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Abstract

The maximum likelihood estimator (MLE) of the fractional difference parame-

ter in the Gaussian ARFIMA(0, d, 0) model is well known to be asymptotically

N(0, 6/π2). This paper develops a second order asymptotic expansion to the dis-

tribution of this statistic. The correction term for the density is shown to be in-

dependent of d, so that the MLE is second order pivotal for d. This feature of the

MLE is unusual, at least in time series contexts. Simulations show that the normal

approximation is poor and that the expansions make signiÞcant improvements in

accuracy.

Key Words: ARFIMA; Edgeworth expansion; Fractional differencing; Pivotal sta-

tistic.
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1. Introduction

The simplest long�memory model is the ARFIMA(0, d, 0) model. In this model

the short memory component has a ßat spectrum and the long memory component

depends on the fractional difference parameter d. If 0 < d < 1/2 the process is

stationary long�memory with hyperbolically decaying autocorrelations, for d > 1/2

the process is non�stationary long�memory, for −1/2 < d < 0 the process is anti-
persistent with autocovariances that sum to zero (producing a zero spectrum at the

origin) and for d = 0 the process is iid. Given the widely differing characteristics of

the process for different d�values it is hardly surprising that its estimation attracted

such a great deal of interest over recent years. The literature is now vast and covers

many different approaches allowing for parametric structures such as ARFIMA sys-

tems and semi-parametric structures where the short memory component is speciÞed

in terms of the behavior of its spectrum in a neighbourhood of zero.

The present paper focuses on the maximum likelihood estimator (MLE) of the

parameter vector θ in a simple ARFIMA(0, d, 0) model with Gaussian innovations.

If the variance σ2 = 1 is known, then θ = d. Let �θ be the MLE of θ in this case

and set �δ =
√
n(�θ − θ). It is well known that �δ is asymptotically distributed as

N(0, 6
π2
). It is apparent that, unlike the AR(1) model, �δ is asymptotically pivotal.

That is, the asymptotic distribution of �δ is independent of unknown parameters.

We are motivated to explore higher order theory for �δ for two reasons. The Þrst is

to see whether the pivotal character of �δ extends to higher orders. The second is

to assess the adequacy of the asymptotic distribution in small samples and see how

well higher order asymptotic terms correct the discrepancy.

The paper derives an Edgeworth expansions for the distribution of �δ.While our

model is simple it is the leading canonical case and it is the Þrst analytic attempt

to extract the explicit form of the Edgeworth approximation of the distribution of

the long memory estimator. In this sense it continues in the tradition of Phillips

(1977), which developed the explicit form of the Edgeworth expansion of the MLE of

the autoregressive coefficient in the canonical Þrst order autoregression. Taniguchi

(1984) derived similar expansions for estimators in stationary ARMA models. Using
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results of Fox and Taqqu (1987), Dahlhaus (1989) and Lieberman et al. (2001), we

extend Taniguchi�s work to the long memory ARFIMA(0,d, 0) case. We show that

to order o(n−1/2) the density expansion is independent of d, so that �δ is second order

pivotal. This feature of the MLE seems to be rare in time series contexts and so the

present case is quite unusual. Simulations indicate that the normal approximation

is poor but that the expansions provide signiÞcant improvements in accuracy. The

expansions are valid asymptotic series in the mathematical sense.

The plan for the rest of the paper is as follows. In section 2 we derive ex-

pansions for the cumulant generating function (cgf) of �δ for a general, stationary,

Gaussian, long�range dependent sequence. The errors of the expansions are O(n−1)

and o(n−1/2), depending on whether exact or approximate cumulants are used. Sec-

tion 3 applies the results to the fractional Gaussian noise model and provides both

density and cdf expansions. Section 4 reports a simulation study evaluating the

accuracy of the normal approximation and the expansions.

2. Approximate cgf of the mle under long range dependence

Let {Xt}, t ∈ Z, be a stationary, zero mean, Gaussian long�memory process,
with spectral density fθ(λ), where θ ⊂ Θ ⊂ Rp. The log likelihood is given by

`(θ; x) = −n
2
log 2π − 1

2
log detΣn(fθ)− 1

2
x0Σ−1n (fθ)x,

where x = (X1, ..., Xn) is the sample, and Σn(fθ) is the covariance matrix. The key

assumption made about the spectral density is that

fθ(λ) ∼ |λ|−α(θ)Lθ as λ→ 0,

where 0 < α(θ) < 1 and Lθ is slowly varying at zero. A full set of assumptions that

assure asymptotic normality is given in Assumptions A0�A9 of Dahlhaus (1989).

These assumptions are satisÞed by the stationary ARFIMA(p, d, q) model. Under

these conditions, �δ is asymptotically normal at the usual
√
n−rate (Dahlhaus, 1989).

In the following we use the summation convention. For brevity, we shall omit

the dependence of the null cumulants of the loglikelihood derivatives (LLD�s) on n
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and on θ. From McCullagh (1987, p. 209), the Þrst three cumulants of �δ are given

by

E(�δ
r
) = − 1√

n
κr,sκt,u(κs,t,u + κs,tu)/2 +O(n

−3/2) (1)

cov(�δ
r
, �δ
s
) = κr,s +O(n−1) (2)

cum(�δ
r
, �δ
s
, �δ
t
) =

1√
n
κr,iκs,jκt,k(κijk − κi,j,k) +O(n−3/2), (3)

where

κr,s = n
−1E(UrUs), κr,s,t = n−1E(UrUsUt)

κr,st = n
−1E(UrUst), Ur = ∂`/∂θr, Urs = ∂2`/∂θr∂θs,

and so on. In this notation, κr,s is the inverse of the Fisher information matrix. In

the statements on the orders of the errors in (1)�(3) it is assumed that the mixed

cumulants of the LLD�s are O(1). This is indeed the case as we will shortly argue.

Higher order cumulants of �δ are O(n−1) or smaller. It is easy to show (Lieberman

et. al., 2000) that

κr,s =
1

2n
tr(Σ−1Σ∗)r,s (4)

κr,s,t =
1

n
tr(Σ−1Σ∗)r,s,t (5)

κr,st =
1

2n
tr(Σ−1Σ∗)(r,st−2r,s,t). (6)

The Þrst term on the right side of (3) can be recovered by use of the Bartlett identity

κrst = −κr,st[3]− κr,s,t. (7)

In (4)�(6), (Σ−1Σ∗)r,s = Σ−1 úΣrΣ−1 úΣs, (Σ−1Σ∗)r,st = Σ−1 úΣrΣ−1Σ̈st, etc., and where

úΣr = ∂Σ/∂θr, Σ̈st = ∂2Σ/∂θs∂θt. By Theorem 5.1 of Dahlhaus (1989), κr,s,κr,s,t

and κr,st are all O(1) with limits

lim
n→∞κr,s = lim

n→∞
1

2n
tr(Σ−1Σ∗)r,s =

1

4π

Z
Π

fr(λ)fs(λ)

f 2(λ)
dλ ≡ Ir,s (8)

lim
n→∞κr,s,t = lim

n→∞
1

n
tr(Σ−1Σ∗)r,s,t =

1

2π

Z
Π

fr(λ)fs(λ)ft(λ)

f3(λ)
dλ ≡Mr,s,t (9)

lim
n→∞κr,st = lim

n→∞
1

2n
tr(Σ−1Σ∗)(r,st−2r,s,t) =

1

4π

Z
Π

fr(λ)fst(λ)

f 2(λ)
dλ

− 1

2π

Z
Π

fr(λ)fs(λ)ft(λ)

f3(λ)
dλ ≡ Jr,st. (10)
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In (8)�(10), fr(λ) and frs(λ) stand for the Þrst and second order derivatives of fθ(λ)

with respect to the components θr and (θr, θs), respectively. In view of (1)�(3) and

(7), the joint cgf of �δ is

K�δ(ω) =
ωrωs
2
κr,s − ωr√

n
κr,sκt,u(κs,t,u + κs,tu)/2

+
ωrωsωt
6
√
n
κr,iκs,jκt,k(−κi,jk[3]− 2κi,j,k) +O(n−1). (11)

Recalling that −κij = κi,j, the approximate cgf agrees with the one given by Peers
and Iqbal (1985, p. 554) to O(n−1). We may replace the cumulants appearing in

(11) by their asymptotic counterparts as given by (8)�(10). Since the error rate is

not established for (8)�(10), we deduce that

K�δ(ω) =
ωrωs
2
Ir,s − ωr√

n
Ir,sI t,u(Ms,t,u + Js,tu)/2

+
ωrωsωt
6
√
n
Ir,iIs,jI t,k(−Ji,jk[3]− 2Mi,j,k) + o(n

−1/2). (12)

3. The Gaussian ARFIMA(0, d, 0) model

In this section we exploit (11)�(12) in deriving density and cdf expansions for

the normalized MLE in the Gaussian ARFIMA(0, d, 0) model with unit variance.

Denote the true parameter value by d0. The spectral density of the process is

fd(λ) =
1

2π

¯̄̄
1− eiλ

¯̄̄−2d
=
1

2π
e−dc(λ),

where

c(λ) = log[2(1− cosλ)].

In view of (1)�(7) the Þrst three cumulants of �δ =
√
n( �d− d) are

E(�δ) =
a1√
n
+O(n−3/2),

var(�δ) = a2 +O(n−1),

κ3(�δ) =
a3√
n
+O(n−3/2),

where

a1 = −a22{
1

4n
tr(Σ−1Σ∗)d,dd},
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a2 = { 1
2n
tr(Σ−1Σ∗)d,d}−1,

a3 = a
3
2{
1

n
tr(Σ−1Σ∗)(d,d,d− 3

2
d,dd)}.

By (8)�(10), ai = O(1), (i = 1, 2, 3). On exponentiation of the cgf

K�δ(ω) =
w2a2
2

+
1√
n
(ωa1 +

w3a3
6
) +O(n−1),

we obtain

M�δ(ω) = e
w2a2
2 {1 + 1√

n
(ωa1 +

w3a3
6
)}+O(n−1). (13)

Let φX(x; 0, τ) be the normal density with mean zero and variance τ evaluated at

X = x. In the inversion of (13), we will make use of the formulae

τωeω
2τ/2 =

Z
ewxxφX(x; 0, τ )dx,

(3τ2ω + τ 3ω3)eω
2τ/2 =

Z
ewxx3φX(x; 0, τ)dx.

The density expansion is

f�δ(x) = φX(x; 0, a2){1 +
1√
n
[(
a1
a2
− a3
2a22
)x+

a3
6a32
x3]}+O(n−1). (14)

DeÞne

b0 =
1

n
tr(Σ−1Σ∗)d,d,d

b2 =
1

n
tr(Σ−1Σ∗)( 3

2
d,dd−d,d,d).

Integrating (14), the cdf expansion is

P (�δ ≤ x) = Φ(xa−1/22 ) +
1

6
√
n
φ(xa

−1/2
2 )(b0a

3/2
2 + b2a

1/2
2 x2) +O(n−1). (15)

We refer to the expansions (14) and (15) as the �exact� Edgeworth expansions.

The expansions (14) and (15) can be further simpliÞed by using the integral

approximations (8)�(10). Note that in this model, (∂fd(λ)/∂d)f−1d (λ) = −c(λ) and
(∂2fd(λ)/∂d

2)f−2d (λ) = c
2(λ). This implies that (8)�(10) are independent of d. Now,

from Gradshteyn and Ryzhik (1980)Z
Π
c2(λ)dλ =

2π3

3
, (16)

Z
Π
c3(λ)dλ = −24πζ(3), (17)
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where ζ(·) is the Riemann-zeta function. We therefore obtain

a1 = −3ζ(3)( 6
π2
)2 + o(1), (18)

a2 =
6

π2
+ o(1), (19)

a3 = −6ζ(3)( 6
π2
)3 + o(1). (20)

Substituting (18)�(20) into (14), the density expansion reduces to

f�δ(x) = φX

µ
x; 0,

6

π2

¶(
1− ζ(3)√

n
x3 + o(n−1/2)

)
. (21)

We note that ζ(3) ' 1.202. The correction factor ζ(3)x3√n in (21) has an excep-
tionally simple form and does not depend on d. Hence, �δ is second order pivotal.

As mentioned, this feature of the MLE is unusual in time series models. Finally,

integration of (21) yields

P(�δ ≤ x) = Φ
Ã
x
π√
6

!
+

√
6ζ(3)

π
√
n
φ

Ã
x
π√
6

!½
x2 +

12

π2

¾
+ o(n−1/2), (22)

Φ(·) and φ(·) being the standard normal cdf and pdf, respectively. We refer to
equations (21) and (22) as �approximate� Edgeworth expansions.

Two remarks are in order. First, our results agree with those obtained by

Taniguchi (1984, pp. 49�50) who dealt with a uniparameter, circular (short memory)

ARMAmodel. Second, Lieberman et al. (2001) proved the validity of the Edgeworth

expansion to the distribution of the MLE of the parameter vector of a stationary,

Gaussian, strongly dependent series. While their work is primariliy concerned with

the question of validity of expansions, they did not explicitly derive the terms in any

particular expansion. It follows from Theorem 4 of their paper that the expansions

(15) and (22) are valid asymptotic series with error rates holding uniformly in x and

in any compact neighborhood of the true parameter d0.

4. Discussion and numerical evaluation

Figures 1 and 2 display kernel estimates of the density of �δ in the Gaussian

ARFIMA(0, d, 0)model with n = 20 and d = 0.2 and 0.4. TheMLE�s were calculated

by a simple grid search on the interval (−0.49, 0.49) to ensure problem free evaluation
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of the covariance matrix. The number of replications was 8,000 and the densities

were computed using a normal kernel and a plug-in bandwidth based on Silverman�s

(1986) rule. It is obvious that the densities are not symmetric. The asymmetry is

partly caused by the fact that the maximization is restricted to the (−0.49, 0.49)
interval and is therefore more enhanced for the d = 0.4 case. This asymmetry is

captured, at least in part, by the correction factor in (21). The breakdown of the

normal approximation and the �approximate� Edgeworth expansion are particularly

vivid in the n = 20, d = 0.4 case (Figure 2). Here, the breakdown occurs not only at

the tails, but also at the center of the distribution. The �exact� Edgeworth expansion

is more satisfactory in capturing the overall shape of the distribution in this case and

makes a huge improvement at the center of the density but does so at the expense

of some ßuctuation, including negative density, in the tails.

We move on to evaluate the expansions to the cdf of �δ. PP plots for the various

approximations are provided in Figures 3-6 corresponding to n = 20, 40 and d =

0.2, 0.4. The simulated cdf is taken to be the benchmark and the closeness of the

approximation to the 45 degree line indicates the accuracy of the approximation.

We conducted simulation experiments for other cases and our conclusions were not

altered. It is apparent that the normal approximation is poor, especially in the upper

tail and in the d = 0.4 case. The expansion (22) based on Dahlhaus (1989) integral

approximations improves signiÞcantly over the normal approximation and overall

behaves quite well in the d = 0.2 case. However, in the d = 0.4 case this expansion

is poor in the upper tail. The exact Edgeworth expansion (15), on the other hand, is

surprisingly accurate and is decidedly superior to the other approximations in both

the n = 20 and d = 0.4 case. The curve corresponding to it traces the 45 degree

line very closely in the cases considered.
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Fig 1. Density of MLE bd, d = 0.2, n = 20

Fig 2. Density of MLE bd, d = 0.4, n = 20
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Fig 3. PP plots for the distribution of MLE bd,d = 0.2, n = 20
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Fig 4. PP plots for the distribution of MLE bd,d = 0.4, n = 20
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Fig 5. PP plots for the distribution of MLE bd, d = 0.2, n = 40
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Fig 6. PP plots for the distribution of MLE bd,d = 0.4, n = 40
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