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Abstract

This paper explains why seemingly irrational overconfident behavior can per-

sist. Information aggregation is poor in groups in which most individuals herd.

By ignoring the herd, the actions of overconfident individuals (“entrepreneurs”)

convey their private information. However, entrepreneurs make mistakes and

thus die more frequently. The socially optimal proportion of entrepreneurs

trades off the positive information externality against high attrition rates of

entrepreneurs, and depends on the size of the group, on the degree of overcon-

fidence, and on the accuracy of individuals’ private information. The stationary

distribution trades off the fitness of the group against the fitness of overconfi-

dent individuals.



Starting any company is really hard to do, so you can’t be so smart that it occurs to you that it

can’t be done.

Kathryn Gould, Foundation Capital, Menlo Park

in GSB Chicago Magazine 21-3, Summer 1999.

1 Introduction

According to DeBondt and Thaler (1995), “Perhaps the most robust finding in the psychol-

ogy of judgment is that people are overconfident.” Such overconfidence induces individuals

to undertake ventures that more rational individuals might not undertake. For example,

overconfidence among economic entrepreneurs has been documented by Cooper, Woo,

and Dunkelberg (1988). In their sample of 2,994 entrepreneurs, 81% believe their chances

of success are at least 70%, and 33% believe their chances are a certain 100%. In reality,

about 75% of new businesses no longer exist after five years. Busenitz and Barney (1997)

compared entrepreneurs’ and managers’ assessments on a set of real-world questions (e.g,

whether cancer or heart disease is the leading cause of death in the United States). En-

trepreneurs and managers were about equal in their accuracy, but the level of confidence

of entrepreneurs in their own answers was dramatically higher. The question our paper

tries to address is if economic principles can offer an explanation for such relatively com-

mon overconfident behavior, which has clearly and reproducibly been documented in lab-

oratory settings to be irrational. In addition, while overconfidence and entrepreneurship

are important phenomena in themselves, there is another motivation for studying over-

confidence: Some recent work in economics and finance (e.g., Delong, Shleifer, Summers,

and Waldmann (1991), Daniel, Hirshleifer, and Subrahmanyam (1998), Odean (1998)) re-
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lies on overconfidence as an underlying primitive assumption, often with little theoretical

justification as to why such irrational behavior can persist.

Our paper offers a simple explanation for the presence of overconfidence and en-

trepreneurs. Our main argument is that overconfident entrepreneurs (independent spirits,

innovators, leaders, change agents, or even dissidents) are relatively less likely to imitate

their peers and more likely to explore their environment. Entrepreneurial activity can thus

provide valuable additional information to their social group.

Our point holds when individual actions can convey valuable private information and

when information aggregation within the overall group is otherwise poor. Our specific

modeling framework is built on the concept of informational cascades, introduced in Welch

(1992), Banerjee (1992), and Bikhchandani, Hirshleifer, and Welch (1992). In this context,

individuals can observe one another and typically end up following the same action, yet

information aggregation is poor because rational, non-entrepreneurial individuals who fol-

low “the herd” reveal nothing about their private information. From a social perspective,

cascades lead to a suboptimal level of information disclosure, experimentation and explo-

ration of the environment.

When overconfident, entrepreneurial individuals instead follow their own information,

downweighting the information in the herd, their actions in effect broadcast their private

information to the rest of their group. Unknowingly, overconfident entrepreneurs behave

altruistically, making irrational choices that are to their own detriment but which help

their groups. Because the herd carries relatively little information, this is only mildly

individually suboptimal. Still, we would not expect entrepreneurs to reflect too deeply on

their actions. Instead, we would expect entrepreneurs to be either socially or biologically

“programmed” to overestimate the quality of their own information. Indeed, the presence

of such overconfident individuals who act on their own information and who irrationally
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ignore the actions of other individuals in the group has already been demonstrated in

laboratory settings in Anderson and Holt (1996). Our model can easily be calibrated to

generate benefits to their group that are larger by a factor of 100 than the cost to the

individual.

In section 2, we identify conditions under which the benefits of entrepreneurship to

the group are high and the costs to individual entrepreneurs are low. We then show that

when groups compete, and inferior groups disappear, groups with some entrepreneurial

activity may gain enough of an evolutionary advantage to permit entrepreneurs to survive

in equilibrium. Our paper therefore argues that groups with some overconfident individu-

als have an evolutionary advantage over groups without such individuals. In section 3, we

derive a stationary distribution in which overconfidence persists across generations. This

distribution trades off the relative fitness of the group against the relative fitness of the

(altruistic) individuals that are overconfident.

Our paper identifies some of the forces important to the relative benefits and costs of

being an entrepreneur, and to being a group, culture, society, or firm that fosters or hand-

icaps entrepreneurship. For example, we find that overconfidence/entrepreneurship can

be useful if groups are large enough to benefit from the positive information externality,

if individuals have low precision information, and if overconfidence is moderate rather

than extreme. There are of course other important aspects to entrepreneurship that are

not modelled by our paper, and not every entrepreneur behaves irrationally ex ante (e.g.,

Manove (1998)).

There are surprisingly few papers that explicitly adopt evolutionary selection (e.g.,

Becker (1976), Ainslie (1975), Hirshleifer (1977), Hirshleifer (1987), Hirshleifer and Martinez-

Coll (1988), Waldman (1994), Rogers (1994), Hirshleifer and Luo (2001), Wang (2001)), and

fewer yet that invoke group selection. As far as we know, models of group selection have
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appeared only outside economics. Section 3 discusses the history of arguments pro and

con group selection. We believe a deviation from the individual optimization paradigm in

our context to be necessary:

1. There are many well-documented psychological inference biases that are intrinsically

difficult to defend as being in the interest of the individual. Although some biases

can be explained with individual-centric explanations (e.g., Hirshleifer (1987)), expla-

nations for inference biases should recognize that they are inference distortions, and

individual behavior should follow directly from the inference process. This is perhaps

best to explain in the context of overconfidence. When cornered, most economists

tend to argue that well-document overconfidence (or other biases) could potentially

be directly linked to behavior that could enhance individual survival, for example an

increase in aggressive behavior (see Section 4). To defend such an argument, one

would have to show (i) an empirical linkage between aggression and overconfidence;

(ii) why aggressive behavior is optimal in an environment; and (iii) why it is the dis-

torted inference process that creates aggression. In contrast, our paper’s explains

“following one’s own information” directly.

2. Homo sapiens is unusual. We are constantly judging how altruistic our peers are,

and we are constantly judged by our peers. The ability to exclude individuals from

membership in a society, especially when coupled with our long-term memory, can

be a powerful force towards social behavior. It should not be surprising that behav-

ior which enhances group survival can play a role in certain social situations; yet,

the fact that humans can behave in a socially valuable manner is often neglected in

economics. When altruistic behavior is entertained, the economic literature often

simply enters it directly into the utility function. We believe group selection can offer
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a model disciplining mechanism about which irrational and near-rational behavior

may reasonably enter a utility function and which may not.

3. Groups can evolve mechanisms that are surprisingly effective at overcoming a public

goods problem. For example, the costs to being overconfident can be trivial, and indi-

vidual costs can be orders of magnitudes less than the benefits to the group. In many

situations, it is difficult to imagine that alternative mechanisms (e.g., cultural mecha-

nisms, such as large-scale coordination by credible communication) have lower social

or individual costs—aside from the fact that they were not feasible when evolution

shaped our psyche.

4. Because economics has been faced with such puzzling psychological biases, it has

developed a chasm between a “behavioral literature,” which takes documented psy-

chological biases as primitives but rarely offers an explanation for why these biases

are so pervasive; and a “rational literature,” which de-facto argues that only indi-

vidually rational behavior can survive in an evolutionary or market setting and which

consequently often tends to discount even near-rational behavior. The use of optimal

group-selection mechanisms offends both camps equally, but (or perhaps because) it

holds the promise of reconciliation between them.

In the end, one goal of our paper is to develop a disciplined approach to the investigation

of seemingly irrational inferences and behavior, based on group selection principles. In

particular, the point of our paper is not to show that informational cascades can (and have

been documented to) be broken by overconfident behavior, but that overconfident behavior

creates a large positive externality on public information aggregation and small costs on

its perpetrators. In a group selection framework, this allows overconfidence to survive. As

such, our theory has the potential both to explain why we are overconfident and to offer

new insights under what circumstances overconfidence is most likely to be useful and
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thus appear. Our paper does not propose to deemphasize self-interested behavior and

individual selection—indeed, it is the stronger force when payoffs are equal. But group

selection, in which the cost to the irrational individual is very low and the benefit to the

group is very high, can help us understand documented individually irrational biases that

are otherwise difficult to explain.

Our paper now proceeds as follows: The formal model in Section 2 derives the so-

cially optimal proportion of entrepreneurs. It is purposely kept as simple and focused

as possible. It ends with a brief summary of factors influencing the tradeoff between the

informational externality and entrepreneurial attrition. Section 3 derives the stationary dis-

tribution, i.e., the tradeoff between inter-group and intra-group selection. It also discusses

arguments pro and con group selection—familiar to readers of the biology literature—as

they pertain to our model. Section 4 discusses alternative explanations for the presence

of overconfidence and entrepreneurs. Briefly, overconfidence could also be explained as a

signal that helps individuals convince others of high ability; entrepreneurship could also

be explained as a high-risk but value-maximizing alternative. These explanations are not

only different from those advanced in our model, but also (and more importantly) are

complementary to our own explanation. Section 5 concludes.

2 The Model

We now develop a simple model to illustrate that overconfidence can impose only small

costs on entrepreneurs (individuals that put too much weight on their own information)

but provide large benefits in terms of revealing their private information to their groups.

Although our specific model is based on the cascades framework, it could have equally well

been based on a different framework (e.g., a two-armed bandit search model). The basic
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intuition and comparative statics would be similar. Our goal is to show that overconfident

behavior can create an externality that improves public information aggregation.

2.1 Available Information

Assume that members of a group ofN risk-neutral individuals choose in sequence whether

or not to take an action with uncertain value, θ. The action is costless and the true value of

θ is either −1 or +1, each with prior probability 1/2. No individual can observe the true

value of θ, but each individual can privately observe an i.i.d. signal which is correlated with

θ. For simplicity, we assume that if θ = 1 then each individual observes a private signal

H(igh) with probability 1 > p > 1/2 and a signal L(ow) with probability q = 1−p. Thus, if

θ = +1, individuals are more likely to observe H. Conversely, if θ = −1 then individuals

observe the signal L with probability p and the signal H with probability q. In this setting,

a higher value of p implies that the signal is more informative. Table 1 summarizes the

information structure.

Value State
Signal Value θ = 1 θ = −1

H p q
L q p

Table 1: Information Structure.

The group of individuals is sequenced randomly and exogenously. Each individual

chooses a publicly visible action, either to adopt (A), to reject (R), or to abstain from deci-

sion. Adopting (rejecting) has higher expected payoffs if it is more likely that the state is

θ = 1 (θ = −1). Without loss of generality, we assume that the individual abstains if and

only if she is indifferent between adopting and rejecting. There are two types of individuals

in this model who differ only in one respect:
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Normal Individuals are fully rational in that they base their decisions optimally on both

publicly available information and their individual private information.

Entrepreneurs base their decisions on both publicly available and their own information,

but they do not put enough weight (in Bayesian terms) on the public information.

This definition of overconfidence conforms to the definition employed in recent fi-

nance models (Daniel, Hirshleifer, and Subrahmanyam (1998)) and to the findings in

Anderson and Holt (1996): Individuals are either relatively more “skeptical” about ex-

ternal information or relatively more “overconfident” about internalized information.1

For computational simplicity, we assume that the type of each individual is public knowledge.2

We define λ to be the proportion of entrepreneurs in the group. Note that λ is not nec-

essarily the incidence of overconfident actions—even an overconfident entrepreneur can

find himself in a situation in which the public information is so overwhelming that even

he still follows the public information.

2.2 Normal Individuals’ Decision Rule

The decision rule for normal individuals optimally uses their private information signal

and information contained in the decisions of individuals that arrived earlier. The payoff

and information structure is such that normal individuals adopt if θ = +1 is more likely

than θ = −1. In our setup, this occurs when individuals can infer that more H signals have

been observed than L signals.

Let Sn be the number of H signals less the number of L signals that can be inferred by

all individuals from the actions of the first n arrivals. Thus, Sn = Sn−1+1 if all individuals

can infer that the nth individual’s signal was H, Sn = Sn−1 − 1 if all individuals can infer

that the nth individual’s signal was L, and Sn = Sn−1 if an individual cannot infer anything
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about thenth individual’s signal. It is straightforward to show that, within our information

structure, the state of information at any stage n is completely summarized by Sn.

The normal individuals’ optimal decision rule is as follows: The nth individual adopts

if (i) Sn−1 ≥ 0 and she observes H; or (ii) Sn−1 ≥ 2 and she observes L. Stated differently,

the nth individual adopts if Sn ≥ 1.

To understand the information content of past decisions, consider the cascade scenario

in Bikhchandani, Hirshleifer, and Welch (1992), in which there are no entrepreneurs (λ = 0).

If the first arrival observes the signal H, then the conditional expected value of adopting

is p − q > 0 and therefore the first individual adopts. Even though the first individual’s

information is private, all individuals can infer from the first individual’s action that she

observed the signal H and thus S1 = 1. Now suppose the second individual observes the

signal L. Conditional on the sequence of signalsHL the expected value of adopting is 0 and

the individual is indifferent between adopting and rejecting, and, by assumption, the indi-

vidual abstains. Consequently, if the first individual adopts and the second abstains then

all individuals know that HL has occurred, thus S2 = 0. However, if the second individual

also adopts, all individuals know that HH has occurred, thus S2 = 2; and the third indi-

vidual adopts regardless of her private information. Because this action is uninformative,

the fourth individual also adopts regardless of her private information, and this contin-

ues for all future individuals. Similarly, when Sn−1 = −2 all subsequent arrivals reject.

Sn = +2 and Sn = −2 are absorbing states, and all future arrivals will conform, adopting

or rejecting, respectively. The group gets entrenched in “good” or “bad” cascades. In a

“good cascade,” everyone gets locked into adopting (rejecting) if θ = 1 (θ = −1). In a “bad

cascade,” everyone gets locked into rejecting (adopting) if θ = 1 (θ = −1). The probability

of such a bad cascade can be quite high; for example, if p = 0.51, it approaches 48% even

in large groups.
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2.3 Entrepreneurs’ Decision Rule

Entrepreneurs also use both publicly available information and their own private infor-

mation, but place too much weight on the latter. We assume that entrepreneurs be-

lieve their signal has precision p′ > p. For a given p, this leads them to follow their

own signal if |Sn−1| < k and to behave like normal individuals and follow the crowd if

|Sn−1| ≥ k, where the critical state k increases monotonically with p′. (The condition that

entrepreneurs always follow their own information if and only if |Sn−1| < k is equivalent to

pk−1/(pk−1+qk−1) < p′ < pk/(pk+qk).) Once the public information becomes sufficiently

overwhelming, even if every individual were overconfident, irrationally overconfident ac-

tions cease in our model and entrepreneurs suppress their eagerness to ignore the public

information in favor of their more limited private information. If p′ = 1, the critical state

k is infinity, and public information never tempers overconfident actions. If p′ = p, then

k = 2 and entrepreneurs are like normal individuals, regardless of the current state.

The decision rule for entrepreneurs is similar to those of normal individuals. The

entrepreneur ignores public information and follows the private information (adopt if H,

reject if L) if the state of information prior to their arrival satisfies |Sn−1| < k. However,

if |Sn−1| ≥ k, entrepreneurs follow their predecessor. The information states k and −k

are absorbing states because, once reached, no one can infer the information signals of

subsequent individuals. In effect, having entrepreneurs expands the “non-cascade action

interval” between the absorbing cascades states from −2 and +2 to −k and +k. Once +k

or −k is reached, the informational cascade becomes unbreakable even in the presence of

entrepreneurs.
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2.4 Payoffs

We now define the payoffs and ex-ante welfare for both types of individual and for the group

overall. We begin with the normal types. Let ṼR,n(λ) denote the random payoff to the nth

arrival if she is a normal type and let E[ṼR,n(λ)] denote its unconditional expectation.

Because the model is symmetric, we only have to consider the cases when she adopts.

First, suppose the true value state is θ = 1 in which case adopters get a payoff of 1.

Rational types adopt if Sn ≥ 1 which occurs with probability Pr(Sn ≥ 1|θ = 1). Yet, if the

true value state is θ = −1, adopters receive a payoff of −1, which occurs with probability

Pr(Sn ≥ 1|θ = −1). Thus,

E[ṼR,n(λ)] = Pr[Adopt|θ = 1] · Pr[θ = 1]− Pr[Adopt|θ = −1] · Pr[θ = −1]

= 1/2 · [Pr(Sn ≥ 1|θ = 1)− Pr(Sn ≥ 1|θ = −1)]

= 1/2 · [Pr(Sn ≥ 1|θ = 1)− Pr(Sn ≤ −1|θ = 1)] , (1)

because Pr(Sn ≥ 1|θ = −1) = Pr(Sn ≤ −1|θ = 1).

Let ṼOC,n(λ) denote the random payoff to the nth arrival if she is an entrepreneur. An

entrepreneur adopts either if she receives a private high signal and the state is not above k

or below −k, and if the critical state +k that produces an adopt-cascade has already been

reached:

Pr(Adopt | θ = 1) = p · Pr(|Sn−1| < k | θ = 1)+ Pr(Sn−1 = k | θ = 1) , (2)

and

Pr(Adopt | θ = −1) = q · Pr(|Sn−1| < k |θ = −1)+ Pr(Sn−1 = k |θ = −1) . (3)
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Thus, an entrepreneur expects to receive

E[ṼOC,n(λ)] = 1/2· [ p · Pr(|Sn−1| < k | θ = 1)− q · Pr(|Sn−1| < k | θ = −1)

+ Pr(Sn−1 = k | θ = 1)− Pr(Sn−1 = k | θ = −1)] . (4)

No closed form solution exists for these probabilities for p ∈ (1/2,1), but we can derive

a recursion formula to compute these probabilities numerically (in the Appendix).

The overall group payoff is the expected payoff to individuals in the group,

E[Ṽ(λ)] = λ · 1
N

N∑
n=1

E[ṼOC,n(λ)]+ (1− λ) ·
1
N

N∑
n=1

E[ṼR,n(λ)]

= λ · E[ṼOC(λ)]+ (1− λ) · E[ṼR(λ)] . (5)

From a group perspective, the presence of entrepreneurs in the group helps in that it re-

leases more information, which makes it more likely that most individuals choose correctly;

and hurts in that entrepreneurs make more frequent mistakes, which hurts themselves and

thus lowers the average group payoff.

2.5 The Solution: The Socially Optimal Proportion Of Entrepreneurs (λ?)

We begin by determining the optimal proportion of entrepreneurs from a social welfare

perspective, λ?. The social welfare function is defined as E[Ṽ(λ)] in (5), which is maxi-

mized by some λ?. The following proposition describes the impact of entrepreneurs—a

positive externality–on normal individuals:

Proposition 1
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1. The (ex-ante) probability that a normal individual makes an incorrect decision de-

creases with the proportion of entrepreneurs in the group (λ), with the degree of over-

confidence among entrepreneurs (k(p′;p)), and with the size of the group N.

2. The limiting probability (n→∞) of being in an incorrect cascade equals q2/(p2 + q2)

if λ = 0 and qk/(pk + qk) for all λ > 0.

Proof: See Appendix A.1.

Figure 1 shows the effect of the proportion of entrepreneurs (λ) on the decisions of

the normal individuals. Having entrepreneurs shifts probability mass from being in an

incorrect cascade to being in a correct cascade.

Insert Figure 1 about here.

2.6 Comparative Statics

Intermediate levels of overconfidence are best for fixed N and p.

There are three parameters in our model that influence the optimal proportion of en-

trepreneurs (λ?): the group size (N), the information precision (p), and the degree of

overconfidence (k(p′;p)).

Unfortunately, the effect of the three parameters on λ? cannot generally be solved

analytically. However, numerical simulations show that certain directional influences of

the parameters p, p′, and N on the solution λ? are present—and to the extent that we

cover the relevant parameter space, we can conjecture that they are pervasive.

Insert Figure 2 about here.
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Degree of Overconfidence (p′). Figure 2 shows that the optimal proportion of en-

trepreneurs in the group decreases as the degree of overconfidence increases. When over-

confidence is extreme, entrepreneurs make more mistakes but provide more information

than moderately overconfident entrepreneurs. However, the marginal value of the extra

information is small because it arrives when the public state of information is already very

informative. Thus, it is beneficial to the group to have fewer entrepreneurs as overconfi-

dence becomes more extreme. The figure also shows that if overconfidence is modest it

can be socially optimal for the group to consist entirely of entrepreneurs. When overcon-

fidence is modest, entrepreneurs provide extra information when it is most valuable and

make few extra mistakes relative to normal types.

We also compared social welfare for all degrees of overconfidence (p′). The social

welfare function is typically highest for intermediate levels of overconfidence. For fixed

p, greater overconfidence (p′) is better for larger N. For fixed N, less overconfidence p′ is

better for largerp. Interestingly, Hirshleifer and Luo (2001) and Wang (2001) demonstrate a

similar result in different settings. (Obviously, holding everything else constant, increasing

N and p improves the social welfare function.)

Insert Figure 3 about here.

Signal Precision (p). Figure 3 shows that the optimal proportion of entrepreneurs

decreases in the private signal precision (p)—except in rare border cases (not plotted).

Typically, when p is low, there are more bad cascades in the absence of information ag-

gregation and the cost to being an entrepreneur is lower. This favors the presence of

entrepreneurs. The figure also shows that large groups require more entrepreneurs than

small groups when private signal precision is either very low or very high. Thus, the effect

of group growth on entrepreneurship depends on signal precision: for very low and very

high private information precision, group growth translates into an increased optimal pro-
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portion of entrepreneurs. For intermediate private information precision, group growth

translates into a smaller, optimal proportion of entrepreneurs.

Insert Figure 4 about here.

Group Size (N). Figure 4 shows that the effect of the group size (N) on the optimal λ?

is ambiguous and depends on the level of overconfidence. First, consider the case where

entrepreneurs exhibit extreme overconfidence. Such entrepreneurs provide a positive ex-

ternality only to the normal types in the group, because all other entrepreneurs completely

ignore the public information. When the group is small, entrepreneurs provide few benefits

because there are few individuals following them who can take advantage of the positive

information externality. Consequently, a small proportion of entrepreneurs is optimal.

Similarly, if the group is very large, even a small proportion of entrepreneurs can repre-

sent a high absolute number of entrepreneurs (additional pieces of information), almost

assuring a correct cascade. Again, a small proportion of entrepreneurs is optimal. The op-

timal proportion of entrepreneurs is highest for intermediate group sizes. Now consider

the case where entrepreneurs are not perfectly but only moderately overconfident (k ≠∞).

The above arguments continue to be true—except that entrepreneurs act like normal in-

dividuals once a sufficient number of other entrepreneurs have appeared. At that point,

entrepreneurs make no additional mistakes (relative to normal individuals) and thus im-

pose no extra costs on the population. Because the payoffs to both types are increasing

in the probability of being in the correct cascade, which increases with the proportion of

entrepreneurs, λ? = 1 for sufficiently large N.

It is noteworthy that the positive information externality works well only when groups

are sufficiently large. There is a threshold minimum group size necessary for groups to

benefit from overconfident behavior. This suggests economies of scale: small groups are

intrinsically poorly suited towards taking advantage of the information externality, and
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may be poorly equipped, e.g., to deal with new situations in which information aggregation

is especially important. They cannot afford to risk the loss of entrepreneurs in ordinary

situations. The steep slope at the minimum N also suggests that tests of our theory would

do well to focus on situations in which group size increased from a very small to a slightly

larger number of entrepreneurs (holding relatedness constant). In such cases, we would

expect to see an explosion of non-conforming, irrational behavior.

2.7 Omitted Influences

Although the formal model was based on the specific concept of informational cascades,

the point of our paper is to argue that overconfidence could have evolved as a device that

helps groups to overcome poor information aggregation and to explore their environment

better. Offering only a model, this paper had to ignore a number of other influences that

can be important. To the extent that other factors can reduce information aggregation or

increase the usefulness of the information, the marginal value of having more overconfi-

dence would increase, and we would expect to see more entrepreneurs:

Experimentation Information aggregation is particularly poor when a situation is unique

and choices are discrete, so that individuals cannot repeat and experiment with dif-

ferent choices. As reasoned above, because information aggregation is poorer when

experimentation is not feasible, we would expect to see more entrepreneurs and over-

confidence.

Communication Information aggregation is particularly poor when direct talk (conver-

sation) fails, when it is too cumbersome and costly, or when it is not credible. Con-

versely, information aggregation is better when there is much trust and coordination.

Finally, there should be more overconfidence in social species/societies compared to

solitary species/societies.
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Ordering Information aggregation is particularly poor if the most informed (possibly,

most prestigious) individual acts first and thereby induces all subsequent individ-

uals to conform (see Zhang (1997)).

Information Costs Information aggregation is particularly poor if individuals have to pur-

chase information instead of being freely endowed with it. (To remedy this, we would

have to define an entrepreneur as someone who altruistically chooses to purchase in-

formation and act on it.)

Memory Information aggregation is particularly poor if individuals can only observe the

most recent individuals, rather than everyone. The information in the dissent of

a single entrepreneur may be quickly forgotten; it would take a set of consecutive

entrepreneurs to signal to the group that a different action would be better.

Changing Environment Information aggregation is more valuable if the environment is

stable enough for the actions of previous individuals to be informative.

In our informational cascade model, agents observe the actions of the other agents

but not their information. But non-cascades settings can offer similar findings, as long as

the informational group benefits are large relative to the costs to the entrepreneur. For

example, Bolton and Harris (1999) examine a two-armed bandit problem with N agents in

which each agent observes the actions and information generated by the experimentation

of others. They demonstrate that free-rider problems yield suboptimal experimentation

(relative to the social optimum). The presence of overconfident individuals would help to

mitigate these free-rider problems. Cao and Hirshleifer (2000) extend the simple cascades

model to allow early adopters to communicate the payoffs (but not the signals) they re-

ceived. They show that informational cascades will still occur with positive probability.

Moreover, they show that it is possible that observing payoffs and actions of predecessors

can reduce average welfare when compared to the simple case where only actions can be
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observed. Again, the presence of overconfident individuals would help to mitigate these

free-rider problems.

3 The Public Goods Problem And Intra-Group Survival

3.1 A Stationary Distribution

In the previous model, selection occurred only at the group level, in effect assuming that all

individuals within a group were clones. In this section we sketch an environment in which

the “public goods” problem (suboptimal information acquisition from a social perspective

because it is in everyone’s interest to have someone else acquire the information) exposes

individuals to both group and individual selection. This, combined with the fact that the

benefits to the group can be several orders of magnitude greater than the costs to the

individual, allows entrepreneurs to robustly survive in equilibrium. For example, if the

signal precision is p = 0.51 and the group contains 500 individuals, the expected group

benefit to having a first entrepreneur with k(p′;p) = 4 is approximately 114 times larger

than the expected cost to this individual!

An entrepreneur can benefit from such large incremental group payoffs/survival to the

extent that her genes are “in the same boat” (likely to cosurvive) with those of her other

group members in at least three ways:

Indirect genetic benefits (i.e., kinship/relatedness). Hamilton’s rule (e.g., Smith (1989, 169f);

Boyd and Silk (1997, 260ff)) is commonly used in evolutionary genetics to show that

a small set of related altruists can initially increase in numbers when they appear

within a large population of normal individuals. We now show that a variant of this

rule can apply to our entrepreneurs.
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Consider a scenario in which signal precision is p = 0.51, and the population con-

sists of a large number of groups, each with N = 500 normal individuals and no

entrepreneurs. Now suppose that one group appears which contains a (family with a)

mutation that gives rise to 20 moderately overconfident individuals with k(p′;p) =

4.3 In a population of many groups composed of normal individuals, the average fit-

ness of normal individuals in the population is not much influenced by the presence

of 20 entrepreneurs; but the average fitness of the entrepreneurs in the population—

100% of whom enjoy the benefits of the presence of the other entrepreneurs—does

increase dramatically. It is this disproportionate benefit that allows entrepreneurs

to increase in frequency in the overall population of both groups, even though their

frequency in their own group may decrease.4

In this scenario, the expected marginal cost to being the twentieth entrepreneur is

0.0035. The expected marginal benefit to the other 499 individuals from having

this twentieth entrepreneur totals 0.11. Yet, only 19/499 ∼ 3.8% of the group are

other entrepreneurs (the coefficient of relatedness).5 Furthermore, each of the 19 en-

trepreneurs garner slightly less benefit from the presence of this entrepreneur than

a normal individual, because they tend to act more based on their own information

than on public information. Adding up the expected benefit to entrepreneurs gives a

total gain to the other 19 entrepreneurs of 0.00755 from the presence of the marginal

twentieth entrepreneur. As a group of twenty individuals, the total cost of overcon-

fidence to all entrepreneurs is 0.129, the total benefit is 0.156. Consequently, in the

next generation, entrepreneurial types displace some normal types within the overall

population. (It is not important to the argument that normal types from the group

containing the entrepreneurs will also displace normal types in other groups.)

Direct transfers As in all public goods problems, it is in the group’s interest to find a

mechanism to enhance the “internalization” of the positive spillover provided by
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entrepreneurs. In the national economic sphere, internalizing mechanisms could be

patent and copyright protection, or even public recognition and social standing. In a

firm or institution, a governing body might be able to directly subsidize or discourage

entrepreneurial activity. In small social groups, individuals displaying no intention

to explore the environment could be ostracized (Hirshleifer and Rasmusen (1989)).

It is reasonable to presume that the within-group sharing arrangement is itself subject

to evolutionary pressures, and therefore likely to evolve towards solutions favoring

the outcome that enhances group survival. Consequently, we would expect to see

group institutions evolve that facilitate long-run solutions closer to the group-optimal

λ?. Yet, if optimal institutions can evolve, they could potentially reduce the need for

biological, irrational overconfidence, and augment entrepreneurship with incentives

(transfer subsidies) that are optimal from a group perspective.6

Direct payoff participation Groups can share in their success through economies of scale

and equitable distribution, e.g. in their joint hunting of large prey or conquest of new

territory. While this cannot in itself stop the shrinking proportion of entrepreneurs,

it can increase the absolute number of entrepreneurs. To the extent that groups

with entrepreneurs can maintain relative faster growth than groups without them,

an equilibrium can emerge. This is explored below.

In sum, the large discrepancy between group benefits and individual costs makes it

easy to construct models in which overconfident entrepreneurs can survive. The next

subsection sketches one such possible model.
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3.2 A Displacement Model

Distribution of Types Within Groups. We now sketch a model to compute an equilibrium

distribution of entrepreneurs. In each generation t, we pit two groups (g ∈ [A, B]) against

one another, and we pit individuals within groups against one another. We assume that

each group consists of N individuals drawn from an underlying population of groups.

Let ft(λ) denote the probability density of λ-groups in the population at generation t

and define λA,t and λB,t to be the realized proportion of entrepreneurs in groups A and

B. Groups and individuals compete a large number of times in each generation, so that

their payoffs are the expected payoffs computed in Section 2: overconfident individuals

in group g receive payoffs E[VOC(λg,t)]; normal individuals receive E[VR(λg,t)]; and the

average group payoff is λg,tE[VOC(λg,t)]+ (1− λg,t)E[VR(λg,t)].

The Contest. The winning group displaces the losing group in the next generation.

Within the winning group, individuals survive in proportion to their relative payoffs. Con-

sequently, the proportion of entrepreneurs in the next generation λt+1 is

λt+1(λA,t, λB,t) =

{
λg∗,tE[VOC(λg∗,t)]

}w{
λg∗,tE[VOC(λg∗,t)]

}w
+
{
(1− λg∗,t)E[VR(λg∗,t)]

}w , (6)

where g∗ denotes the winning group, t a subscript for generation, and w modulates the

relative efficiency by which overconfident individuals are replaced by normal individuals

from one generation to the next. For example, assume groups A and B are of size N = 100,

signal precision is p = 0.6, and overconfidence is a modest k(p′;p) = 4. Also, suppose

groups A and B with λA = 0.05 and λB = 0.1, respectively, compete. Entrepreneurs in

group A expect to receive a payoff of 0.1644, normal individuals receive 0.2417, for a

group average of 0.2378. Entrepreneurs in group B expect to receive 0.2126, normal types

expect to receive 0.2656, for a group average of 0.2603. Consequently, group B survives,
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but entrepreneurs within this group are in a less favorable position. This latter effect is a

standard within-group “replicator dynamic.” The group competition, however, counterbal-

ances the individual selection pressure. With aw coefficient of 1, entrepreneurs constitute

0.1 · 0.2126/0.2603 ∼ 8.2% of the population in the next generation, which is larger than

the 7.5% it was in the previous generation.

One can compute a matrix of the resulting proportion of entrepreneurs, λt+1, as a func-

tion of the proportion of entrepreneurs in groups A and B. This matrix has certain general

properties. The proportion of entrepreneurs in the next generation declines in cells close

to the diagonal of the matrix, because when the two groups have a similar proportion of

overconfident types, only individual selection pressure remains. Group selection plays

no role when both groups are of equal quality. However, the generational decline in en-

trepreneurs is zero if there are either no or only entrepreneurs (and it is small nearby). In

sum, if the frequency of entrepreneurs across groups has no variance, then group effects

cannot persist and only “pure” groups have a chance of survival.

Moving away from the diagonal cells—i.e. increasing the difference in the proportion of

entrepreneurs in the two groups—as one group gets closer to the optimal proportion of en-

trepreneurs than its competitor, it tends to win. When the group with more entrepreneurs

is fitter than its competition, group selection favors more entrepreneurs to counterbal-

ance individual selection in favor of more normal types. Thus, in such matrix cells, the

next generation may or may not contain a greater proportion of entrepreneurs than the

average proportion from both groups in the previous generation. Finally, in off-diagonal

matrix cells in which the group with fewer entrepreneurs is fitter, both individual and

group selection effects reduce the proportion of entrepreneurs in the next generation.
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Equilibrium Distributions. A probability distribution over lambda groups, ft(λ), is a

stationary distribution if:7

ft+1(λ) = ft(λ). (7)

The degenerate distribution λ = 1 with probability 1 (only entrepreneurs) is a stationary

distribution. However, as explained above, no other degenerate distribution is necessar-

ily an equilibrium, because two equal competing groups face no group pressure, and the

proportion of types would change in favor of normal individuals in the next generation.

Computing a stationary distribution:. To illustrate an equilibrium, consider the pre-

viously used example with groups of size N = 100, entrepreneurs of type k(p′;p) = 4,

and information precision p = 0.6. There are N + 1 = 101 possible group arrangements.

Define πi,t to be the probability that λ = i/N for i ∈ {0,1,2, ...,N}. To compute, e.g., the

number of groups with λt+1 = 8/100 entrepreneurs in the next generation, we need to

consider all possible competitive scenarios in this generation that can produce 8/100 en-

trepreneurs. For example, we showed above that if λA,t = 0.05 and λB,t = 0.1 then the next

generation will have proportion λt+1 = 0.082 entrepreneurs. To maintain discreteness, we

assume that the next generation contains proportion 8/100 entrepreneurs with probabil-

ity 80% and 9/100 entrepreneurs with probability 20%. The probability that λA,t = 0.05

and λB,t = 0.1 groups meet is π5,t · π10,t ; consequently, this scenario contributes proba-

bility mass π5,t · π10,t · 0.8 to the probability of having π8,t+1 in the next generation and

π5,t ·π10,t ·0.2 to the probability of having π9,t+1 in the next generation. In general, to find

πx,t+1, one must integrate probabilities over all possible competitive scenarios. Thus,

πx,t+1 =
100∑
i=0

100∑
j=0

πi,tπj,th(x; i, j) (8)

whereh(·) apportions probability mass to adjacent λ fractions to maintain the discreteness

of the distribution. More specifically, define yi,j = int[λt+1(λi,t, λj,t) · N], the integer
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portion of the number of entrepreneurs and mi,j = λt+1(λi,t, λj,t) − yi,j the remainder.

Then

h(x; i, j) =


1−mi,j if x = yi,j

mi,j if x = yi,j + 1

0 otherwise

(9)

The stationary distribution requires thatπx,t+1 = πx,t for all x. The solution to this system

of N + 1 nonlinear equations and unknowns is not necessarily unique. Evolution need not

necessarily lead to a unique outcome. Figure 5 graphs a set of viable stationary distributions

in the example case. In this case, the group-optimal λ? is 1 (all entrepreneurs)—and the

distribution λ = 1 with probability 1 is also the Pareto-optimal stationary distribution!

Insert Figure 5 about here.

This is a general result:

Proposition 2 If the group optimal proportion of entrepeneurs λ? is 1, a (Pareto-dominating)

equilibrium exists in which no groups with any normal types can survive.

Groups with only entrepreneurs face no individual selection pressure and eventually wipe

out all other groups; consequently, normal individuals have no chance to replicate. (This

is not artificial to our severe penalty for the losing group: even if the losing group shrank

only slowly, the λ = 1 group which does not experience internal selection pressure against

entrepreneurs would still end up eventually displacing all other groups.)

Insert Figure 6 about here.

However, when λ? ≠ 1, selection pressure against entrepreneurs is strong. For exam-

ple, Figure 6 graphs a set of equilibria when p = 0.51, k = 12, and N = 100. (These
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parameters imply that entrepreneurs tend to act with close to extreme overconfidence.)

The figure shows that entrepreneurs survive in the Pareto-preferred equilibrium, but the

average frequency of entrepreneurs in this stationary distribution is “only” about 1–2%—an

order of magnitude lower than the group-optimum of λ? = 0.425.

These examples show that overconfidence and entrepreneurship can survive in an evo-

lutionary setting. There is a large parameter space in which either all individuals can end

up being entrepreneurs or in which only a certain proportion within the population can

end up being entrepreneurs. Unfortunately, a thorough comparative statics analysis is not

possible because a unique stationary distribution does not exist.

3.3 Group Selection In The Social Sciences

It is generally recognized that although genes are the unit of biological selection, they re-

quire vehicles of selection. These vehicles are the degree to which genes find themselves

“in the same boat” with other genes as far as survival is concerned. The vehicles can be

cells (e.g. cancer cells), individuals, kin, villages, tribes, nationalities, ethnicities, races, or

even species. The appropriate question is not whether group vehicles are logically pos-

sible, but whether selection at a higher organizational level can be sufficiently important

to overwhelm selection at a lower organizational level. The empirical evidence indicates

that group selection can be an important force, especially in human social structures. Yet,

Wilson and Sober (1994) lament that “the most recent developments in biology have not yet

reached the human behavioral sciences, which still know group selection primarily as the

bogey man of the 60’s and 70’s.” They also argue that “social structures...have the effect of

reducing fitness differences within groups, concentrating natural selection (and functional

organization) at the group level.”
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4 Alternative Theories Explaining Overconfidence and Entrepreneurs

Our theory has argued that overconfident entrepreneurs are useful, because they broadcast

information and thus break the poor information aggregation intrinsic to conformity.

We are aware of only one alternative explanation for seemingly irrational overconfi-

dence, proposed in Trivers (1985) and Hirshleifer (1997): when trying to deceive others

that they are of higher ability, individuals’ credibility is enhanced if they are themselves

convinced of this higher ability. One concern with this argument is that the benefit to over-

confidence rests on an inability or on a willingness of other individuals to let themselves

be deceived. Yet, if discovery costs are not too high, those non-entrepreneurial individuals

who see through the deception would be more likely to survive, relative to individuals who

buy into “overconfidence equals ability” argument. Fortunately, our own argument for the

presence of overconfidence is synergistic: groups that allow themselves to be “deceived”—

permitting entrepreneurs to procreate as frequently—receive extra information, which in

turn enhances the group’s chances for survival. The willingness to be deceived may in

effect be a transfer of resources from normal types to entrepreneurs.

The alternative prevailing view of entrepreneurship is that entrepreneurs are “tempted”

by high payoffs associated with non-conforming. This view considers the innovation to be

an activity in the entrepreneur’s self-interest. In such a setting, if there are diminishing

returns to entrepreneurial activity, an optimal, interior proportion of entrepreneurs may

arise.8 This hypothesis is testably different from our hypothesis, in which entrepreneurs

are overconfident, make mistakes on average, and suffer in terms of expected payoffs. More

realistically, entrepreneurship is likely to be the outcome of both factors: [1] Lower risk

aversion and the lure of payoffs substantially higher than those available to the majority,

and a higher tendency for some such risk-loving individuals to survive within their group;
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and [2] a genetic overconfidence of entrepreneurs, and a higher tendency for groups with

some such individuals to survive.

In addition to the informational externality and the above-mentioned risky benefits,

there are certainly other real-world facets of entrepreneurship that we have omitted. Still,

the informational benefits of entrepreneurship discussed in our paper are likely to persist

in a much richer model than was considered in our paper.

5 Conclusion

Our paper argues that overconfidence (and with it certain forms of entrepreneurship) can

persist because overconfident behavior broadcasts valuable private information to the

group—information which would be lost if rational individuals instead just “followed the

herd.” We explored the costs and benefits to individuals and groups in a simple setting.

A group with too few entrepreneurs falls too easily into an incorrect choice (in which the

entire crowd follows the wrong path), because of poor aggregation of information across

individuals. A group with too many entrepreneurs has too many individuals relying only

on their own information and making mistakes too often, and thus suffers from high attri-

tion. The social optimum trades off the information externality against this attrition. We

also identified a set of influences (e.g., group size, information precision, degree of over-

confidence, type of decision, etc.) that influences the optimal proportion of entrepreneurs

(degree of overconfidence) in groups.

Unfortunately, individual selection tends to discriminate against entrepreneurs. From

an economic perspective, this is a particularly severe form of a “public goods” problem.

We then showed that the benefits to the group can easily be two orders of magnitude larger

than the costs to the entrepreneur. We briefly discussed multiple mechanisms by which en-
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trepreneurs may participate in such large payoffs, and offered one such model that trades

off the tendency of overconfident individuals to disappear against the tendency of groups

without overconfident individuals to disappear. We showed that there are situations in

which groups exclusively consisting of entrepreneurs can drive out mixed groups, and

other situations in which entrepreneurs can survive in mixed groups.

We have mixed feelings about group selection, which is rarely found in economic theory

today. Clearly, the first best set of explanations for behavior patterns should be based on

individual rationality. But when there is no rational explanation for a widely observed

deviation from rationality, the next best set of explanations should be based on arguments

in which this behavior is helpful to the individual’s group (and preferably of limited harm to

the individual altruist himself). Having invoked such a group selection argument allowed

us to explain and justify the presence of an otherwise seemingly irrational, unjustifiable

and ubiquitous behavior pattern—overconfidence—while still imposing a discipline on the

types of “reasonable” behavioral anomalies we would permit in a model.

In conclusion, there are many facets to the presence and benefits of entrepreneurs, the

entrepreneurial spirit, and overconfidence, not all of which are captured by our model.

But we believe that our theory has captured one important aspect of overconfidence and

entrepreneurial culture—a possibly rare but persistent presence of individuals who provide

information to their group—in a simple, reasonable, and intuitive model.

28



A Appendix: Recursion formula and proofs

A.1 Recursion formula for state-time probabilities

Let πns denote the probability of being in state s after n signals that can be inferred if the

true state is θ = 1. These probabilities are required to compute E[ṼR,n(λ)] and E[ṼOC,n(λ)]

in equations 1 and 4, respectively. The recursion formulae for deriving these probabilities

are as follows:

πn0 = pπn−1
−1 + qπn−1

1

πn−1 = λpπn−1
−2 + qπn−1

0

πn1 = λqπn−1
2 + pπn−1

0

πn−2 = λpπn−1
−3 + qπn−1

−1 + (1− λ)πn−1
−2

πn2 = λqπn−1
3 + pπn−1

1 + (1− λ)πn−1
2

πns = λqπn−1
s+1 + λpπn−1

s−1 + (1− λ)πn−1
s for 2 < |s| < k− 1

πn−k+1 = λqπn−1
−k+2 + (1− λ)πn−1

−k+1

πnk−1 = λpπn−1
k−2 + (1− λ)πn−1

k−1

πn−k = λqπn−1
−k+1 +πn−1

−k

πnk = λpπn−1
k−1 +πn−1

k

(A1)

with the starting value given by π0
0 = 1 if k ≥ 4.
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A.2 Proof of proposition 1

Proof of Part 1: Fix n and let Xi = 1 (Xi = −1) if the ith signal is high (low) and it can

be publicly inferred. Fix k(p′;p) = k, let Y1(n) denote the random number of publicly

inferred signals by the nth arrival if λ = λ1 and let Y2(n) denote the random number of

publicly inferred signals by the nth arrival if λ = λ2. Without loss of generality, let λ1 > λ2.

The state of publicly observed information at the nth arrival is S1
n =

∑Y1(n)
i=1 Xi if λ = λ1

and S2
n =

∑Y2(n)
i=1 Xi if λ = λ2.

The ex-ante probability that a rational individual makes an incorrect decision if she is

the nth arrival is equal to the probability that she accepts the project when the project is

an incorrect one (θ = −1) plus the probability that she does not accept the project when

the project is a good one (θ = 1). Thus, the probability of making an incorrect decision

when λ = λj is:

Pr[Sjn ≥ 1|θ = −1] · Pr[θ = −1]+ Pr[Sjn ≤ 0|θ = 1] · Pr[θ = 1]

= 1
2 · Pr[Sjn ≥ 1|θ = −1]+ 1

2 · Pr[Sjn ≤ 0|θ = 1]

= 1
2 · Pr[Sjn ≤ −1|θ = 1]+ 1

2 · Pr[Sjn ≤ 0|θ = 1].

(A2)

If λ1 > λ2 then Y1(n) is stochastically larger than Y2(n); i.e. Pr[Y1(n) > a] ≥

Pr[Y2(n) > a]∀a and ∀n. Consequently,
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1
2 · Pr[S1

n ≤ −1|θ = 1]+ 1
2 · Pr[S1

n ≤ 0|θ = 1]

= 1
2 · E[1(S1

n≤−1|θ=1) + 1(S1
n≤0|θ=1)]

= 1
2 · E[E[1(S1

n≤−1|θ=1) + 1(S1
n≤0|θ=1)|Y1(n)]]

= 1
2 · E[f(Y1(n))]

≤ 1
2 · E[f(Y2(n))]

= 1
2 · Pr[S2

n ≤ −1|θ = 1]+ 1
2 · Pr[S2

n ≤ 0|θ = 1]

(A3)

where the inequality follows from the fact that f(·) is a decreasing function because the

Xi are iid with E[Xi] > 0 and Y1(n) is stochastically larger than Y2(n). See Ross (1983,

Proposition 8.1.2).

For fixed λ, simply let Y1(n) denote the random number of publicly inferred signals

by the nth arrival if k = k1 and let Y2(n) denote the random number of publicly inferred

signals by the nth arrival if k = k2 and w.l.o.g. let k1 > k2. Now the remainder of the proof

is identical to the proof above.

Finally, since Xi are iid with E[Xi] > 0 the probability of making an incorrect decision

decreases with each successive arrival when λ and k are fixed. Thus, the greater is N the

smaller is the ex ante probability that a rational type will make an incorrect decision.

Proof of Part 2: Follows directly from the solution to the gambler’s ruin problem (see Ross

(1983, p.115f)).

Q.E.D.
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Notes

1Ross and Sicoly (1979) outline why information availability and attribution can have

an egocentric bias, and much of their argument would naturally apply to an egocentric

bias on judgment about relative precision of own vs. other’s information. In updating

a mean estimate, the relatively lower subjective variance about the internalized estimate

compared to the external estimate would then lead subjects to put too much weight on their

internal information and too little weight on external information. While such behavior (by

security analysts) has been documented in Abarbanell and Bernard (1992) and Batchelor

and Dua (1992), experimental studies of overconfidence that we are aware of show only

that subjects’ internal information generates assessments with too narrow a range. We are

unaware of experimental studies that test the relative overconfidence about internalized

vs. new external information.

2When the type of individual is unknown, each conforming individual could be an en-

trepreneur or a normal individual. This causes the public state Sn (defined below) to drift

(slowly) as more individuals conform. The algebra gets more complex (see Anderson and

Holt (1996)), but the intuition of our paper remains: information aggregation is poor, and

overconfidence /entrepreneurs can provide useful information to their group.

3In standard biology models, simultaneous within-group appearance is assumed in that

members of sibgroups interact only with other members of their sibgroup (although these

members need not be of the same genotype). Similarly, in Eshel, Samuelson, and Shaked

(1998), altruists survive only if they are clustered together with other altruists, but the

method to produce spacially correlated distributions of types is different: Altruists can

appear by imitating other altruists around them, which allows one altruist to more likely

benefit other altruists.
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4Both the consideration of small changes in characteristics (such as our introduction

of just modest overconfidence), and the consideration of a simultaneous appearance of

just a few altruistic individuals within the same group is standard practice in evolutionary

biology. If group benefits were not captured disproportionately by other entrepreneurs,

altruism (overconfidence ) would quickly disappear. Put differently, if the main beneficia-

ries were egoists, the altruistic type would likely disappear before it could help enough

another altruistic types to garner a survival benefit. Such a “proximity of types” condition

is necessary in calculations which employ Hamilton’s Rule to show that biological altruism

can increase and is usually accomplished by computing payoffs over paired sibgroups.

5Relatedness on the order of 5–10% is not implausible. Because marriage occurs pri-

marily in proximity (geographical, cultural), there is more genetic similarity among groups

than suggested by gene dispersion by random mating. This is readily visible in some per-

sistent local, regional, national, ethnic, and racial physical traits. For example, the gene for

dark skin is ubiquitous in sub-saharan Africa and non-existent in Europe. For a more ran-

dom set of polymorphic genes/traits subject more to genetic drift than selection, Lewontin

(1974) estimates that 85.4% of the genetic variance among humans is between individuals,

8.3% between populations, and 6.3% is between races. Cavalli-Sforza (1969) finds that in-

dividuals in alpine villages in the Parma valley of Italy display a genetic similarity of about

3%.

6The issue of social/cultural mechanisms as replacements for biological mechanisms is

itself rather interesting, and the subject of much debate between sociologists and biologists

(e.g., Rogers (1988)). For our paper, we note that the evolution of social institutions is

only fairly recent in the history of homo sapiens, while imitation has been documented in

many vertebrate species (see, e.g., Robert M. Gibson and Jacob Hoglund (1992)). Finally,

social mechanisms could also exert pressure towards other, non-overconfidence based
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mechanisms that help to resolve the information aggregation problem differently, e.g.,

with culture and conversation.

7This is a different definition from the standard evolutionary stable strategy (ESS) defini-

tion, because we are also concerned with across-group dynamics and not only with within-

group dynamics.

8Models in which individuals can either follow or learn (but not both) and in which the

marginal cost/benefits to both activities are equal in equilibrium can be found in Boyd and

Richerson (1988) and Rogers (1988). This typically results in learning that is suboptimal

from a group-perspective. Biological models in which some, but not all individuals pursue

an activity in their own self-interest, and in which an optimum interior proportion develops,

can be found in Smith (1974), Cornell and Roll (1981), and Weibull (1995).
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Figure Legend:

Figure 1 shows the probabilities that normal individuals late in the queue end up in a correct

and in an incorrect informational cascade, as a function of the private signal precision (p) in a

group of N = 250 individuals. The probability of not being in a cascade approaches 0 very rapidly.

For example, the 10th individual is in a cascade with probability 97.5% if p = 0.6, 99% if p = 0.75,

and 99.98% if p = 0.9. The 50th individual is in a cascade with probability in excess of 99.99999%

for these three p’s. The inner-most two lines are the probabilities of ending up in a right or a

wrong cascade in the straight informational cascade without entrepreneurs scenario. The outer

lines are the same probabilities in the presence of 5% entrepreneurs with modest overconfidence

(k(p′;p) = 12) and extreme overconfidence (k(p′;p) = ∞).
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Figure Legend:

Figure 2 plots the optimal proportion of entrepreneurs (λ?) as a function of the degree of

overconfidence (k) for two values of individuals’ signal precision p and group size N. The figure

shows that when the degree of overconfidence becomes more extreme, it is better for groups

to contain fewer entrepreneurs. When overconfidence is modest, however, it can be optimal for

groups to contain only entrepreneurs.
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Figure Legend:

Figure 3 plots the optimal proportion of entrepreneurs (λ?) as a function of each individual’s

private signal precision (p). Holding group size constant (see legend), the optimal proportion of

entrepreneurs decreases with private signal precision; over a certain range, the optimal proportion

of entrepreneurs can be either one or zero.
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Figure Legend:

Figure 4 plots the optimal proportion of entrepreneurs (λ?) as a function of group size (N)

for various degrees of overconfidence (k) and holding private signal precision constant at p = 0.6.

(A higher p would shift the respective functions towards the south-east.) When overconfidence is

infinite, the optimal proportion of entrepreneurs is zero for smallN, then reaches a maximum, and

finally asymptotes towards zero. When overconfidence k is finite, the optimal proportion closely

closely tracks the infinite-overconfidence proportion below a critical population size, and quickly

converges to 100% just above this critical population size.
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Figure Legend:

Figure 5 plots some stationary strategy distributions (πi,t ∀i) when population size N is 100,

signal precision p is 0.51, and overconfidence k(p′;p) is a modest 4. In this example, the socially

optimal proportion of entrepreneurs is 100%. Although the (unplotted) Pareto-optimal stationary

distribution has mass 100% at λ = 1, other plotted distributions are also stationary from an

evolutionary perspective. For example, the rightmost plotted distribution shows that if 1% of

groups in the population have 90 entrepreneurs, 21.2% have 91 entrepreneurs, and 77.8% have 92

entrepreneurs, then so will the next generation.
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Figure Legend:

Figure 6 plots some stationary strategy distributions when population size N is 100, signal

precision p is 0.51, and overconfidence (k) is a large 12. The socially optimal proportion of en-

trepreneurs is 42.5%. Yet, the Pareto-best distribution of groups contains on average only about 1

entrepreneur per group.
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