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Default and Punishment in General
Equilibrium

Pradeep Dubey, John Geanakoplos and Martin Shubik∗

Abstract

We extend the standard model of general equilibrium with incomplete mar-
kets to allow for default and punishment. The equilibrating variables include
expected delivery rates, along with the usual prices of assets and commodities.
By reinterpreting the variables, our model encompasses a broad range of adverse
selection and signalling phenomena (including the Akerlof lemons model and the
Rothschild�Stiglitz insurance model) in a general equilibrium framework.
Despite earlier claims about the nonexistence of equilibrium with adverse

selection, we show that equilibrium always exists.
We show that more lenient punishment which encourages default may be

Pareto improving because it increases the dimension of the asset span without
increasing the number of assets traded.
We deÞne an equilibrium reÞnement that requires expected delivery rates for

untraded assets to be reasonably optimistic. Default, in conjunction with this
reÞnement, opens the door to a theory of endogenous assets. The market chooses
the promises, default penalties, and quantity constraints of actively traded assets.

Keywords: default, incomplete markets, adverse selection, moral hazard, equi-
librium reÞnement, endogenous assets
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1 Introduction

There is a substantial amount of default in the American economy. At Þrst glance
this would seem to be a sign of disequilibrium, and to call for economic models
that radically depart from the orthodox paradigm of general equilibrium and market
clearing.

Indeed, general equilibrium theory has for the most part not made room for
default. In the Arrow�Debreu model of general equilibrium with complete contingent
markets (GE), and likewise in the general equilibrium model with incomplete markets
(GEI), agents keep all their promises by assumption. More speciÞcally, in the GE
model, agents never promise to deliver more goods than they personally own. In
the GEI model, the deÞnition of equilibrium (that has been developed in a rapidly
growing literature) allows agents to promise more of some goods than they themselves
have, provided they are sure to get the difference elsewhere. Agents there too must
honor their commitments, though no longer exclusively out of their own endowments.
Each agent can keep his promises because other agents keep their promises to him.

We build a model that explicitly allows for default, but is broad enough to incor-
porate conventional general equilibrium theory as a special case. We call the model
GE(R,λ,Q) because each asset j is deÞned by its promise Rj , the penalty rate λj
which determines the punishment for default on the promise, and the quantity re-
striction Qj attendant on those who sell it.

Fixing exogenously the set A of tradeable assets,

A = {(Rj ,λj , Qj) : (Rj ,λj , Qj) is tradeable},

we solve for equilibrium E(A). The equilibrating variables include anticipated deliv-
ery rates on assets, along with the usual prices of assets and commodities.

One of the central features of our model is that assets are thought of as pools.
Different sellers of the same asset will typically default in different events, and in
different proportions. The buyers of the asset receive a pro rata share of all the
different sellers� deliveries, just as an investor today does in the securitized mortgage
market, or in the securitized credit card market. Pooling drastically reduces the
information processing and transactions costs of trading assets, which explains its
increasing prevalence in modern economies.

We have in mind the huge, anonymous markets now becoming so common on
Wall Street. Mortgages today are promises sold by homeowners to banks, who then
sell them into mortgage pools (totalling around $3 trillion). The bank plays a minor,
administrative role, collecting payments and verifying the eligibility of the homeown-
ers (according to criteria speciÞed by the pool, not the bank). The bank receives a
�servicing fee� for its efforts, and passes the default and prepayment risk on to the
shareholders in the pool. The analysis therefore properly shifts from the one-on-one
interaction of banker and homeowner to the pool level of anonymous shareholders
(lenders) and borrowers, which is more akin to perfect competition.

Just as buyers of commodities are assumed in perfect competition to regard prices
as Þxed, so we assume that buyers of assets regard default rates as Þxed. The general
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equilibrium model we present in Section 2 thus stands in contrast to models in which
a single lender and a single borrower negotiate with each other.1

Even though our pools are perfectly competitive, heterogeneous default still cre-
ates adverse selection. Sellers with a proclivity for default have incentive to sell
disproportionately many promises into the pool, thereby worsening the pool�s deliv-
ery rate. We show in Section 11 that the adverse selection and signalling phenomena
described by Akerlof (1972), Spence (1973), and Rothschild and Stiglitz (1976) can
all be captured in our perfectly competitive framework. Moral hazard also enters
the picture: Þrst because sellers have a choice not to deliver, and second, because a
seller of many assets will be less able to fully deliver on any of them than if he had
refrained from overextending himself.

We have avoided a (perfectly competitive but) partial equilibrium treatment of
our subject because we wanted to evaluate the system-wide consequences of default.
In a world in which promises can exceed physical endowments, each default can begin
a chain reaction. A creditor in one market where payment does not occur is deprived
of the means of delivery in another market where he is the debtor, thereby causing
a further default in some other market, etc. The indirect effects of default might be
as important as the direct effects, but they are missed in partial equilibrium models.
We emphasize in Section 5 that these chain reactions occur exclusively in economies
with intermediate levels of Þnancial development, such as the system now in place
in the United States. Agents hold complicated portfolios that in many states cause
them to deliver money to their creditors at the same time they receive many from
their debtors. Once the asset markets become sophisticated enough to incorporate
supernetting (or else to include pure Arrow securities), the system of interlocking
debts will be broken, as in the GE model, and no chain reactions will occur.

Another central feature of our model is that the subset A∗ ≡ A∗(E(A)) ⊂ A of
actively traded assets

A∗ = {(Rj ,λj , Qj) ∈ A : (Rj ,λj , Qj) is positively traded in E(A)}

also emerges in equilibrium. The promises, penalties, and sales limitations corre-
sponding to actively traded assets can thus themselves be regarded as endogenous.

A crucial role in the endogenous determination of asset trade is played by the
expectations agents have over the deliveries of assets that are not actively traded.
(In game theoretic terms, this is analogous to beliefs off the equilibrium path.) We
Þx these expectations for non-traded assets at reasonable levels by a straightforward
equilibrium reÞnement, described in Section 3. The idea is to introduce an external
ε-agent who sells ε units of each asset and fully delivers, and to take the limit as
ε → 0. This rules out irrational pessimism on expected deliveries from untraded
assets. The simplicity of the reÞnement is due to our hypothesis of perfect competition

1 If the banks �cherry pick� their loans, selling only the worst ones into the pools, or if the agencies
which organize the pools likewise retain the best loans, then game theoretic considerations come to
the foreground, and the analysis becomes vastly more complicated. The system currently in place in
the United States is designed to eliminate or at least discourage such cherry picking. To the extent
it is successful, perfect competition becomes a plausible idealization of reality.
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consistently applied.2

Our Þrst goal is to show that if agents have the mental powers to anticipate
future rates of default (contingent on future events), just as they are presumed by
conventional equilibrium theory to have the mental powers to anticipate future prices
(contingent on future events), then default is consistent with the orderly function of
markets. In Section 4 we prove the existence of equilibrium with default under exactly
the same conditions necessary to prove the existence of equilibrium in the GEI model
(where default is ruled out by assumption.) More precisely, we show that our reÞned
equilibrium E(A) exists for every collection A of assets (R,λ,Q) for which Q < ∞,
or for which Q =∞ but the promises R are all paid in the same numeraire.

Our second goal is to give a purely economic explanation for lenient default penal-
ties. In Section 6 we give two fundamental reasons. When markets are incomplete,
default allows agents to tailor-make promises into deliveries that suit them best. In
effect they can replace the given assets by more appropriate assets. Second, the span
of the asset deliveries can be made much larger than the span of the asset promises,
since a single given asset can be made into as many different assets as there are seller
types, if different types default differently on the same promises.

Transactions and liquidity costs guarantee that the number of actively traded
Þnancial assets will be less than the number of states of nature. By allowing sellers the
option of delivering differently into a common pool, the economy reaps the beneÞts
of spanning while eliminating the costs of trading many assets. We illustrate this
by an extreme example in Section 7 where one pool with the appropriate promise
and default penalties achieves the same Þnal allocation as a complete set of Arrow
securities.

Our Þnal goal is to show that even in a world without trading costs, assets are
endogenous. Whereas in GEI the selection of assets is usually regarded as outside the
model, here we can resolve the asset selection problem by focusing on the endogenous
determination of actively traded assets A∗. Typically in GEI, every (nonredundant)
asset is actively traded, so A = A∗. However, in equilibrium with default, there
will be many assets in A\A∗ which are priced by the market, but neither bought
nor sold.3 The reason is that with default, the sale of an asset is not the negative
of its purchase. The buyer receives only what is delivered, but the seller gives up
in addition penalties for what is not delivered. The marginal utility of buying may
thus be strictly less than the marginal disutility of selling, leaving room for a price
in between at which no agent will want to buy or sell.

Recall that each asset (Rj ,λj , Qj) is characterized by three dimensions. If the set
A of available assets is comprehensive (i.e., all conceivable levels and combinations
of the three asset dimensions are present in A), then we prove in Section 8 that A∗
will in effect select the Arrowian levels: completely spanning promises, with inÞnite
penalties, and nonbinding quantity constraints. On the other hand, if two of the

2To the best of our knowledge, this appears to be the Þrst analogue of the �trembling hand�
reÞnement of game theory in perfectly competitive equilibrium. (In Section 3.2 we distinguish our
reÞnement from the trembles used in strategic market games to induce trade.)

3 In some applications we might choose to limit A exogenously; the point is that even if A is
inclusive, A∗ will still be limited.
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dimensions in A are exogenously restricted away from their Arrowian levels, then
the forces of supply and demand will endogenously select the levels in the remaining
dimension in A∗ to be far from Arrowian, as we show in Sections 9, 10 and 11.

In Section 9 we consider an example with all the Arrow promises, plus the riskless
promise. When penalties are exogenously restricted to be low, we show that none
of the Arrow securities can be actively traded (in reÞned equilibrium), so that the
market endogenously chooses the riskless promise.

Suppose promises and quantity constraints are Þxed exogenously as in Section 6,
where we showed that optimal penalties should be intermediate. We ask in Section
10 how harsh the penalties will be that endogenously emerge in A∗. We Þnd that the
forces of supply and demand do select a unique penalty, which in the example turns
out to be optimal.

We show in Section 11 that if promises and penalties are Þxed exogenously in
a particular way, our model includes the insurance contracts of Akerlof (1972) and
Rothschild�Stiglitz (1976). In that case A∗ endogenously selects quantity limits Qj .
This enables us to show how the phenomenon of signalling can be treated in perfect
competition, moreover without jeopardizing the existence of equilibrium.

Green (1973) introduced a one-period temporary-equilibrium model in which
agents had no option but to deliver on previous promises as long as they had en-
dowments, and then were penalized in case of a shortfall. As in our model, deliveries
were pooled. At the same time agents traded futures contracts, based on exoge-
nously speciÞed expectations of future delivery rates. But since future states were
not modeled, no connection was made between actual future deliveries and antici-
pated deliveries. Therefore the issue of rational expectations on active markets, much
less that of pessimism on inactive markets, could not arise. This eliminated the need
for equilibrium reÞnement, and the possibility of endogenous asset selection and sig-
nalling. The impact of default, and of the severity of its punishment, on the efficiency
of equilibrium was also not considered. Nevertheless, Green�s paper is remarkable for
introducing pooling in 1973, before it became so prevalent in practice.

2 Default in Equilibrium: The GE(R,λ, Q) Model

2.1 The Economy

As in the canonical model of general equilibrium with incomplete markets (GEI), we
consider a two-period economy, where agents know the present but face an uncertain
future. In period 0 (the present) there is just one state of nature (called state 0), in
which H agents trade in L commodities and J assets. Then chance moves and selects
one of S states which occur in period 1 (the future). Commodity trades take place
again, and assets pay off. The difference from GEI is that in our GE(R,λ,Q) model,
assets pay off in accordance with what agents opt to deliver. Our notation for the
exogenous variables is:

` ∈ L = {1, ..., L} = set of commodities
s ∈ S = {1, ..., S} = set of states in period 1
S∗ = {0} ∪ S = set of all states
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h ∈ H = {1, ...,H} = set of agents
eh ∈ RS∗×L+ = initial endowment of agent h
j ∈ J = {1, ..., J} = set of assets
Rj ∈ RS×L+ = promise per unit of asset j of each commodity ` ∈ L in each state

s ∈ S
uh : RS

∗×L
+ → R = utility function of agent h

λhsj ∈ R+ ≡ R+ ∪ {∞} = real default penalty on agent h for asset j in state s
Qhj ∈ R+ = bound on sale of asset j by agent h
We assume that no agent has the null endowment, and that all named commodities

are present in the aggregate, i.e.,

ehs = (e
h
s1, ..., e

h
sL) 6= 0

for all h ∈ H and s ∈ S∗, and

es` =
X
h∈H

ehs` > 0

for all s` ∈ S∗ × L. Also each uh is continuous, concave and strictly increasing in
each of its S∗×L variables. Having assumed strict monotonicity and concavity, there
is no further loss of generality in assuming that uh(x)→∞ whenever ||x||∞ →∞.4

Agents h have heterogeneous, state-dependent endowments ehs ∈ RL+ and disutil-
ities of default λhsj .

Promises must be of a limited kind j ∈ J Þxed a priori. A promise j ∈ J speciÞes
bundles of goods (or services) to be delivered in each state:

Promise Rj =



}− state 1 goods
}− state 2 goods

}− state S goods.

Agents h make promises by selling various quantities ϕhj of each asset j. An
agent�s ability to keep a promise depends on how many promises he sells, both of
the same kind j, and of other kinds j0 6= j. Moral hazard enters the picture, since
a buyer of an asset (i.e., lender) does not know which other promises the seller (i.e.,
borrower) has made, and because borrowers have the option to default.

Adverse selection enters the picture because agents have different endowments
out of which to keep their promises, and also different disutilities of default.

Each kind of asset prescribes a limit on its sale, ϕhj ≤ Qhj . Limits on sales of
promises are natural in any realistic model of credit.5 If Qhj = 0, then agent h is

4Let uh be concave, continuous, and strictly monotonic. Let ¤ = {x ∈ RS
∗L

+ : ||x||∞ ≤
2||Ph e

h||∞}. Let L be the set of affine functions L : RS
∗L

+ → R such that L(x) ≥ uh(x) for
all x ∈ RS∗L+ , and L(x) = f(x) for some x ∈ ¤. DeÞne �uh(x) ≡ infL∈L L(x). Then equilibrium with
uh and �uh coincide, and �uh has the desired property.

5Evidence abounds that Þnite bounds are always imposed in the extension of credit. Even the
best �name� among borrowers has a limited credit line.
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essentially forbidden from selling asset j. If the limits Qhj are very large, they may
be entirely irrelevant, as they mostly are in the examples of Sections 6 to 10.6 But
if they are small, then they may be used as a signal that the sellers are not making
many promises, and hence that the promises are reliable. We explore signalling in
example B in Section 11.

An economy is deÞned as a vector

E =
µ
(uh, eh)h∈H ,

³
Rj , ((λ

h
sj)s∈S, Q

h
j )h∈H

´
j∈J

¶
.

Note again that assets consist of promises, penalties for default, and limits on sales.

2.2 Equilibrium

2.2.1 Macro Variables and Individual Choice Variables

Let us deÞne
p ∈ RS∗×L++ = commodity prices
π ∈ RJ+ = asset prices
K ∈ [0, 1]S×J = expected delivery rates on assets
xh ∈ RS∗×L+ = consumption of h
θh ∈ RJ+ = asset purchases of h
ϕh ∈ RJ+ = asset sales of h
Dh ∈ R(S×L)×J+ = deliveries by agent h on asset j ∈ J
In conventional general equilibrium theory, market prices (p,π) convey all relevant

information (trade is anonymous). The possibility of default forces us to add delivery
rates K as macro variables

In our model, an agent h buys θhj shares of each asset pool j and sells ϕ
h
j promises

into each pool. Different sellers h and �h may deliver differently, Dhj 6= D�hj , but their
promises cannot be distinguished. We suppose that buyers and sellers do not trade
bilaterally, but through the anonymous pool. The buyers (shareholders) of pool j
receive a pro rata share of all its different sellers� deliveries. Each share of pool j
delivers the fraction

Ksj =

P
h∈H ps ·DhsjP
h∈H ps ·Rsjϕhj

of its promise ps · Rsj in state s. The shareholder of pool j does not know, or need
to know, the identities of the sellers or the quantities of their sales. All that matters
to him is the price πj of the share and the delivery rate Ksj .

Pooling dramatically reduces the information needed to buy a diversiÞed portfolio
of risks: instead of forecasting individual deliveries Kh

sj for many different individuals
h, a buyer need only concern himself with a single average delivery Ksj . Figuring
out Kh

sj for one individual is typically no less difficult than estimating Ksj for a pool
with a large population. Thus pooling overcomes the costly information processing

6 In Section 5 we are able to prove the existence of equilibrium even when Qhj = ∞, provided
λÀ 0 and the Rj all deliver in the same good.
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problems inherent in multiple bilateral negotiations, and is one reason why it is
becoming so prevalent in modern economies.

The pooling also leads to adverse selection, since a buyer must worry that un-
reliable sellers with a proclivity for lower deliveries will tend to sell more promises
into the pool, worsening the anticipated rate Ksj . Signalling, by publicly committing
oneself to a small quantity of sales, therefore has an important role to play, because
it suggests to the buyer that deliveries may be more reliable. To incorporate it in our
model, we suppose that there are many pools j, each with its own quantity limit Qj
imposed on sales into the pool. This opens up the opportunity for agents to signal
their restraint by selling into a pool with low Qj .

By enabling each agent to trade anonymously as part of a large aggregate, pooling
already takes us part of the way toward perfect competition. We fully get there by
postulating that all agents view (p,π,K) as Þxed. Perfect competition thus further
reduces the information a buyer requires: there is no need for him to forecast how
the delivery rate at any pool would vary if the price were changed, since he can�t
change the price.

The terms (Rj , ((λhsj)s∈S, Qhj )h∈H) of pool j are set exogenously, just as the loca-
tion, date, and quality of a commodity are in traditional general equilibrium theory.
The prices πj , the anticipated delivery rates Ksj , and the trades (θhj ,ϕ

h
j )h∈H at each

pool j are all determined endogenously at equilibrium by the market forces of supply
and demand.

2.2.2 Household Budget and Payoff

The budget set Bh(p,π,K) of agent h is given by:

Bh(p,π,K) =

(
(x, θ,ϕ,D) ∈ RS∗×L+ ×RJ+ ×RJ+ ×RJ×S×L+ :

p0 · (x0 − eh0) + π · (θ−ϕ) ≤ 0; ϕj ≤ Qhj for j ∈ J ; and, ∀s ∈ S,

ps · (xs − ehs ) +
X
j∈J

ps ·Dsj ≤
X
j∈J

θjKsjps ·Rsj


The budget set allows agent h to deliver whatever he pleases. On the other

hand, the agent expects to receive a fraction Ksj of the promises bought by him
via asset j in state s. The Þrst constraint says that agent h cannot spend more on
purchases of commodities x0 and assets θ than the revenue he receives from the sale
of commodities eh0 and assets ϕ. Moreover he can never sell more than Q

h
j of any

asset j. The second constraint applies separately in each state s ∈ S. It says that
agent h cannot spend more on the purchase of commodities xs and asset deliveriesP
jDsj in state s than the revenue he gets in state s from commodity sales ehs and

asset receipts
P
j θjKsjpsRsj .

The only reason that agents deliver anything on their promises is that they feel a
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disutility λhsj from defaulting. The payoff of (x, θ,ϕ,D) given prices p, to agent h is

wh(x, θ,ϕ,D, p) = uh(x)−
X
j∈J

X
s∈S

λhsj [ϕjps ·Rsj − ps ·Dsj ]+
ps · vs .

where vs ∈ RL+ is exogenously speciÞed with vs 6= 0. Note that [ϕjps ·Rsj−ps ·Dsj ]+ ≡
max{0,ϕjps · Rsj − ps · Dsj} is exactly the money value of the default of h on his
promise to deliver on asset j in state s.

Notice that the budget set is convex, and the payoff function wh is concave, in
the household choice variables (x, θ,ϕ,D). Had we expressed these choices with other
(apparently natural) variables, such as δhsj ≡ delivery per unit promised, the budget
set would no longer be convex, nor would wh be concave.

It is worth noting a scaling property of the budget set (which is immediate from
its deÞnition and the fact that ehs 6= 0 and ps À 0 for all s ∈ S∗): (x, θ,ϕ,D) ∈
Bh(p,π,K) and 0 < α < 1 ⇒ (αx,αθ,αϕ,αD) ∈ Bh(p0,π0,K 0) for all (p0,π0,K 0)
sufficiently close to (p,π,K). This property will often be useful to us.

2.2.3 Default Penalties

Once we allow for default it is evident that society has much to gain from punishing
those agents who fail to keep their promises. In a multiperiod world, market forces
themselves might provide some incentive to keep promises, since agents who acquired
a bad reputation for previous defaults might Þnd it more difficult to obtain new
loans. Collateral is also a very important device for guaranteeing at least partial
payment (see Geanakoplos, 1997); but here we ignore it. For reasons of simplicity and
tractability, we conÞne attention to a two period model with exogenously speciÞed
default penalties which are increasing in the size of the default. These penalties
might be interpreted as the sum of third party punishment such as prison terms,
pangs of conscience, (unmodeled) reputation losses, and (unmodeled) garnishing of
future income.

Default in our model can either be strategic or due to ill fortune. Penalties are
imposed on agents who fail to deliver, whatever the cause. Debtors choose whether
to repay or to bear the penalty for defaulting; creditors cannot observe why default
occurs. Agents who have no resources to repay will be punished as severely as they
would if they had the resources but chose not to repay.7 The consequences of default
penalties are therefore two-fold: they tend to induce agents to keep promises when
they are able, and they tend to discourage agents from making promises that they
know in advance they will not always be able to keep.

Although in practice the severity of the penalty (e.g., a felony vs. a misdemeanor)
depends on the nominal amount, and that is only adjusted slowly in the face of
inßation, we suppose the adjustment is instantaneous, so that the penalties depend

7In our model default penalties do not distinguish fraud from ill fortune. In reality they are hard
to separate, but ever since Las siete Partitas of Don Alfonso X �the wise,� bankruptcy law has sought
to distinguish them.
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on the �real� default. Accordingly, we divide nominal defaults by the market price
in state s of a Þxed basket of goods vs.

For simplicity (and for the facility of doing comparative statics) we have taken
the default penalty to be linear and separable in the amount of default.8 But we can
easily accommodate more general payoffs wh which allow for the marginal rate of
substitution between goods to depend on the level of default. All that is needed for
Theorem 1 is the continuity and concavity of wh. For Theorem 2 we need to assume,
in addition, that given any x, wh(x, θ,ϕ,D, p) < uh(eh) if the default in any state,
on any asset, is sufficiently large.

One could easily imagine a legal system that imposes penalties that are noncon-
cave and even discontinuous in the size of the default, for example trigger penalties
that jump to a minimum level at the Þrst inÞnitesimal default. One could also imag-
ine conÞscation of commodities in case of default. Our model does not explicitly allow
for these possibilities. But as we show in our working paper (Dubey�Geanakoplos�
Shubik, 2000), with a continuum of households, such modiÞcations to the default
penalties do not destroy the existence of equilibrium.

2.2.4 Market Clearing

We are now in a position to deÞne aGE(R,λ, Q) equilibrium. It is a list hp,π,K, (xh, θh,
ϕh,Dh)h∈Hi such that (1) to (4) below hold.

(1) For h ∈ H, (xh, θh,ϕh,Dh) ∈ argmaxwh(x, θ,ϕ,D, p) over Bh(p,π,K)
(2)

P
h∈H(x

h − eh) = 0
(3)

P
h∈H(θ

h − ϕh) = 0

(4) Ksj =

(P
h∈H ps ·Dhsj/

P
h∈H ps ·Rsjϕhj , if

P
h∈H ps ·Rsjϕhj > 0

arbitrary, if
P
h∈H ps ·Rsjϕhj = 0

Condition (1) says that all agents optimize; (2) and (3) require commodity and
asset markets to clear. Condition (4), together with the deÞnition of the budget set,
says that each potential lender (i.e., buyer) of an asset is correct in his expectation
about the fraction of promises that do in fact get delivered. Moreover, his expectation
Kh
sj = Ksj of the rate of delivery does not depend on anything he does himself; in

particular, it does not depend on the amount θhj he loans (i.e., purchases) of the asset.
Every lender gets the same rate of delivery.

Since heterogeneous borrowers may be selling the same asset, the realized rate of
delivery Ksj is an average of the rates of delivery of each of the borrowers, weighted
by the quantity of their sales. It might well happen that those borrowers with the
highest rates of default are selling most of the asset, and this is the adverse selection
and moral hazard that rational lenders must forecast.

8See Shubik�Wilson (1977).
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We believe that our deÞnition of GE(R,λ,Q) equilibrium embodies the spirit of
perfect, anonymous competition, and represents a signiÞcant fraction of the mass
asset markets of a modern enterprise economy.

3 Equilibrium ReÞnement

3.1 Untraded Assets

It is a curious fact that many of the large asset markets that our model seeks to de-
scribe have been initiated not by entrepreneurs but by government intervention. The
government, for example, began the GNMA mortgage program by guaranteeing de-
livery on the promises of all borrowers eligible for the program (but not the timing9 of
delivery). It is likely, however, that these mortgage markets would function smoothly
even without government guarantees. Private companies indeed do sell insurance on
non-GNMA mortgages. A reasonable question to ask is why the securitized mortgage
market did not begin on its own?

One possible explanation is provided by our model. When assets are actively
traded, expected deliveries Ksj must be equal to actual deliveries. Expectations
cannot therefore be unduly pessimistic. But for assets that are not actively traded,
our model makes no assumption about expectations of delivery (see (4)). In the
real world, investors with no experience in observing default rates might tend to
overestimate their probability. This can create serious problems, in practice as in our
model. In the model, so far, there is nothing to stop the expectations from being
absurdly pessimistic, which in turn will support trivial equilibria with no trade in
the asset. The point is easily seen by a simple example. Consider an equilibrium of
an economy in which certain assets are missing. Introduce these new assets j but
choose their prices πj close to zero. Then no agent will be willing to sell them, for
he gets very little in exchange, but undertakes a relatively large obligation either to
deliver commodities or to pay default penalties. Also choose the Ksj to be positive
but even smaller. Then in spite of their low price, no agent will be willing to buy
the assets since he expects them to deliver virtually nothing. Thus we have obtained
trivial equilibria in which there is no trade of the new assets on account of arbitrarily
pessimistic expectations regarding their deliveries.

We believe that unreasonable pessimism prevents many real world markets from
opening, and provides an important role for government intervention. But it is inter-
esting to study equilibrium in which expectations are always reasonably optimistic.
It is of central importance for us to understand which markets are open and which are
not, and we do not want our answer to depend on the agents� whimsical pessimism.

3.2 ReÞned Equilibrium

Expectations for deliveries by assets that are not traded are analogous to beliefs in
game theory �off the equilibrium path.� Selten (1975) dealt with the game theory

9A default induces the government to prepay the loan immediately, even if the lender would prefer
the scheduled payments.
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problem by forcing every agent to tremble and play all his strategies with probability
at least ε > 0, and then letting ε → 0. We shall also invoke a tremble, but in
quite a different spirit. Our tremble will be �on the market� and not on households�
(players�) strategies. Indeed, it might well be that no household could tremble the
way we want.

Consider an external ε-agent who sells and buys ε = (εj)j∈J À 0 of every asset,
and fully delivers on his promises. (One might interpret this agent as a government
which guarantees delivery on the Þrst inÞnitesimal promises.) This extraordinary
delivery is what banishes whimsical pessimism.10

An equilibrium E(ε) obtained with the ε-agent is called an ε-trembling hand
equilibrium. Thus any such E(ε) = hp(ε),π(ε),K(ε), (xh(ε), θh(ε),ϕh(ε),Dh(ε))h∈Hi
must satisfy:

(1∗) (xh(ε), θh(ε),ϕh(ε),Dh(ε)) ∈ argmaxwh(x, θ,ϕ,D, p(ε)) overBh(p(ε),π(ε),K(ε))

(2∗)
X
h∈H

(xhs (ε)− ehs ) =

0 if s = 0X
j∈J

εj(1−Ksj(ε))Rsj if s ∈ S

(3∗)
X
h∈H

(θh(ε)− ϕh(ε)) = 0

(4∗) Ksj(ε) =


ps(ε) ·Rsjεj +

X
h∈H

ps(ε) ·Dhsj(ε)

ps(ε) ·Rsjεj +
X
h∈H

ps(ε) ·Rsjϕhj (ε)
if ps(ε) ·Rsj > 0

1 if ps(ε) ·Rsj = 0

Since the ε-agent buys and sells εj units of each asset j, asset market clearing (3∗)
is as before. But since he delivers fully εjRsj on his promises, and gets delivered only
εjKsj(ε)Rsj , on net he injects the vector of commodities

P
j∈J εj(1 − Ksj(ε))Rsj

into the economy in each state s ∈ S. This explains (2∗). Finally, condition (4∗)
says that delivery rates are boosted by the external agent. (The delivery rate is
irrelevant when promises ps(ε) · Rsj = 0, and we have arbitrarily set it equal to 1.)
As ε→ 0, this boost disappears for assets that are positively traded in the limit. But
10 In the strategic market games literature it has been observed that markets can be arbitrarily

shut because each agent expects that no other agent will go there, and hence does not go himself.
Those markets are truly opened simply by announcing any price: trade will necessarily be induced,
unless there were no gains to trade to begin with. Unfortunately, in our model, the problem is not so
simple. As we saw in our thought experiment, it is always possible to announce some prices (π,K)
that eliminate all buying and selling, arbitrarily shutting the asset markets. To truly open them, we
need to pick appropriate (π,K). This is achieved by our carefully chosen tremble.
In strategic market games an external agent was introduced simply to trade, because any trade

necessarily led to the formation of a price, which is all that was required. He could easily be replaced
by a tremble on household strategies which forced them to trade instead. This expedient does not
work for asset markets in the presence of default. Our external agent must trade and deliver fully.
Replacing him with households who tremble (and deliver less than fully on average), will lead to
more equilibria, defeating the purpose of our reÞnement.
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if εj/
P
h∈H ϕ

h
j (ε) does not go to zero, the limiting rates Ksj will be boosted (unless

there is no default by the real agents).
An equilibrium E = hp,π,K, (xh, θh,ϕh,Dh)h∈Hi is called a reÞned equilibrium if

there exists a sequence of ε-trembling hand equilibria E(ε) with ε→ 0 and E(ε)→ E.
We could have imagined an external agent who delivers only 70% of his promises,

instead of 100%. It is clear that any �100% reÞned equilibrium allocation� is a �70%
reÞned equilibrium allocation,� thus explaining why our choice of 100% deliveries
gives the sharpest reÞnement.

In our deÞnition of equilibrium, there is one price for each asset, including those
assets that are not actively traded. With perfect competition, there is no possibility
for price taking agents to offer different prices with the hope of luring a better selection
of sellers.11 We can justify this situation in several ways. Suppose that buyers are
aware of the delivery rates K at the market prices π, and perhaps of K(ε) at prices
π(ε) a penny off from market prices. But they lack the knowledge or computing power
to infer what K 0 would be at prices π0 far from π. They might therefore presume they
will get the same selection of sellers no matter what price they quote, giving them
no incentive to deviate from market prices. Alternatively, a buyer might understand
full well how K 0 depends on π0, but he should realize that he alone cannot serve all
the potential sellers he would get if he actually quoted π0 > π, and he should make
the cautious assumption that he is likely to be reached Þrst by the sellers who are
most anxious to sell, that is by the sellers who were already selling at π. Thus again
the buyer expects the same selection of sellers as elicited by the market price, and is
left with no incentive to deviate from the market price. We return to this discussion
in our Rothschild�Stiglitz example in Section 11.

In Sections 8 to 11, on the endogeneity of the asset structure, and in our sequel
paper (Dubey�Geanakoplos, 2001), we show that the equilibrium reÞnement plays a
crucial role in determining whether an asset j is positively traded (j ∈ A∗) or not
(j ∈ A\A∗).

3.3 Computing ReÞned Equilibria

Solving equilibrium conditions (1)�(4) generally gives too many equilibria E. Check-
ing which E are reÞned seems at Þrst glance to be a daunting task. It requires
constructing an inÞnite sequence of equilibria E(ε) → E, as ε → 0, satisfying (1∗)�
(4∗).
11Putting the matter differently, we regard an asset or contract as deÞned by the obligations of the

seller, including the penalties if he fails to deliver, and the quantity limitations on his sales. The price
of the contract is set by competition between sellers and buyers, that is, by the market. Agents need
only think about one prevailing price for each contract. In the Rothschild�Stiglitz view, the price
is one of the terms deÞning the contract. In this view, there is no such thing as a single contract;
there are as many contracts as there are prices. Notice that the Rothschild�Stiglitz view must regard
market clearing as one of rationing. At most prices, the contract will not be traded, because either
supply or demand is zero, and the other side of the market is rationed. This point of view has been
admirably expressed by Gale. In our view competitive equilibrium should be deÞned by a single
price at which both supply and demand are equal (possibly both zero), as long as expectations at
that price are set at rational levels.
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With differentiable utilities and interiority of consumption, however, we can give
algebraic conditions on E that are easy to check and necessary for E to be reÞned.
This often dramatically simpliÞes the search for reÞned E. (See examples A4 and A5
in Sections 9 and 10.) If it turns out that there is a unique E satisfying the algebraic
conditions, then from our existence theorem we can conclude at once that E is a
reÞned equilibrium without bothering with the sequence E(ε). (In fact E would then
be the unique reÞned equilibrium.)

3.3.1 Agents on the Verge of Trading

Suppose utilities uh are differentiable, and suppose at a reÞned equilibrium (p,π,K,
(xh, θh,ϕh,Dh)h∈H) we have ps ·xhs > 0 for all h and all s. We can deÞne the marginal
utility of money in state s to each agent h by µhs = [∂u

h(xh)/∂xs`]/ps` for any ` with
xhs` > 0. The marginal utility to h of purchasing any asset j is then

MUhj =
SX
s=1

µhsKsjps ·Rsj

and the marginal disutility of selling asset j is

MDUhj =
SX
s=1

psj ·Rsjmin
(
λhsj
ps · vs , µ

h
s

)

An agent is said to be on the verge of buying (selling) asset j if he is not buying
(selling) it, but would do so if the price πj were ever so slightly lowered (raised):

verge of buying: πj =MU
h
j /µ

h
0

verge of selling: πj =MDU
h
j /µ

h
0

If, in the reÞned equilibrium, ps · Rsj > 0 and Ksj < 1, then we know that in
the perturbation E(ε), some agent h was actually selling j and not fully delivering
in state s (otherwise Ksj = 1 on account of the external agent). It also follows that
some agent was buying j (since markets clear in the perturbation and the external
agent buys and sells the same amount of asset j). Passing to the limit, we conclude
that at a reÞned equilibrium

πj = max
h
{MUhj /µh0} = min

h
{MDUhj /µj0}

for all untraded assets j for which 0 < Ksjps ·Rsj < ps ·Rsj for some s ≥ 1. We call
this the on the verge condition.

In particular, it follows that our reÞnement uniquely speciÞes πj (from the verge
of selling condition) once we know all the ps and xhs . Furthermore, if in addition we
knew a priori the ratios Ksj/Ks0j (for example Ksj = Ks0j) for all s ≥ 1, then from
the verge of buying equality we could deduce all the levels Ksj as well.
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3.3.2 Robustly Inactive Assets

The on the verge condition appears not to leave any gap between the marginal utility
of buying and selling an asset j with default. If this were truly so, then one would
generically Þnd that there was positive trade in all assets. But as we have emphasized,
and shall see in the examples to come, equilibrium often involves inactive assets.

The explanation of the paradox is that there is a gap, but it is Þlled by the external
agent. In E(ε) delivery rates K(ε) are boosted above delivery rates �K(ε) of the real
agents. If the marginal utility of buying were computed using �K(ε) instead of K(ε),
the gap would be visible.

4 The Orderly Function of Markets with Default

Our Þrst goal in this paper is to establish that default is completely consistent with
the orderly function of markets. To that end we prove that under fairly general
conditions, reÞned equilibrium always exists in our model.

The universal existence of equilibrium is somewhat surprising because of the his-
torical tendency to associate default with disequilibrium (or more accurately, to make
full delivery part of the deÞnition of equilibrium), as we have already remarked. Fur-
thermore, endogeneity of the asset payoff structure is known to complicate the exis-
tence of equilibrium with incomplete markets. But we show that no new existence
problems arise from the endogeneity of the asset payoffs due to default.

The universal existence of equilibrium with default is also surprising because the
pioneering papers placing adverse selection in a model of competition, by Akerlof
(1972) on the market for lemons, and Rothschild and Stiglitz (1976) on insurance
markets, purportedly showed that adverse selection is quite commonly inconsistent
with equilibrium. (We discuss Rothschild�Stiglitz in example B1.)

We are now ready to state our main theorem, which is that GE(R,λ, Q) equi-
librium always exists, even if we insist on the equilibrium reÞnement discussed in
Section 3. Its proof is given in the Appendix.

Theorem 1 For any λ ∈ RHSJ+ and Q ∈ RHJ+ , a reÞned equilibrium exists, where
R+ = R+ ∪∞.

Our proof uses the fact that ϕhj ≤ Qhj by assumption. Later the Qhj will play an
important role as signals, but now the reader may wonder what would happen if they
were eliminated, or taken to be enormously large. Recall that there is a pathology
that occasionally occurs even when there is no default, for example in the GEI model.
Sometimes two assets j and j0 that promise different commodities nevertheless become
nearly equivalent at some spot prices (ps)s∈S because they then promise nearly the
same money. At these prices the number of independent assets suddenly drops, and
demand blows up as agents try to go inÞnitely long in asset j0 and inÞnitely short in
asset j (or vice versa). This destroys the existence of equilibrium. The bounds Qhj
prevent this, as Radner (1972) long ago pointed out for the GEI model.
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In the GEI model without short sale constraints like the Qhj , equilibrium can only
be guaranteed if all the assets promise payoffs exclusively in the same good (say L)
in each state s ∈ S. (See Geanakoplos�Polemarchakis (1986).) The asset matrix R
then is effectively reduced to S × J dimensions.

Default provides another reason why two assets that make different promises
might, given certain macro variables (p,π,K), actually deliver the same money in
every state. One should therefore wonder if default introduces additional difficulties
in proving the existence of equilibrium. We have just seen that in the presence of the
bounds Qhj it does not. Even without the bounds Q

h
j , we can show that equilibrium

exists, provided that all assets deliver in the same commodity. (See Appendix.)

Theorem 2 Let all promises Rj be exclusively in good L for all s ∈ S and let
Rj 6= 0 for all j ∈ J. DeÞne GE(R,λ) = GE(R,λ, Q) with Qhj =∞, ∀h ∈ H, j ∈ J .
Then GE(R,λ) exists for any vector λ ∈ RHSJ+ with

P
s∈S λ

h
sjRsLj > 0 for all h ∈ H

and j ∈ J.

5 Chain Reactions, Netting, and Supernetting

5.1 Chain Reactions

In modern Þnancial economies, agents often are long and short in many different
assets. They rely on revenues from their loans to keep their own promises. But these
revenues are only as reliable as the loans other agents have made to yet different
parties, thus opening the possibility of a chain reaction of defaults. If α defaults
against β, forcing β to default against γ, forcing γ to default against δ, then in our
deÞnition of equilibrium, α, β, and γ will pay default penalties, and the total utility
loss from defaults will be large. Curiously this phenomenon is at its most dangerous
when the Þnancial system is at an intermediate level of development, with smoothly
functioning markets that permit agents to go short, but without some Þnely tuned
assets, forcing agents to hold complicated portfolios to achieve the risk spreading
they desire.

Consider a world with four agents and three possible future events, each consisting
of many different states of the world. Suppose β wants to consume in the Þrst event,
γ in the second event, and δ in the third event. Suppose agents β, γ, and δ have no
endowment in the future states. Suppose α wants to consume in the present, but has
a considerable endowment of goods in the future, except in one unlikely state ω in
the third event.

If there were an advanced Þnancial system of Arrow securities, agent α would in
effect sell directly to each of the other three agents. For example, with just three
Arrow securities, each one paying off exclusively in a different one of the three events,
agent α would sell the Þrst Arrow security to β, the second to γ, and the third to
δ. Agent α by himself would default in state ω, and he alone would pay a default
penalty.
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Suppose, however, that in a less advanced Þnancial system there are again three
securities available. R123 promises 1 dollar in every state, R23 promises 1 dollar in
(every state in) events 2 and 3, and R3 promises 1 dollar in (every state in) event 3.
Then in equilibrium we could expect α to sell R123, β to buy R123 and to sell R23,
γ to buy R23 and to sell R3, and δ to buy R3. In the bad state ω in event three,
the chain of defaults indicated above will take place. The penalty that α pays for
starting the chain reaction may be very small compared to the total penalty incurred
by the rest of the defaulters.

A diagram may make the situation clearer.

1

2

3

State
space Asset

R123
Promises

R23 R3

1 0 0

1

1 1 1

1 0

Figure 1

Notice that the asset span is exactly the same as with the three Arrow securities.
What makes the chain of defaults possible is the interlocking asset trade, with in-
vestors receiving and delivering in a long chain, in some state. With Arrow securities
this chain would never reach more than two links and one default.

Another way around these chain reactions is to encourage market intermediation
that nets payouts.

5.2 Netting and Supernetting

Netting and supernetting curtail chain reactions, but they are difficult to implement in
practice, though they are becoming more common. They can be easily accommodated
in our model, however. Consider Þrst the variation of our GE(R,λ, Q) model in
which an agent h�s purchases and sales of any given asset j are netted, so that he
owes (ϕhj − θhj )+ps ·Rsj , and receives Ksj(θhj − ϕhj )+ps ·Rsj .

One can go a step further and imagine supernetting across different assets that
an agent has traded in.12 Now deliveries are no longer made separately on each asset,
but there is one combined net payment in every state s ∈ S. Here an agent owes
{Pj∈J(ϕ

h
j − θhj )ps ·Rsj}+ and receives Ks{

P
j∈J(θ

h
j − ϕhj )ps ·Rsj}+.

12 Institutionally this may be regarded as a clearinghouse.
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It is interesting to note that both netting and supernetting destroy the convexity
of the budget set. For example, with netting, the state s budget constraint becomes

ps · (xhs − ehs ) +
X
j∈J

ps ·Dhsj ≤
X
j∈J

Ksjps ·Rsj(θhj − ϕhj )+

where the RHS is convex instead of concave. In our working paper (Dubey�Geanakoplos�
Shubik, 2000) we show nevertheless that reÞned equilibrium exists with a continuum
of agents.

6 The Economic Advantages of Intermediate
Default Penalties with Incomplete Markets

There are four fundamental drawbacks to reducing the default penalties λ so far that
some agents choose to default in at least some states in equilibrium: (1) creditors, ra-
tionally anticipating that they might not be repaid (on account of direct and indirect
reasons), are less likely to lend; (2) borrowers may not repay even in contingencies
that have been foreseen, and even though they are able; (3) imposing penalties is a
deadweight loss; (4) the default of unreliable agents imposes an externality on reliable
agents who, because they cannot distinguish themselves from the unreliable agents,
are forced to borrow on less favorable terms.

Akerlof regarded the fourth (externality) cost of default as so important that
for this reason alone he suggested it would always be worthwhile to reduce default
by imposing penalties on defaulters. By analogy one could ask manufacturers of
products to issue guarantees to replace any defective parts, and in addition to pay
for all damages caused by defective parts.

Our second goal in this paper is to show that despite myriad reasons why default
is socially costly, the beneÞts from permitting some default often outweigh all of these
costs. These beneÞts are basically twofold, and both stem from the fact that markets
are incomplete to begin with. First, an agent who defaults on a promise is in effect
tailoring the given security and substituting a new security that is closer to his own
needs, at a cost of the default penalty. With incomplete markets one set of assets may
lead to a socially more desirable outcome than another set. Second, since each agent
may be tailoring the same given security to his special needs, one asset is in effect
replaced by as many assets as there are agents, and so the dimension of the asset span
is greatly enlarged. A larger asset span is likely to improve social welfare (although
this gain must be weighed against the deadweight loss of the default penalties that
are thereby incurred). In short, permitting default allows for a plethora of additional
assets that do not have to be speciÞed in advance. Each agent can tailor the simple
standard contract to Þt his idiosyncratic situation.

A third beneÞt from allowing default, which is closely related to the Þrst two,
is that when there is no netting, agents can go long and short in the same security,
thereby doubling their asset span. We make use of this in the following example.
(The examples could be presented with netting, or supernetting, but then we would
need more assets and a more cumbersome analysis to make the same points.)
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Let there be three agents and S = 3 states of nature, let there be one good in
each state, L = 1, and suppose agents have no utility for consumption at t = 0. Each
agent has the same utility

u(x1, x2, x3) =
3X
s=1

log(xs).

The endowments of the agents are

e1 =

 0
1
1

 ; e2 =
 1
0
1

 ; e3 =
 1
1
0

 .
We take the collection of asset promises to be

R0 =

 1
1
1

 ; R1 =
 1
0
0

 ≡ 11; R2 =
 0
1
0

 ≡ 12; R3 =
 0
0
1

 ≡ 13.

We take default penalties to be one of three types:

λhsj = ∞, ∀h, s, j;
λhsj = λ > 0, ∀h, s, j;

λhsj =

½∞ if ehs = 1
0 if ehs = 0

.

In every case the penalty deßator vs = 1 ∀s ∈ S. Until Section 11 we take
Qhj =∞ ∀h, j.

Notice that the Þrst two penalties are completely anonymous, since they are the same
whatever the name of the defaulter, and whatever his circumstances. The last penalty
type is inÞnite when agents have the resources to pay, and 0 otherwise. They do not
depend on the name of the defaulter, but they do depend on his circumstances; they
require more information to carry out. The information required is identical to the
sort of information an insurance company must obtain to verify that an accident
has occurred. Indeed in example A2 and in Section 11 we shall use these penalties
precisely in order to render insurance a special case of default.

Observe that all these examples satisfy the assumptions of Theorem 2.13 Hence
we can be sure a reÞned equilibrium exists. In our calculations we shall often be able
to show that there is a unique equilibrium satisfying the �on the verge� condition.
Since reÞned equilibria must also satisfy that condition, we can conclude that the
�on the verge� equilibrium must be the reÞned equilibrium, sparing us the tedious
computations of the ε-trembles.
13Actually log(x) is not continuous at 0, so by �log x� we really mean log x =½
lnx if x ≥ δ
1
δ
x+ ln δ − 1 if 0 ≤ x ≤ δ where lnx is the conventional logarithm to base e, for some very small

δ > 0.
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Version A0: Arrow Assets: Pure Promises, InÞnite Penalties, and InÞnite
Quantity Constraints
The Arrow�Debreu equilibrium in our example can easily be calculated as p =

(1, 1, 1) and xh = (2/3, 2/3, 2/3), ∀h ∈ H. It can be implemented as a GE(R,λ, Q)
if A consists of the three Arrow assets j = 1, 2, 3. Let J = {1, 2, 3}, with Rj =
1j , for each j ∈ J , and let the default penalties and sales constraints be set at
inÞnity, λhsj = Qhj = ∞, ∀h ∈ H, s ∈ S, j ∈ J . The equilibrium is given by
(p,π,K, (xh, θh,ϕh,Dh)h∈H) where p = (1, 1, 1), π = (1, 1, 1), Ksj = 1, ∀sj, xh =
(2/3, 2/3, 2/3), θh = 2/3 · 1h, ϕh = 1/3 · eh, and Dhsj = 1/3 if h 6= s = j, and 0
otherwise.

In theGE(R,λ, Q) equilibrium just described, the volume of trade is 2/3 in each of
the three asset markets. Notice that there is some trivial multiplicity in the equilibria,
since agents could engage in wash sales and buy and sell the same asset. We could
instead have taken θh = (2/3, 2/3, 2/3), ϕh = eh, which has volume of trade equal
to 2 in each of three asset markets. However, with the tiniest of transactions costs,
wash sales would be eliminated, and the volume of trade would fall to 2/3.

Version A1: The Optimal Default Penalty with Incomplete Markets
In Version A0 we found that setting λhsj = ∞ gave a Pareto efficient outcome,

because it eliminated default. Setting λhsj = λ < ∞ would have led to a Pareto
worse outcome. Nevertheless, we shall argue in this section that when markets are
incomplete, it is often better to set intermediate default penalties. In Version A0,
markets for risk sharing were effectively complete.

Consider the economy as in A0, but with only one asset R0 = (1, 1, 1). Suppose
that the reason for default cannot be observed, so λhs0 = λ, ∀h, s. Agents who promise
delivery but do not have the good will default and suffer the penalty. Anticipating
this they will make fewer promises, and risk-sharing will be reduced.

We can calculate the equilibrium for any value of λ ∈ (1,∞). When λ ≤ 1 buyers
realize that sellers will not deliver anything, so demand will be zero and equilibrium
will involve no trade. When λ → ∞ buyers will anticipate full delivery, but sellers
will realize that with probability 1/3 they will not be able to avoid a crushing penalty,
and so again equilibrium trade goes to 0. By setting an intermediate level of default
penalties we can make everybody better off. We graph the situation schematically in
welfare space:
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Arrow-Debreu equilibrium

W = U _ (default)22

= 6/5= *

1 or =<

W = U _ (default)11

Figure 2

In equilibrium different sellers default differently. The buyers of the asset receive
the average deliveries of all the sellers. For instance, when λ = λ∗ = 6/5, sellers in
their good states deliver fully, and sellers in their bad state default completely. Thus
our example illustrates the pooling aspect of assets, namely that investors buy shares
of a pool of individually sold promises.

At λ = 6/5, x1 = (1/3, 5/6, 5/6), x2 = (5/6, 1/3, 5/6) and x3 = (5/6, 5/6, 1/3),
θh = ϕh = ϕ = 1/2 ∀h and Ks0 = K = 2/3 ∀s. By buying and selling 1/2
unit of the asset R0, agent h gains 1/3 = (2/3)(1/2) = Kθh when s = h and
gains (−1/6) = (2/3)(1/2) − 1/2 = Kθh − ϕh in the two states s 6= h. Agent h
delivers fully when s 6= h because his marginal utility of consumption after delivery
is 1/(5/6) = 6/5 = λ∗. When s = h, agent h defaults completely since his marginal
utility of consumption 1/(1/3) = 3 > λ∗. Since for any s ∈ S we have 2 agents
with h 6= s, Ks0 = 2/3. Thus the asset promise R0 = (1, 1, 1) actually delivers
(2/3, 2/3, 2/3) per unit promise. Agent h = 1 delivers 1/2 · (0, 1, 1), agent h = 2
delivers 1/2 · (1, 0, 1), and agent h = 3 delivers 1/2 · (1, 1, 0). The reason each agent
buys and sells only 1/2 a unit of asset R0 instead of a full unit to get to the Arrow�
Debreu allocation is that the sale of ϕ units of the asset is accompanied by the loss of
ϕλ utiles for the inevitable default in state s = h. The marginal utility from buying
the asset is (2/3)(6/5) + (2/3)(6/5) + (2/3) · (3) = 18/5; the marginal disutility from
selling is also (6/5) + (6/5) + (6/5) = 18/5. (It is therefore more convenient to take
π0 = 18/5.)

A consequence of pooling is that the volume of trade is high. In equilibrium (when
λ = 6/5), each agent sells 1/2 unit of the asset, giving a total volume of trade equal to
3 · 1/2 = 3/2, much greater than the volume of trade per asset in the Arrow�Debreu
equilibrium.
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When 1 < λ < 6/5, agents default in every state, delivering nothing in their bad
state and delivering D(λ) only up to the point where the marginal utility of consump-
tion equals λ in their good state. The reader can verify thatK(λ) = (6λ−6)/(4λ−3),
D(λ) = 3 − (3/λ), ϕ(λ) = (4/3) − (1/λ), and x1(λ) = (2(1 − (1/λ)), 1/λ, 1/λ), etc.
Clearly as14 λ → 1, x1(λ) → (0, 1, 1), D(λ) → 0, and K(λ) → 0. (Asset trade ϕ(λ)
does not go to 0 as λ → 1 because the log utility is −∞ at zero consumption.) As
λ ↑ 6/5, ϕ(λ), D(λ), and K(λ) are monotonically increasing, as is the utility of Þnal
consumption.

For λ ≥ 6/5, the agents always deliver if they have the goods on hand. Thus
Ks0 is maintained at 2/3, but asset trade again begins to drop because the inevitable
punishment makes selling less attractive. The formulas are messy and we do not
bother to present them here. An increase in the penalty rate beyond λ = 6/5 does
not improve risk bearing (since ϕ begins to drop), and it also increases the deadweight
loss from punishing agents who cannot deliver anyway. It thus strictly lowers welfare.

Furthermore, observe that as λ rises from 1 to λ = 6/5, the deadweight utility
loss from default

λϕ+ 2λ(ϕ−D) = 4

3
λ− 1− 10

3
λ+ 4 = 3− 2λ

actually falls, to 3/5. Since the allocation is improving, and the default penalty
is falling, we deduce that λ∗ = 6/5 leads to the Pareto best outcome among all
economies with λhsj = λ.

Example A1 illustrates that the optimal default penalty might be low enough to
encourage some real default, despite the attendant deadweight loss, when markets
are incomplete. It also illustrates that the possibility of default makes the asset
payoffs endogenous, since we do not know before an equilibrium is calculated what
the default rates will turn out to be. If we change the utilities or endowments of the
agents, or the default penalties, the equilibrium will change, the default rates will
change, and the asset payoffs will be different.

7 Transactions Costs and the Advantages of Pooling

Even if assets and penalties could be chosen simultaneously, there is good reason to
suppose that not every Arrow security would be actively traded. In practice, that
would be much too costly.

If every agent tried to market a personalized asset, tailor-made to his needs, buyers
would be confronted with a bewildering array of choices. The information processing
and evaluation costs would be prohibitive, forcing each buyer to consider only a few
of the assets. Trading costs would also be high because every market would be thinly
traded, with only a few buyers and just one seller.

14Recalling that log x = lnx only for x ≥ δ, we really require 2(1−(1/λ)) ≥ δ, that is, λ ≥ 2/(2−δ).
By taking δ small, 2/(2− δ) is just about 1.
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In our working paper (Dubey�Geanakoplos�Shubik, 2000) we formalized some of
these costs. We supposed that there are liquidity costs of selling or buying which
decline in the volume of total trade θ = ϕ =

P
h ϕ

h =
P
θh, but increase in the

amount θh or ϕh of individual trade. We also supposed that there is a further Þxed
�information-evaluation� cost of buying an asset that increases in the variance of
K. Whatever the precise formulation of these costs, it is evident that there can be
tremendous efficiency gains to pooling. Buyers are spared evaluation costs and all
traders reap the beneÞts of liquid markets.

In the real world, promises are indeed standardized, enabling liquid markets, even
though deliveries are idiosyncratic. Thus two agents take out the same insurance pol-
icy, under the same terms, even though it is perfectly understood that payments on
each will come in different states of the world. We present a concrete example to
illustrate ideal pooling, and to show how our model of default encompasses insur-
ance. The example shows that in some cases the Arrow�Debreu equilibrium can be
achieved with just one liquid asset, instead of many thinly traded Arrow assets. In
the real world of transactions costs, one would therefore expect to see heavily traded,
standardized assets, rather than Arrow securities.

Version A2: The Advantages of Standardized Pooled Assets
Consider the economy described in Section 6 with H = {1, 2, 3} and with just one

asset R0 = (1, 1, 1). Suppose that the default penalties are

λhsj =

½∞ if ehs = 1
0 if ehs = 0

that is, default penalties are inÞnite when agents have the resources to pay, and 0
otherwise. We might interpret state s as the state in which a bad accident happens
to agent h = s.

Let π0 = 3, p = (1, 1, 1). Agent h buys and sells 1 unit of the asset, θh = ϕh = 1,
giving volume of trade 3. (Recall that each Arrow security in example A0 had a
volume of trade of 2/3.) Each agent delivers fully when his endowment is 1, and
defaults completely when his endowment is 0. The upshot is that on net, agent h has
effectively bought an insurance contract. Indeed every agent has formally obtained
the same insurance contract (by virtue of making identical asset trades) but each has
insured his own idiosyncratic risk.

Since in every state two agent types deliver and the other type defaults,Ks0 = 2/3,
∀s ∈ S. Consumption by h in the state s = h where he has no endowment is thus
Ks0θ

hRs0 = (2/3)(1)(1) = 2/3. Consumption in the other states where he delivers
is ehs + Ks0θ

hRs0 − Dhs0 = 1 + 2/3 · (1)(1) − 1 = 2/3. We verify that this is a
GE(R,λ,∞) equilibrium by noting that the marginal utility of buying an extra unit
of the asset is

PS
s=1(∂u/∂xs)Ks0Rs0 =

3
2

¡
2
3

¢
+ 3

2

¡
2
3

¢
+ 3

2

¡
2
3

¢
, which is equal to the

marginal disutility of selling the asset
PS
s=1Rs0min

h
∂u
∂xs
,λhs0

i
= 3

2(1) +
3
2(1) + 0,

where 3/2 = [d log(2/3)]/dx is the marginal utility of consumption in each state.

Version A2 seems at Þrst glance like an artiÞcial example,because the penalties

22



themselves are idiosyncratic. But, as we said earlier, they are no more idiosyncratic
than insurance contracts.

8 Endogenous Asset Structures without
Transactions Costs

We have argued that with transactions costs it may be more efficient for trade to
be conducted via a relatively small number of liquid assets, rather than through a
huge number of thinly traded Arrow securities. We now show that, even without
transactions costs, the market forces of supply and demand will force all trade into
a small subset of the available assets. This is so even though we conÞne attention
to reÞned equilibria in which optimistic expectations tend to boost trade in every
market.

In some contexts it has become customary to think of endogenizing the asset
structure by allowing atomic agents to invent new assets (often one at a time) to
upset a prevailing equilibrium. These asset-creating agents are hypothesized to be
motivated by payoffs that might depend on the perceived volume of trade which
would take place in their new asset if no other prices changed (or in the new trading
equilibrium, after all prices equilibrated), or in some other way on their perceived
proÞts from introducing the new asset. When the status quo assets are chosen so that
none of these agents has an incentive to introduce a new asset, the asset structure is
said to have been endogenously determined. This approach to endogenizing the asset
structure inevitably involves a combination of price taking behavior and oligopolistic-
Nash thinking on the part of the asset-creating agents.

By contrast we follow a relentlessly competitive approach to the problem of en-
dogenous assets. Every agent is a price taker. An asset is endogenously missing in
our approach if it is not in A∗, i.e., if there is a price at which no agent wants to sell
or buy it.

Recall that an asset is speciÞed not just by its vector Rj of promises across states,
but also by the associated default penalties λhsj , and quantity constraints Q

h
j . If the

government could simultaneously and without limitations choose these parameters,
it would set them at the Arrowian levels: promises with full span, inÞnite penalties,
and nonbinding quantity constraints. Now we show the market would do the same.

Version A3: Arrow Securities Emerge When All Assets Are Available
Consider our standard example with H = {1, 2, 3}, but with four assets Rj = 1j ,

j = 1, 2, 3, and R0 = (1, 1, 1). Let the penalties be λhsj = ∞ if j = 1, 2, 3, and
λhs0 = λ∗ = 6/5 for all h and s. Despite the fact that the default penalty for asset
0 has been chosen �optimally,� the unique equilibrium (ignoring redundant trades)
is the Arrow�Debreu equilibrium of Version A0, so that asset 0 is not traded at all.
The forces of supply and demand determine that the Arrow securities are traded and
other assets are not.

We elevate this example to a theorem:
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Theorem 3 Let E = ((uh, eh)h∈H , (Rj , ((λhsj)s∈S, Qhj )h∈H)j∈J) be an economy which
includes all the Arrow securities: for each s ∈ S, there is an asset i = i(s) such that
RsLi = 1 and Rs0`i = 0 otherwise, with Qhi =∞ ∀h and λhsi =∞ ∀h and ∀s. Then
for any GE(R,λ, Q) equilibrium η = ((p,π,K), (xh, θh,ϕh,Dh)h∈H), we can Þnd
prices q ∈ R(1+S)L++ such that (q, (xh)h∈H) is an Arrow�Debreu equilibrium. More-
over, if λ À 0, no agent defaults on any actively traded asset in η, even if there
are assets j ∈ J with low λhsj. Finally, there is an equilibrium η0, possibly η itself,
with the same ((p,π,K), (xh)h∈H) such that the only actively traded assets in η0 are
Arrow securities.

Proof Let η be given. Let q0 = p0 and let qs = πi(s)(ps/psL), ∀s ∈ S. Let
vh(q) ≡ max{uh(x) : q · x ≤ q · eh, x ∈ R(1+S)L+ }.

Observe that Ksj = 1 for each asset j with λhsj = ∞ ∀h, s, if Rs 6= 0, since no
agent will default in the reÞnement and the external agent will be fully delivering. It
follows that by never defaulting, each agent h could, by selling and buying the Arrow
securities, achieve at least vh(q), that is,

uh(xh) ≥ uh(xh)− default penalty ≥ vh(q).
It follows that q ·xh ≥ q · eh ∀h ∈ H. Since η is an equilibriumP

h∈H x
h =

P
h∈H e

h.
Hence q · xh = q · eh ∀h ∈ H, and (q, (xh)h∈H) is an Arrow�Debreu equilibrium, and
the default penalty actually borne by each agent h ∈ H is zero.

Clearly each agent is indifferent to achieving xh via the actively traded assets in
η, or via Arrow securities. If every agent trades exclusively via Arrow securities, then
supply will equal demand, and we achieve the desired equilibrium η0. ¥

9 Endogenous Promises with Low Default Penalties

Theorem 3 shows that the market selects the Arrow promises inA∗ if default penalties
are inÞnite (for these promises). Here we give an example showing that if penalties
are low, the Arrow securities cannot be actively traded. The reason is that for every
state s ∈ S, there might be some agent who does not intend to deliver and is relatively
unworried about his punishment in that state (perhaps because he thinks the state is
relatively unlikely). He will have incentive to sell the corresponding Arrow promise
j and debase its Ksj , and therefore its price πj . This will effectively prevent agents
intending to deliver in state s from selling j. By raising the general level of default
penalties, this phenomenon is discouraged. As penalties are made harsher, A∗ will
tend to increase, provided that all promises are available in A.

Version A4: Arrow Securities Inactive with Low Penalties
Consider a variant of our examples with just two states S = {1, 2}, one commodity

L = 1, and three asset promises

R0 =

µ
1
1

¶
; R1 =

µ
1
0

¶
≡ 11; R2 =

µ
0
1

¶
≡ 12.
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Let there be two agents H = {1, 2} with period one endowments e1 = (1, 0), e2 =
(0, 1), and payoffs that depend on consumption (x1, x2) in period 1 and penalties:

W 1(x, θ,ϕ,D) =
2

3

log x1 − 2X
j=0

λ(R1jϕj −D1j)+
+ 1

3

log x2 − 2X
j=0

λ(R2jϕj −D2j)+


W 2(x, θ,ϕ,D) =
1

3

log x1 − 2X
j=0

λ(R1jϕj −D1j)+
+ 2

3

log x2 − 2X
j=0

λ(R2jϕj −D2j)+
 .

Note that each agent h effectively assigns probability 2/3 to his good state s = h,
and probability 1/3 to his bad state s 6= h. The penalty rate is λ in each state, on
all three assets. We shall show that for low values of λ only asset R0 will be actively
traded in equilibrium.

In any (symmetric) equilibrium, each agent will consume 1− x in his good state,
and x in his bad state. If λ ≥ 3, it is easy to check that the Arrow�Debreu allocation
(x1 = (2/3, 1/3), x2 = (1/3, 2/3)) is achieved via trade in the Arrow securities R1,
R2. But for λ ≤ 7/3, the Arrow securities are inactive in any reÞned equilibrium. To
quickly check this is so for λ < 2, simply note that the marginal disutility of selling
R2 is 13λ for agent h = 1 (since x

1
2 ≡ x ≤ 1/3, so 1/x ≥ 3 > 2 > λ). For agent h = 2

it is min{23λ, 23 1
1−x} ≥ min{23λ, 23} > 1

3λ if λ < 2. Thus agent h = 2 is not selling R2.
But agent h = 1 would default completely if he sold R2, hence R2 is not sold actively
in equilibrium. Similarly R1 is not actively traded. We leave it to the reader to show
that there is active trade in asset R0 for any 1 < λ ≤ 7/3 (the computation is similar
to version A1). For these λ the market endogenously chooses asset promises R0.

For 7/3 < λ < 3, both agents sell both Arrow securities R1 and R2, giving
delivery rates less than 1. As λ rises to 3, delivery rates converge to 1 and trades rise
to Arrow�Debreu levels.

10 Endogenous Default Penalties When Promises
Are Incomplete

When all asset promises are available, the market should and will exclusively trade
promises with inÞnite penalties. Let us suppose that the set A contains only a
limited variety of promises, far short of a complete set of Arrow promises. Given
these limitations on promises, in Section 6 we were able to ask how severe the default
penalties should be to promote economic efficiency. Since our model allows for the
possibility that different punishment regimes coexist at the same time, we can also ask
how harsh the punishment scheme will be that endogenously emerges in equilibrium.
For example, an agent could indicate his intention to perform a service, he could
orally commit to performing the service, he could put in writing that he promised
to perform a service, or he could draw up a contract with a lawyer announcing his
promise to perform a service. If all four of these promises are treated equally by the
courts, then there is no issue of selecting a punishment. But if the punishment in case
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of default is different for these different manners of making the same promise, then
in effect the parties to the agreement are choosing the severity of default penalties
attached to the promise. We shall now show that in our example, the forces of supply
and demand select the optimal default penalties.

Version A5: Endogenous Default Penalties
Consider the model of version A1 with only one asset promise R0 = (1, 1, 1) and

λhs0 = λ∗ = 6/5, ∀h ∈ H and ∀s ∈ S. It is natural to regard the penalty λ∗ as
imposed by a beneÞcent and knowledgeable government. But we may also regard λ∗

as emerging from the equilibrium forces of supply and demand.
Now let there be a Þnite number of additional assets Rj , all making the same

promises Rj = (1, 1, 1), but with default penalties λj = λhsj for all h ∈ H, s ∈
S, ranging at intervals of λ∗/100 from 0 to 100λ∗. The symmetry of the utilities,
endowments, and penalties guarantees (by symmetrizing the proof of Theorem 2) that
a symmetric, reÞned equilibrium must exist. (Symmetry means that ϕhj = θ

h
j = ϕj

for all h ∈ H and j ∈ J .) We shall now show that despite the myriad of available
assets, in every (symmetric) reÞned equilibrium, all trade will be conducted in the
assets j for which λhsj = λ

∗. We begin by describing an equilibrium of this type, and
then we show it is essentially the only (symmetric) equilibrium satisfying the �on the
verge� condition.

The equilibrium will involve exactly the same prices, delivery rates, trades, and
consumption as described in example A1 for the case λ = λ∗ = 6/5. There we
found that x1 = (1/3, 5/6, 5/6), x2 = (5/6, 1/3, 5/6), x3 = (5/6, 5/6, 1/3), and ϕhj∗ =
1/2 for all h, and Ksj∗ = 2/3 for all s. We must now extend that equilibrium to
deÞne prices πj and delivery rates Ksj for all the new assets. The �on the verge�
condition uniquely speciÞes all these (πj ,Kj) for j 6= j∗. Set π∗ = 18/5, and set
πj = min{λj , 6/5} + min{λj , 6/5} + min{λj , 3} for j 6= j∗, which is the marginal
disutility of selling asset j. At these prices agents are just indifferent between selling
j and j∗, so it is optimal to supply zero of j. Recall in example A1, πj∗ = 18/5 =
the marginal utility of buying or selling asset j∗.

The marginal utility of buying asset j must be equal to (18/5)/πj∗ = 1, i.e.,

6
5Kj +

6
5Kj + 3Kj

πj
= 1.

Hence Kj = (5/27)πj for all j ∈ J .
By concavity, since the Þrst-order conditions are satisÞed, each agent is indeed

maximizing by trading exclusively via asset j∗. We have thus displayed an equilibrium
in which (almost) any default penalty is available, yet only a single one (namely the
Pareto efficient penalty) is used in equilibrium.

We now argue that there can be no other reÞned (symmetric) equilibrium. In any
(symmetric) equilibrium we have consumption x1 = (2x, 1− x, 1− x), and similarly
x2 = (1− x, 2x, 1− x), and x3 = (1− x, 1− x, 2x). If x = 1/6, then all (πj ,Kj) are
deÞned, as in the last paragraph, by the �on the verge� condition and in this case
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only asset j∗ will be actively traded15 (aside from trivial wash sales in assets j with
λj > 3 and Kj = 1). If x > 1/6, then agent 1 has delivered up to a point in states 2
and 3 where his marginal utility of consumption 1/(1−x) > 6/5. He would not have
done that unless he was selling an asset with default penalty λj ≥ 1/(1−x) > 6/5. If
asset j delivers fully in every state, then it is irrelevant, since by symmetry each agent
is buying and selling an equal amount of it. But from the argument in the proof of
Theorem 2, if the asset did not fully deliver everywhere, then any agent buying and
selling it would default completely in at least one state. Since by symmetry every
agent buys and sells it, Kj ≤ 2/3. The marginal utility to purchasing asset j is at

most 23

³
1
2x +

1
1−x +

1
1−x

´
= 2

3
3x+1
(1−x)2x =

1
1−x +

1
(1−x)3x <

3
1−x (if x > 1/6) of utility in

period 1. The marginal disutility of selling asset j is at least 1
1−x +

1
1−x +

1
1−x =

3
1−x ,

a contradiction.
If x < 1/6, we shall show there can be no equilibrium price π∗ for asset j = j∗.

The marginal disutility of selling asset j∗ is 1
1−x+

1
1−x+

6
5 , since 1/(1−x) < 6/5 = λ∗.

Hence, the marginal disutility of selling is less than 18/5. It also follows that every
agent would deliver in each of his two good states if he were selling asset j∗. Hence
Ks0 ≥ 2/3, ∀s ∈ S, by our equilibrium reÞnement. The marginal utility of buying
asset j∗ is then at least 2

3
1
1−x +

2
3

1
1−x +

2
3
1
2x . For x < 1/6, the marginal utility of

buying is always larger than 18/5, hence larger than the marginal disutility of selling,
a contradiction.

Thus there is a unique equilibrium satisfying the on-the-verge conditions. Since
every equilibrium must be interior, our existence theorem guarantees that we have
found (the unique) reÞned equilibrium.16

11 Endogenous Quantity Constraints: Signalling

We saw in Section 10 that the forces of supply and demand could endogenously
select unique default penalties that are active in equilibrium, out of an arbitrarily
large array of possibilities. Here we show an analogous result holds for quantity
constraints. We present a last example illustrating the theme from our sequel paper
(Dubey�Geanakoplos, 2001).

Version B
Consider our standard example, but now with 6 households whose endowments

are e1 = (0, 1, 1), e2 = (1, 0, 1), e3 = (1, 1, 0), e4 = (1, 0, 0), e5 = (0, 1, 0), and

15For 6/5 < λj < 3, no agent will deliver anything on asset j in his bad state, since he consumes
1/3 and 3 > λj . Hence if j is actively traded, Kj ≤ 2/3, contradicting our formula Kj = (5/27)πj =
(5/27)(6/5 + 6/5 + λj) > 2/3. If λj < 6/5, and yet consumption in the good state is 5/6, then no
agent who actively sells j will deliver anything on j in any state. Hence if j were active Kj would
be zero, contradicting our formula for Kj .
16The lesson of A5 is not that equilibrium always picks the optimal penalty, or even that equilibrium

always picks a unique active penalty. The lesson is that equilibrium robustly chooses a small number
of active penalties, i.e., it chooses the terms of active contracts. In future research we will pursue the
competitive contract choice when agent types can be ranked in order of average proclivity to default.
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e6 = (0, 0, 1). The utilities of all households are identical: u(x) =
P3
s=1 log xs. Their

default penalties are given by

λhsj =

½ ∞ if ehs = 1
0 if ehs = 0

for all h ∈ H, s ∈ S, j ∈ J.

All assets j ∈ J = {1, 2, ..., 100} entail the same promises Rj = (1, 1, 1), but different
quantity constraints Qj = j/30.

We may think of households h ∈ {1, 2, 3} as reliable, since they will deliver in
2 out of 3 states; and h ∈ {4, 5, 6} as unreliable, since they will deliver only in
1 state. The model now clearly displays the potential for adverse selection, since
the unreliable have incentive to sell more of any asset, and therefore to be more
than proportionately represented in the pool, thereby debasing the pool deliveries.
Signalling one�s reliability by selling an asset with a low quantity constraint, therefore
has an important role to play. This is all the more so if an exclusivity constraint is
imposed, prohibiting households from selling more than one asset.

Rothschild and Stiglitz argued (in an oligopolistic version of this example) that
there might not be any equilibrium under these circumstances. But they showed that
if an equilibrium exists, it must be separating: reliable and unreliable households will
sell different assets.

The exclusivity constraint renders the budget set nonconvex, thus preventing this
example from being covered by existence Theorems 1 and 2. Nevertheless, it can be
shown that reÞned equilibrium always exists, and is always unique (in consumption),
in such insurance economies. (See Dubey�Geanakoplos (2001).) In our numerical
example, there is indeed an equilibrium in which all the reliable households buy and
sell asset 9 up to its quantity limit Q9 = 9/30, while all the unreliable households buy
and sell asset 30 up to its quantity limit Q30 = 30/30 = 1. Hence K9 = 2/3 = π9,
and K30 = 1/3 = π30. Assets j ∈ {10, 11, ..., 100} are priced so that the unreliable
households are on the verge of switching to them, with 1/3 < πj = Kj < 2/3 for
assets j = 10, ..., 29, and πj = Kj = 1/3 for assets j = 31, ..., 100. Assets j ∈ {1, ..., 8}
are priced so that the reliable households are on the verge of switching to them with
2/3 < πj = Kj < 1 (unless Qj is too low, in which case Kj = πj = 1). For more
details, see (Dubey�Geanakoplos, 2001).

Our reÞned equilibrium is precisely the same (in consumption) as the separating
equilibrium Rothschild�Stiglitz obtain in an economy made up equally of reliable
agents with probability 1/3 of accident and unreliable agents with probability 2/3 of
accident. A crucial difference is that when the proportion of reliable agents tends to
1, our equilibrium persists unchanged, while theirs ceases to exist.

The universal existence and uniqueness of the insurance equilibrium is made pos-
sible by our perfectly competitive framework. In Rothschild�Stiglitz an entrant could
upset a candidate equilibrium by introducing an asset with a new quantity constraint
and a new price, (Q,π). The entrant could persuade buyers that this contract would
yield a high K, thereby justifying its price and disrupting the old equilibrium. In our
example, every Q is already marketed and priced at equilibrium (by the reÞnement).
The �new� Q is a red herring. The real point of Rothschild�Stiglitz is that the en-
trant can quote a new price, which will attract a different clientele, and thus justify a
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different K. Perfect competition does not permit agents to quote new prices � they
are all price takers.

Imagine that a little bank in Peoria decides to offer mortgages at 6%, instead of
the prevailing pool rate of 7%. It Þgures to get a better clientele, attracting so many
new, reliable homeowners (who were not until then borrowing at all) that the default
rate would fall from 3% to 1%, thereby improving the net payoff from 4% = 7%−3%
to 5% = 6%− 1%. In a massive market, we feel that the Peoria bank will be sadly
disappointed. It seems likely that its Þrst customers will be the old homeowners
who will jump at the chance to reÞnance their 7% loans into 6% loans. The new
homeowners, who found 7% too steep to borrow at all, will have much less incentive
to run to Peoria. But the little Peoria banker will not have the trillions of dollars
needed to give loans to everybody. He should cautiously assume that the customers
most likely to reach him before he runs out of money are no better on average than
those in the huge pool. This caution is embodied in our equilibrium reÞnement.

Our reÞnement is simple enough so that equilibrium always exists and is easy to
compute. Yet it is strong enough to give a unique equilibrium, namely the separating
equilibrium. We quote from Dubey�Geanakoplos (2001), since this point was also
emphasized there:

Perfect competition not only simpliÞes the equilibrium, but also its reÞne-
ment. In the contract theory literature, when two parties are in face-to-
face meetings, an extensive form game is created, in which the reÞnements
are vastly more complex. They require agents to engage in a long chain of
hypothetical reasoning about each other. For example, in the reÞnement
of Cho and Kreps (1987), h must think about what j thinks about what
every other player k (including h himself) is thinking about, in order to
deduce whether j will be able to deduce who he is dealing with. It pre-
supposes common knowledge of private, individual characteristics; and
calls upon each agent not only to think through many iterations, but to
believe that others are doing likewise. Our reÞnement strains credulity
less. There is no hypothetical reasoning and no chain. Agents think only
about the observable macro aggregates Kj . The concrete, inÞnitesimal
actions of the external agent are relevant only through their impact on
the Kj ; indeed their purpose is to render the Kj observable.
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12 Appendix

12.1 Proof of Theorem 1

Suppose Þrst that penalties are Þnite, λ ∈ RHSJ+ . Fix a tremble ε = (εj)j∈J À 0. We
shall prove the existence of an ε-trembling hand equilibrium for small enough ε. For
any small lower bound b > 0, deÞne

∆b =

(
(p,π) ∈ RS∗×L+ ×RJ+ :

LX
`=1

ps` = 1 ∀s ∈ S∗,

b ≤ ps` ∀s` ∈ S∗ × L, and 0 ≤ πj ≤ 1
b ∀j ∈ J

)
.

Choose M large enough to ensure that: ||x||∞ > M ⇒ uh(x) > uh(2
P
h0∈H e

h0) for
all h ∈ H. (By assumption, uh(x) → ∞ as ||x|| → ∞, so such an M exists.) Now
deÞne, for each h ∈ H, ¤h = {(x, θ,ϕ,D) ∈ RS∗×L+ × RJ+ × RJ+ × RSLJ+ : kxk∞ ≤
M, θj ≤ 2

P
h0∈H Q

h0
j , ϕ

h
j ≤ Qhj , and ||D||∞ ≤ ||Q||∞||R||∞}. Let ¤H ≡Xh∈H¤h.

Denote η ≡ (p,π,K, (xh, θh,ϕh,Dh)h∈H) ∈ ∆b × [0, 1]S×J ×¤H ≡ Ωb.
Consider the map K̄b : Ωb → [0, 1]S×J deÞned by

K̄bsj(η) =

min


ps ·Rsjεj +
X
h∈H

ps ·Dhsj

ps ·Rsjεj +
X
h∈H

ps ·Rsjϕhj
, 1

 , if ps ·Rsj 6= 0

1 , if ps ·Rsj = 0

for each s ∈ S, j ∈ J . Clearly K̄bsj is a continuous function.
Next, consider the correspondence ψ0b : Ωb ⇒ ∆b deÞned by

ψ0b(η) = argmax
(p,π)∈∆b

(
p0 ·

X
h∈H

(xh0 − eh0) + π ·
X
h∈H

(θh − ϕh)

+
X
s∈S

ps ·
X
h∈H

(xhs − ehs )−
X
j∈J
(1− K̄bsj(η))Rsjεj

 .
Clearly this map is non-empty and convex-valued, and USC.

Finally for each h ∈ H, deÞne the correspondence ψhb : Ωb ⇒ ¤h by

ψhb (η) =argmax
x,θ,ϕ,D

{wh(x, θ,ϕ,D, p) : (x, θ,ϕ,D) ∈ Bh(p,π,K) ∩¤h}.

Notice that ψhb is non-empty valued and convex-valued, thanks to the continuity and
concavity of wh, for all h ∈ H. To check that Bh(p,π,K) ∩ ¤h is LSC, let pn, πn,
Kn n→ p̄, π̄, K̄ with p̄ À 0. Let (x̄, θ̄, ϕ̄, D̄) ∈ Bh(p̄, π̄, K̄). Fix 0 < α < 1. Then
(αx̄,αθ̄,αϕ̄,αD̄) ∈ Bh(pn,πn,Kn)∩¤h for sufficiently large n by the scaling property
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of the budget set, because p̄s · ehs > 0 ∀s ∈ S∗. Since α was arbitrary, this shows
that Bh(p,π,K)∩¤h is LSC in (p,π,K) whenever pÀ 0. Since Bh(p,π,K) ∩¤h is
clearly USC, ψhb is USC by the maximum principle.

Let ψb : Ωb ⇒ Ωb be the correspondence deÞned by

ψb(η) = ψ
0
b(η)× {K̄b(η)}× X

h∈H
ψhb (η).

By Kakutani�s theorem ψb has a Þxed point ηb ≡ (pb,πb,Kb, (xh(b), θh(b),
ϕh(b),Dh(b))h∈H). To avoid notational clutter, we suppress the b.

Note that in state 0, p0 · (
P
h(x

h
0 − eh0)) + π · (

P
h(θ

h −ϕh)) = 0 (since, given the
monotonicity of each uh, this equality holds for each h individually in his budget-
set). It follows that the �price player� could not make the value of excess demand
(across commodities and assets) positive in period 0. Suppose for some j ∈ J ,P
h∈H(θ

h
j − ϕhj ) > 0. By taking �πj = 1/b and �πi = 0 for i 6= j, it follows that

1

b

X
h

(θhj − ϕhj ) +
X
`∈L

�p0`
X
h∈H

(xh0` − eh0`) ≤ 0,

for all �p ∈ Pb ≡ {q ∈ RL+ : q` ≥ b ∀` ∈ L,
PL
`=1 q` = 1}. HenceX

h

(θhj − ϕhj ) ≤ bL||e0||∞.

Similarly, if
P
h∈H(x

h
0` − eh0`) > 0 for some `, then by taking all �πj = 0 and �p0` =

1− (L− 1)b and �p0k = b for all k 6= `, we getX
h∈H

(xh0` − eh0`) ≤
(L− 1)b||e0||∞
1− (L− 1)b .

From the fact that K̄b Þxed K, and from the fact that agents have optimized so
that ps ·Dhsj ≤ ps ·Rsjϕhj , whenever ps ·Rsj 6= 0 we get

Ksj =

ps ·Rsjεj +
X
h∈H

ps ·Dhsj

ps ·Rsjεj +
X
h∈H

ps ·Rsjϕhj
≤ 1.

Hence X
h∈H

ps ·Dhsj =
X
h∈H

Ksjps ·Rsjϕhj − (1−Ksj)ps ·Rsjεj .

From optimization of monotonic utilities in the budget set, we get

ps · (xhs − ehs ) =
X
j∈J

Ksjps ·Rsjθhj −
X
j∈J

ps ·Dhsj .
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Adding over agents h ∈ H, and substituting the above expression for Ph∈H ps ·Dhsj
we get

ps ·
X
h∈H

(xhs − ehs ) =
X
j∈J
(1−Ksj)ps ·Rsjεj +

X
j∈J

X
h∈H

Ksjps ·Rsj(θhj − ϕhj )

≤
X
j∈J
(1−Ksj)ps ·Rsjεj + J ||R||∞bL||e0||∞.

Suppose
P
h∈H(x

h
s` − ehs`) −

P
j∈J(1 −Ksj)Rs`jεj > 0 for some s ∈ S. Since we

are at a Þxed point, the price player cannot increase the value of excess demand in
state s by taking �ps` = 1− (L− 1)b, and �psk = b for all k 6= `. HenceX

h∈H
(xhs` − ehs`)−

X
j∈J
(1−Ksj)Rs`jεj

≤ 1

1− (L− 1)b

(L− 1)b
||e0||∞ + ||R||∞X

j∈J
εj

+ J ||R||∞bL||e0||∞
 .

Thus aggregate excess demand (including the external agent) goes to zero as
b → 0. Furthermore,

P
h∈H x

h ≤ 2
P
h∈H e

h as b → 0, provided the Þxed (εj)j∈J
were chosen small to begin with. If ps`/psk became unbounded as b→ 0, some agent
with ehs` > 0 could have consumed M units of commodity sk, obtaining more utility
than uh(2

P
h0∈H e

h0), for all small b; but since xh ≤ 2Ph0∈H e
h0 for small enough b,

this contradicts that h has optimized. We next argue that πj must remain bounded
as b→ 0. If Qhj = 0 ∀h, then replace πj with 1. Otherwise, if πj →∞, any agent h
with Qhj > 0 could replace his entire action by selling a tiny amount ∆ of j, buying
M (≤ ∆πj/L) units of each period 0 good. Since ehs 6= 0 for all s, and commodity
price ratios are bounded in each state, agent h can do this without incurring any
default. But this gives him utility that exceeds uh(2

P
h0 e

h0), which is more than he
can possibly be getting at the Þxed point, a contradiction. Thus all asset prices are
bounded.

Since all choices and all macrovariables are uniformly bounded for small b, we
can pass to convergent subsequences, obtaining Ē ≡ hp̄, π̄, K̄, (x̄h, θ̄h, ϕ̄h, D̄h)h∈Hi as
a limit point. Taking the limit of all inequalities derived above, we conclude that
aggregate excess demand for commodities and assets is less than or equal to zero in
E. Since price ratios p̄s`/p̄sk are bounded in each state s ∈ S∗, the limiting p̄ À 0,
and all agents have positive income in every state in Ē. The bounds in ¤h imposed on
(x, θ,D) are not binding in Ē. Hence, by concavity of wh, individuals are optimizing
in Ē on their actual budget sets.

Note Þnally that if all commodity prices are positive, there cannot be excess
supply in any commodity in Ē, otherwise the price player would be making negative
proÞts. For the same reason there cannot be excess supply of any asset j in Ē, unless
πj = 0. But then no agent would sell j unless λhsjRsj = 0 for all s ∈ S. Without loss
of generality we may in this case take θhj = ϕ

h
j = 0 for all h.
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Thus we have shown that Ē is an ε-trembling hand equilibrium. Letting ε → 0
and taking limits we obtain a reÞned equilibrium. This proves the theorem for Þnite
penalties λ.

If some penalties are inÞnite, we take limits of equilibria with increasing penalties.
Since all actions must stay bounded along the sequence (becauseQhj <∞), any cluster
point of these equilibria will serve as the desired reÞned equilibrium.. ¥

12.2 Proof of Theorem 2

Theorem 2 specializes the conditions of Theorem 1. Hence we have a GE(R,λ, Q)
equilibrium for all ÞniteQ. Consider a sequence of equilibria, η(Q) = (p(Q),π(Q),K(Q),
(xh(Q), θh(Q),ϕh(Q),Dh(Q))h∈H), where Qhj = Q ∈ N, for all h ∈ H, j ∈ J .

If there is a single Q with ϕhj (Q) < Q, for all h ∈ H, j ∈ J , then by the concavity
of each wh, η(Q) is a GE(R,λ).

Passing to a convergent subsequence if necessary, we may suppose that for all
h ∈ H and j ∈ J ,

θhj (Q)

Q
→ θ̄

h
j ,
ϕhj (Q)

Q
→ ϕ̄hj .

Moreover, we might as well assume that for at least one j and some h and h0, θ̄hj 6= 0
and ϕ̄h

0
j = 1.

For notational convenience, we shall write Rsj and Dsj , instead of the more
accurate RsLj and DsLj , and we shall suppose that real default in each state s ∈ S
is measured in terms of the commodity bundle vs = 1L, which is one in the Lth
coordinate, and zero elsewhere. Since all assets are exclusively delivering in the Lth
good, no harm results from these simpliÞcations. Finally, w.l.o.g. take psL = 1 for
all s ∈ S.

Observe that for any h ∈ H, s ∈ S, j ∈ J , the level of default

dhsj(Q) ≡ [Rsjϕhj (Q)−Dhsj(Q)]+ ≤
1

λhsj
[uh(e)− uh(eh)],

whenever λhsj > 0, for otherwise agent h would have done better not trading at all.
(At any GE(R,λ, Q), xh ≤Ph0 e

h0 ≡ e.) Hence if ϕhj (Q)→∞,

[Rsjϕ
h
j (Q)−Dhsj(Q)]
ϕhj (Q)

=
[Rsjϕ

h
j (Q)−Dhsj(Q)]+
ϕhj (Q)

=
dhsj(Q)

ϕhj (Q)
→ 0.

It follows that Ksj(Q)→ 1 for all s ∈ S with Rsj > 0, provided that
P
h∈H ϕ

h
j (Q) =P

h∈H θ
h
j (Q)→∞.

Furthermore, since relative prices ps`(Q)/psk(Q) stay bounded,X
j∈J

Ksj(Q)Rsjθ
h
j (Q)−

X
j∈J

Dhsj(Q)
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must stay bounded. Otherwise agent h would eventually be consuming a negative
quantity in state s, or a quantity exceeding the aggregate endowment es, contradicting
commodity market clearing.

Putting these last statements together, we must have that

lim
Q→∞

X
j∈J

Ksj(Q)Rsjθ
h
j (Q)−

X
j∈J

Dhsj(Q)

Q
= Rs(θ̄

h − ϕ̄h) = 0,

for all h ∈ H, s ∈ S.
Consider any h with ϕ̄h 6= 0, and hence θ̄h 6= 0. For sufficiently large Q ≥ 1,

�θ
h
= θh(Q)− θ̄h ≥ 0

�ϕh = ϕh(Q)− ϕ̄h ≥ 0.

At any large Q, the agent could feasibly have chosen �θ
h
, �ϕh and deliveries

�Dhsj = Dsj(Q)−Rsjϕ̄hj ≥ 0 for all j ∈ J.
With these choices he would pay exactly the same penalty as in the equilibrium η(Q).
He would receive exactly the same consumption at time 1 if Ksj(Q) = 1 for all j with
θ̄
h
j > 0 (for then his receipts and deliveries both fall by Rs · θ̄h = Rs · ϕ̄h) and strictly
more consumption otherwise (for then his receipts fall by

P
j∈J Ksj(Q)Rsj θ̄

h
j <P

j∈J Rsj θ̄
h
j ≡ Rs · θ̄h = Rs · ϕ̄h).

In order for him not to prefer this deviation, we must therefore have

π(Q)[θ̄
h − ϕ̄h] ≤ 0 for all h ∈ H.

But since θ̄h and ϕ̄h are limits of GE(R,λ,Q) equilibrium portfolios,X
h∈H

θ̄
h
=
X
h∈H

ϕ̄h,

hence we must have
π(Q)[θ̄

h − ϕ̄h] = 0 for all h ∈ H.
It now follows that household h would still prefer this deviation unless ∀j ∈ J , ∀s ∈ S,

[Rsj > 0, and θ̄
h
j > 0 for any h ∈ H]⇒ [Ksj(Q) = 1].

Note Þnally that if ϕ̄hj > 0, there must be some agent i with θ̄
i
j > 0, hence Ksj(Q) = 1

for all s ∈ S with Rsj > 0 and either θ̄hj > 0 or ϕ̄hj > 0.
Replacing (p(Q),π(Q),K(Q), (xh(Q), θh(Q),ϕh(Q),Dh(Q))h∈H) with

(p(Q),π(Q),K(Q), (xh(Q), �θ
h
, �ϕh, �Dh)h∈H) we get anotherGE(R,λ, Q) with �ϕhj (Q) <

Q for all h and j. (Notice that we are reducing sales and purchases only for assets
with Ksj = 1, which therefore leaves the K unchanged.) ¥
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