l, x)=2x, u(2,x)=-3x+6
yields X7, u(i, 0) > X7 , u(i, 1), and so it cannot be that (2, 3) Ri-u,, (0.4).
To seethat U does not have a strongly Icc element, suppose to the contrary that U is strongly
Icc. Both G(Z, -) and U(2, -) must then be affine, i.e.,, G(1, x) =ax+band G(2, x) =cx + d, for some
a>0andc<0,where (2, x) > G(1, x) for adl x. Theu given by
u(l,x)=ax+b, u(2,x)=E€Ex+d,
isthen also an element of U for al € sufficiently closeto c. Butif € <cand g satisfiesu=ge° 0,
then g cannot be concave, since g must have slope =1 on u(l, X) and slope > 1 on u(2, X).
Observe that “Ug = Zu,- MO pair of pointsin X isranked by T The reason isthat since the
interiors of u(1, X) and u(2, X) are disjoint, we may, given some u € U, multiply u(1, -) and u(2, -)

by arbitrary positive weights (and choose constant terms so that u(2, x) > u(1, x) is preserved at each x)

and arrive at another element of U.. =
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The fact that the ranges of the two utility functionsin the above example have digoint interiors
means that the concavity of the utilitiesin U hasno bite. In general, whenever U. Int u(i, X) is not
convex, auin U can be assembled in which the weight on some subset of agent utility functionsis
arbitrary relative to the weight on some other subset. In the extreme case where, for eachi and j,

Intu(i, X) nIntu(j, X) = o (asabove), then U and U, coincide.

6. Acyclic and transitive domains for properties
An example of aset of properties on which the “strictly weaker than” relation =g, (see

Definition 4.3) cycleswill illustrate the intransitivity problem.

Example 6.1 Let X be anonempty open convex subset of R" and let >4, »,, and >, be distinct complete
binary relations on X. Suppose the relations >, and >, each have concave and nonconstant utility
representations, u, for >, and u, for >,, and suppose >, has the utility representation u,. Definethe
properties «, B, and y as follows:

a={ue 7y uisaconcave representation of >, or aconcave representation of >,},

B ={ue 7y uisacontinuous representation of -, or u = us},

y={ue Fy: uisapositivelinear transformation of u, or ug}.

It isimmediate that £ is strictly weaker than «, y is strictly weaker than £, and « is strictly weaker than y. =

From the vantage point of trying to specify a well-behaved compromise between ordinality and
cardinality, Example 6.1 depicts aworst-case intransitivity. Property o is strictly weaker than any
cardinal property ¢ suchthat o n 6 # @, and any cardinal property ¢ such that y N d # o is strictly weaker
than y (note that “linear” rather than “affine” appearsin the definition of y). Yet, one can movevia =gy
from o to y.

Still, the cycle here hinges on the fact that, since aranking of properties P and Q depends only
on the utility functionsin P n Q, P can be weaker than Q even though Q may contain a comparatively
large set of utilities for preferences not represented by any of the utilitiesin P n Q. To construct an
acyclic domain of properties, therefore, properties must include only sets of utility representations that

somehow treat different preference relations symmetrically. One way to proceed is to employ sets of
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utility transformations, similarly but not identical to the way they are used in measurement theory.

For ease of presentation, we restrict ourselves to complete psychologies. Henceforth, when we
say that the psychology U maximally satisfies property P, we mean that (1) U is complete, (2) for all u e
U, u satisfies P, and (3) there does not exist a complete psychology V 2> U such that each v € V satisfies
P. Given thisrestriction, P is no stronger than Q if and only if, for all U that maximally satisfy P and

al V that maximally satisfy Q, U NV # o impliesU > V.

Definition 6.1 The psychology U has a generator with respect to a set of transformations F ¢ .7, if

and only if thereisau € U such that: ve U < thereisafe F suchthat v="fo u.

Definition 6.2 A property P istransformational if and only if there exists a set of transformations Fp
such that, for all psychologies U that maximally satisfy P, U has a generator with respect to Fp. The set

Fpiscaled aset of P transformations. Py will denote the set of transformational properties.

By associating sets of utility transformations with properties, we are taking a step towards the
traditional model of measurement classes. But atransformational property P differsin that the
transformationsin Fp must be applied to the generator of a psychology that maximally satisfies P rather
than an arbitrary utility function; otherwise the utility functions generated need not satisfy P or one
might not generate all of the functions that satisfy P. Asan example, consider the property Peyc
consisting of the concave and continuous functions on some convex set X. Theset F¢,, c 7 of al
increasing concave transformationsis a set of P, transformations. Given aU maximally satisfying
Pcve, any of the “least concave” utility representations of - (see Debreu (1976) and section 5) may
serve as a generator with respect to Fc,,. If weapply any f € F,, to afunction u satisfying Pe\,c we
generate another function satisfying Pc. But in order to generate all of the functionsin P, that
agree with u, we must apply thef € F,, to aleast concave utility. (Of course, if we apply F¢,, to a
nonconcave utility then some of the functions generated will not satisfy Pc.) This example illustrates
that transformations by themselves do not define properties; properties therefore must still be defined as
sets of utility functions.

Although the “strictly weaker than” relation can cycle on some sets of transformational
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properties, transformational properties that are “comparable” to some cardinal property cannot circle

around cardinal properties in the manner of Example 6.1.

Definition 6.3 A set of properties /P is acyclic with respect to cardinality if there does not exist afinite
set of properties{ Py, ..., P} c P such that P, isweaker than some cardinal property, some cardinal

property is weaker than P, and, for 1 <i < n, P; isweaker than P; ;.

Definition 6.4 Property P is comparable to property Q if there exists some U maximally satisfying P
and some V maximally satisfying Q suchthat U nV # ¢ and either U c Vor U o V.

Comparability isrelatively weak: P and Q can be comparable even if it is neither the case that P isno

stronger than Q nor the case that Q is no stronger than P.

Theorem 6.1 Any set of properties /P < Py such that each P € P is comparable to some cardinal

property is acyclic with respect to cardinality.

Every property we discussin this paper (except £ in Example 6.1) is comparable to some cardina

property.

Proof of Theorem 6.1: Supposethereisa{Py, ..., P} ¢ P suchthat P, isweaker than some cardinal
property, some cardinal property isweaker than P,,, and, for 1 <i < n, P; isweaker than P,_;. Let P, be
the element of {P,, ..., P} with the smallest index such that there exist UQk and UPk meeting the
conditions (1) UQk maximally satisfies a cardinal property Q,, (2) UF,k maximally satisfies P, and (3)
UQk > UPk' Given the comparability assumption, there exist UQH and UPH such that (a) UQH
maximally satisfies a cardinal property Q,_4, (b) UPH maximally satisfies P, _ 4, and (c) UQH c UPH.
(If P, = P, this conclusion follows from our supposition on P, and in the other cases from the fact that
Py hasthe smallestindex.) Let Fp beaset of Py transformationsand let u, Uy beagenerator for
UPk with respect to FPk' Since Q, is cardinal, the set of Q, transformationsisF,,={fe 7;: fisan

increasing affine transformation} and each u € UQk isagenerator for UQk with respect to F,. Hence
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Up _isagenerator for U, withrespecttoF,,. Sinceforeachfe Fp ,fou, € Up and hencefe u,
eUQk, FF,k c Fa. Using the same reasoning, we may also infer that FPH > Fa-

On the other hand, since P, isweaker than P, _,, there existsa Upk that maximally satisfies P,
anda UPH that maximally satisfies P, such that ljpk 2 UPH. Let G, beagenerator for Upk with
respect to Fp, andlet U, beagenerator for UPH with respectto F, . Foreach u, € Upk, there
exists fupk € Fp such that fupk °lp =Up. SinceFy> Fp ,each f, isincreasing and affine and

k

hencesoisfu;lk. Since Upk 2 UPH, U € ljpk and so thereisa f; € Fp suchthat f, o0, =

k-1 Py Up, _; K

~ -1 ~
. Hencel, =f," o0
k

~ ~ _ -1 A .
a i, % b, - We therefore have, forany u, € Up , up =f, o fg o d, . Since

P K Up, U, Pp-1

k-1

f, o fﬁ;t isincreasing and affineand Fp, > F5, €ach u, isanelementof U, , which contradicts
UPk =) UPH' [ |

The assumptions of Theorem 6.1 eliminate the most disturbing cases where the “weaker than” or
the “strictly weaker than” relations cycle. Still, it isilluminating to investigate conditions under which
some intuitive definition of “weaker than” will be transitive. A few hurdles stand in theway. First, a
property P will vacuously be no stronger than property Q if P and Q do not intersect. Hence, one
cannot expect >\ to be transitive even on awell-behaved set of properties such as Pr. Toillustrate, let
X =R and suppose P is the transformational property of mapping aset A < R onto the interval [0, 1] and
Q isthe transformational property of mapping A onto [2, 3]. Vacuously, P is no stronger than Q (and Q
isno stronger than P). To generate an intransitivity, let Sbe the property of mapping B < R onto [2, 3],
where An B = . Once again, vacuously, Q is no stronger than S but obvioudly it is not the case that P
isno stronger than S. No interesting domain restriction can eliminate such intransitivities.

Second, although the relations >,y or =g, do not suffer from exactly the same vacuity that
afflicts =g similar problems appear. For example, when P >, Q and Q >y, Shold, inwhich case P is
comparableto Q and Q iscomparable to S, P can nevertheless not be comparable to S, implying that
P > Scannot hold. One might at least hope for the acyclicity of >, on awell-behaved domain. The

following example shows, however, that >, or >g, can cycle on .

Example 6.2 For some nonempty open set X R, let =4, =, and >, be distinct complete binary

relations on X, each of which has a concave utility representation. Fori =1, 2, 3, let u denote one such
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representation. Let Fe,, c .7 bethe set of increasing concave transformations. Given somef’ € Fgy,
that is strictly concave on the range of each u, defineu, =f' o u. Define the properties o, £, and y as
follows:

a={ue sy u=fou oru=fo U forsomefe F, },

p={ue Fyiu=fou,oru="fo u, for somefe FPcc}’

y={ue Fy:u=fougoru=fo u_ for somef e FPcc}'
Each of these propertiesis transformational: for al three, F,, may serve as the set of transformations,

u, and u, are generators for «, u, and u, for g, and u, and u_fory. Yetwehavep =gya,y =gyp,

and o =gy y. ®

The key to Example 6.2 is that while each property is ranked relative to the other two, no pair of
psychologies that maximally satisfy distinct properties have a generator in common. Thus one property
may be weaker than another even though they share the same set of transformations. One way to
proceed, therefore, isto declare that when a pair of properties never have a generator in common they

are not ranked.

Definition 6.5 A property P is uniquely transformational if and only if there exists one and only one set
of transformations Fp, called the unique P-transformations, such that, for al psychologies U that
maximally satisfy P, U has a generator with respect to Fp. Let /P,  /Pr denote the set of uniquely

transformational properties.

Definition 6.6 Therelation »,g = Pyt x Pyt isdefined by P > g Q < whenever U maximally satisfies
P, V maximally satisfies Q, and there existsaw € U NV that is agenerator for U with respect to the
unigue P-transformations and a generator for V with respect to the unique Q-transformations, then U o

V. Let =, c Pyr % Py bedefinedby P -, Q= P >\ Qand not Q >, P.

Theorem 6.2 Therelation >, isacyclic.

Proof: Suppose to the contrary that there exists afinite set {P,, ..., P} < P 7 suchthat P, >, P, and,
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for1<i<n,P; =y Pi_q. Forie{2, ..,n}, thereisa U, maximaly satisfying P; and a Up_i1

maximally satisfying P; , such that (i) U, > UP-,l and (ii) thereexistsaw € U, nU;, ) thatisa
generator for U, with respect to the set of unique P;-transformations, say F , and agenerator for Up_i1

with respect to the set of unique P;_,-transformations, say F, . Foreachfe F, , thereexistsu, €

i- 1

Up suchthatfoew=u, . SinceU, > U, ,feF . SnceU, > U, ,thereexistsaf’e F, such

thatf'owe Uy . Sof’¢ F, andtherefore F, > F, . Repeating thisargument for U, and Uy ,

wehave F, > F, . SoF, > F, ,acontradiction. M

Given Theorem 6.2, it istrivial to construct atransitive ordering, namely the transitive closure
of =y, Sy = Thatis, let =y, 4 = Py % Py7bedefined by P >, Qif and only if P >y, Q or there
exists afinite set of transformational properties{S, ..., S} suchthat P =\, S; =y, ~ = Sy =y Q- The

acyclicity of >, ensures that EV*V IS asymmetric, and so Ev*v does not reverse any of the orderingsin .

7. Conclusion

The orderings of properties analyzed in this paper gauge the strength of assumptionsin utility
analysis. If property or assumption P isweaker than Q then P imposes | ess demanding measurement
requirements than Q. Weillustrated the usefulness of this gauge by examining different arguments for
the convexity of preferences.

| argued in section 4 that the Arrow/Koopmans explanation of convexity relies on utility
functions that are cardinal. This position is open to objection. Although the Arrow-Koopmans theory
presupposes that an agent’s ordinal preferences have a utility representation taking the integral form,
one might argue that the integral utility functions have no special significance; other utility
representations for the same preferences do not take the integral form. Furthermore, one can impose
assumptions on ordinal preferences that imply the existence of an integral utility representation (Grodal
and Mertens (1968), Vind (1969) — just as there are axioms on preferences over finite numbers of goods
that imply that additively separable utility representations exist (Debreu (1960)). One might conclude,
therefore, that the Arrow-Koopmans theory gives genuinely ordinalist foundations for the convexity of
preferences. But the key axiom needed for the existence of integral utility functionsis an independence

postulate, just as an independence assumption underlies the existence of additively separability utilities.
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Such assumptions — which assert that preferences over a subset of the time-dated goods are independent
of the consumption level of goods with different dates— are ordinal but rely on acardina psychology.
Independence assumptions, even when posed as a restriction on ordinal preferences, are motivated by
the idea that consumption at one date does not affect the satisfaction derived from consumption at
different dates. Thus, it will only be the additively separable utility functions (or in the infinite case, the
integral functions) that are fully psychologically accurate; all other ordinally equivalent functions do not
express the psychological presuppositions that make independence plausible.

Our orderings of properties of utility can shed light on the measurement requirements of
rationales for other common assumptions on ordinal preferences. Consider continuity for example. An
obvious justification for the continuity of preferencesisto argue that satisfaction or happinessisa
continuous psychological quantity. Although not quite ordinal, continuity (viewed as an assumption on
utility functions) is weaker than several other assumptions we have considered (e.g., additive
separability, concavity on open sets). Thus, asintuition no doubt suggests, the continuity of preferences
can be justified using only a mild measurement assumption. Once again, an ordinalist might object that
there is no need to assume that utility functions are continuous in order to give arationale for preference
continuity; the continuity of preference relations already stands as an ordinal axiom. But the
psychology that motivates an assumption that upper and lower contour sets are open surely is
nonordinal; it turnson aclaim that satisfaction is a continuous quantity.

If any doubt lingers that nonordinal content can lie behind an axiom on preference relations,
consider the following trivial ordinalization of assumptions on utility functions. For any property P,
define the property P consisting of all functions that are ordinally equivalent to some u that satisfies P.
Although P5 must be ordinal, the psychological theory that motivates P clearly need not be ordinal. For
the same reason, one may conclude that the psychologies that motivate the independence and continuity

assumptions also rest on nonordinal foundations.

Appendix.
Proof of Theorem 3.1: Let U with domain X maximally satisfy additive separability and let u € .7 be
an arbitrary element of U. For any decisive A, let B, > A denote a decisive set such that u|B, satisfies

additive separability. Givenv e .7, suppose that for each decisive A there exists an increasing affine
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transformation g: Range u|A — R such that g e u|A=V|A. In particular, for the decisive set B,, this
supposition implies thereis an increasing affine transformation g such that g o u|B, = v|Ba. Since v|B,
satisfies additive separability, v e U.

In the other direction, we must show, for any v € U and any decisive A, that there exists an
increasing affine transformation g: Range u|A — R such that v|A =g o u|A. The remainder of the proof
considers afixed A and the associated B > A such that u| B satisfies additive separability. It is sufficient
to show that if g isincreasing and g o u| B satisfies additive separability (i.e, go u|B e U|B), thengis

affine. To simplify, we henceforth drop the notation “

B” indicating the restriction of v, u, etc., to B.

Note that since each cl Range u; is an interval there exists some x’ such that, for all i with u,
nonconstant, u;(x;") € Int cl Range u;. By adding constants to the u;, there exists an increasing affine
transformation that, when applied to u, yieldsaw: B — R that is additively separable and that satisfies
w;(x;") =0for ali. Clearly, thereis also an increasing affine transformation that, when applied to w,
yields u.

Consider an increasing transformation g that, when applied to u, yields an additively separable
h: B~ R. For eachi, definek;: B; = R by k;(X;) = h(X;) - h(x;") and definek: B — R by k(x) =
Zin:l k;(x;). Sinceuisan increasing affine transformation of w, h is an increasing transformation of u,
and k is an increasing affine transformation of h, (1) there is an increasing transformation f: Rangew —
R such that f e w=Kk, and (2) if fislinear, g is affine.

Wefirst show that f is continuous. If not, let X € B be a point such that f is not continuous at
w(x). Since there are at least two components such that cl Range u; has nonempty interior, thereisa
component i such that w;(x) € Int ¢l Range w.

For any I, by setting x; = X;" for j » |, we have f (w,(x))) = k() for all x;. Hence,
(A1) P Wi 0) = Ziy k() = XLy F(wy(x)) for all x e B,
In particular, for any given set of X, | =1,

(A2) fw; () + X, F(w, (X)) =f(w;(x;) + X, w (X)) for dl x; € B,

I#i
Hence, using X, = X, { # i, and given that c| Range w; is anondegenerate interval, the discontinuity of f
at w(x) impliesthat f is also not continuous at w;(x;).

Sincefisincreasing, f.(z) and f_(z), the right and left hand limits of f at z, existat any z e

Int cl Range w. Define J: Int cl Rangew — R by J(z) =f,(z) - f (2). Thediscontinuity of f at w;(X.)
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implies J(w, (x.)) > 0. Since there exists some component j # i such that cl Range w;jisa
nondegenerate interval containing O and given A1, we can, by varying only w;(x;) and setting w;(X;) =
w,(x) andw,(x;) =0for | # i, j, assemble aset Q c Range w that is dense on a bounded
nondegenerate interval and such that w. (x) € Q. Given A2, J(w;(x;)) = J(w;(x;) + X,,, w,(X,)) for
any w;(x;) and any set of X, | = i. Hence, for any ze Q, by setting w;(x;) = w,(x;) and wj(ij) =z-
w, (X)) (and the remaining w; (x;) = 0), we have J(w, (X)) = J(2) > 0. Given that Q has aninfinite
number of elements and fisincreasing, J(z) > 0 for al z € Q contradicts the fact that Q is bounded.
Hence f is continuous.

Sincef is continuous, f has a unique continuous extension to cl Range w, say f,. Given A2,
(A3) fe(Niha) = Xy fe(@)
for all a € cl Rangew; x ... x cl Range w,,.

We turn to the linearity of f. Fix somed > O that satisfiesd € cl Range w; for al i such that w;
isnot a constant function. (Such ad existssince, for all i, w;(x;") = 0, cl Range w; isan interval, and,
when cl Range w; is not asingleton, O € Int cl Range w;.) Consider any €’ > 0 that is an element of
Range w; for somei. For al >0, thereexistsae e cl Range w; and rational r such that dr = e and
le-€'| <e Letsandt be positiveintegerssuch that r = s/t. We haved/t € cl Range w; for any i
such that w; is nonconstant. Let | and j be coordinates of nonconstant w;,. Choosing a € R" such that
g, =a;=d/tand theremaining a; = 0, A3 impliesf,((d/t) + (d/t)) = 2f,(d/1). Iterating this
argument t times, we have f ,(d) = tf(d/t). (Since, for any positiveinteger m< t, (md)/t < d,
(md)/t € cl Rangew; and (md),/t € cl Range w;, which permits each stage of the iteration.)
Changing the coordinate | if necessary so that e € cl Range w;, apply the same iteration argument to
conclude f((sd)/t) = sf.(d/t). (We now have, for any positive integer m < s, that (md) /t < eand
hence (md) /t € cl Rangew,.) Sof(€) =sf(d/t) =f(d)(s/t) =f(d)r =(f.(d)/d)e. The
continuity of f,impliesthat f, when restricted to e ¢ U, Range w; such that e > 0, islinear. Now
consider any e € Range w such that e > 0. For any such e, there existsaa ¢ " such that each a, €
Rangew;, e= X" a, and f(e) = Ein:lf(ai). Hence, f(e) =Ein:la,-(f(d)/d) =e(f(d)/d). Sofis
linear on positive points of its domain.

Since we can repeat the argument of the previous paragraph for d <0 and €’ <0, f can be

locally nonlinear only at O (and g thereforeis locally nonaffine only at u(x’)). By repeating our
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construction with some X such that u(X) # u(x’) we can define new functions K, W, and f (where K
isadditively separable, W is an increasing affine transformation of u, and f isincreasi ng) that satisfy
f oW =K. Justaswithf, f canbe locally nonlinear only at 0 and g can be locally nonaffine only at

u(X). Thetransformation g isthereforelocally affineat u(x’) and sofislocally linear at 0. H

Proof of Theorem 4.2: We first show that concavity is no stronger than any cardinal property. Let Ug
be cardinal, let U, maximally satisfy concavity, suppose U and U, have the same decisive sets,
and assume for all decisive A that there exist u € U and v € U, such that u|A =v|A. For any
decisive A, let B, > A denote a convex and decisive set such that v|B, satisfies concavity. Since B, is
itself decisive, by assumption thereexist G € Uz and V € Uy, such that (|B, = V|Ba. Since VB, €
Uc|Ba, for any u’ € U there exists an increasing affine transformation g such that g o V|B, = u’|B,.
Since an increasing affine transformation of a concave function is concave, u’|B, satisfies concavity.
Moreover, since there exists such an increasing affine g for the B, corresponding to any decisive A,
each u’| B, satisfies concavity. Hence, u’ € U, Concavity is therefore no stronger than any cardinal
property. For result (2), assume in addition the cardinal property hasrange > 2. Let A’ be adecisive
set for U such that u’’ € U has |Range (u”’|A’")| > 2. Letf: R ~ R beincreasing and strictly
concave and let v be any element of Uc,,. For any decisive A there exists adecisive B > A such that
v|B and hencef o v| B satisfy concavity. Sofove Ug,. Sinceby assumptionu’’ € Ug,, fou’" € Uy,
Since |Range (u’’|Ba )| > 2, there exist uy, U,, uz € Rangeu’’|B, and a € (0, 1) such that u; < u,
<ugandu,=A4uy+ (1-4)u;. Sincefisstrictly concave, f(u,) >Af(uy) +(1-4)f(u;z). Sof|(Range
u’’|Ba) isnot affine and thereforef o u’’ ¢ U, Hence, concavity isweaker than any cardinal
property with range > 2 that intersects concavity.

Asfor concavity and ordinality, it is straightforward to show that each ordinal property isno
stronger than concavity (or indeed no stronger than any property). To show result (3), that any ordinal
property with range > 1 that intersects the property of being concave and continuous is weaker than
the property of being concave and continuous, let U, maximally satisfy an ordinal property with range
>1, let Ug,c maximally satisfy concavity and continuity and have the same decisive setsas U,
assume for each A that is decisive for Ugyc that Ug|An Ugyc|A # o, andletv e Ugyc. Let A’ be

decisivefor Uqyc and Ug,. Since Uy maximally satisfies an ordinal property with range > 1, thereis a
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decisive B’ > A’ such that |Range v|B’| > 1. For some convex and decisive B > B', v| B satisfies
concavity. Given continuity, Rangev|Bisanontrivia interval. Let x4, X, € B satisfy v(X;) < V(X,)
and defineD ={we B:w=4x; + (1-4)X, for somei € [0, 1]}. Let C c D be aconnected set such
that vis monotone on C and let z;, z,, z; € C satisfy z; = (1/2) z; + (1/2) zz and v(z;) < V(Z,) < V(Zy).
Hence there exists an increasing transformation g: R — R such that g(v(z,)) < (1/2)g(v(z,)) +

(1/2)g(v(z3)). Wethenhavego v ¢ Uy, but sincegisincreasing,gove Uy. B

Proof of Theorem4.3: See Grodal (1974). &

Proof of Theorem4.4: Let U with domain X maximally satisfy additive separability and let U be an
arbitrary element of U. We must show (1) if V: X > R issuch that for all A that are decisive for U

there exists an increasing affine transformation g that satisfiesg o U|A = V/|A, then V satisfies

integrability, and (2) for any V € U and any decisive A there exists an increasing affine transformation
g such that V|A=ge° U|A. Theproof of (1) isidentical to the beginning of the proof of Theorem 3.1.

Asfor (2), we consider henceforth afixed A and afixed B > A such that U | B satisfies utility
integrability. Itissufficient to show that if g isan increasing transformationandg- U|B=V|B
satisfies utility integrability (i.e., V|B € U|B), then g is affine.

Observethat since [Range U | > 1, there exist x, X’ € B such that U(x) > U(x’), and hence there
also exists, for any ¢ > 0, ameasurable C, < [0, T] such that

0< fCl(u(x(t), t) - u(x'(t), 1)) du(t) <e,
whereu: R" x [0, T] — R isafunction satisfying Definition 4.5 (ii). By setting ¢ sufficiently small,
we can partition [0, T] into sets C, and C, such that
fCZ(U(X(t), £) - u(x'(t), 1)) du(t) > 0.

Fori =1, 2, let B; betherestriction of B to C; —that is, the set of functions from C; to R" defined by x;
e B, if and only if there exists x € B such that x;(t) = x(t) for all t € C;. Since B isclosed under a.e.
replacement, so are B, and B,. Let U;: B; > R be defined by U;(x;) = fCi u(x;(t), t) du(t). Wehave B
= B, x B,, again due to the fact that B is closed under a.e. replacement. Using (X4, X,) to denote the x
e B such that x(t) = x;(t) for @l t € C;, we have U(x4, X,) = U4(Xy) + U,(X,) for al x e B. Since, for i
€ {1, 2}, Ui(x) > U;(x"),

RangeU,| > 1.
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We use the following result from the theory of integration of correspondences, sometimes

called Lyapunov’ s theorem.

Lyapunov' stheorem. Given an atomless measure space (L2, .7, 4) and correspondence P: Q = R,

f Pdi= {f p di: pisintegrable and p(w) € P(w) for ae w € £} isaconvex set.
Q Q

By Lyapunov’s theorem, Range U, Range U ;, and Range U, are convex sets and therefore
intervals. For example, for the case of Range U 4, the measure space is Lebesgue measure on C, and
the correspondence P would be defined by P(t) = {u(x,(t), t) € R: x, € By} foreachte C,. SinceB;
is closed under a.e. replacement, Range U = fCl P du, and so we may conclude that Range U, is
convex. Notethat since |RangeU;| > 1 and |Range U,| > 1, Range U, and Range U, have nonempty
interiors.

SinceVe U, thereexistsav: R” x [0, T] ~ R, wheret — v(x(t), t) isintegrable and V(x) =
g(U(x) = foTv(x(t), t) du(t) for al x € B. Just as we argued for the case of U, U4, and U, we have
V(X1, X5) = V1(Xq) + V5 (X,) for al (x4, X,) € B, where V;(x;) = fCi v(X;(t), t) du(t),i {1, 2}. Hence

g(U 1(x1) + Uy(X5)) = V41(Xq) + Vo (X,) for al (x4, X,) € B. Apply Theorem 3.1 to conclude that g is
affine. A

Proof of Theorem5.1: Intext. See aso the proof of Theorem4.2. &

Proof of Theorem 5.2: We omit the details: 5.2 (1) isobvious and 5.2 (2) isa dlight variant on

common arguments in the social choice literature (see, e.g., Moulin (1988)). B

Proof of Theorem5.4: Fory e R Y max Will denote max{y;, y,} andy i, will denote min{y;, y,}.

Assumev; +Vy > W+ wyand vy, > w

J If bOtth+Vk=W'+Wkandein=Wmin’It

min- j

followsthat v* = w" and the conclusion v Ricu,, Wisimmediate. So assume that at least one

inequality is strict. DefineX by X; =Wy, X = Vi + V- W, and x; = v; foranyi ¢ { j, k}. Letz

equal x but interchange thej and k coordinates. Givenv;+v, > w; + w,, we conclude that X, > W,

and thereforex™ > w andz* > w". Set
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1= Viin ™ Winin

VitV - 2W,

which iswell-defined given that either v; + v, >w; +w, or v, > W,,. Evidently 4 € [0, 1], and one

may confirmthat v =Ax + (1-2)z (if vn = Vi) or v =4z + (1- )X (if vy = v;). Hence Theorem
5.3impliesv RﬁeUco w (see the comment following the statement of Theorem 5.3).

Now assumev Ry, W. If vi+v,<w;+w,thenX;  v;<X;_,w; contradicting

Vv RﬁeUco w. Hencev; +v, > w; +w,. Suppose, contrary to the theorem, that v, <W,. Consider

transformations g: co Range U — R that are piecewise-linear, increasing, concave, and whose only

nondifferentiability occursat w,,,,. Aslongas Dg(u)| > Dg(u) > 0, g will be concave

U<Wmin u>Wmin

and increasing, but otherwise these two derivatives are arbitrary. So fix some Dg(u)| and

u<Wmin

choose Dg(u)| small enough that g(V,a) = 9(Wpa)- (Notethat v, > Wi, SiNCe V in < Wpin

U>W o

and vj + v, > wj +w,.) Henceg(v;) +g(v,) <g(w;) +g(w,) andso ¥, _,g(v;) < X;_,9(w;), again

contradicting v RﬁeUco w. Observe that here we use only the assumption that G islcc. =
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