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Abstract:

By taking sets of utility functions as a primitive description of agents, we define an
ordering over assumptions on utility functions that gauges their implicit measurement
requirements.  Cardinal and ordinal assumptions constitute two types of measurement
requirements, but several standard assumptions in economics lie between these
extremes.  We first apply the ordering to different theories for why consumer
preferences should be convex and show that diminishing marginal utility, which for
complete preferences implies convexity, is an example of a compromise between
cardinality and ordinality.  In contrast, the Arrow-Koopmans theory of convexity,
although proposed as an ordinal theory, relies on utility functions that lie in the
cardinal measurement class.  In a second application, we show that diminishing
marginal utility, rather than the standard stronger assumption of cardinality, also
justifies utilitarian recommendations on redistribution and axiomatizes the Pigou-
Dalton principle.  We also show that transitivity and order-density (but not
completeness) characterize the ordinal preferences that can be induced from sets of
utility functions, present a general cardinality theorem for additively separable
preferences, and provide sufficient conditions for orderings of assumptions on utility
functions to be acyclic and transitive.
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1.  Introduction

Ordinal utility theory asserts that only those assumptions on utility functions that are preserved

under monotonically increasing transformations are proper primitives.  The rationale is that any

property P that is not preserved under increasing transformations cannot be verified through

observations of choice behavior: if a utility u satisfies P, there will exist another utility u� that does not

satisfy P but that represents the same preferences as u.  Nonordinal properties are therefore needlessly

restrictive: given a nonordinal assumption, one may always make a weaker assumption with the same

implications for choice behavior.  It is common, therefore, to contend that the only role for cardinal

utility functions in economics is the normative one of representing interpersonal utility comparisons.

Ordinalism’s first targets were diminishing marginal utility and concavity, which had long been

used as arguments for why preferences are normally convex.  Neither DMU nor concavity is preserved

by increasing transformations and hence neither is an ordinal assumption.  Rather, when a utility

analogue for the convexity of preferences is necessary, the ordinal procedure is to assume that utility

functions are quasiconcave.  Many pioneer ordinalists, e.g., Arrow (1951), claimed in addition that

diminishing marginal utility is tantamount to assuming that utility is cardinal.  Arrow’s position in the

1950’s was typical and remains predominant: either an assumption on utility is ordinal or it is cardinal.

By taking sets of utility functions as primitive, I define a finer gradation of properties of utility

that allows for intermediate standards of measurement.  Ordinal preference theory, which takes the

functions generated by all increasing transformations of a given utility function as primitive, lies at one

end of the spectrum.  Cardinal theory, which takes the functions generated by all increasing affine

transformations of a given utility function as primitive, uses a much smaller set of utility representations

and therefore leads to a stronger (more restrictive) theory.  Outside of economics, ratio scales, which

take still smaller sets of functions as primitive (the functions generated by all increasing linear

transformations), are also common.  But in addition to these well-known measurement scales, there is

an infinity of intermediate cases.  Diminishing marginal utility and concavity lie precisely in the middle

ground between cardinality and ordinality.  The set of all concave representations of a given preference

relation is larger than any cardinal set of representations but smaller than the ordinal set.  Concavity

thus presupposes an intermediate standard of measurement and does not, therefore, rely on cardinalist

foundations.  Moreover, concavity is far more natural as a primitive in economics than is
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quasiconcavity: concavity exactly captures the core presumptions of economic psychology.

Given that only ordinal properties of utility can be tested with choice behavior, what advantage

could there be in taking nonordinal properties of utility as primitive?  One benefit is that nonordinal

properties can provide rationales for assumptions on preference relations.  Diminishing marginal utility,

for instance, gives a psychological explanation of why preferences should be convex.  To declare by fiat

that preferences relations are convex (or that utility is quasiconcave), in contrast, offers no

psychological rationale.  This paper thus gives utility functions a purpose in positive preference theory,

whereas for ordinalists they serve only as a convenient shorthand for preference relations.  A second

advantage is that we can order the strength of assumptions and thereby gauge just how nonordinal an

assumption is.  This ordering proves particularly valuable in social choice theory, where the need for

nonordinal assumptions is well-recognized but the ordinal/cardinal dichotomy prevails.

We illustrate our ordering of properties of utility by considering another celebrated rationale for

the convexity of preferences, Arrow’s (1951) argument (following Koopmans) that an agent’s leeway to

determine the precise timing of consumption implies that preferences must be convex.  Arrow reasoned

that this rationale for convexity, unlike diminishing marginal utility, was free from any taint of

cardinality.  We show, however, that the utility theory that lies behind the Arrow/Koopmans position is

cardinal.  Bringing these results together, we see that the old neoclassical explanation, diminishing

marginal utility or concavity, rests on less a demanding standard of measurement.

We also apply concavity as a measurement scale to social decision-making, and take issue with

another common belief about measurement in economics, that utilitarian interpersonal comparisons rely

on cardinal utility scales.  By taking a set of concave interpersonal utility functions as a primitive we

derive utilitarian conclusions about the benefits of redistributing utility from rich to poor.  Indeed, the

ordering that arises from a set of concave utilities provide a better approximation of classical utilitarian

writings than the cardinalist approach of taking a single interpersonal utility function and its affine

transformations as primitive.  For instance, concave utilities characterize the famous Pigou-Dalton

principle, which adds egalitarian constraints to standard utilitarian orderings.

Our ordering of properties of utility draws on two literatures.  The first is measurement theory

(see, e.g., Krantz et al. (1971) and Roberts (1979), and originally Stevens (1946)), which identifies

measurement classes with sets of transformations.  Thus, ratio scales are defined by the set of increasing
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linear transformations, interval or cardinal scales by the set of increasing affine transformations, and

ordinal scales by the set of all increasing transformations.  Measurement theory implicitly orders

measurement classes by set inclusion; notice that in the cases mentioned the sets of transformations are

nested.  A set inclusion ordering of transformations has similarities to some of the orderings of

properties we consider (see section 6), and under some circumstances, our approach and the

measurement theory approach coincide.  But traditional measurement theory considers only a few

prominent cases and fails to define a sufficiently rich array of measurement classes.

The second literature consists of social choice models that vary the set of admissible

transformations of utility functions according to the desired degree of interpersonal comparability (Sen

(1970), d’Aspremont and Gevers (1977), Roberts (1980b)).  These models, which employ multiple-

agent profiles of utility functions, place restrictions on what transformations can be applied to any

individual utility function and on whether transformations are permitted to vary across individuals. 

Applying a smaller set of transformations imposes a tighter interpersonal comparability requirement.

The drawback of both literatures is that they identify a standard of measurement or interpersonal

comparability with a set of transformations applied to utility functions.  At first glance, this appears to

be an advantage: any utility function can then be a member of any of the standard measurement classes. 

But taking arbitrary sets of utility functions as primitive admits a greater variety of measurement

standards and is more flexible.  For instance, the set of continuous utility functions defines a

measurement standard that cannot be characterized by the set of continuous transformations (since a

continuous transformation applied to a noncontinuous utility function will not generate a continuous

utility).  Just as importantly, taking sets of utility functions as primitive allows us to identify the implicit

measurement requirements of assumptions on utility functions and hence to compare the measurement

requirements of different assumptions.  It might seem that taking sets of utilities as primitive would not

allow assumptions to be ordered except for trivial cases where assumptions  and  are such that  is

satisfied whenever  is.  We will see, however, that debilitating incompleteness can be avoided and

measurement classes can be calibrated finely.  Indeed, claims that at first appear nonsensical – e.g.,

“concavity” is a weaker assumption than “additive separability” – can be given a precise meaning.

The ordinalist approach to cardinal utility has always been a puzzle.  Considerable work (e.g.,

Debreu (1960), Krantz et al. (1971)) has gone into specifying axioms on binary preference relations that
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ensure that preferences can be represented by a utility unique up to an increasing affine transformation. 

But from the ordinal point of view the significance of such representation results remains limited.  If

binary relations are the primitives of preference theory, the cardinal utility whose existence is

established has no significance beyond the notational.  But if utility is primitive, cardinality has an

immediate purpose: that an assumption on utility admits a cardinal set of representations indicates the

extent of the assumption’s nonordinality.  Other nonordinal properties of utility (e.g., concavity and

continuity, which also have plausible psychological foundations) admit larger sets of utility

representations and are thus weaker assumptions.  Our ordering of properties can thus compare how

demanding are the measurement requirements of different assumptions.

Basu (1979) has also explored room for compromise between ordinal and cardinal utility theory. 

In a spirit similar to the present paper, Basu contends that DMU resides in this middle ground and

remarks on the advantages of taking nonordinal assumptions as primitive.  But Basu sticks to the

method of characterizing measurement classes via utility transformations.  Furthermore, as Basu (1982)

shows, the middle ground that Basu (1979) linked to DMU ends up being equivalent to full-scale

cardinality in classical commodity spaces.  Basu concludes that utility theory prior to the ordinal

revolution used assumptions that were tantamount to cardinality (even when, as in Lange’s case, they

were attempting to rid themselves of cardinal assumptions).  Using sets of utility functions to compare

measurement standards, in contrast, permits compromises between cardinality and ordinality that are

robust to the specification of the commodity space.

In sections 2 and 3, we consider sets of utility functions, which we call psychologies, our

orderings of psychologies and properties of utility, and cardinal and ordinal properties.  We also provide

a sufficient condition that ensures that ordinal preferences can be induced by psychologies: outside of a

technicality, any transitive preference relation can be induced by some psychology.  Section 4

establishes that concavity is weaker than any cardinal property of utility and stronger than any ordinal

property and shows that the Arrow/Koopmans utility theory is cardinal.  Section 5 links sets of concave

interpersonal utility functions to standard utilitarian results on the optimality of redistributing utility. 

The Pigou-Dalton principle then appears as a theorem rather than as an assumption.  Section 6 specifies

conditions under which our orderings of properties are acyclic and transitive.
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2.  Psychologies and orderings of psychologies

Let X be a nonempty set of consumption options and, for any nonempty A � X, let �A be the set

of functions from A to �.  An agent is characterized by a nonempty set U � �X, which lists the utility

functions that accurately depict the agent’s psychological reactions to the options in X.  We say that U is

a psychology and that X is the domain of U.

Preference relations on X emerge straightforwardly from psychologies.  Call A � X decisive for

U if and only if, for all u, v � U and x, y � A, u(x) � u( y) � v(x) � v( y).  Define the binary relation �U

� X × X, the induced preference relation of U, by:

x �U y � {x, y} is decisive and there exists a u � U such that u(x) � u(y).

Induced preference relations can satisfy most of the standard assumptions imposed on ordinal

preferences.  For instance, �U is complete if X is decisive for U.  We will speak interchangeably below

of �U satisfying an assumption on binary relations and the underlying psychology U satisfying the same

assumption.  Psychologies as we have defined them plainly cannot be intransitive.  But, the theorem

below (which applies a classical representation result in Richter (1966) to sets of utility functions)

shows that, outside of transitivity and a standard technicality, any binary relation can be induced by a

psychology.  At the end of this section, we briefly show how to extend the definition of psychologies to

handle the intransitive and other cases not covered here.

A binary relation � on X is countably order-dense if there exists a countable Y � X such that for

all x, z � X with x � z and not z � x, there exists a y � Y such that x � y � z.

Theorem 2.1  If the binary relation � on X is transitive and countably order-dense, there exists a

psychology U with domain X whose induced preference relation is �.

Proof:  If � is complete in addition to transitive and order-dense, the proof that there exists a U with �U

= � is the standard existence theorem for utility functions.  So assume that � is not complete.  Let X /	

denote the indifference classes of � and define  on X/	 by I  J if and only if I 
 J and x � y for some

x � I and y � J.  For any z � X, let I(z) denote the indifference class that z belongs to.  For any x, y � X

such that neither x � y nor y � x holds, define two strict partial orders x and y on X/	 by  � (I(x),

I( y)) and  � (I( y), I(x)) respectively.  Let  and  denote the transitive closures of x and y
t
x

t
y
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respectively.

By assumption, there is a countable set of indifference classes, say Y, that is order-dense with

respect to .  Let Y� = Y � {I(x), I( y)}.  To see that Y� is order-dense with respect to  and ,t
x

t
y

suppose not.  Then, to take the case of , there exist I, J � X/	�Y�  such that I  J and such that fort
x

t
x

all K � Y�, not I  K  J.  That is, there are two indifference classes not in Y� that are unrankedt
x

t
x

according to x but that are ranked according to .  By the definition of a transitive closure, there mustt
x

exist a finite set of indifference classes, say I1, ..., In such that I x I1 x  ... x In x  J.  But since x is

transitive, at least one of the elements I1 to In has to be I(x) or I(y), which contradicts the assumption

that Y� is not order-dense.  By Theorem 3.2 of Fishburn (1979) (which generalizes Richter (1966)),

there exists a utility function ux,y on X/	 such that L  M implies u(L) > u(M).  Similarly, there existst
x

a uy,x on X/	 such that L  M implies u(L) > u(M).  Define the utility functions vx,y and vy,x by lettingt
y

each element of any indifference class inherit the utility number of its indifference class given by ux,y

and uy,x respectively.  Let U be defined by v � U if and only if v � {vx,y, vy,x} for some x, y � X such that

not x � y and not y � x.  It is immediate that �U = �.  


Theorem 2.1 differs from standard utility representation results only in that no completeness

assumption is present.  Transitivity and countable order-density are retained without change.  Ok

(1999) has also recently analyzed when an incomplete preference relation � can be represented by a set

of utility functions.  Ok’s definition of representation is the same as ours, except that he concentrates on

the case where the set of utility functions is finite.  Ok shows that transitivity and order-density by

themselves do not imply that a preference relation can be represented by a finite set of utilities and also

provides sufficient conditions that guarantee representation by an infinite set of utilities.  Theorem 2.1

makes do with weaker conditions and indeed shows that infinite-dimensional representability requires

only the standard assumptions.  See Dubra, Maccheroni, and Ok (2001) for infinite-dimensional

representability of possibly incomplete preferences on lotteries.

We now define the key ordering of psychologies.  In this definition and in several to follow, we

distinguish between complete and possibly incomplete psychologies.  While the incomplete case is

more general, the reader is invited for concreteness to focus on complete psychologies.  To cover the

incomplete case, let U�A (the restriction of U to A), where A is a subset of the domain of U, denote the
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set {w � �A : w = u�A for some u � U}.  A pair of psychologies U and V have the same decisive sets if

and only if, for all A � X, A is decisive for U � A is decisive for V.

Definition 2.1:

(Complete case)  Suppose U and V are complete.  Then U is no stronger than V if and only if U � V.

(Incomplete case)  U is no stronger than V if and only if U and V have the same decisive sets and, for

each decisive A, U�A � V�A.

Other natural orderings of psychologies may be defined.  For example, we could say instead: U

is no stronger than V � for each A � X that is decisive for U, U�A � V�A.  This ordering ranks more

psychologies, but the additional discrimination is unnecessary for our applications and so we use

Definition 2.1.

It is immediate that the "no stronger than" relation on psychologies is transitive and, when

�X� > 1, incomplete.  We define a "weaker than" relation on psychologies as the asymmetric part of the

"no stronger than" relation: U is weaker than V if and only if U is no stronger than V and it is not the

case that V is no stronger than U. 

In closing this section, we point briefly out how to extend the above model of psychologies so

that psychologies can generate arbitrary binary preference relations (even intransitive ones).  Instead of

each utility function in a psychology being defined on the same domain X, we instead allow utilities to

be defined on arbitrary subsets of some universal domain X.  Specifically, an extended psychology U on

X is a family of functions such that u � U if and only if u � �A for some A � X.  Recall that for a simple

psychology U and a A � X, U�A (the restriction of U to A) is the set {w � �A : w = u�A for some u �

U}.  The same definition holds unchanged for extended psychologies.  For any A � X, U�A is

interpreted as the set of utility functions on A that accurately depict the agent’s psychological reactions

to the consumption possibilities in A.

For any extended psychology U on X, let the extended domain of U denote {A � X : A =

Domain u for some u � U}.  If the extended domain of U is {X}, then the extended psychology satisfies

our previous model and we say it is simple.  We redefine A � X to be decisive for U if and only if, for all

x, y � A and all u, v � U such that {x, y} � Domain u � Domain v, u(x) � u( y) � v(x) � v( y).
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Preference relations are induced by extended psychologies in the same way they are induced by

simple psychologies: given an extended psychology U, define RU by x RU y if and only if {x, y} is

decisive and there exists a u � U such that u(x) � u(y).  It is clear that for any binary relation � on X,

there exists an extended psychology U on X such that RU = �.  A suitable U can be assembled in many

ways: for instance, for each (x, y) � �, let ux, y: {x, y} � � be a function that satisfies u(x) � u( y) if and

only if x � y, and let U = (x, y)��{ux, y}.  Extended psychologies therefore constitute a more general�
model of agents than ordinal preferences.

Our ordering of psychologies extends straightforwardly: we can define the extended psychology

U to be weaker than the extended psychology V if and only if (1) U and V have the same decisive sets,

and (2) for any decisive A, U�A � V�A.  Much of what follows, e.g., the theory of ordinal and cardinal

psychologies and ordinal and cardinal properties of utility (see Definitions 3.3 - 3.5 below), can be

recast in terms of extended psychologies.  To keep notation simple, we stick to simple psychologies.

3.  Properties of utility and orderings of properties

We now use the ordering over psychologies to generate orderings over properties of utility

functions.  Formally, a property P is simply a set of functions into the real line.  The domains of the

functions in P may differ.  A utility function u: A � � satisfies property P if and only if u � P.

Definition 3.1:

(Complete case)  A complete U maximally satisfies property P if and only if (1) for each u � U, u

satisfies P, and (2) � a complete psychology V � U such that each v � V satisfies P.

(Incomplete case)  U maximally satisfies property P if and only if (1) for each u � U and each A that is

decisive for U, there exists a B � A that is decisive for U such that u�B satisfies property P, and

(2) � V � U with the same decisive sets as U that meets condition (1).

In words, U maximally satisfies P if it is largest among psychologies that share the same family

of decisive sets and that, for each u in U and each decisive A, own a decisive B containing A such that u

satisfies P on B.

The “containing” sets B in Definition 3.1 are unavoidable: since some properties (e.g.,



9

quasiconcavity or concavity) can only be satisfied on certain domains (convex sets), we cannot speak of

those properties as satisfied on arbitrary decisive sets.  Also, note that the domain of a psychology may

determine whether it maximally satisfies some properties.  For instance, if �X� is finite, any psychology

maximally satisfies continuity, but not when, for example, X = .�n

Our earlier ordering of psychologies suggests a natural ordering of properties of utility. 

(Formally speaking, the complete case below defines a distinct ordering, which we include only as an

illustration; all explicit references to �NS refer to the incomplete case.)

Definition 3.2:

(Complete case)  Property P is no stronger than property Q, or P �NS Q, if and only if for all U that

maximally satisfy P and all V that maximally satisfy Q, U � V 
 � implies U � V.

(Incomplete case)  Property P is no stronger than property Q, or P �NS Q, if and only if whenever U

maximally satisfies P, V maximally satisfies Q, U and V have the same decisive sets, and U�A � V�A 


� for all decisive A, then U�A � V�A for all decisive A.

(Both cases)  P is weaker than Q, or P �W Q, if and only if P �NS Q and not Q �NS P.

In the incomplete case, the “weaker than” part of Definition 3.2 can be rephrased: P �W Q if and

only if P �NS Q and there exists a U that maximally satisfies P and a V that maximally satisfies Q such

that U and V have the same decisive sets, U�A � V�A 
 � for all decisive A, and U�A � V�A for some

decisive A.

The relations �NS and �W need not be transitive or complete.  Since psychologies do not have to

be nested, incompleteness is unremarkable.  The incompleteness of �W can be particularly extensive

since P and Q are unranked by �W if P and Q are inconsistent, i.e., if P � Q = �.  The intransitivity of

�NS and �W may come as more of a surprise.  We defer this subject until section 6, where we discuss

domains on which �W and other related orderings are transitive or at least acyclic.

Definition 3.3 (Ordinality)  The functions u and v agree on A if and only if, for all x, y � A, u(x) � u( y)

� v(x) � v( y).  A psychology U with domain X is ordinal if and only if u � U implies that if v � �X and

u and v agree on each A that is decisive for U, then v � U.
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Equivalently, a psychology U with domain X is ordinal if and only if u � U � (v � U � v � �X and, for

each decisive A, there exists an increasing transformation g such that v�A = g � u�A ).

Definition 3.4 (Cardinality)  A function g: E � �, where E � �, is an increasing affine transformation

if and only if there exist a > 0 and b such that, for all x � E, g(x) = a x + b.  A psychology U with

domain X is cardinal if and only if u � U � (v � U � v � �X and, for each decisive A, there exists an

increasing affine transformation g such that v�A = g � u�A ).

We can now define properties of utility as ordinal or cardinal.

Definition 3.5  A property P is ordinal (resp. cardinal) if and only if any U that maximally satisfies P is

ordinal (resp. cardinal).

Most of the standard assumptions used nowadays in utility theory are ordinal properties.  As an

example, consider quasiconcavity.  A function u: Z � � is quasiconcave if Z is a convex set and, for all

x, y � Z and  � [0, 1], u( x + (1� )y) � min {u(x), u( y)}.  To confirm that quasiconcavity is an ordinal

property of utility, let U maximally satisfy quasiconcavity, let u be an arbitrary element of U, and

suppose, for all decisive A, that u�A and v�A agree.  For any decisive A, there exists a decisive B � A

such that u�B satisfies quasiconcavity (given Definition 3.1 (1)).  Since B is decisive, u�B and v�B

agree.  Since u�B and v�B agree, there is an increasing transformation f : Range u�B � � such that

f � u�B = v�B; since f is increasing, for all x, y � B and all  � [0, 1], v( x + (1� )y) � min {v(x), v( y)}. 

Since u�B satisfies quasiconcavity, B is convex; hence v�B satisfies quasiconcavity.  So, by Definition

3.1 (2), v � U.

As an example of a cardinal property, we consider additive separability, which will later be

important in our examination of the convexity of preferences.

Definition 3.6  A function u: A � � satisfies additive separability if and only if, for some integer n � 2,

there exist component spaces Ai, i = 1, ..., n, such that A = A1 × ... × An and functions ui: Ai � �, i = 1,

..., n, such that (1) for each x � A, u(x) = u i(xi), (2) for each component i, cl Range ui is an�n
i�1
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interval, and (3) two of these intervals have nonempty interior.

The property of additive separability consists of the set of all functions that satisfy additive separability.

Theorem 3.1  Additive separability is a cardinal property.

The proof, and all other proofs missing from the text, are in the appendix.

Two features distinguish Theorem 3.1 from the existing literature on additive separability (see

Debreu (1960) and Krantz et al. (1971)).  First, since psychologies contain sets of functions – and those

functions need not be ordinally identically – Theorem 3.1 extends classical cardinality results;

specifically, incomplete preferences are covered.  Second, the standard approach to additively separable

functions proves cardinality as a by-product of existence theorems that specify conditions on ordinal

preferences that imply the existence of an additively separable utility representation.  The existence

question is difficult, however, and so this technique ends up imposing overly strong restrictions.  By

separating cardinality from existence, Theorem 3.1 makes do with much weaker conditions relative to

the literature, which usually supposes that utility functions are continuous.

4.  Convexity of preferences 

4.1  Concavity as a primitive

This section presents explanatory rationales for when one should expect preferences to be

convex.  For complete preferences defined on a convex domain X, we define the convexity of a

preference relation � in the standard way: the binary relation � � X × X satisfies convexity if and only if,

for all y � X, the set {x � X: x � y} is convex.  To cover preference relations that can be incomplete, we

need an expanded definition.  A binary relation � � X × X is complete on A � X if and only if, for all {x,

y} � A, either x � y or y � x.  We say that � � X × X  satisfies generalized convexity if and only if, for

any convex set A � X such that � is complete on A and any y � X, {x � A: x � y} is convex.  If � � X × X

is complete and satisfies generalized convexity and X is convex, then � obviously satisfies convexity. 

Without completeness, however, a � that satisfies generalized convexity may fail to be convex, e.g., the

relation � � �2 × �2 defined by x � y if and only if (x1 � y1 and x2 = y2) or (x1 = y1 and x2 � y2).
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A function u: Z � � satisfies concavity if and only if Z is a convex set and, for all x, y � Z and

all  � [0, 1], u( x + (1� )y) � u(x) + (1� )u( y).

Theorem 4.1  If psychology U maximally satisfies concavity, then �U satisfies generalized convexity.

Given the above example of a � that satisfies generalized convexity but not convexity, it should also be

clear that psychology can maximally satisfy concavity even though �U is not convex.  But while

concavity of utility by itself does not imply that preferences are convex, Theorem 4.1 indicates that the

concavity and completeness of a psychology do.

Proof of Theorem 4.1:  Let U be a psychology that maximally satisfies concavity, let X denote the

domain of U, let u be an arbitrary element of U, and let A � X be an arbitrary convex set that is decisive

for U.  Since A is decisive, there exists a decisive B � A such that u�B satisfies concavity.  Since A is

convex, u�A also satisfies concavity.  For any y � X, define yp = {x � A: for all v � U, v(x) � v( y)}.  We

need to show that yp is convex.  If not, there would exist z, z� � yp and  � [0, 1] such that  = z +ẑ

(1� ) z� � yp.  Since A is convex, however, A � co yp (where “co” is the convex hull) and therefore

u�co yp satisfies concavity.  Hence, for all v � U, v( ) � v(z) + (1� )v(z�) � v(y).  Therefore  �ẑ ẑ

yp.  


Definition 4.1  For n a positive integer, property P has range > n if and only if, for each u � P,

�Range u� > n.

Definition 4.2  Property P intersects property Q if and only if there exists some U maximally satisfying

P and some V maximally satisfying Q such that U and V have the same decisive sets and, for each

decisive A, U�A � V�A 
 �.

Theorem 4.2:

(1)  Any ordinal property is no stronger than concavity and concavity is no stronger than any cardinal

property.
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(2)  Concavity is weaker than any cardinal property with range > 2 that intersects concavity.

(3)  Any ordinal property with range > 1 that intersects the property of being concave and continuous is

weaker than the property of being concave and continuous.

Theorem 4.2 confirms a simple intuition about concavity.  Along a line, concavity as a

psychology assumes that an agent experiences each successive unit of consumption as delivering a

smaller increment of utility.  But concavity does not require that each utility increment is a specific

fraction of the previous increment.  Agents experience diminishing marginal utility but no additional

extra-ordinal precision.  Cardinality, in contrast, requires that agents experience any pair of utility

increments as a precise ratio.  Cardinality thus imposes considerably more – implausibly more –

psychological structure.

Remark on Theorem 4.2 (3): due to the fact that a concave function need not be continuous on

the boundaries of its domain, there are nontrivial preferences – preferences that exhibit strict preference

between arbitrarily many pairs of consumption bundles – whose only utility representations are

concave.  It follows that there are ordinal properties with arbitrarily large range that are not weaker than

concavity.

By strengthening our ordering of properties, we can tighten Theorem 4.2 (2) and (3).

Definition 4.3  Property P is strictly weaker than property Q, or P �SW Q, if and only if P intersects Q

and whenever U maximally satisfies P, V maximally satisfies Q, U and V have the same decisive sets,

and U�A � V�A 
 � for all decisive A, then U is weaker than V.

In contrast, property P is weaker than Q if it is merely the case that P is no stronger than Q and there is

some U that maximally satisfies P and some V that maximally satisfies Q, where U and V have the same

decisive sets and U�A � V�A 
 � for all decisive A, such that U is weaker than V.  

One may show (by adapting the proof of Theorem 4.2 in the appendix): 

(2�) concavity is strictly weaker than any cardinal property with range > 2 that intersects concavity,

(3�) any ordinal property with range > 1 that intersects the property of being concave and continuous is

strictly weaker than the property of being concave and continuous.
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Concavity can be ranked relative to some other classical assumptions in utility theory.  If X is a

nonempty open subset of �n, the property of continuity on X is no stronger than concavity on X and any

ordinal property is no stronger than continuity.  Also, the property of being continuous and nonconstant

on X is weaker than concavity.  These assertions follow from the fact that any concave function on an

open set is continuous, but not vice versa and the fact that any continuous increasing transformation

preserves continuity, but noncontinuous increasing transformations do not preserve continuity.  We

omit the details, which vary only slightly from the proof of Theorem 4.2.

The property being concave and continuous and the property of being continuous are each

associated with a set of utility transformations, namely increasing concave and increasing continuous

functions from � to �.  This feature is by no means shared by all properties of utility (but see section 6). 

Moreover, even for the cases at hand, the properties should not be confused with their associated

transformations: the transformation must be applied to a function that satisfies the property in question. 

For instance, an increasing concave transformation of a nonconcave utility need not be concave.

4.2  The Arrow/Koopmans theory

Arrow (1951), following unpublished remarks by Koopmans, argued that if an agent holds a

consumption bundle for a period of time, say [0, T ], and can decide on the timing of how that bundle is

consumed, then the agent’s preferences must be convex.  Arrow’s reasoning implicitly supposed that

the agent’s total utility is the integral of the utility achieved at each moment from 0 to T.  An agent

holding consumption vector z �  chooses a function from [0, T ] to  that maximizes this integral. �n
�

�n
�

The informal argument for convexity is that an agent holding the vector x + (1� )y,  � [0, 1], could

consume x in T units of time and (1� )y during the remaining (1� )T time units.  If the agent’s

utility at each instant is independent of the consumption at other instants, it seems plausible that x

consumed in T time units will deliver total utility that is  times the utility of x consumed in T time

units, and similarly for (1� )y.  So, if x and y are indifferent, x + (1� )y will leave the agent at least

as well off as x or y, that is, indifference curves are convex.  Arrow argued that this explanation of

convexity, unlike the supposedly cardinalist stories that rely on diminishing marginal utility, is free

from cardinal influences.

We follow Grodal’s (1974) formalization of the Arrow/Koopmans theory.  Assume that the
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binary relation �AK on  can be represented by a utility function U:  � � that takes the form�n
�

�n
�

U(z) = ,supx �
T

0

u(x(t), t) dµ(t) s.t. �
T

0

xi(t) dµ(t) � zi, i � 1, ..., n

where x: [0, T ] � , u:  × [0, T ] � �, µ  is Lebesgue measure, t � u(x(t), t) is Lebesgue integrable,�n �n
�

z � , and the supremum is taken over all integrable x such that xi(t) � 0 for all t � [0, T ], i = 1, ..., n.�n
�

Theorem 4.3  U is concave and therefore �AK is convex.

We turn to the measurement requirements of the utility function,  that�
T

0
u(x( t ), t ) dµ(t),

underlies the above maximization problem.  We generalize somewhat.

Definition 4.4  Let  denote the set of Lebesgue measurable functions from [0, T ] to �n.  A set Y �  is

closed under a.e. replacement if and only if whenever z �  and, for a.e. t � [0, T ], there exists a x � Y

such that z(t) = x(t), then z � Y.

The obvious consumption sets for a consumer with the utility U defined above, e.g., {x � : 0 � xi(t) �

ki for each i = 1, ..., n, and each t � [0, T ]}, where each ki is a nonnegative real number, are closed

under a.e. replacement.

Definition 4.5  A function U: Y � � satisfies utility integrability if and only if, for some positive integer

n, (i) Y is closed under a.e. replacement, (ii) there exists a u:  × [0, T ] � � with t � u(x(t), t)�n
�

integrable such that U(x) = for all x � Y, (iii) �Range U� > 1.�
T

0
u(x ( t ), t ) dµ(t)

For a psychology to maximally satisfy utility integrability, it must meet the conditions of Definition 3.1. 

In the complete case, therefore, U maximally satisfies utility integrability if it is a largest complete

psychology such that each function U � U satisfies utility integrability.  For the property of utility

integrability to qualify as cardinal it must be that every psychology U that maximally satisfies utility

integrability consists precisely of the functions that, when restricted to any decisive set A of U, are the
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affine transformations of any function in U�A.

Theorem 4.4  Utility integrability is a cardinal property.

Theorems 4.4 and 4.2 together imply that the Arrow/Koopmans theory imposes stricter

measurement requirements on agents than does concavity.  Utility integrability has range > 2 and

intersects concavity; so Theorem 4.2 implies that concavity is weaker than utility integrability.  Thus,

concavity, despite its preeminent place in preordinal utility theory, is nearer to ordinalist standards of

measurability.

5.  Concave utilitarianism: between cardinal and ordinal interpersonal comparisons

It is common to think that although preference theory should be based solely on ordinal

assumptions, utilitarianism is necessarily a cardinal enterprise.  More generally, formal social choice

theory concentrates on the standard set of measurement classes: ordinal scales, interval or cardinal

scales, and, occasionally, ratio scales.  But as in the case of individual preference theory, a rich terrain

lies between ordinal and cardinal measurement.  Specifically, the portions of utilitarianism that have

earned the widest consensus rely on a measurement scale that is weaker than cardinality: concave

psychologies reproduce the key utilitarian recommendation that income be redistributed from high-

utility agents with low marginal utilities of income to low-utility agents with low marginal utilities of

income.  Not every utilitarian conclusion can be derived from concavity, but the missing results are the

anti-egalitarian recommendations that social choice theorists, and even many utilitarians, have often

regarded as ethically suspect: e.g., redistributions that harm the lowest-utility agents.

Let � = {1, ..., I} be a finite set of agents and X a set of social choices.  As an example, we will

later consider the important case where X �  is a set of income profiles of the I agents.  Our primitive�I
�

is a psychology U, where each u � U is a utility function from � × X to �.  To keep the distinction

between social and individual choice in mind, call the current U ’s social psychologies.  Following

d’Aspremont and Gevers (1977) (see also Suppes (1966) and Hammond (1976)), each u � U expresses

a set of interpersonal welfare comparisons: u(i, x) � u( j, y) means that agent i with social choice x is at

least as well off as agent j with social choice y.  When combined with an aggregation rule, e.g.,



1  Some theories of social choice consider utility transformations that vary as a function of the
agent i, and which in our framework translate into social psychologies that are not complete.  For
example, invariance with respects to individual origins of utility, used by d’Aspremont and Gevers
(1977) to axiomatize utilitarianism, admits affine transformations of the form a u(i, � ) + bi.
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u(i, x) or min i��
 u(i, x), a u generates a binary relation on X.  We also suppose, as is standard, that,�i� �

for each i � �, u(i, � ) represents agent i’s individual preferences.

One may view the interpersonal judgments represented by u as the preferences of an individual

contemplating what it would be like to be various agents under various social outcomes.  A social

psychology is then interpreted in the same way as our earlier “individual” psychologies: it lists the

functions that accurately depicts preference judgments over a pertinent domain.  For social

psychologies, the domain is � × X rather than an arbitrary set.

We consider only social psychologies U that are complete: U contains only, though not

necessarily all, increasing transformations of some u � U.  In the language of social choice theory,

completeness implies that the minimum measurement standard that any resulting social welfare

functional satisfies is coordinality (in Hammond (1976)’s terminology) or ordinal level comparability

(in Roberts (1980b)’s terminology).  Since, however, we will not require U to contain all ordinally

equivalent utilities, our social psychologies can obey a stronger measurement standard.1

To specify social choice rankings for more than a single psychology, we define three collections

of psychologies.  Let � denote the set of functions from � × X to �, and let �(�) denote the set of all

subsets of �.

(1)  The cardinal collection of social psychologies:

�C = {U � �(� ): u � U � (v � U � there exists an increasing affine g such that v = g � u)},

with generic element UC � �C.

(2)  The ordinal collection of social psychologies:

�O = {U � �(�): u � U � (v � U � there exists an increasing g such that v = g � u), with

generic element UO � �O.

To define the third collection, let u: � × X � � be coordinately concave if and only if X is convex and,

for each i � �, u(i, � ) is concave and continuous and let ��� denote the set of coordinately concave

functions.
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(3)  The concave collection of social psychologies:

�CC = {U � �(�): U is complete, U � ���, and � a complete V � U such that V � ���}, with

generic element UCC � �CC.

We consider utilitarian social welfare rankings, which order according to the sum of the utilities

 u(i, x).  Given a social psychology U, the utilitarian ordering �U � X × X is defined by x �U y ��i� �

v(i, x) � v(i, y) for all v � U.  Different social psychologies evidently generate different�i� �
�i� �

utilitarian rankings.  Call  and  cardinal and concave utilitarianism, respectively.  To avoid an�U C
�UCC

oxymoron, we simply call  ordinalism.�U O

Cardinal utilitarianism is the standard utilitarianism: if we rank social choices according to the

sum of utilities, the ranking will be unchanged if we apply the same increasing affine transformation to

all individual utility functions.  But cardinal utilitarianism has the drawback that it rests on a demanding

standard of psychological measurement.  Ordinalism, at the other extreme, relies on the weakest

possible measurement standard.  Ordinalism’s drawback is that, since it requires any ranking of x over y

to pass a larger set of sum-of-utilities tests, it ranks fewer social choices than cardinal utilitarianism. 

Indeed, ordinalism can often make only a trivial set of rankings.  Since a concave social psychology

UCC contains the utilities generated by the affine transformations of any u � UCC, and since the set of

all ordinal representations of u contains the concave representations, concave utilitarianism produces

more rankings than ordinalism but fewer rankings than cardinal utilitarianism.  We record this as a

theorem.

Theorem 5.1  If UC � UCC 
 �, then UC � UCC and  � .  If UCC � UO 
 �, then UCC � UO and�U C
�U CC

 � .�U CC
�U O

Concave utilitarianism relaxes the stringent measurement requirements of cardinal

utilitarianism, and, as in the case of preference theory, concavity as a psychology precisely models the

characteristic neoclassical intuitions about economic psychology.  But it remains to see whether

concave utilitarianism retains the decisiveness and egalitarianism of cardinal utilitarianism. 

Specifically, does concave utilitarianism recommend redistributions from rich to poor and does it rank

sufficiently many social choices?
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The ordering �U and a u � U induce an ordering over utility vectors in �I which will help

characterize �U.  Given a social psychology U and u � U, define Ru�U � �I × �I by

v Ru�U w � � x, y � X such that v = (u(1, x), ..., u(I, x)), w = (u(1, y), ..., u(I, y)) and x �U y.

We write that u is in the coordinate range of u, or u � Range{ui} if and only if � x � X such that u =

(u(1, x), ..., u(I, x)).

Not surprisingly, v is ranked higher than w according to any  if and only if the sum of theRu�U C

coordinates in v is at least as large as the sum in w.  Ordinalism is also easily characterized.  For any v �

�I, let v� denote v with the coordinates placed in increasing order.

Theorem 5.2:

(1)  Suppose u � UC and v, w � Range{ui}.  Then v  w �  v i � w i.  Ru�U C
� i� �

� i� �

(2)  Suppose u � UO and v, w � Range{ui}.  Then v  w � v� � w�.Ru�U O

Result 5.2 (2) says that ordinalism judges x  y if and only if, according to any u � UO, the�U O

ith best off agent under x is at least as well off as the ith best off under y for all i � �.  Thus, modulo

utilitarianism’s anonymity requirement (which implies that if u and v merely rearrange indices without

changing the utility level of the ith best off agent for any i then  ranks u and v as indifferent),Ru�U O

ordinalism recommends only Pareto improvements.  So let us say that u is a (weak) anonymous Pareto

improvement over v if u� � v� (sometimes this is called a Suppes-Sen improvement).  In particular, the

redistributive conclusions of cardinal utilitarianism are lost: ordinalism will never recommend a transfer

of wealth from a high-utility agent to a low-utility agent.  Cardinal utilitarianism of course recommends

such transfers if the low-utility agent has a higher marginal utility of wealth (according to any u � UC)

than the high-utility agent.

As for concave utilitarianism, first recall the definition of a least concave function.  Let X be

convex and let V denote a nonempty (nonsocial) psychology consisting of all the continuous and

concave functions v: X � � that represent a fixed preference relation � on X.  The function  � V isv̄

least concave if and only if for every v � V there exists an increasing concave transformation

g: Range  � � such that v = g � .  Debreu (1976) proved that if V meets the above assumptions thenv̄ v̄

a least concave  exists.  The definition of least concavity does not apply to a concave socialv̄
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psychology UCC since the domain of each u � UCC is not convex.  The definition can be generalized in

a couple of ways.  Let co S denote the convex hull of a set S.

Definition 5.1  Let UCC be a concave social psychology.  Then,

(1)   � UCC is least coordinately concave or lcc if and only if for all u � UCC there exists an increasingū

transformation g: Range  � � such that u = g �  and, for all i � �, g�Range (i, � ) is concave.ū ū ū

(2)   is strongly lcc if and only if for all u � UCC there exists an increasing transformationû

g: co(Range ) � � such that u = g �  and g is concave.û û

Debreu’s existence theorem does not itself imply that an lcc element in UCC exists, but his proof

extends easily.  Strongly lcc utilities are in some respects the more powerful tool, but Example 5.2, at

the end of this section, shows that a concave social psychology can fail to have a strongly lcc element. 

If  � UCC is lcc and any u � UCC satisfies the range condition that Int u(i, X ) is convex, then  isū � i� �
ū

strongly lcc.  The range condition says that the range of each agent’s utility either directly or indirectly

overlaps the range of any other agent’s utility.  We discuss what this means and implies when we come

to Example 5.2.

For our purposes, the following sufficient condition will adequately distinguish concave

utilitarianism from cardinal utilitarianism and ordinalism.  A simple characterization of concave

utilitarianism is possible when strongly lcc utilities exist, as we also explain later.  

Theorem 5.3  Suppose  � UCC is lcc and v, w � Range{ }.  Then v � co {u � Range{ }: u� � w�}ū ūi ūi

implies v  w.Rū�UCC

Hence, if one examines ( (1, x), ..., (I, x))� and ( (1, y), ..., (I, y))� and finds that the first vector isū ū ū ū

a convex combination of Pareto improvements of the second, then x  y.  The proof to follow needs�UCC

only notational changes to show that if  is strongly lcc, then the weaker condition v � co {u � �I: u� �û

w�} will imply v  w.Rû�UCC

Proof of Theorem 5.3:  Given that v � co {u � Range{ }: u� � w�}, there exist 1, ..., m � [0, 1] andūi
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z1, ..., z m � Range{ } such that k = 1, v = k zk, and each zk� � w�.  For any g: Range ūi �m
k�1 �m

k�1 ū

� � such that g�Range (i, � ) is concave and increasing for each i � �,ū

g(vi) = g( ) � [ g( )] � [ k g(wi)] = g(wi).� i� �
� i� �

�m
k�1

k
i z k

i � i� �
�m

k�1
k
i z k

i � i� �
�m

k�1 � i� �

The first inequality follows from the concavity of g�Range (i, � ) and the second from the fact thatū

zk� � w�.  Since v, w � Range{ }, there exist x, y � X such that v = ( (1, x), ..., (I, x)) and w =ūi ū ū

( (1, y), ..., (I, y)).  Since  is lcc, for each u � UCC there is a g meeting the above assumptions suchū ū ū

that u = g � .  Hence u(i, x) � u(i, y), x  y, and v  w. �ū �i� �
�i� �

�U CC
Rū�UCC

To see the relations , , and  graphically, let I = 2, and suppose UC, UO, UCCRu�U C
Ru�U O

Rū�UCC

have a common element , which is lcc for UCC.  Fix some w � Range{ } and assume that if v� � w�ū ūi

then v � Range{ }.  The upper contour sets {v: v R w} for R � { , , } are picturedūi Ru�U C
Ru�U O

Rū�UCC

in Figures 1 through 3.  In this two-dimensional case, {v: v  w} exactly coincides with theRū�UCC

convex hull given in Theorem 5.3 (see Theorem 5.4 below).

Figures 2 and 3 indicate that concave utilitarianism ranks a richer set of utility vectors than does

ordinalism.  Not only are the anonymous Pareto improvements ranked superior to w, but any

redistribution of utility (with no net loss) from the utility-rich agent to the utility-poor agent is also

superior.  On the other hand, in contrast to cardinal utilitarianism, concave utilitarianism does not

declare any utility vector that lowers the welfare of the worse-off agent to be superior to w.  Indeed,

changes from w that harm the worse-off agent are the only orderings made by  but not by . Rū�U C
Rū�UCC

Concave utilitarianism thus stakes out an egalitarian compromise between standard (cardinal)

utilitarianism and the narrow Paretian judgments made by ordinalism.

Cardinal utilitarianism has long been criticized for ignoring welfare levels and in particular for

recommending that low-utility agents should undergo arbitrarily large utility losses whenever those

losses lead to greater utility gains for high-utility agents.  Concave utilitarianism does not suffer from

this defect.  Moreover, concave utilitarianism does not arrive at its prohibition on harming the least

well-off by invoking an equity axiom (as in Hammond (1976)).  The egalitarianism flows directly from

the psychological content of concavity.

To characterize this egalitarianism more precisely, consider the important Pigou-Dalton

principle (see, e.g., Moulin (1988)).  Given a utility u: � × X � �, an ordering R over utility vectors in
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Range{ui} satisfies the Pigou-Dalton principle if, for any j, k � � and any v, w � Range{ui} such that

vm = wm for m � { j, k}:

(5.1) v j + vk � w j + wk and min {v j, vk}� min {w j, wk} � v R w.

In words, R satisfies Pigou-Dalton if it recommends a change in utility levels affecting a pair of

individuals that both increases the sum of utilities and does not leave the lower-utility person after the

change worse off than the lower-utility person before the change.

Figure 3 suggests that concave utilitarianism should satisfy the Pigou-Dalton principle.  The

implication in (5.1) goes both ways, in fact.  In this sense, concave utilitarianism characterizes Pigou-

Dalton.

Theorem 5.4  Suppose  is a strongly lcc element of UCC, and let v, w � Range{ } be identical in allû ûi

but two coordinates j and k.  Then,

v j + vk � w j + wk and min {v j, vk} � min {w j, wk} � v   w.Rû�UCC

We illustrate cardinal and concave utilitarianism’s common ground, and the paucity of

ordinalist rankings, with the classic problem of constructing a welfare ranking of income distributions.

Example 5.1.  The set of social choices X on which social psychologies are defined is then  , and a�I
�

policymaker with aggregate income  > 0 to distribute will choose from  = {x � :  xi = }. �I
�

� i� �

Consider social psychologies UC, UO, and UCC that have a common element u such that each u(i, � ) is

increasing, differentiable, and strictly concave in the ith coordinate of  and constant in the remaining�I
�

I�1 coordinates.  (We suppress notation of all but the ith coordinate of  when writing u(i, � ).)  Let�I
�

UCC have the strongly lcc element .û

First, suppose all individuals are identical: u(i, � ) = u( j, � ) for any i, j � �.  Although the cardinal

and concave utilitarian orderings  and  are not identical, they both rank e = ((1�n) , ...,�U C
�U CC

(1�n) ) above any other distribution in .  For , in contrast, any unequal x �  is unranked�U O

relative to e.

Next, allow u(i, � ) 
 u( j, � ).  As in the identical-agent case,  ranks the x such that Dxu(i, xi)�U C

= Dxu( j, x j) to be superior to any other point in .  While  need not make the same ordering in this�U CC
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case, Theorem 5.4 implies, given some base distribution x, that some transfer of income from agent j to

agent i will be superior according to  if�U CC

Dx (i, xi) > Dx ( j, x j) and (i, xi) < ( j, x j).û û û û

Rather than the equal derivative condition, any x such that D (i, x)� is increasing in i is undominatedû

according to  (where ( � , x)� denotes ( � , x) with the coordinates arranged in increasing order.) �U CC
û û

Ordinalism again makes very few orderings: given some x � , any change affecting only two agents i

and j that raises i’s welfare and hence lowers j’s is not ranked relative to x.  For instance, any point in 

that leads to equal utility levels is always unranked relative to all other points in .  �

Although the cardinal and concave utilitarian orderings are not identical, it is concave rather

than cardinal utilitarianism that provides the better rationale for classic utilitarian policy

recommendations.  The connection to the Pigou-Dalton principle is revealing.  Pigou, the primary

architect of neoclassical welfare economics, considered himself both a cardinalist and a utilitarian: at

least in theory, each individual in society has a cardinal and interpersonally comparable utility function,

and policy choices should be evaluated by summing the utility numbers that these utilities assign to

policies.  But Pigou (1932) recognized that analysts have no easy access to cardinal utility information,

and argued therefore that welfare economics should recommend only policy changes that would be

validated independently of that information.  For instance, a policy that lowers the income of low-utility

individual by a $1 and raises the income of a high-utility individual by $ x, where x > 1, could not be

unambiguously recommended, no matter how large x is, since the marginal utility of income might be

very small at high utility levels.  On the other hand, if the low-utility agent gains by $ x, x > 1, and the

high-utility agent loses by $1, then any sum-of-utilities test will recommend the policy change if agents

are represented by concave utilities (and assuming we always hold to the same ordinal classification of

agents into high-utility and low-utility individuals).  Concave utilitarianism is in substance identical to

Pigou’s position, but it elevates the theoretical status of not having cardinal information about

individuals.  According to concavity as a social psychology, there is no unknown but nevertheless real

cardinal utility function lurking out there – the most detailed information that theory might in principle

provide about interpersonally comparable utilities is that they are concave.

In closing, we return to the characterization of .  Roberts (1980a) in effect brings up this�U CC
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issue and suggests that least concave utilities are the appropriate tool.  (We should mention that Roberts

does not take sets of concave utility functions as primitive, but argues, like Pigou, that such a set is

useful only insofar as it is assumed to contain the one “true” cardinal welfare function.)  Roberts

slightly misstates his characterization result and does not formally define least concavity, but the

proposition that Roberts has in mind, relying on a theorem of Hanoch and Levy (1969), is, in our

notation:

(5.2) v  w �  �  for all n � �.Rū�UCC
�n

i�1 v�i �n
i�1 w�

i

where v, w � Range{ }.  Example 5.2 below shows that if we take  to be lcc, the equivalence (5.2)ūi ū

does not hold.  If  is strongly lcc, on the other hand, then one may readily establish (5.2).  Butū

Example 5.2 also shows that concave social psychologies do not always have strongly lcc elements, in

which case, of course, for u � UCC, Int u(i, X ) cannot be convex.� i

Example 5.2.  Let X = [0, 1] and I = 2.  Let UCC contain the lcc utility  defined byū

(1, x) = 2 x,  (2, x) = �x + 4.ū ū

We then have ( (1, 1), (2, 1)) = (2, 3) and ( (1, 0), (2, 0)) = (0, 4).  So (2, 3)  (0, 4)ū ū ū ū RUCC
( ū )

according to (5.2) and therefore 1  0.  But the u � UCC defined by�U CC

u(1, x) = 2x,  u(2, x) = �3 x + 6

yields u(i, 0) > u(i, 1), and so it cannot be that (2, 3)  (0, 4).  �2
i�1 �2

i�1 Rū�UCC

To see that UCC does not have a strongly lcc element, suppose to the contrary that  is stronglyû

lcc.  Both (1, � ) and (2, � ) must then be affine, i.e., (1, x) = a x + b and (2, x) = cx + d, for someû û û û

a > 0 and c < 0, where (2, x) > (1, x) for all x.  The u given byû û

u(1, x) = a x + b,  u(2, x) = x + d,c̃

is then also an element of UCC for all  sufficiently close to c.  But if  < c and g satisfies u = g � ,c̃ c̃ û

then g cannot be concave, since g must have slope = 1 on u(1, X ) and slope > 1 on u(2, X ).

Observe that  = : no pair of points in X is ranked by .  The reason is that since the�U CC
�U O

�U CC

interiors of u(1, X ) and u(2, X ) are disjoint, we may, given some u � UCC, multiply u(1, � ) and u(2, � )

by arbitrary positive weights (and choose constant terms so that u(2, x) > u(1, x) is preserved at each x)

and arrive at another element of UCC.  �
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The fact that the ranges of the two utility functions in the above example have disjoint interiors

means that the concavity of the utilities in UCC has no bite.  In general, whenever Int u(i, X ) is not� i

convex, a u in UCC can be assembled in which the weight on some subset of agent utility functions is

arbitrary relative to the weight on some other subset.  In the extreme case where, for each i and j,

Int u(i, X ) � Int u( j, X ) = � (as above), then  and  coincide.�U CC
�U O

6.  Acyclic and transitive domains for properties

An example of a set of properties on which the “strictly weaker than” relation �SW (see

Definition 4.3) cycles will illustrate the intransitivity problem.

Example 6.1  Let X be a nonempty open convex subset of �n and let �1, �2, and �3 be distinct complete

binary relations on X.  Suppose the relations �1 and �2 each have concave and nonconstant utility

representations, u1 for �1 and u2 for �2, and suppose �3 has the utility representation u3.  Define the

properties , , and  as follows:

 = {u � �X : u is a concave representation of �1 or a concave representation of �2},

 = {u � �X : u is a continuous representation of �2 or u = u3},

 = {u � �X : u is a positive linear transformation of u1 or u3}.

It is immediate that  is strictly weaker than ,  is strictly weaker than , and  is strictly weaker than . �

From the vantage point of trying to specify a well-behaved compromise between ordinality and

cardinality, Example 6.1 depicts a worst-case intransitivity.  Property  is strictly weaker than any

cardinal property  such that  �  
 �, and any cardinal property  such that  �  
 � is strictly weaker

than  (note that “linear” rather than “affine” appears in the definition of ).  Yet, one can move via �SW

from  to .

Still, the cycle here hinges on the fact that, since a ranking of properties P and Q depends only

on the utility functions in P � Q, P can be weaker than Q even though Q may contain a comparatively

large set of utilities for preferences not represented by any of the utilities in P � Q.  To construct an

acyclic domain of properties, therefore, properties must include only sets of utility representations that

somehow treat different preference relations symmetrically.  One way to proceed is to employ sets of
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utility transformations, similarly but not identical to the way they are used in measurement theory.

For ease of presentation, we restrict ourselves to complete psychologies.  Henceforth, when we

say that the psychology U maximally satisfies property P, we mean that (1) U is complete, (2) for all u �

U, u satisfies P, and (3) there does not exist a complete psychology V � U such that each v � V satisfies

P.  Given this restriction, P is no stronger than Q if and only if, for all U that maximally satisfy P and

all V that maximally satisfy Q, U � V 
 � implies U � V.  

Definition 6.1  The psychology U has a generator with respect to a set of transformations F � �
�
 if

and only if there is a u � U such that: v � U � there is a f � F such that v = f � u.

Definition 6.2  A property P is transformational if and only if there exists a set of transformations FP

such that, for all psychologies U that maximally satisfy P, U has a generator with respect to FP.  The set

FP is called a set of P transformations.  � T will denote the set of transformational properties.

By associating sets of utility transformations with properties, we are taking a step towards the

traditional model of measurement classes.  But a transformational property P differs in that the

transformations in FP must be applied to the generator of a psychology that maximally satisfies P rather

than an arbitrary utility function; otherwise the utility functions generated need not satisfy P or one

might not generate all of the functions that satisfy P.  As an example, consider the property PCVC

consisting of the concave and continuous functions on some convex set X.  The set FCV � �
�
 of all

increasing concave transformations is a set of PCVC transformations.  Given a U maximally satisfying

PCVC, any of the “least concave” utility representations of �U (see Debreu (1976) and section 5) may

serve as a generator with respect to FCV.  If we apply any f � FCV to a function u satisfying PCVC we

generate another function satisfying PCVC.  But in order to generate all of the functions in PCVC that

agree with u, we must apply the f � FCV to a least concave utility.  (Of course, if we apply FCV to a

nonconcave utility then some of the functions generated will not satisfy PCVC.)  This example illustrates

that transformations by themselves do not define properties; properties therefore must still be defined as

sets of utility functions.

Although the “strictly weaker than” relation can cycle on some sets of transformational
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properties, transformational properties that are “comparable” to some cardinal property cannot circle

around cardinal properties in the manner of Example 6.1.

Definition 6.3  A set of properties �  is acyclic with respect to cardinality if there does not exist a finite

set of properties {P1, ..., Pn} � �  such that P1 is weaker than some cardinal property, some cardinal

property is weaker than Pn, and, for 1 < i � n, Pi is weaker than Pi�1.

Definition 6.4  Property P is comparable to property Q if there exists some U maximally satisfying P

and some V maximally satisfying Q such that U � V 
 � and either U � V or U � V.

Comparability is relatively weak: P and Q can be comparable even if it is neither the case that P is no

stronger than Q nor the case that Q is no stronger than P.

Theorem 6.1  Any set of properties �C � � T such that each P � �C is comparable to some cardinal

property is acyclic with respect to cardinality.

Every property we discuss in this paper (except  in Example 6.1) is comparable to some cardinal

property.

Proof of Theorem 6.1:  Suppose there is a {P1, ..., Pn} � �C such that P1 is weaker than some cardinal

property, some cardinal property is weaker than Pn, and, for 1 < i � n, Pi is weaker than Pi�1.  Let Pk be

the element of {P2, ..., Pn} with the smallest index such that there exist  and  meeting theUQk
UPk

conditions (1)  maximally satisfies a cardinal property Qk, (2)  maximally satisfies Pk, and (3)UQk
UPk

 � .  Given the comparability assumption, there exist  and  such that (a) UQk
UPk

UQk�1
UPk�1

UQk�1

maximally satisfies a cardinal property Qk�1, (b)  maximally satisfies Pk�1, and (c)  � . UPk�1
UQk�1

UPk�1

(If Pk = P2, this conclusion follows from our supposition on P2 and in the other cases from the fact that

Pk has the smallest index.)  Let  be a set of Pk transformations and let  �  be a generator forFPk
uPk

UPk

 with respect to .  Since Qk is cardinal, the set of Qk transformations is FIA = { f � �
�
: f is anUPk

FPk

increasing affine transformation} and each u �  is a generator for  with respect to FIA.  HenceUQk
UQk
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 is a generator for  with respect to FIA.  Since for each f � , f �  �  and hence f �uPk
UQk

FPk
uPk

UPk
uPk

� ,  � FIA.  Using the same reasoning, we may also infer that  � FIA.UQk
FPk

FPk�1

On the other hand, since Pk is weaker than Pk�1, there exists a  that maximally satisfies PkÛPk

and a  that maximally satisfies Pk�1 such that  � .  Let  be a generator for  withÛPk�1
ÛPk

ÛPk�1
ûPk

ÛPk

respect to  and let   be a generator for  with respect to .  For each  � , thereFPk
ûPk�1

ÛPk�1
FPk�1

uPk
ÛPk

exists  �  such that �  = .  Since FIA � , each   is increasing and affine andfuPk

FPk
fuPk

ûPk
uPk

FPk
fuPk

hence so is .  Since  � ,  �  and so there is a  �  such that  �  =f �1
uPk

ÛPk
ÛPk�1

ûPk�1
ÛPk

fûPk�1

FPk
fûPk�1

ûPk

.  Hence  = � .  We therefore have, for any  � ,  = � � .  SinceûPk�1
ûPk

f �1
uPk�1

ûPk�1
uPk

ÛPk
uPk

fuPk

f �1
ûPk

ûpP�1

�  is increasing and affine and  � FIA, each  is an element of , which contradictsfuPk

f �1
ûPk

FPk�1
uPk

UPk�1

 � .  
ÛPk
ÛPk�1

The assumptions of Theorem 6.1 eliminate the most disturbing cases where the “weaker than”or

the “strictly weaker than” relations cycle.  Still, it is illuminating to investigate conditions under which

some intuitive definition of “weaker than” will be transitive.  A few hurdles stand in the way.  First, a

property P will vacuously be no stronger than property Q if P and Q do not intersect.  Hence, one

cannot expect �NS to be transitive even on a well-behaved set of properties such as � T.  To illustrate, let

X = � and suppose P is the transformational property of mapping a set A � � onto the interval [0, 1] and

Q is the transformational property of mapping A onto [2, 3].  Vacuously, P is no stronger than Q (and Q

is no stronger than P).  To generate an intransitivity, let S be the property of mapping B � � onto [2, 3],

where A � B = �.  Once again, vacuously, Q is no stronger than S, but obviously it is not the case that P

is no stronger than S.  No interesting domain restriction can eliminate such intransitivities.

Second, although the relations �W or �SW do not suffer from exactly the same vacuity that

afflicts �NS, similar problems appear.  For example, when P �W Q and Q �W S hold, in which case P is

comparable to Q and Q is comparable to S, P can nevertheless not be comparable to S, implying that

P �W S cannot hold.  One might at least hope for the acyclicity of �W on a well-behaved domain.  The

following example shows, however, that �W or �SW can cycle on � T.

Example 6.2  For some nonempty open set X � , let �1, �2, and �3 be distinct complete binary�n
�

relations on X, each of which has a concave utility representation.  For i = 1, 2, 3, let  denote one suchu
i
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representation.  Let FCV � �
�
 be the set of increasing concave transformations.  Given some f � � FCV

that is strictly concave on the range of each , define  = f � � .  Define the properties , , and  asu
i

ū i
u

i

follows:

 = {u � �X : u = f �  or u = f �  for some f � },ū1
u

3
FPCC

 = {u � �X : u = f �  or u = f �  for some f � },ū2
u

1
FPCC

 = {u � �X : u = f �  or u = f �  for some f � }.ū3
u

2
FPCC

Each of these properties is transformational: for all three, FCV may serve as the set of transformations,

 and  are generators for ,  and  for , and  and  for .  Yet we have �SW ,  �SW ,ū1
u

3
ū2

u
1

ū3
u

2

and  �SW . �

The key to Example 6.2 is that while each property is ranked relative to the other two, no pair of

psychologies that maximally satisfy distinct properties have a generator in common.  Thus one property

may be weaker than another even though they share the same set of transformations.  One way to

proceed, therefore, is to declare that when a pair of properties never have a generator in common they

are not ranked.

Definition 6.5  A property P is uniquely transformational if and only if there exists one and only one set

of transformations FP, called the unique P-transformations, such that, for all psychologies U that

maximally satisfy P, U has a generator with respect to FP.  Let �UT � � T denote the set of uniquely

transformational properties.

Definition 6.6  The relation  � �UT × �UT is defined by P  Q � whenever U maximally satisfies��NS ��NS

P, V maximally satisfies Q, and there exists a w � U � V that is a generator for U with respect to the

unique P-transformations and a generator for V with respect to the unique Q-transformations, then U �

V.  Let  � �UT × �UT be defined by P  Q � P  Q and not Q  P.��W ��W ��NS ��NS

Theorem 6.2  The relation  is acyclic.��W

Proof :  Suppose to the contrary that there exists a finite set {P1, ..., Pn} � �UT such that P1  Pn and,��W
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for 1 < i � n, Pi  Pi�1.  For i � {2, ..., n}, there is a  maximally satisfying Pi and a ��W UPi
UPi�1

maximally satisfying Pi�1 such that (i)  �  and (ii) there exists a w �  �  that is aUPi
UPi�1

UPi
UPi�1

generator for  with respect to the set of unique Pi-transformations, say , and a generator for UPi
FPi

UPi�1

with respect to the set of unique Pi�1-transformations, say .  For each f � , there exists  �FPi�1
FPi�1

uPi�1

 such that f � w = .  Since  � , f � .  Since  � , there exists a f � �  suchUPi�1
uPi�1

UPi
UPi�1

Fpi
UPi

UPi�1
FPi

that f � � w � .  So f � �   and therefore  � .  Repeating this argument for  and ,UPi�1
FPi�1

FPi
FPi�1

UP1
UPn

we have  � .  So  � , a contradiction.  
FP1
FPn

FPn
FPn

Given Theorem 6.2, it is trivial to construct a transitive ordering, namely the transitive closure

of , say  .  That is, let  � �UT × �UT be defined by P  Q if and only if P Q or there��W ��

W ��W�cl ��

W ��W

exists a finite set of transformational properties {S1, ..., Sn} such that P  S1  �  Sn  Q.  The��W ��W ��W ��W

acyclicity of  ensures that  is asymmetric, and so  does not reverse any of the orderings in .��W ��

W ��

W ��W

7.  Conclusion

The orderings of properties analyzed in this paper gauge the strength of assumptions in utility

analysis.  If property or assumption P is weaker than Q then P imposes less demanding measurement

requirements than Q.  We illustrated the usefulness of this gauge by examining different arguments for

the convexity of preferences.

I argued in section 4 that the Arrow/Koopmans explanation of convexity relies on utility

functions that are cardinal.  This position is open to objection.  Although the Arrow-Koopmans theory

presupposes that an agent’s ordinal preferences have a utility representation taking the integral form,

one might argue that the integral utility functions have no special significance; other utility

representations for the same preferences do not take the integral form.  Furthermore, one can impose

assumptions on ordinal preferences that imply the existence of an integral utility representation (Grodal

and Mertens (1968), Vind (1969) – just as there are axioms on preferences over finite numbers of goods

that imply that additively separable utility representations exist (Debreu (1960)).  One might conclude,

therefore, that the Arrow-Koopmans theory gives genuinely ordinalist foundations for the convexity of

preferences.  But the key axiom needed for the existence of integral utility functions is an independence

postulate, just as an independence assumption underlies the existence of additively separability utilities. 
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Such assumptions – which assert that preferences over a subset of the time-dated goods are independent

of the consumption level of goods with different dates – are ordinal but rely on a cardinal psychology. 

Independence assumptions, even when posed as a restriction on ordinal preferences, are motivated by

the idea that consumption at one date does not affect the satisfaction derived from consumption at

different dates.  Thus, it will only be the additively separable utility functions (or in the infinite case, the

integral functions) that are fully psychologically accurate; all other ordinally equivalent functions do not

express the psychological presuppositions that make independence plausible.

Our orderings of properties of utility can shed light on the measurement requirements of

rationales for other common assumptions on ordinal preferences.  Consider continuity for example.  An

obvious justification for the continuity of preferences is to argue that satisfaction or happiness is a

continuous psychological quantity.  Although not quite ordinal, continuity (viewed as an assumption on

utility functions) is weaker than several other assumptions we have considered (e.g., additive

separability, concavity on open sets).  Thus, as intuition no doubt suggests, the continuity of preferences

can be justified using only a mild measurement assumption.  Once again, an ordinalist might object that

there is no need to assume that utility functions are continuous in order to give a rationale for preference

continuity; the continuity of preference relations already stands as an ordinal axiom.  But the

psychology that motivates an assumption that upper and lower contour sets are open surely is

nonordinal; it turns on a claim that satisfaction is a continuous quantity.

If any doubt lingers that nonordinal content can lie behind an axiom on preference relations,

consider the following trivial ordinalization of assumptions on utility functions.  For any property P,

define the property PO consisting of all functions that are ordinally equivalent to some u that satisfies P. 

Although PO must be ordinal, the psychological theory that motivates P clearly need not be ordinal.  For

the same reason, one may conclude that the psychologies that motivate the independence and continuity

assumptions also rest on nonordinal foundations.

Appendix.

Proof of Theorem 3.1:  Let U with domain X maximally satisfy additive separability and let u � �X be

an arbitrary element of U.  For any decisive A, let BA � A denote a decisive set such that u |BA satisfies

additive separability.  Given v � �X, suppose that for each decisive A there exists an increasing affine
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transformation g: Range u�A � � such that g � u�A = v�A.  In particular, for the decisive set BA, this

supposition implies there is an increasing affine transformation g such that g � u�BA = v�BA.  Since v |BA

satisfies additive separability, v � U.

In the other direction, we must show, for any v � U and any decisive A, that there exists an

increasing affine transformation g: Range u�A � � such that v�A = g � u�A.  The remainder of the proof

considers a fixed A and the associated B � A such that u�B satisfies additive separability.  It is sufficient

to show that if g is increasing and g � u�B satisfies additive separability (i.e., g � u�B � U�B), then g is

affine.  To simplify, we henceforth drop the notation “�B” indicating the restriction of v, u, etc., to B.

Note that since each cl Range ui is an interval there exists some x� such that, for all i with ui

nonconstant, ui(xi�) � Int cl Range ui.  By adding constants to the ui, there exists an increasing affine

transformation that, when applied to u, yields a w: B � � that is additively separable and that satisfies

wi(xi�) = 0 for all i.  Clearly, there is also an increasing affine transformation that, when applied to w,

yields u.

Consider an increasing transformation g that, when applied to u, yields an additively separable

h: B � �.  For each i, define ki: Bi � � by k i(xi) = h(xi) � h(xi�) and define k: B � � by k(x) =

ki(xi).  Since u is an increasing affine transformation of w, h is an increasing transformation of u,�n
i�1

and k is an increasing affine transformation of h, (1) there is an increasing transformation f : Range w �

� such that f � w = k, and (2) if f is linear, g is affine.

We first show that f is continuous.  If not, let  � B be a point such that f is not continuous atx̄

w( ).  Since there are at least two components such that cl Range ui has nonempty interior, there is ax̄

component i such that wi( ) � Int cl Range w.x̄i

For any l, by setting x j = x j� for j 
 l, we have f (wl(xl)) = kl(xl) for all xl.  Hence,

(A1) f ( wl(xl)) = kl(xl) = f (w l(xl)) for all x � B.�n
l�1 �n

i�1 �n
l�1

In particular, for any given set of , l 
 i,x̂l

(A2) f (wi(xi)) + f ( ) = f (wi(xi) + ( )) for all xi � Bi.�l� i wl ( x̂l ) �l� i wl x̂l

Hence, using  = , � 
 i, and given that cl Range wi is a nondegenerate interval, the discontinuity of fx̂l x̄l

at w( ) implies that f is also not continuous at wi( ).x̄ x̄i

Since f is increasing, f +(z) and f
�
(z), the right and left hand limits of f at z, exist at any z �

Int cl Range w.  Define J: Int cl Range w � � by J(z) = f +(z) � f
�
(z).  The discontinuity of f at wi( )x̄i
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implies J( ) > 0.  Since there exists some component j 
 i such that cl Range w j is awi (x̄i)

nondegenerate interval containing 0 and given A1, we can, by varying only w j(x j) and setting wi(xi) =

 and w l (xl) = 0 for l 
 i, j, assemble a set Q � Range w that is dense on a boundedwi ( x̄i )

nondegenerate interval and such that  � Q.  Given A2, J(wi(xi)) = J(wi(xi) + ) forwi ( x̄i ) �l� i wl ( x̂l )

any wi(xi) and any set of , l 
 i.  Hence, for any z � Q, by setting wi(xi) =  and  = z �x̂l wi ( x̄i ) wj (x̂j )

 (and the remaining wl (xl) = 0), we have J( ) = J(z) > 0.  Given that Q has an infinitewi ( x̄i ) wi ( x̄i )

number of elements and f is increasing, J(z) > 0 for all z � Q contradicts the fact that Q is bounded. 

Hence f is continuous.

Since f is continuous, f has a unique continuous extension to cl Range w, say f e.  Given A2,

(A3) f e( al) = f e(al)�n
l�1 �n

l�1

for all a � cl Range w1 × ... × cl Range wn.

We turn to the linearity of f.  Fix some d > 0 that satisfies d � cl Range wi for all i such that wi

is not a constant function.  (Such a d exists since, for all i, wi(xi�) = 0, cl Range wi is an interval, and,

when cl Range wi is not a singleton, 0 � Int cl Range wi.)  Consider any e� > 0 that is an element of

Range wi for some i.  For all � > 0, there exists a e � cl Range wi and rational r such that d r = e and

�e �e�� < �.  Let s and t be positive integers such that r = s�t.  We have d�t � cl Range wi for any i

such that wi is nonconstant.  Let l and j be coordinates of nonconstant wi.  Choosing a � �n such that

al = a j = d�t and the remaining ai = 0, A3 implies f e((d�t) + (d�t)) = 2 f e(d�t).  Iterating this

argument t times, we have f e(d ) = t f e(d�t).  (Since, for any positive integer m � t, (md)�t � d,

(md )�t � cl Range wl and (md )�t � cl Range wj, which permits each stage of the iteration.) 

Changing the coordinate l if necessary so that e � cl Range wl, apply the same iteration argument to

conclude f e((s d)�t) = s f e(d�t).  (We now have, for any positive integer m � s , that (md)�t � e and

hence (md)�t � cl Range wl.)  So f e(e) = s f e(d�t) = f e(d) (s�t) = f e(d) r = ( f e(d)�d)e.  The

continuity of f e implies that f, when restricted to e � Range wi such that e > 0, is linear.  Now�n
i�1

consider any e � Range w such that e > 0.  For any such e, there exists a a �  such that each ai �`
n
�

Range wi, e = ai, and f (e) = f (ai).  Hence, f (e) = ai ( f (d )�d ) = e ( f (d )�d ).  So f is�n
i�1 �n

i�1 �n
i�1

linear on positive points of its domain.

Since we can repeat the argument of the previous paragraph for d < 0 and e� < 0, f can be

locally nonlinear only at 0 (and g therefore is locally nonaffine only at u(x�)).  By repeating our
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construction with some  such that u( ) 
 u(x�) we can define new functions , , and  (where x̂ x̂ k̂ ŵ f̂ k̂

is additively separable,  is an increasing affine transformation of u, and  is increasing) that satisfyŵ f̂

 �   = .  Just as with f,  can be locally nonlinear only at 0 and g can be locally nonaffine only atf̂ ŵ k̂ f̂

u( ).  The transformation g is therefore locally affine at u(x�) and so f is locally linear at 0.  
x̂

Proof of Theorem 4.2:  We first show that concavity is no stronger than any cardinal property.  Let UC

be cardinal, let UCV maximally satisfy concavity, suppose UC and UCV have the same decisive sets,

and assume for all decisive A that there exist u � UC and v � UCV such that u�A = v�A.  For any

decisive A, let BA � A denote a convex and decisive set such that v�BA satisfies concavity.  Since BA is

itself decisive, by assumption there exist  � UC and  � UCV such that �BA = �BA.  Since �BA �û v̂ û v̂ v̂

UC�BA, for any u� � UC there exists an increasing affine transformation g such that g � �BA = u��BA. v̂

Since an increasing affine transformation of a concave function is concave, u��BA satisfies concavity. 

Moreover, since there exists such an increasing affine g for the BA corresponding to any decisive A,

each u��BA satisfies concavity.  Hence, u� � UCV.  Concavity is therefore no stronger than any cardinal

property.  For result (2), assume in addition the cardinal property has range > 2.  Let A�� be a decisive

set for UC such that u�� � UC has �Range (u���A��)� > 2.  Let f : � � � be increasing and strictly

concave and let v be any element of UCV.  For any decisive A there exists a decisive B � A such that

v�B and hence f � v�B satisfy concavity.  So f � v � UCV.  Since by assumption u�� � UCV, f � u�� � UCV. 

Since �Range (u���BA��)� > 2, there exist u1, u2, u3 � Range u���BA�� and a  � (0, 1) such that u1 < u2

< u3 and u2 = u1 + (1� )u3.  Since f is strictly concave, f (u2) > f (u1) + (1� ) f (u3).  So f �(Range

u���BA��) is not affine and therefore f � u�� � UC.  Hence, concavity is weaker than any cardinal

property with range > 2 that intersects concavity.

As for concavity and ordinality, it is straightforward to show that each ordinal property is no

stronger than concavity (or indeed no stronger than any property).  To show result (3), that any ordinal

property with range > 1 that intersects the property of being concave and continuous is weaker than

the property of being concave and continuous, let UO maximally satisfy an ordinal property with range

> 1, let UCVC maximally satisfy concavity and continuity and have the same decisive sets as UO,

assume for each A that is decisive for UCVC that UO�A � UCVC�A 
 �, and let v � UCVC.  Let A� be

decisive for UCVC and UO.  Since UO maximally satisfies an ordinal property with range > 1, there is a
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decisive B� � A� such that �Range v�B�� > 1.  For some convex and decisive B � B�, v�B satisfies

concavity.  Given continuity, Range v�B is a nontrivial interval.  Let x1, x2 � B satisfy v(x1) < v(x2)

and define D = {w � B: w = x1 + (1� )x2 for some  � [0, 1]}.  Let C � D be a connected set such

that v is monotone on C and let z1, z2, z3 � C satisfy z3 = (1�2) z1 + (1�2) z3 and v(z1 ) < v(z2) < v(z3). 

Hence there exists an increasing transformation g: � � � such that g(v( z2)) < (1�2)g(v(z1)) +

(1�2)g(v(z3)).  We then have g � v � UCVC, but since g is increasing, g � v � UO. 


Proof of Theorem 4.3:  See Grodal (1974).  


Proof of Theorem 4.4:  Let U with domain X maximally satisfy additive separability and let U be an

arbitrary element of U.  We must show (1) if V: X � � is such that for all A that are decisive for U

there exists an increasing affine transformation g that satisfies g � U�A = V�A, then V satisfies

integrability, and (2) for any V � U and any decisive A there exists an increasing affine transformation

g such that V�A = g � U�A.  The proof of (1) is identical to the beginning of the proof of Theorem 3.1.

As for (2), we consider henceforth a fixed A and a fixed B � A such that U�B satisfies utility

integrability.  It is sufficient to show that if g is an increasing transformation and g � U�B = V�B

satisfies utility integrability (i.e., V�B � U�B), then g is affine.

Observe that since �Range U� > 1, there exist x, x� � B such that U(x) > U(x�), and hence there

also exists, for any  > 0, a measurable C1 � [0, T ] such that

0 < (u(x(t), t) �u(x�(t), t)) dµ(t) < ,�C1

where u:  × [0, T ] � � is a function satisfying Definition 4.5 (ii).  By setting  sufficiently small,�n
�

we can partition [0, T] into sets C1 and C2 such that

(u(x(t), t) � u(x�(t), t)) dµ(t) > 0.  �C2

For i = 1, 2, let Bi be the restriction of B to Ci – that is, the set of functions from Ci to �n defined by xi

� Bi if and only if there exists x � B such that xi(t) = x(t) for all t � Ci.  Since B is closed under a.e.

replacement, so are B1 and B2.  Let Ui: Bi � � be defined by Ui(xi) = u(xi(t), t) dµ(t).  We have B�Ci

= B1 × B2, again due to the fact that B is closed under a.e. replacement.  Using (x1, x2) to denote the x

� B such that x(t) = xi(t) for all t � Ci, we have U(x1, x2) = U1(x1) + U2(x2) for all x � B.  Since, for i

� {1, 2}, U i(x i) > U i(xi�), �Range Ui� > 1.
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We use the following result from the theory of integration of correspondences, sometimes

called Lyapunov’s theorem.

Lyapunov’s theorem.  Given an atomless measure space ( , �, ) and correspondence P:  � �,

P d    { p d : p is integrable and p( ) � P( ) for a.e.  � } is a convex set.� �

By Lyapunov’s theorem, Range U, Range U1, and Range U2 are convex sets and therefore

intervals.  For example, for the case of Range U 1, the measure space is Lebesgue measure on C1 and

the correspondence P would be defined by P(t) = {u(x1(t), t) � �: x1 � B1} for each t � C1.   Since B1

is closed under a.e. replacement, Range U1 = P dµ , and so we may conclude that Range U1 is�C1

convex.  Note that since �RangeU1� > 1 and �Range U2� > 1, Range U1 and Range U2 have nonempty

interiors.

Since V � U, there exists a v:  × [0, T ] � �, where t � v(x(t), t) is integrable and V(x) =�n
�

g(U(x)) =  for all x � B.  Just as we argued for the case of U, U1, and U2, we have�
T

0
v (x ( t ), t ) dµ(t)

V(x1, x2) = V1(x1) + V2 (x2) for all (x1, x2) � B, where Vi(xi) = v(xi(t), t) dµ(t), i � {1, 2}.  Hence�Ci

g(U 1(x1) + U2(x2)) = V1(x1) + V2 (x2) for all (x1, x2) � B.  Apply Theorem 3.1 to conclude that g is

affine.  


Proof of Theorem 5.1:  In text.  See also the proof of Theorem 4.2.  


Proof of Theorem 5.2:  We omit the details: 5.2 (1) is obvious and 5.2 (2) is a slight variant on

common arguments in the social choice literature (see, e.g., Moulin (1988)).  


Proof of Theorem 5.4:  For y � �I, ymax will denote max{y j, yk} and ymin will denote min{y j, yk}.

Assume v j + vk � w j + wk and vmin � wmin.  If both v j + vk = w j + wk and vmin = wmin, it

follows that v� = w� and the conclusion v  w is immediate.  So assume that at least oneRû�UCC

inequality is strict.  Define x by x j = wmin, xk = vk + v j�wmin, and x i = v i for any i � { j, k}.  Let z

equal x but interchange the j and k coordinates.  Given v j + vk � w j + wk, we conclude that x k � wmax

and therefore x� � w� and z� � w�.  Set



37

 = ,
vmin � wmin

v j � v k � 2 wmin

which is well-defined given that either v j + vk > w j + wk or vmin > wmin.  Evidently  � [0, 1], and one

may confirm that v = x + (1� )z (if vmin = vk) or v = z + (1� )x (if vmin = v j).  Hence Theorem

5.3 implies v  w (see the comment following the statement of Theorem 5.3).Rû�UCC

Now assume v  w.  If v j + vk < w j + wk, then  v i < w i, contradictingRû�UCC
� i� �

� i� �

v  w.  Hence v j + vk � w j + wk.  Suppose, contrary to the theorem, that v min < wmin.  ConsiderRû�UCC

transformations g: co Range  � � that are piecewise-linear, increasing, concave, and whose onlyû

nondifferentiability occurs at wmin.  As long as  >  > 0, g will be concaveDg (u)�u<wmin
Dg (u)�u>wmin

and increasing, but otherwise these two derivatives are arbitrary.  So fix some  andDg (u)�u<wmin

choose  small enough that g(vmax) ! g(wmax).  (Note that vmax > wmin since v min < wminDg (u)�u>wmin

and v j + vk � w j + wk.)  Hence g(v j) + g(vk) < g(w j) + g(wk) and so g(v i) < g(w i), again� i� �
� i� �

contradicting v  w.  Observe that here we use only the assumption that  is lcc.  �Rû�UCC
û
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