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Abstract

This paper considers the �nancing of a research project under uncertainty about the time of

completion and the probability of eventual success. We distinguish between two �nancing modes,

namely relationship �nancing, where the allocation decision of the entrepreneur is observable,

and arm�s length �nancing, where it is unobservable.

We �nd that equilibrium funding stops altogether too early relative to the e¢ cient stopping

time in both �nancing modes. The rate at which funding is released becomes tighter over time

under relationship �nancing, and looser under arm�s length �nancing. The trade-o¤ in the choice

of �nancing modes is between lack of commitment with relationship �nancing and information

rents with arm�s length �nancing.

Keywords: innovation, venture capital, relationship �nancing, arm�s length �nancing, learning,

time-consistency, stopping, renegotiation-proofness.
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1 Introduction

MOTIVATION Typically, when decisions are made to start an R&D project or an innovative

venture, much uncertainty exists about the chances of the project and about the time and capital

needed to secure success. It has been estimated that it takes about 3,000 raw ideas to eventually

achieve a single major commercially successful innovation (Stevens and Burley, 1997). Research

and development is tantamount to winnowing down a vast amount of ideas and alternatives through

trial and error, and is therefore subject to considerable variance in terms of the time and money

spent: it may be the 3rd or the 2,997th idea that, when tried out, produces a major success.

The research and development process for a new pharmaceutical product may serve as an illus-

tration. The idea for a new drug is most likely based on some initial and very preliminary research,

opening a vast �eld of possible combinations or ideas. The development itself requires substantial

amounts of trials and investments before the value of the initial approach can be assessed. More

information will be produced over time as to whether the project will be successful or should be

abandoned due to poor results.

The uncertainty about the time and capital required is a source of potential con�ict between

the �nanciers providing the capital and the researchers or entrepreneurs carrying out the project.

The purpose of the present paper is to study agency problems that are directly linked to the open-

endedness of the funding in R&D projects, in particular con�icts surrounding the timing of the

decision to terminate a research project. Venture capitalists often refer to the decision to discontinue

a projects as the most important source of con�ict between them and start-up entrepreneurs,

since entrepreneurs almost never want to abandon a project that is under way. Entrepreneurs

express a strong preference for continuation regardless of present value considerations under most

circumstances, be it because they are (over-)con�dent or because they rationally try to prolong the

search, and they tend to use their discretion to (mis-)represent the progress that has been made in

order to secure further funding (Cornelli and Yosha, 2003).

Agency con�icts of this kind potentially occur in every situation where a researcher or entrepre-

neur uses external funding for her R&D e¤orts, as exempli�ed by the following three areas. First,

they will a¤ect venture capital �rms �nancing high-tech start-ups. Empirical research on the ven-

ture capital industry reveals that venture capitalists are well aware of such problems, and that they

go to great length to build possible safeguards into their contracts.1 Second, the optimal �nancing

of research is also a concern for the capital budgeting for R&D expenditures process within a �rm.

1For example the following instruments (documented in Sahlman, 1990, Hellmann, 1998, Kaplan and Stromberg,

2002, and Gompers and Lerner, 1999): Venture capitalists retain extensive control rights, in particular rights to

claim control on a contingent basis and the right to �re the founding management team; they keep hard claims in

form of convertible debt or preferred stock, underpinning the right to claim control and abandon the project; and

staged �nancing and the inclusion of explicit performance benchmarks make it possible to �ne-tune the abandonment

decision.
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Third, the problems that we investigate arise also for governments, universities, research founda-

tions and other organizations that sponsor research. They need to evaluate progress of research

projects and to determine the timing for grant renewal or the decision to abandon.

In many cases, the investors in innovative projects will keep a hands-on approach on their invest-

ment. Venture capitalists are known to monitor their portfolio companies intensely, for example

by soliciting reports and by visiting the company on a monthly basis, and by being involved in

the decision making via board membership and other channels and control rights. Besides moni-

toring, venture capitalists also play an active role as advisors of start-up companies, for example

by getting involved into the recruitment of key employees and executives (Gompers and Lerner,

1999, Casamatta, 2003). In other words, the venture capital industry provides predominantly re-

lationship �nancing. But not all investors in innovative start-ups are in fact relationship investors.

Informal business angels have been characterized as being less involved in monitoring and to pro-

vide only limited advisory services (Barry, 1994, Fenn et al., 1995). Angel investors, who until

recently channeled more money to start-ups than formal venture capitalists, can thus be viewed as

the prototypical arm�s length investors in the �nancing of innovation.2 Recent theory papers have

cast the choice between venture capitalists and angel investors as a choice between informed and

less informed investors (Chemmanur and Chen, 2003, Leshchinskii, 2003).

The distinction between relationship investors and arm�s length investors is not limited to

venture capital vs. angel �nancing. A di¤erence between better or worse informed investors also

arises when comparing large and experienced venture capital funds to small and young ones, close

to distant, industry specialist vs. generalist, independent vs. corporate venture fund.

The terms relationship vs. arm�s length funding were originally introduced to distinguish be-

tween informed commercial banks and other, less informed creditors like bondholders. In his seminal

paper, Rajan (1992) argues that relationship investors may use their exclusive knowledge to sub-

sequently extract rents from successful projects. The value of relationship bank lending has been

empirically con�rmed (Petersen and Rajan, 1994, Berger and Udell, 1995, Degryse and Ongena,

2002). Debt in its various forms, including for example trade credit, is an important source of fund-

ing for start-up �rms (Berger and Udell, 1998), and credit markets o¤er a natural choice between

relationship lending and credit with a greater informational distance.3

ANALYSIS This paper examines a stylized model of the funding of a research project where

the merit of an idea and the time and money needed for completion are uncertain. It speci�cally

investigates how stopping decisions are taken in the presence of agency con�icts in the form of

2Chemmnur and Chen (2003) discuss the �ow of funds estimation.
3 In our model (like in countless others), debt and equity funding are indistinguishable since there is only a single

positive cash �ow realization, R, that is to be split between entrepreneur and investors.
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entrepreneurial opportunism. The project will succeed with a positive probability in every period

in proportion to the volume of funds provided, so that uncertainty is represented by a simple

stochastic process. As continued research e¤orts are undertaken and no success is forthcoming,

Bayesian learning will lead to a gradual downgrading of the belief in the project�s prospects. The

project ends either with a success, or it will eventually be abandoned in the light of persistent

negative news. We assume that the time horizon itself is in�nite, to address the essence of the

uncertainty about the time to completion, but abandonment will occur in �nite time.

The entrepreneur controls the allocation of the funds. She can choose to invest the funds

e¢ ciently into the project or to divert them to private ends. This agency con�ict is rich because

of the dynamic nature of the investment problem. When diverting the funds, the entrepreneur

not only enjoys the immediate bene�t from consuming the money meant for investment. She also

secures the option of continued funding in the future, since nothing can be learned about the project

when the funds are not invested as supposed. Thus, the entrepreneur�s discretion over the funds is

intimately linked to the timing of the abandonment decision.

We consider a sequence of short-term contracts which in our setting is equivalent to requiring

that the contract, short- or long-term, can be renegotiated at all times. Thus, any decision to

abandon the project after a given horizon of funding, or to reduce the speed at which funding

is released, must be time-consistent. A fundamental contribution of our analysis is the fact that

we embed the agency con�ict about the use of resources in the context of an open-ended funding

horizon, coupled with the requirement that any equilibrium be renegotiation-proof.

We model relationship and arm�s length �nancing by distinguishing whether the investor can or

cannot observe the entrepreneur�s investment decision.4 With relationship �nancing, the action of

the entrepreneur is observable, or more precisely �observable, but not veri�able�as it is usually de-

scribed in the incomplete contracts literature, and the environment is at all times one of symmetric

information. With arm�s length �nancing, actions by the entrepreneur are unobservable, and we

are investigating a standard moral hazard problem between investor and entrepreneur.

The basic con�ict between entrepreneur and investor can be described as follows. For the

entrepreneur, the project represents the possibility to win a single large prize, but also a stream of

rents that she could possibly divert to her private ends. The tension between investing and diverting

the funds is accentuated by the fact that the successful completion of the project automatically

stops the �ow of funds. The direct incentives for the entrepreneur then have to be adequate to

o¤set the possible loss in future rents, hence they have to be increasing in the volume of future

funding that the entrepreneur expects in equilibrium.

The combination of an in�nite funding horizon and contract renegotiation becomes truly im-

portant in light of this fundamentally intertemporal nature of the incentive problem. The longer

4We would like to thank Patrick Bolton for a suggestion to include this distinction.
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the funding horizon, the more valuable is the entrepreneur�s option to increase the probability of

access to future funding by diverting funds. The natural candidate for a contractual remedy would

be to declare ex ante that no �nancing will be provided after a certain funding horizon, but such a

commitment would necessarily not be time-consistent by the nature of the problem presented here.

In the equilibrium analysis, we examine how entrepreneur and investor share the proceeds of the

project as a function of the elapsed time, and whether funding is released at the e¢ cient rate and

until the e¢ cient stopping point, by �rst considering relationship �nancing (observable actions).

The information about the project is then always common for both parties and funding renewal

is negotiated under symmetric information. As funding continues and the outlook becomes less

promising, the participation constraint of the investor leaves less for the direct incentive of the

entrepreneur. At some point, this residual will fall short of what is needed to provide incentives.

The only possible solution is that the investor slows down the release in funds, which happens in

the form of a reduced funding rate by the investor. This reduces the entrepreneur�s option value

of prolonging the project, and the incentive constraint can be met again. As time goes on and the

posterior belief decreases, the slowdown in funding becomes more serious, and funding will come

down to a trickle as the belief approaches the �nal abandonment point, which is too early relative

to the e¢ cient policy.

As we consider the case of arm�s length �nancing (actions are unobservable), we need to take

into account the dynamics of the moral hazard problem. The moral hazard problem about the

entrepreneur�s decision in the current period translates into an adverse selection problem about

beliefs in future periods. For the entrepreneur, control over the investment �ow means also control

over the information �ow, knowing that the private beliefs of entrepreneur and investor about the

project can diverge. We �nd that while the tension between immediate incentives and intertempo-

ral rents remains, there is one subtle, yet important di¤erence in the value of a deviation for the

entrepreneur. With symmetric information, the entrepreneur could renew his proposal after a devi-

ation based on the belief held in the previous period, since nothing in the perception of the project

has changed on either side. In contrast, with unobservable actions, the investor will automatically

downgrade his belief after a deviation and insist in the continuation game to be compensated on

the basis of his belief, which is more pessimistic than warranted. This change in the belief limits

the maximal �nancing horizon, which relaxes the incentive constraint and facilitates funding. On

the other hand, the entrepreneur commands an additional information rent since she controls the

information �ow.

We are then in a position to compare the overall e¢ ciency of arm�s length and relationship

�nancing. We identify the following basic trade-o¤: Under relationship �nancing, there is no

informational asymmetry, and the information rent that compensates the entrepreneur for her

control of the information �ow can be saved; but under arm�s length funding, the investor is

committed to stick to a �nite stopping time, reducing the option value of the entrepreneur to
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prolong the project through deviations. We �nd that the second e¤ect always dominates and arm�s

length contracts allow for a higher project value.

The equilibrium is shown to be unique in both cases. We require the equilibrium to be weakly

renegotiation-proof, meant to capture the inability of entrepreneur and investor to prevent recon-

tracting or renegotiation. More precisely, we �rst derive the unique Markov equilibrium and then

show that this equilibrium is identical to the equilibrium derived under the renegotiation-proofness

assumption. We argue that our results are consistent with the typical �nancing cycle of start-up

�rms where relationship �nanciers are gradually replaced by arm�s length sources.

In conclusion, the fundamental contracting di¢ culty in this paper comes about by the combi-

nation of an in�nite funding horizon and the possibility of renegotiation. As our analysis shows,

the only way to resolve these con�icts is via delays in the �nancing of innovation - in form of a

slowdown in the release of funds. The temporal occurcence of these delays depends on the informa-

tional relationship between investor and entrepreneur: it will be frontloaded for pro�table projects

under arm�s length funding, and backloaded in all other cases.

RELATED Literature Besides the papers already mentioned, in particular the papers on rela-

tionship �nancing, our paper is related to three distinct strands of the literature. First, it is linked

to the literature on the �nancing of innovation and venture capital, in particular papers focusing

on the entrepreneur�s discretion to in�uence the stopping decision in innovative and risky projects.

Qian and Xu (1998) observe that soft budget constraint problems of this kind are endemic in bu-

reaucratic systems of R&D funding. Cornelli and Yosha (2003) address the window-dressing of

performance signals to have the project continued. Dewatripont and Maskin (1995) note that hav-

ing multiple investors may be a device to mitigate this problem. In the venture capital literature,

moral hazard-driven stopping problems have served as the background to explain the use of such

remedies as stage �nancing, convertible securities and the dismissal of incumbent managers (e.g.

Repullo and Suarez, 1999, Hellmann, 1998). But all contractual devices of this sort are in principle

open to renegotiation. To fully account for the relevant time-consistency issues, it seems desirable

to go beyond the static (two or three-period) models employed in this literature. The question is

what happens if the horizon is extended and time-consistent devices to commit to an abandonment

decision are not available. This is the starting point of our paper.

Second, our problem is related to a strand of the incomplete contracts literature that investigates

what is known as the strategic default problem (e.g. Hart and Moore, 1994, Hart and Moore, 1998,

Bolton and Scharfstein, 1996). In this literature, the agent can threaten to default on obligations

despite being solvent, and the principal�s power to liquidate assets or dismiss the agent enforces

payment. Our model is di¤erent in that there is only a single cash �ow, with uncertain arrival time,

and that the outlook of the project under consideration deteriorates over time. We are closest in
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spirit to three in�nite horizon models of strategic default. Gromb (1994) investigates repetitions of

projects à la Bolton and Scharfstein (1996) and �nds that the e¢ ciency of the best feasible contracts

deteriorates as the horizon of such repeated investments is extended. DeMarzo and Fishman (2000)

address long-term contracts and the agent�s ability to save. In Fluck�s (1998) repeated game only

in�nite maturity outside equity can solve the agent�s as well as the principal�s incentive problem.

Neher (1999) considers a variant of Hart and Moore (1994) where delay via staged �nancing enables

the built-up of collateral, in contrast to our model where delay reduces the present value of future

rents.

Third, our paper is clearly related to literature on the advantages of arm�s length relationships

in agency models. Our paper is closest to Crémer (1995) who shows that better information about

the agent�s circumstances makes it more di¢ cult for the principal to commit to sanctions. Marquez

(1998) explores this idea in the context of �nancial contracts and relates it to competition as an

alternative commitment device.

In an earlier paper, Bergemann and Hege (1998) undertake a preliminary analysis of the same

basic model, but the present paper goes beyond the earlier paper in two important dimensions.

First, it thoroughly allows for renegotiation which is entirely ignored in the earlier paper. Renego-

tiation is at the heart of our dynamic agency problem since the entrepreneur would like to commit

ex ante to a �nite funding horizon when she encounters �nancing constraint, but such a commit-

ment would necessarily be time-inconsistent. Second, Bergemann and Hege (1998) examine only

the case of unobservable actions, whereas the present paper accounts for relationship funding which

is more typical for the funding of innovative projects and puts the comparison between relationship

and arm�s length �nancing at center stage.

The paper is organized as follows. The model is formally presented in Section 2. We consider

a two period version of our model in Section 3. The equilibrium analysis begins in Section 4

with observable actions of the entrepreneur. Section 5 examines equilibrium �nancing when the

allocation decision of the entrepreneur is unobservable to the investor. The structure and e¢ ciency

of the equilibria under symmetric and asymmetric information are compared in Section 6. Section

7 presents some concluding remarks. The proofs of all results are relegated to the appendix.

2 The Model and First Best Policy

The project, the investment technology and the evolution of the posterior beliefs are described in

subsection 2. In subsection 2, we introduce the contracting problem. In subsection 2, we derive the

e¢ cient stopping posterior.
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PROJECT with Unknown Returns The entrepreneur owns a project with unknown return.

The project is either �good�with prior probability �0 or �bad�with prior probability 1 � �0. If
the project is �good�, then the probability of success in a given period is proportional to the funds

invested into the project in that period. If the project is �bad�, then the probability of success is

zero independent of the investment �ow. The project can at most generate a single success which

generates a �xed monetary return R > 0.

More precisely, if the project is �good� and the project receives an investment �ow of c,

with c > 0, then the probability of success is given by . The parameter c thus represents the

constant marginal cost of increasing the success probability. We assume that  2 [0; �] with � < 1.
In consequence the project can never succeed with certainty in any given period. If the project

succeeds, then a cash �ow R is realized and distributed among the parties, and the game ends

immediately. We refer to an investment �ow  = � as full or maximal funding, and an investment

 < � as limited or restricted funding.

The uncertainty about the nature of the project is resolved over time as the �ow of funds either

produces a success or leads to a stopping of the project. The time horizon is discrete and in�nite,

time periods are denoted by t = 0; 1; :::;1, the discount factor is � 2 (0; 1).
The investment process represents an experiment which produces information about the future

likelihood of success. The current information is represented by the posterior belief �t that the

project is good. The evolution of the posterior belief �t; conditional on no success in period t, is

given by Bayes�rule as a function of the prior belief �t and the investment �ow t:

�t+1 =
�t (1� t)
1� t�t

. (1)

The posterior belief �t decreases over time if success doesn�t arise. The decline in the posterior

belief is stronger for larger investments �ows t as the agents become more pessimistic about the

likelihood of future success. The posterior belief changes only slowly for very precise beliefs about

the nature of the project, i.e. if �t is either close to 0 or 1. Correspondingly, the event of no success

is most informative with di¤use beliefs, or when �t is close to 1
2 .

We refer to the special case of �0 = 1 as the �certain success project�or short �certain project�.

With �0 = 1, the posterior never changes as the agents do not entertain the possibility that the

project might be bad and �t remains at �t = 1 for all t � 0. For this obvious reason, we refer to
the case of �0 = 1 as the �certain success project�or short �certain project�. As a consequence of

the constant posterior beliefs of �t = 1 for all t � 0, if funding at �0 = 1 can be provided at the
maximal level �, then it will be provided forever until the project succeeds, hence �certain project�.

CONTRACTING The entrepreneur has initially no wealth and seeks to obtain external funds

to realize the project. Financing is available from a competitive market of investors, which is
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represented in the model by a single investor who can only accept or reject contract proposals

by the entrepreneur. Entrepreneur and investor share initially the same assessment about the

likelihood of success represented by the prior belief �0. The funds are supplied by the investor

and the entrepreneur controls the allocation of the funds. She can either invest the funds into the

project or divert the capital �ow to her private ends. We assume that the entrepreneur consumes

any diverted funds immediately, i.e. she cannot accumulate funds in order to �nance the project

on her own in the future.5

The time structure in every period t is as follows. At the beginning of period t the entrepreneur

can o¤er the investor a share contract st and a success probability t � 0. The share st represents
the share of the entrepreneur in the proceeds if the project succeeds in period t. The investor

receives the remaining share 1� st. The restriction to share contracts is without loss of generality
due to the binary nature of the project. After the contract proposal, the investor can decide whether

to accept or reject the new contract (decision dt). If he accepts the contract, then he provides the

entrepreneur with the requested funds ct in period t to support the development of the project.

If he rejects the contract, then a new proposal can be made by the entrepreneur in the subsequent

period. Finally, and conditional on funding, the entrepreneur decides whether to invest the funds

in the project or divert them to her private ends (decision it). The sequence of decisions in every

period are illustrated by Figure 1.

-

(st; t):

E o¤ers
contract

dt:
I accepts
or rejects

it:

E invests
or diverts

realization
of 0 or R

t t+ 1

Figure 1: Timeline of Events

FIRST Best Policy The project should receive funds as long as current expected returns of the

investment exceed costs:

�ttR� ct � 0:
5Alternatively, the same incentive constraints would arise if the e¢ cient investment of the funds would require

costly e¤ort by the entrepreneur. In this case the entrepreneur evidently cannot save any funds that have not been

invested. We are grateful to an anonymous referee for pointing out this interpretation. In both cases, one could

imagine that one unit diverted from the funds increases the entrepreneur�s utility by a monetary equivalent of only

� < 1 units. The smaller is �, the less attractive is diversion and hence the less acute is the agency problem that we

study.
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As both return and cost are linear in t, it follows that if investment is socially e¢ cient, it should

occur at the maximal level, or t = �. The project should receive its �nal investment at the lowest

�T where the current net return is positive:

�T�R� c� � 0;

which yields a socially e¢ cient stopping point, described in terms of the posterior belief, at

�T�R� c� = 0;

or equivalently

�� =
c

R
. (2)

The social value of the project, denoted by V (�t), is given by a familiar dynamic programming

equation:

V (�t) = max
2[0;�]

f�tR� c + � (1� �t)V (�t+1())g :

The value of the program can be decomposed into the �ow payo¤s and continuation payo¤s. The

�ow payo¤s are the returns multiplied by the current probability of success minus the investment

costs. The continuation payo¤s arise conditional on no success, or with probability (1� �t�), in
which case the future is assessed at a new posterior, namely �t+1. The e¢ cient stopping condition

(2) can be recovered from the dynamic programming equation at �T by setting V (�T+1) = 0.6

The value of the project under the �rst best policy can be determined as

V (�0) = �0� (R� c)
1� �T �(1� �)T �

1� �(1� �) � (1� �0) c�
1� �T �

1� � ;

where T � is the maximal number of periods such that the updated belief after T � periods of full

funding is still weakly above ��, or

�0 (1� �)T
�

�0 (1� �)T
�
+ 1� �0

� ��:

3 A Simple Two Period Model

This section presents some basic insights and trade-o¤s in a simple two period example with t = 0; 1.

We compare the funding decision in the symmetric and asymmetric information environment.

6The intertemporally optimal stopping point is thus determined by a static revenue condition. The stopping

point condition does not include any intertemporal element in terms of a value of information, as the posterior belief

(conditional on no success) declines deterministically and thus there is no option value in the evolution of the posterior

belief.
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In this �nite horizon setting, we can analyze the contracting equilibrium by backward induction.

We shall start with the symmetric environment. Suppose then that in the �nal period, investor

and entrepreneur share a common posterior �1 that describes the probability that the project is

good. If the entrepreneur makes a funding proposal (s1; 1), then the investor will only accept it if

his participation constraint is satis�ed, or

1�1 (1� s1)R � c1, (3)

and if the incentive constraint for the entrepreneur is satis�ed as well:

1�1s1R � c1: (4)

The incentive constraint simply requires that the expected return from allocating the funds properly

exceeds the value of a diversion. Due to the linear structure of the model, we can safely neglect

partial diversion. In other words, the inequality (4) also guarantees that the incentive constraints

for partial diversion, or

1�1s1R � c + (1 � )�1s1R,

are satis�ed for all  2 [0; t]. From the participation and the incentive constraints, it follows that

�nancing is provided only if

1�1R � 2c1 , �1 �
2c

R
.

We can make a �rst observation regarding the social e¢ ciency of the funding decision. We just

saw that equilibrium funding stops at

�S ,
2c

R
; (5)

whereas the socially e¢ cient stopping point is given by the posterior belief

�� =
c

R
.

Hence equilibrium funding ends too early in comparison with the socially e¢ cient funding policy.

The divergence between equilibrium and social stopping arises from the rent the entrepreneur can

extract due to the non-veri�ability of his allocation decision.

In equilibrium, the entrepreneur o¤ers a break-even contract to the investor which solves his

participation constraint (3) at equality, or

1� s1 =
c

�1R
, s1 =

�1R� c
�1R

:

The share of the entrepreneur depends on the posterior belief about the quality of the project. Her

expected pro�t in period t = 1 is given by:

�11R� c1 � 0.
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It follows that she will always suggest a maximal funding level 1 = �. We can then describe the

expected pro�t of the entrepreneur as function of the posterior belief �1 as follows:

VE (�1) =

(
�1�R� c� if �1 � 2c

R ;

0 if �1 <
2c
R :

Going backwards to period t = 0, we �nd that the participation constraint of the investor

remains unchanged (except that the posterior �1 is replaced by the prior �0):

�00 (1� s0)R � c0:

In contrast, the incentive constraint of the entrepreneur contains an intertemporal element, or

�00s0R+ (1� �00) �VE (�1) � c0 + �VE (�0) . (6)

The lhs of inequality (6) represents the discounted value of the funding proposal (s0; 0) on the

equilibrium path. If the entrepreneur allocates the funds properly, then the project is successful

with probability �00, and an agreed share s0 of the cash �ow R is paid to the entrepreneur. With

the remaining probability, namely 1��00, the project is not successful. In this case, there is still
a chance to realize the project tomorrow. The net value of this option for the entrepreneur is given

by VE (�1), taking into account the update in the belief to �1 following the the failure to succeed

in period 0.

The rhs of the inequality (6) represents the value of a diversion, which now arises from two

sources. First, there is a direct private bene�t of c0, but second, the failure to pursue the project

today, leads to the opportunity to realize it tomorrow. It should be noted that in contrast to the

lhs of the inequality, the opportunity of pursuing the project tomorrow now arises with certainty, as

the diversion of the funds guaranteed that the project could not be realized in period 0. Moreover,

the prior �0 is not updated as no information regarding the project was generated in period 0.

By the same argument developed for t = 1, the entrepreneur will o¤er a break-even contract

with maximal funding to the investor. Using the continuation value VE (�1), we can write the

incentive constraint of the entrepreneur as follows

�0�R� c�+ (1� �0�) � (�1�R� �c) � c�+ � (�0�R� �c) .

The posterior �1 is determined via Bayes�rule (see (1)) as:

�1 =
�0 (1� 0)
1� �00

< �0, (7)

and after replacing the posterior belief �1 in (7), we get the following condition on the prior for

funding over two periods to be possible:

�0 �
2c

R (1� ��) + ��c .

11



We make several observations. First, for � = 0, the funding condition in period 0 is identical to

the funding condition in period 1, as the entrepreneur acts purely myopically. But for all � > 0, the

funding condition becomes more severe in period 0, as the denominator is a convex combination of

R and c (with R > c). Moreover as � increases, more weight should be given to c and the funding

condition increases in severity. In consequence, it follows that for all �0 satisfying:

2c

R (1� ��) + ��c > �0 �
2c

R
, (8)

there will be no equilibrium funding in period 0, though the project will eventually be funded in

period 1. The reason for the equilibrium delay in the funding decision emerges from the incentive

constraint. If the project will get funded anyhow in period 1, the entrepreneur has a strong incentive

to divert the funds in period 0 and thereby guarantee himself further funding and yet maintain

the possibility of success in period 1. This equilibrium delay can only be prevented if the discount

factor is very low, or if the project has a very high probability of success, so that the immediate

rewards outweigh the future bene�ts.

We consider now the asymmetric environment. Along the equilibrium path, entrepreneur and

investor maintain symmetric information, as the investor uses his equilibrium belief about the

allocation decision of the entrepreneur. The sole di¤erence arises along the possible deviation of

the entrepreneur, i.e. the o¤ the equilibrium path decision. Thus if we consider the incentive

constraint of the entrepreneur in period 0, it now reads:

�00s0R+ (1� �00) �VE (�1) � c0 + �
�0
�1
VE (�1) , (9)

where the only, but important, di¤erence compared with the symmetric information incentive

constraint (6) arises on the rhs. Following a deviation by the entrepreneur in period 0, the investor

only observes that the project did not succeed and continues to update his prior with the information

coming from the failure to succeed. The investor therefore continues to hold his equilibrium belief

�1 formed by Bayes rule as in (7). In consequence, he still wishes to be rewarded in period 1

as if the true posterior were �1. In contrast, the entrepreneur knows that the belief �1 is too

pessimistic since conditional on the funds being diverted in period 0, no new information about the

project arose, and maintains the correct belief �0. As the value in period 1 comes from a successful

realization the term �0
�1
corrects the misperception of the investor. In sum, the correct expected

value of the entrepreneur following the diversion of the funds is given by �0
�1
VE (�1). As the true

probability of success is �0, but the share is negotiated on the basis of the less optimistic belief

�1 < �0, it follows that:
�0
�1
VE (�1) < VE (�0) ,

Since the investor�s required value is larger in the arm�s length case following the investor�s in-

formational handicap, the arm�s length environment makes a deviation of the entrepreneur less
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attractive. This e¤ect, which we call the commitment e¤ect, is at the heart of our analysis and we

will encounter it extensively in our main analysis. Solving (9) in a manner similar to (8) leads to

the condition that �nancing only in the second period is possible if

2c� 1
1����c

R (1� ��)� �
1����c

� �0 �
2c

R
:

In comparison with the symmetric environment, we �nd that the set of prior beliefs without

�nancing constraints is larger in the asymmetric case, since

2c

R (1� ��) + ��c >
2c� 1

1����c

R (1� ��)� �
1����c

.

Thus, as a consequence of the commitment e¤ect, more projects will receive immediate funding

in the asymmetric information environment than in the symmetric information environment. Costly

delay is more frequent under symmetric information than under asymmetric information, even

though it may arise in both cases.

This simple two period model generates two important results: (i) it demonstrates the di¢ -

culties in creating e¢ cient investment arrangements when the option of continued future funding

undermines the incentives for current investment and (ii) it shows that asymmetric information

can improve the e¢ ciency of the equilibrium by acting as a commitment device for the investor.

The two period model contains an arti�cially strong discontinuity regarding the provision of

incentives. In period 0, incentives to invest the funds into the project are weak as further funding

is forthcoming for sure in the period 1. In contrast, in period 1, incentives to invest the funds

are strong as by assumption no further occasions to realize the project arise. This stark contrast

between the periods gave rise to the extreme nature of the equilibrium with no funding in period

0 and maximal funding in period 1. By itself, the two period model thus gives little guidance as

to how the results carry over to a model with a more general time horizon, �nite or in�nite. In

the remainder of the paper, we shall analyze an in�nite time horizon model and examine the role

of the discount factor � in the equilibrium provision of funds. The removal of the arti�cial �nal

period will lead to the elimination of the discontinuity in the funding volume observed in the two

period model. We will obtain an intertemporal characterization of the funding volume which will

evolve smoothly over time and not only display minimal and maximal funding levels, but typically

intermediate funding at various stages of the project.

4 Relationship Financing

In this section, we analyze contracting with symmetric information, that is the entrepreneur�s ac-

tions are observable (but not veri�able) for the investor. The concept of Markov perfect equilibrium
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is de�ned in subsection 4. The properties of the Markov perfect equilibrium are investigated in

subsection 4. It is shown in subsection 4 that the Markov perfect equilibrium coincides with the

weakly renegotiation proof equilibrium. Finally, in subsection 4 we discuss how the contracting

results would be a¤ected if the agents could commit to long-term contracts yet could recontract in

every period.

EQUILIBRIUM In the environment with observable actions, the information of entrepreneur

and investor is symmetric in every period. Formally, we can describe the strategies in the game

as follows. Let Ht denote the set of possible public histories up to, but not including period t. A

proposal strategy by the entrepreneur is given by:

st : Ht ! R ; t : Ht ! [0; �] .

A decision rule by the investor is a mapping from the history and the contract proposal into a

binary decision to reject (dt = 0) or to accept (dt = 1):

dt : Ht � R� [0; �]! f0; 1g :

Finally, an investment policy by the entrepreneur is given by:

it : Ht � R� [0; �]! f0; tg :

The above policies all describe pure rather than mixed strategies and indeed throughout the paper

we focus on pure strategy equilibria. A generic public history of the game is denoted by ht 2 Ht
and is simply a realized sequence of o¤ers, funding and investment decisions:

ht =
�
s0; ::::; st�1; 0; ::::; t�1; d0; ::::; dt�1; i0; :::; it�1

	
:

The evolution of the posterior belief �t is not included in the history as it can be inferred from the

sequence of public funding and investment decisions by Bayes�rule. By default, updating occurs

only conditional on failure of the project as the game ends as soon as the project succeeds and

realizes the return R. Thus given any prior �0, an arbitrary history ht uniquely determines the

current posterior belief �t = � (ht). For a given quadruple fst; t; dt; itg1t=0 of strategies, denote the
value function of the entrepreneur at the beginning of period t by VE (ht) and the value function

of the investor by VI (ht).

We restrict our attention initially to Markovian equilibria where strategies are allowed to depend

only on the payo¤-relevant part of the history of the game, which in this model is fully represented

by a single state variable, the posterior belief �t in every period t. The Markov equilibrium out-

come is subsequently shown to be identical to a (weakly) renegotiation-proof equilibrium outcome.

Formally, a Markov perfect equilibrium following Maskin and Tirole (2001) is de�ned as:
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De�nition 1 (Markov Perfect Equilibrium)
A Markov perfect equilibrium is a subgame perfect equilibrium

fs�t ; �t ; d�t ; i�t g
1
t=0 ;

such that the sequence of policies satis�es 8ht 2 Ht, 8h0t0 2 Ht0, 8st; s0t0 ; 8t; 0t0 ;8dt; d0t0:

� (ht) = �
�
h0t0
�

) s�t (ht) = s
�
t0
�
h0t0
�
; �t (ht) = 

�
t0
�
h0t0
�
;

� (ht) = �
�
h0t0
�
; st = s

0
t0 ; t = 

0
t0 ) d�t (ht; st; t) = d

�
t0
�
h0t0 ; s

0
t0 ; 

0
t0
�
;

� (ht) = �
�
h0t0
�
; st = s

0
t0 ; t = 

0
t0 ; dt = d

0
t0 ) i�t (ht; st; ; t; dt) = i

�
t0
�
h0t0 ; s

0
t0 ; 

0
t0 ; d

0
t0
�
:

(10)

Thus, a Markov perfect equilibrium imposes the requirement that the continuation play be

identical after any two histories ht and h0t0 with an identical�belief, � (ht) = �
�
h0t0
�
, noting that the

particular history ht may di¤er from h0t0 either in its date, t 6= t0, and/or its past actions. Since the
moves in any period are sequential, the relevant state for the investor is not only the belief about

�t but must also include the entrepreneur�s contract o¤er, and similarly for the entrepreneur�s

�nal capital allocation decision. In the Markovian set-up, we can write the entrepreneur�s and the

investor�s value functions simply as a function of the current belief, VE (�t) and VI (�t), respectively.

ANALYSIS Consider the situation of the investor at an arbitrary point of time. He receives a

proposal by the entrepreneur to fund a project for the current period in exchange for shares in the

proceeds of the project should it succeed in the current period. As the current contract commits

neither investor nor entrepreneur to any future course of action, the investor is willing to accept

the proposal (st; t) as long as the expected returns are non-negative, or

�t (1� st) tR � ct: (11)

The inequality then represents the participation constraint of the investor. However, the expected

returns can only materialize if the entrepreneur decides to put the funds to work in the project,

rather than to divert them to her private ends. This is the incentive problem of the entrepreneur.

Consider �rst the �nal period where the entrepreneur receives funding in equilibrium. This

�nal period will arise when the belief � = �t has deteriorated so much that it will be impossible to

solicit any future funds. In that �nal period the entrepreneur has to choose between investing and

diverting, or

�tsttR � ct: (12)

Exactly as shown in the two period model above, jointly the inequalities (11) and (12) imply that

for any funding to occur in equilibrium the expected �ow return from the investment must cover

both the cost of the funds for the investor and the opportunity costs for the entrepreneur,

�ttR � 2ct:

15



The critical posterior belief at which funding will certainly cease is therefore given by �S de�ned

by the identity (5) above, where �S is twice as large as the e¢ cient stopping belief, �S = 2��.

In all preceding periods, the incentive constraint for the entrepreneur has to take into account

her future opportunities. As in the two period model (see equation (6)), the constraint can be

represented in terms of her value function:

�ttstR+ (1� �tt) �VE (�t+1) � ct + �VE (�t) : (13)

For any sharing rule st, the entrepreneur can either invest the funds (lhs) or divert them (rhs). She

bene�ts from complying with the contract via two di¤erent sources. Either the project succeeds in

period t, giving her a share of the return stR, or it does not succeed, in which case she has access

to future rounds of funding. With a funding �ow of t, the probability of these events are �tt and

1 � �tt respectively. If the project fails in the current period, then the posterior belief declines
to �t+1. The alternative action for the entrepreneur is to simply divert the funds today and then

face a similar problem tomorrow as the state of the project remains unchanged. Therefore, the

equilibrium can be characterized by a sequence of participation constraints for the investor (as in

(11)) and a sequence of incentive constraints for the entrepreneur (as in (13)).

In equilibrium, the entrepreneur will never leave the investor with more net value than is neces-

sary to obtain the funding. The equilibrium share s�t is therefore determined by the exact ful�llment

of the participation constraint. The investor receives zero net utility when the participation con-

straint (11) is binding and we can solve for the equilibrium sharing rule:

s�t =
�tR� c
�tR

. (14)

We refer to contracts which leave the investor with zero net utility as break-even contracts and

observe that the break even share is independent of the funding �ow.7 Using (14), we may rewrite

the incentive constraint (13) as:

�ttR� ct + (1� �tt) �VE (�t+1) � ct + �VE (�t) : (15)

The dynamic incentive constraint shows that the return R has to be su¢ ciently high to cover the

static as well as the dynamic incentive costs. The static part simply says that the gross return

�ttR has to be su¢ ciently large to compensate the investor for his cost ct as well as dissuade the

entrepreneur from diverting the current �ow, an additional ct. The dynamic part accentuates the

incentive problem. By rewriting (15) as

�tt (R� �VE (�t+1)) � 2ct + � (VE (�t)� VE (�t+1)) , (16)

7We prove the result that only break-even contracts will be o¤ered in equilibrium formally in Lemma 2 as a

property which holds for all subgame perfect equilibria, and not only for Markovian equilibria.
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it says that the net return for the entrepreneur after paying for the static cost is R � �VE (�t+1)
rather than R itself. This is natural as the success today leads to an end of the project and preempts

future payouts to the entrepreneur. On the other hand even, if the project is funded yet without

success, then the future value of the project is determined by �t+1 rather than �t. By diverting

the funds, the entrepreneur could escape the downgrade which constitutes the dynamic part of

incentive costs.

A lower level of funding t certainly a¤ects both sides of the inequality (16), but at di¤erent

rates. A lower equilibrium level reduces the gains on the lhs but only with the weight �t <

1, whereas on the rhs it a¤ects the current costs of funding, but what is more important the

intertemporal incentive costs. A low funding level t reduces the current value function, VE (�t),

but a lower t also decreases the di¤erence between �t and �t+1 and with it the di¤erence of

the value functions VE (�t) � VE (�t+1). This argument suggests that a marginal decrease in t
always leads to a larger decrease in the rhs of the incentive constraint than the lhs of the incentive

constraint.

Given the impact of the funding rate on the intertemporal incentive constraints, we might then

ask whether it is conceivable that the project receives full funding with t = � until the last period

�T = �S . With period T being the last period of funding, the continuation value at �t+1 would be

zero, VE (�T+1) = 0, and the value function at �T would be given by:

VE (�T ) = �T�R� c�:

But if we inserts these two continuation valuation into the incentive constraint (15) we are lead to

a contradiction as we obtain after rearranging:

�T�R � 2c�+ � (�T�R� c�) :

The inequality clearly cannot be satis�ed at �T = �S as we have already �S�R = 2c� and �S�R�
c� = c�. This argument already indicates that in equilibrium funding has to (eventually) slow

down from the maximal level � to a lower level t < �, which can be sustained by the incentive

constraint (15).

In light of this �nding, we might ask whether full funding with t = � will ever occur. To answer

this question, it is helpful to consider the limit case of the incentive constraint (16) with �0 = 1,

the case of the �certain project�. Using the fact that with the certain project, �0 = 1, the posterior

beliefs remain constant and equal to the prior beliefs, the intertemporal incentive constraint (15)

can then be written as

�R� c�+ (1� �) �VE (1) � c�+ �VE (1) : (17)

In equilibrium, the value function of the entrepreneur is the discounted and risk adjusted sum of

the per period returns:

VE (1) =
�R� �c

1� � (1� �) :
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We then insert VE (1) into the incentive constraint (17):

�R� c�+ (1� �) � �R� �c
1� � (1� �) � c�+ �

�R� �c
1� � (1� �) ; (18)

and obtain a necessary and su¢ cient condition on R for full funding to occur:

R � 2c+ �c �

1� � . (�)

By considering the deviation option of the entrepreneur, the sources of the determination for the

critical value R becomes more transparent. If we consider �0 = 1, then if full funding is to occur in

equilibrium, we know that the entrepreneur can always guarantee herself at least c� in every period

as a diversion would simply lead to renewed attempts of funding in next period. With �0 = 1 and

VE (�t) = VE (�t+1), we can rearrange the incentive constraint (17) to read

�R � 2�c+ ��VE (1) . (19)

Now the entrepreneur has the option to divert the funds in every period, which secures him at

least a perpetuity of c�, hence VE (1) = �c
1�� . The inequality (19) then states the return from the

project, R, has to cover at least c + c, which are the current costs for entrepreneur and investor,

and the increment in the perpetual rent that is at the discretion of the entrepreneur via his option

to deviate and thereby to increase by � the probability to get access to the perpetual rent. The

rent of entrepreneur thus has a contemporaneous and an intertemporal component.

Condition (�) turns out to be a key condition in our analysis. A project where the payo¤ R

is large enough relative to the marginal cost c of success, the contemporaneous rent c and the

increment in the perpetual rent �c �
1�� so as to satisfy (�) is termed a �high return� project (in

incentive-adjusted terms), as opposed to a �low return�project where the condition is violated.

De�nition 2 (Low and high return projects)
The project is a low return project if R < 2c+�c �

1�� and it is a high return project if R � 2c+�c
�
1�� .

We can now ask what happens to equilibrium funding when the critical inequality (�) is violated.
Staying with the special case of the certain project and hence �0 = 1, the solution is almost apparent

from the analysis of the incentive constraint (17). For funding to occur, the incentive constraint

has to be reestablished again. This requires that the rent arising from a diversion is lowered, which

can only mean that the funding level is lowered to an appropriate level �t < �. In fact, we can

obtain the equilibrium funding t = 
�
t by solving the incentive constraint (18) as an equality. The

solution �t to the equality (18) is also the unique equilibrium funding level. While it is by now

clear that a funding level above �t could not be sustained in equilibrium, we shall now argue that

any funding level strictly lower than �t could not form an equilibrium either. We observe �rst
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that if the funding level is set below �t then the incentive constraint (17) would again hold as a

strict inequality. As the entrepreneur then has slack in his incentive constraint, he could ask the

investor for a higher funding level, even �, by �bribing� the investor and o¤ering him a slightly

larger share of the surplus than the break-even contract. The investor would agree as he would

be o¤ered a strictly positive net surplus, and given the continuation values, he would be assured

that the entrepreneur�s incentive constraints still holds. In consequence, an interior level of funding

 2 (0; 1) can be sustained in equilibrium only if the incentive constraint of the entrepreneur is

met as an equality. The insight that an interior level of funding is always associated with a binding

incentive constraint is of course not restricted to �t = 1, but valid more generally for all �t � 1.

We summarize the equilibrium funding decisions for the certain project.

Theorem 1 (Certain Project)

1. If the certain project has high returns, then it receives full funding in all periods.

2. If the certain project has low returns, then it receives restricted funding in all periods:

�t =
1� �
�c

(R� 2c) < �, 8t.

The equilibrium funding level of the low return project is increasing in the �nal value R and

decreasing in cost c. An increase in the discount factor � increases the value of the option to divert

and hence the investor responds in equilibrium by a decelerating the �ow of funds as it becomes

more di¢ cult to satisfy the incentive constraint.

The equilibrium in the general case of an evolving �t can now almost be conceived by replacing

the constant value R by the dynamically evolving value �tR. As long as �tR is su¢ ciently large,

unrestricted funding will be possible, yet as �tR decreases, funding will have to decrease as well so

as to maintain the incentive constraint of the entrepreneur.

The critical value of the posterior belief, denoted by �, at which funding will become restricted

can in fact easily be obtained. Under the hypothesis that the value function of the entrepreneur is

just equal, but not larger, than the perpetual rent that the entrepreneur can secure by deviating

forever, the incentive constraint allows to solve for the value function as

VE (�t) = VE (�t+1) =
�c

1� � .

The critical posterior belief is then computed by solving (15) with the continuation values given by

the perpetual rents, or

��R� �c+ (1� ��) � �c

1� � = �c+ �c
�

1� � ;
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from which we can infer the threshold as

� =
2c

R� �c �
1��

: (20)

Full funding at �t is possible if and only if �t � �. We can summarize our �ndings as:

Theorem 2 (Relationship Funding)
The Markov Perfect Equilibrium is unique and funding is always provided until �T = �S.

1. If the project has low returns, then it receives restricted funding in all periods.

2. If the project has high returns, then it receives full funding for all �t � � and restricted

funding for all �t < �.

3. If funding is restricted, then t is strictly decreasing in t.

The sharing rule associated with the equilibrium is given by (14). For high return projects,

there is a critical value � such that the project will receive maximal funding as long as �t � �.

Low return projects which have insu¢ cient returns to cover current costs and perpetual rents, even

at �t = 1, are then always subject to restricted funding. In both cases, the volume of funding will

decrease over time with the deterioration in the expected returns �tR.

RENEGOTIATION-PROOF Equilibrium The notion of a Markov equilibrium imposes a

stationarity requirement on the o¤er and acceptance decisions of the agents. In the context of our

model, the Markovian assumption has a natural interpretation as a consistency requirement on the

process of (re)negotiation between the two parties; namely, the Markovian condition requires that

entrepreneur and investor �nd an arrangement mutually acceptable whenever they have found the

same arrangement acceptable in the past and absent any new information about the nature of the

project.

We now strengthen this intuition by considering arbitrary history-dependent policies instead.

However, we impose a condition that the policies must be time-consistent in the sense that if the

players can coordinate on a certain policy in a subgame, they are also able to coordinate on the

same policy in any other subgame where the circumstances are the same, that is if they share the

same belief about �t. In other words, we assume that they are able to avoid any Pareto-inferior

outcome under exactly the same circumstances. To this end, we invoke the re�nement of weakly

renegotiation-proof equilibrium �rst suggested by Farrell and Maskin (1989) for repeated games.

The adaptation of the equilibrium notion to dynamic games is straightforward.

De�nition 3 (Weakly Renegotiation-Proof)
A subgame perfect equilibrium fs�t ; �t ; d�t ; i�t g

1
t=0 is weakly renegotiation-proof if there do not exist
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continuation equilibria at some ht and h0t0 with � (h) = �
�
h0t0
�
and ht 6= h0t0 such that VE (ht) �

VE
�
h0t0
�
and VI (ht) � VI

�
h0t0
�
, with at least one strict inequality.

The renegotiation considered here occurs between time periods. It is conceptually di¤erent

from renegotiation in static principal-agent models as considered by Fudenberg and Tirole (1990)

or Hermalin and Katz (1991). The notion of weakly renegotiation-proof is often interpreted as an

internal consistency requirement. Indeed, Farrell and Maskin (1989) suggested a strengthening of

the notion by de�ning as strongly renegotiation-proof any weakly renegotiation-proof pro�le with

none of its continuation equilibria being strictly Pareto dominated by another weakly renegotiation-

proof pro�le. This distinction is immaterial to our argument, as they all coincide in this sequential

move game with symmetric information.

Theorem 3 (Equivalence)
The unique Markov perfect equilibrium is identical to the unique weakly renegotiation-proof equilib-

rium.

The equivalence can be illustrated by the following simple example of equilibrium strategy

pro�les which form a subgame perfect, but not renegotiation-proof equilibrium. The example also

shows that renegotiation-proofness indeed imposes restrictions on the equilibrium set:

(i) The entrepreneur o¤ers in each period break-even contracts and invests funds if her private

value to invest exceeds her private value to divert. If the investor has observed no deviations in

the past, then the investor provides maximal funding if he breaks at least even and can expect the

entrepreneur to invest. He rejects any contract proposal which doesn�t meet the above conditions.

(ii) If there were any deviations in the past then entrepreneur and investor pursue the stationary

equilibrium strategies as described earlier.

Consider these strategy pro�les for a certain project, �0 = 1, with low returns, R < 2c+�c �
1�� .

By Theorem 1, the Markov perfect equilibrium permits only restricted funding with

� =
1� �
�c

(R� 2c) ;

and the resulting equilibrium value for the entrepreneur is

VE (1) =
1

�
(R� 2c) :

In contrast, suppose part (i) of the strategy pro�le forms indeed a subgame perfect equilibrium.

Then the value for the entrepreneur would be

V̂E (1) =
�R� �c

1� � (1� �) .
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As it is immediately veri�ed that o¤er and acceptance strategies in (i) have the best response

property if the entrepreneur subsequently invests, it remains to verify her incentive constraint,

which can be written as:
�R� �c

1� � (1� �) � c�+ (R� 2c) ;

which leads after the obvious cancellations to

R � 2c+ �c �

1� � :

This is precisely the condition of low returns that we imposed for this example. Thus, the outlined

strategy pro�le would allow full funding everywhere along the equilibrium path by relying on the

stationary equilibrium as an o¤-the-equilibrium punishment path. The strategy pro�les rely in

an obvious way on continuation plays which are not renegotiation-proof. As the investor receives

zero utility on and o¤ the equilibrium path, it is su¢ cient to note that the entrepreneur receives

di¤erent values on and o¤ the equilibrium path to �nd that the strategy pro�le is not weakly

renegotiation-proof.

BARGAINING and Long-Term Contracts We have so far imposed two strong assumptions

on the structure of contracts, namely (i) that all the bargaining power rests with the entrepreneur

and (ii) that only short-term contracts were possible. Here, we brie�y discuss the robustness of

the results if we were to relax either of the assumptions.

Bargaining Power. Consider �rst a change in the bargaining power. Suppose that the investor

now makes all contract o¤ers and the entrepreneur accepts or rejects all proposals. Still, the

participation constraint of the investor and the incentive constraint of the entrepreneur have to

hold in any equilibrium. As long as both constraints are binding, they uniquely determine the

equilibrium. In the model, both constraints were binding in the region �t < �; where only reduced

funding was feasible. Therefore, nothing would change in this region with the redistribution of the

bargaining power: The pattern of funding and the distribution of the surplus remains the same.

A change in the allocation can only arise if one of the inequalities is not binding any more, and

the change would then pertain to the distribution of the surplus. Now in the benchmark model,

the incentive constraint was only slack in the region of optimistic posterior beliefs �t � �. But

there, maximal funding was guaranteed anyhow, and a shift in bargaining power would not alter

that. It follows that the funding pattern in equilibrium would remain una¤ected by a change in

the bargaining power.

Long-Term Contracts. In this paper, we analyze short-term contracts in which the participation

constraint of the investor has to hold in every period. Consider then an extension of the contracting

space to allow for long-term contracts that are valid for any arbitrary horizon of T periods. We

maintain our requirement that existing contracts can be renegotiated or new contracts be concluded

22



in every future period. Formally, this allows us to substitute the sequence of participation con-

straints that had to be met in every period by a single intertemporal participation constraint that

has to hold only at the time of entry into the contract. In contrast, the sequence of period-by-period

incentive constraints needs to be maintained, as they guarantee the proper allocation of investment

funds in every period.

The advantages of a long-term contract reside naturally with a possible intertemporal smooth-

ing of the entrepreneur�s expected payo¤s. More precisely, it is then possible to reallocate the

entrepreneur�s payo¤ stream over time so as to make it coincide with the stream that is necessary

to guarantee incentives. Thus, in every moment where the project�s current net cash �ow (�tR�c)�
exceeds what is needed to maintain the entrepreneur�s incentives, or as long as �t > �, there is a

surplus that can be reallocated. The entrepreneur concedes a larger share to the investor today in

exchange for receiving a larger share herself in the future. Conversely, the investor makes pro�ts

initially in return for a commitment to subsidize the project later on, when �t falls below �.

Hence, for high return projects with an optimistic prior belief, �0 > �, a long-term contract

can strictly improve upon the allocation of short-term contracts. The region where full funding

is provided can then be extended beyond the threshold �. The funding pattern, however, would

remain as before, insofar as the project would receive initially full funding and then switch to lower

funding levels. By contrast, we observe that as soon as funding is reduced, our previous argument of

the intertemporal smoothing e¤ect of long-term contracting never applies and long-term contracts

can do no better than short-term contracts. Therefore, if �0 � �, which is always the case for low
return projects, there is no role for long-term contracts and the equilibrium is una¤ected by the

larger set of feasible contracts. The reason is that the project then has in no instance high enough

returns to generate surplus beyond participation and incentive constraints. The details are spelt

out in an earlier version of the current paper (Bergemann and Hege, 2000).

5 Arm�s Length Financing

In this section we assume that the investment decision by the entrepreneur is unobservable by

the investor. We �rst consider Markovian equilibria, to maintain consistent equilibrium conditions

across di¤erent informational structures. A Markov sequential equilibrium is de�ned in Subsection

5, and the equilibrium analysis is presented in Subsection 5. It is then shown in Subsection 5 that

the Markovian restriction is immaterial as the unique Markov sequential equilibrium coincides with

the unique sequential equilibrium. In Subsection 5, we discuss again the robustness when changes

in the bargaining power or long-term contracts are introduced.

EQUILIBRIUM As we consider the contracting problem with unobservable actions by the

entrepreneur, the observable history of the game begins to di¤er for entrepreneur and investor.
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The entrepreneur still observes all past realizations of the strategic choices and a private history ht
for her is still given by:

ht =
�
s0; ::::; st�1; 0; ::::; t�1; d0; ::::; dt�1; i0; :::; it�1

	
:

The investor, however, is not able to observe the action of the entrepreneur anymore. Along any

arbitrary sample path without success the observable history to him is given by

ĥt =
�
s0; ::::; st�1; 0; ::::; t�1; d0; ::::; dt�1

	
:

Denote by Ĥt the set of all possible such histories. In consequence, the evolution of the posterior

belief may di¤er for entrepreneur and investor. We continue to denote by �t the entrepreneur�s

posterior belief based on the history ht, �t , � (ht). We refer to the belief that the investor

holds at time t and after observing the restricted public history ĥt as �̂t , �̂(ĥt), which will

depend on the observed history ĥt as well as on the investor�s belief about the entrepreneur�s

past investment behavior, f{̂0; :::; {̂t�1g. By Bayes�law there is a one-to-one relationship between
the estimate regarding the entrepreneur�s past investments f{̂0; :::; {̂t�1g and the belief about �̂(ĥt).
The estimate regarding f{̂0; :::; {̂t�1g depends on the incentives provided through the past and future
share contracts fs0; ::::; st; :::g. As before, updating occurs only conditional on current failure of
the project as the game ends as soon as the project succeeds.

As entrepreneur and investor observe di¤erent histories, the payo¤ relevant part of the history

is now represented by two state variables, the two (possibly di¤erent) posterior beliefs about the

likelihood of success, �t and �̂t. The suitably adapted Markovian equilibrium concept can then be

stated as:

De�nition 4 (Markov Sequential Equilibrium)
A Markov sequential equilibrium is a sequential equilibrium

fs�t ; �t ; d�t ; i�t g
1
t=0

if 8ht 2 Ht;8h0t0 2 Ht0, 8ĥt 2 Ĥt;8ĥ0t0 2 Ĥt0 and 8st; s0t0 ;8t; 0t0 ;8dt; d0t0 :

� (ht) = �
�
h0t0
�

) s�t (ht) = s
�
t0
�
h0t0
�
; �t (ht) = 

�
t0
�
h0t0
�
;

�̂ (ht) = �̂
�
h0t0
�
; st = s

0
t0 ; t = 

0
t0 ; ) d�t

�
ĥt; st; t

�
= d�t0

�
ĥ0t0 ; s

0
t0 ; 

0
t0

�
;

� (ht) = �
�
h0t0
�
; st = s

0
t0 ; t = 

0
t0 ; dt = d

0
t0 ) i�t (ht; t; st; dt) = i

�
t0
�
h0t0 ; 

0
t0 ; s

0
t0 ; d

0
t0
�
:

(21)

The Markovian sequential equilibrium ensures that the continuation strategies are time-consistent

and identical after any history with an identical pair of rationally updated beliefs, �t and �̂t. The

Markovian restrictions contained in (21) are equivalent to the ones formulated earlier in (10), with

the exception that the underlying histories and beliefs di¤er for entrepreneur and investor.
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ANALYSIS Before we go to the details of the analysis, it might be useful to describe intuitively

where the di¤erences in the equilibrium incentives arise and how they matter for the equilibrium

funding. Conditional on receiving the funds, the entrepreneur still has the option to either invest

or divert the funds. The di¤erences arises in how entrepreneur and investor evaluate these di¤erent

options. Clearly, the investor is only willing to provide the funds if he is convinced that the funds

will be directed to the project. Consider then the counterfactual of a diversion of the funds by the

entrepreneur. Following a deviation, the entrepreneur would know that the funds didn�t bene�t

the project and hence a failure of the project to succeed in this period will not surprise her at all.

In contrast, for the investor, a deviation remains a counterfactual and thus he is downgrading his

beliefs about the future value of the project as the current failure induces a downward change in

his beliefs. Thus, a deviation, as an o¤-the-equilibrium behavior by the entrepreneur, leads to a

divergence in the posterior about the future likelihood of success. More precisely, the entrepreneur

maintains her estimate �t+1 = �t whereas the investor continues to update his belief to a lower

value �̂t+1 < �t. Such a divergence of beliefs per se could not arise in the environment with

observable actions.

How does the possibility of divergent beliefs in�uence the equilibrium incentives? Ultimately

the divergence imposes more discipline on the funding decisions of the investor and therefore tends

to ease the funding problem. As a deviation will still lead to a lowering in the posterior belief of

the investor, he will ask for a larger share of the return R. This leads directly to higher cost of

obtaining funds from the point of view of the entrepreneur. The option of delaying the investment

decision until the next period thus becomes less attractive.

We examine next how these changes will be re�ected in the participation and incentive con-

straints. The participation constraint of the investor remains unchanged at:

�̂tsttR � tc;

with the exception that it is evaluated at �̂t rather than �t. The modi�cation is immaterial along

the equilibrium path, as �t = �̂t. However the incentive constraint of the entrepreneur changes to

re�ect the divergence of the beliefs o¤ the equilibrium path. Formally, the incentive constraint is

given by:

�ttstR+ (1� �tt) �VE (�t+1) � ct + �VE
�
�0t+1; �̂t+1

�
,

where, momentarily, we express the value function as determined by both beliefs. We observe that

o¤-the-equilibrium path, the posterior belief of entrepreneur and investor diverge and hence the

value function o¤ the equilibrium path depends on the speci�c belief of the entrepreneur, �0t+1
and the investor, �̂t+1. Along the equilibrium path, the entrepreneur invests the funds into the

project, and a diversion occurs o¤ the equilibrium path. The continuation value conditional on a

diversion is therefore described by two di¤erent beliefs, the correct belief �0t+1 of the entrepreneur
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and the incorrect belief �̂t+1 of the investor. After a one-period deviation, the o¤-the-equilibrium

path belief of the entrepreneur, �0t+1, is simply given by �
0
t+1 = �t, whereas the investor holds the

�equilibrium� belief �̂t+1 = �t+1. Hence, o¤-the-equilibrium path, the investor will only accept

contracts which will break-even under his posterior belief �̂t+1 and all subsequent updates of his

posterior. How then does this a¤ect the continuation value of the entrepreneur o¤-the-equilibrium

path? The answer is rather straightforward. It will be as if his continuation value would be indeed

be determined by the belief of the investor �̂t+1 = �t+1, but as the entrepreneur privately knows

that the true posterior, conditional on diversion, is still given by �t, he simply exchanges the

posterior belief �̂t+1 = �t+1 of the investor by his own �0t+1 = �t. This allows us to relate the o¤

the equilibrium path value function to the on the equilibrium path value function as follows:

VE
�
�0t+1 = �t; �̂t+1 = �t+1

�
=

�t
�t+1

VE (�t+1) . (22)

After all, the value function of the entrepreneur, on and o¤ the equilibrium path, is simply the

discounted sum of success probabilities, or

VE (�t+1) = R
�
�t+1st+1t+1 + �

�
1� t+1�t+1

�
�t+2st+2t+2 + �

2
�
1� t+2�t+2

�
�t+3st+3t+3 + ::::

�
.

(23)

After we replace the conditional success probabilities �t+2t+2; �t+3t+3; ::: by the unconditional

success probabilities viewed from �t+1; and making repeatedly use of Bayes formula:

�t+2 =
�t+1

�
1� t+1

�
1� t+1�t+2

;

we can rewrite the value function (23) as a sequence of unconditional probabilities:

VE (�t+1) = �t+1R
�
t+1st+1 + �

�
1� t+1

�
t+2st+2 + �

2
�
1� t+1

� �
1� t+2

�
t+3st+3 + ::::

�
;

(24)

that only invoke the current belief �t+1 and the current and future �ow probabilities t+1; t+2; t+3; :::.

This shows how the identity (22) arises. The terms of the contract, namely st+1; st+2; ::: are con-

ditional on a deviation of the entrepreneur are determined by the belief of the investor. In conse-

quence, the accepted shares conditional on the deviation, will be identical to the shares the parties

would agree upon on the equilibrium path as �̂t+1 = �t+1, hence the term VE (�t+1). But pri-

vately, the entrepreneur knows that the true probability of future success is �t rather �t+1. Hence

the ratio term �t
�t+1

corrects for the fact that the value function VE (�t+1) underestimates the true

probability of success when �0t+1 = �t.

We can therefore rewrite the incentive constraint in the asymmetric information environment

as follows:

�ttR� tc+ (1� �tt) �VE (�t+1) � ct +
�t
�t+1

�VE (�t+1) . (25)
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The reader may realize that the lhs of the inequality, which represents the �on-the-equilibrium

path�behavior remains identical to the one in the observable environment (cf. expression (13)).

The change occurs on the rhs of the inequality, or the �o¤-the-equilibrium path�. The �ow value of

a diversion still contains the immediate bene�t of ct. But as the investor continues to believe that

an investment occurred, he will only accept future proposals as if an investment today had indeed

occurred. In consequence, the value function of the entrepreneur will have to evolve (almost) as if

the current failure had to be attributed to the project rather than the diversion of the entrepreneur.

There is one bene�t, however, for the entrepreneur from the continued updating. She will know that

the true probability is still �t rather than �t+1. Thus instead of multiplying the future probability

of success with �t+1 she is certain that it is indeed �t.

The intertemporal incentive constraint (25) may be rewritten after cancelling the obvious terms

as:

�ttR� ct � ct + t
�t
�t+1

�VE (�t+1) . (26)

In general then, funding towards the end of the lifetime of the project will become easier with an

arm�s length relationship. But now a complementary problem may arise at the beginning of the

project. If indeed funding will be generous close to the end of the project, then the entrepreneur

may have less incentives at the beginning of the project to invest funds, as the future will o¤er

plenty of opportunities to generate success. Thus an easing of the incentive constraint near the

end of the project may tighten the incentive constraint at the beginning of the project, when the

assessment in terms of the beliefs �t is still very positive. This indicates that the monotonicity in

the funding volume may indeed be reversed with unobservable actions. We �rst state the results

and then comment on some of the equilibrium properties. The threshold posterior belief at which

the funding policy will switch is denoted by � and given by:

� =
2c� 2c�

1�� +
��c
1��

R� 2c�
1��

:

Theorem 4 (Arm�s Length Funding)
The Markov Sequential Equilibrium is unique and funding stops at �T = �S.

1. If the discount factor is low, � < 2�2�
2�� , then

(a) a low return project receives restricted funding at all times,

(b) a high return project receives full funding for �t � � and restricted funding for �t < �.

2. If the discount factor is high, � � 2�2�
2�� , then

(a) a low return project receives restricted funding for �t > � and full funding for �t < �,
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(b) a high return project receives full funding at all times.

The di¤erence in the equilibrium funding policies between arm�s length and relationship �-

nancing are now easily discussed. For low discount factors, or � < 2�2�
2�� , the equilibrium funding

over time displays exactly the same dynamics under arm�s length and relationship funding. Yet, a

di¤erence emerges for high discount factors, or � � 2�2�
2�� . The absence of a commitment problem

with arm�s length funding completely restores the e¢ ciency of the funding decision until �T = �S
for a high return project. For a project with low returns, it at least allows to reestablish funding

e¢ ciency close to �S . The above condition on the discount factor can be restated symmetrically

as a condition on the winning probability as

� � 2� 2�
2� � , � � 2� 2�

2� � : (��)

For convenience, we shall henceforth refer to large and small discount factors depending on whether

� does or does not satisfy condition (��).

De�nition 5 (Small and large discount factors)
The discount factor is said to be small if � < 2�2�

2�� and it is said to be large if � � 2�2�
2�� .

We observe that an increase in the winning probability � leads to lower bound on the discount

factor and vice versa. The role of the discount factor, or for that the winning probability should not

come entirely as surprise given our earlier discussion on the ine¢ ciencies in relationship funding.

The lack of commitment became especially damaging to the social e¢ ciency of the equilibrium

when the discount factor was high, the intertemporal rent of the entrepreneur liable to be high and

the only equilibrium resolution of this con�ict required the investor to slow down the release of the

funds. As the informational asymmetry allows the investor to overcome this lack of commitment,

the discrepancy between arm�s length and relationship funding arises precisely where arm�s length

funding was most a¤ected by the lack of commitment. The e¢ ciency is thus reestablished for high

return project and improves the funding volume for low return projects with high discount factors.

Corollary 1 (Funding Evolution)

1. If the discount factor is small, then the funding volume is decreasing over time.

2. If the discount factor is large, then the funding volume is increasing over time.

Whether funding will eventually become unrestricted as �t is su¢ ciently close to 1, is again

determined by the high return condition: R � 2c + ��
1�� c we encountered earlier in the symmetric

environment. The reappearance of the condition is plausible as for �t su¢ ciently close to one, the

di¤erences in the beliefs of entrepreneur and investor after a deviation become arbitrarily small as a
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current failure barely changes the very optimistic view of the investor. More precisely, for any �xed

funding �ow t > 0, the di¤erence in the belief before and after a single unsuccessful investment

t:

lim
�t!1

(�t � �t+1) = lim
�t!1

�
�t �

�t (1� t)
1� �tt

�
= 0;

converges to zero when the initial belief at �t is arbitrarily optimistic about the likelihood of eventual

success. The asymmetry in the information between entrepreneur and investor is thus arbitrarily

small when the incoming belief �t is close to 1 and in consequence the asymmetric contracting

problem becomes arbitrarily close to the symmetric contracting problem. These arguments can be

retraced formally by comparing the two incentive constraints, the symmetric incentive constraint

(see (15)):

�ttR� ct + (1� �tt) �VE (�t+1) � ct + �VE (�t) ;

and the asymmetric incentive constraint (see (25)):

�ttR� ct + (1� �tt) �VE (�t+1) � ct +
�t
�t+1

�VE (�t+1) :

We now observe that as �t ! 1, we have

lim
�t!1

(�t � �t+1) = 0 and lim
�t!1

�t
�t+1

= 1.

By continuity of the value function, it then follows from the above that

lim
�t!1

(VE (�t)� VE (�t+1)) = 0;

and hence symmetric and asymmetric incentive constraints become identical as �t ! 1. Moreover,

as �t ! 1, the posterior beliefs will change for a long period of time only very slowly as the funds

fail to generate a success. This means that for a long period of time, symmetric and asymmetric

incentive conditions will almost be identical and hence the value generated through them will be

very close to each other as the more distant events matter less due to discounting.

SEQUENTIAL Equilibrium The characterization of the equilibrium seemed to rely strongly

on the Markovian assumption. In particular, we represented the incentive problem of the entrepre-

neur through a Bellman equation. But there is one crucial di¤erence to relationship �nancing: As

the investor continues to lower his belief every time he provided funds yet did not observe success,

he reaches the posterior belief �S after �nitely many positive funding decisions. This is true on

the equilibrium path as well as o¤ the equilibrium path. Thus, in contrast to the symmetric en-

vironment, the horizon of the game e¤ectively becomes �nite. This allows us to analyze the game

by backwards induction over a �nite horizon. As the (static) equilibrium in any �nal period where
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�T � �S , yet �T+1 < �S , is unique, we can then construct the equilibrium recursively. More-

over the stage game has a unique equilibrium for any given continuation payo¤. In a sequential

equilibrium, the investor�s beliefs �(ĥt) are tied down according to Bayes� rule after all possible

histories, including o¤ the equilibrium histories, which is su¢ cient to guarantee the uniqueness of

the continuation equilibrium everywhere. It follows that backwards induction leads to a unique

sequential equilibrium independent of the Markov assumption.8

The construction of the equilibrium in Theorem 4 is thus in fact constructing the unique se-

quential equilibrium, where the posterior belief �t merely serves to summarize the beliefs of the

players for a given history, but not as a restriction on the conditioning of the strategies.

Corollary 2 The unique Markov sequential equilibrium is the unique sequential equilibrium.

Thus, since the equilibrium play in a sequential equilibrium always follows a �nite horizon logic

in the environment with unobservable actions, there is no need to refer to any formal concept of

renegotiation-proofness in order to make sure that the outcome is the one that we have in mind,

where it is impossible throughout to �nd a Pareto-improving continuation play by rescinding the

equilibrium contracts.

BARGAINING and Long-Term Contracts As before, we may ask how sensitive the equi-

librium results are to the speci�cs of the contracting model, in particular the distribution of the

bargaining power and the restriction to short-term contracts.

Bargaining Power. Suppose now that the investor makes all the o¤ers and the entrepreneur

can only respond with acceptance or rejection. With a small discount factor, the equilibrium

funding pattern is qualitatively comparable to the one under symmetric information and changes

in bargaining structure do not at all e¤ect the funding volume. With a large discount factor, the

funding pattern remains in its qualitative properties but the equilibrium displays less ine¢ ciencies.

The reason is that whenever funding is unrestricted, the project�s expected cash �ow leaves some

free surplus after participation and incentive constraints are satis�ed. The question is then whether

a better overall allocation is achieved if this surplus is distributed to the investor rather than the

entrepreneur. Giving the surplus to the investor means a lower expected equilibrium payo¤ for

the entrepreneur. Recall that the minimum value of the entrepreneur that guarantees incentive

compatibility is recursively constructed. Thus, a lower expected compensation in the future (since

the free surplus is given to the investor) translates into a lower option value of diverting and hence

into a lower minimum compensation today. The incentive problem of the entrepreneur in the

current period is eased. In consequence, a change in the bargaining power would allow an increase

8Perfect Bayesian equilibrium cannot be used here since adverse selection is a consequence of the entrepreneur�s

unobservable actions, not of chance moves of nature.

30



of the area where maximal funding is provided and would increase the volume of funding over the

entire horizon.

Long-Term Contracts. The reasons why there can be bene�ts from adopting (renegotiation-

proof) long-term contracts are closely related. As long-term contracts replace the �ow participation

constraint of the investor with a single initial constraint, intertemporal smoothing is possible. With

a large discount factor, the project is initially constrained, and a free surplus arises towards the

end of the relationship. As discussed for changes in the bargaining power, allocating this surplus to

the investor lowers the entrepreneur�s expected future value, and hence eases the current incentive

problem. Moreover, in return for making expected pro�ts towards the end, the investor can agree

to subsidize the project elsewhere, i.e. to provide full funding while accepting a current share

(1 � st)�t�R that falls short of the investment �ow c�. The question is then when to schedule

this subsidy phase. The answer is that this subsidy phase should be scheduled as soon as possible,

but the requirement that the equilibrium be immune to renegotiation is an e¤ective constraint on

this. As a consequence, if the project has low returns, the intertemporal smoothing arrangement

will allow an early start and an extension of the �nal phase where full funding can be provided,

but only limited funding is possible initially. If the project has high returns, then full funding is

possible from the start and can be continued even beyond �S .

By contrast, with a small discount factor, the dynamics of the funding pattern is reversed

and resembles roughly the picture with observable actions. The project is constrained towards

the end, necessitating to slow down the release of funds. The intertemporal smoothing option of

long-term contracts allows to prolong the initial full funding phase. But as soon as the surplus is

exhausted, the optimal contract reverts back to the sequence of contracts described above, with the

same funding volume. For low return projects or if �0 is so small that short-term contracts never

allow for full funding, then there is never a surplus to redistribute intertemporally and long-term

contracting cannot improve upon short-term contracts. For details and formal statements, we refer

again to an earlier version of this paper (Bergemann and Hege, 2000).

6 Observability and the Commitment to Stop

In the previous two sections, we gave separate accounts of the environment with observable actions

and with unobservable actions. We provide a comparison of the two cases in this section which

we interpret to re�ect the initial choice between relationship �nancing and arm�s length �nancing

when the project is set up.

We will conduct this comparison by maintaining the assumption that, once the �nancing mode

is chosen, the investor is committed to the informational environment throughout. The source of

this commitment is not explained in the model, and we will informally discuss possible transition

from one funding mode to the other at the end of this section.
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The immediate bene�t of relationship funding is the absence of private information during the

development of the relationship. It means in particular that the design of the contract does not

have to account for the extraction of private information. It thus circumvents the learning rent

which is associated with the private information. We have shown above that under relationship

�nancing, three di¤erent components of rents must be awarded to the entrepreneur to make her

willing to invest and risk early success, namely the contemporaneous rent equal to the immediate

gain in consumption that a deviation a¤ords, the intertemporal rent to compensate for the option

to receive sure continued �nancing when deviating, and �nally the learning rent driven by the fact

that only the entrepreneur knows whether something has actually been learned about �t or not.

By contrast, there were only two of these components present in the case of relationship �nancing,

since there was no need for the learning rent.

The (implicit) cost of the relationship funding resides with the ability of the entrepreneur to

restart the relationship after she diverted funds in previous periods. As the investor can�t commit

himself to refuse a contract with positive net payo¤s, the entrepreneur was essentially able to extract

a rent equivalent to an in�nite stream of funds �c; worth �c �
1�� . In contrast, the asymmetry in the

arm�s length relationship reduces the ability of the entrepreneur to renegotiate at favorable terms

and hence weakens the incentives for the entrepreneur to delay investment into the project.

With this basic trade-o¤ between the two funding modes, we �nd that the possible cost of an

arm�s length relationship, namely the learning rent, is small in comparison to the bene�t from

commitment. Therefore, we arrive at the following result.

Theorem 5 (Comparison)
For all posterior beliefs �t the funding volume is larger under arm�s length than under relationship

�nancing.

To gain more insight into this result, it is helpful to discuss separately the case of a low and high

discount factor. With a small discount factor, we showed earlier that the funding pattern decreases

in both informational environments. We then show that for all posterior beliefs �t, the funding

volume is higher with arm�s length funding. With a large discount factor, we have shown that the

evolution of the funding levels displays opposite signs: t is (weakly) decreasing in t with observable

actions, but it is increasing in t with unobservable actions. Here, in order to show that arm�s length

funding always occurs at a higher volume than with relationship funding, it is su¢ cient to compare

the initial equilibrium funding volume, which again can be shown to be higher with arm�s length

funding.

The clear Pareto-ranking between the two �nancing modes is a rather striking result. From a

naive point of view, it may appear counterintuitive since it says that the �nancing mode with an

informational asymmetry separating �nancier and entrepreneur is more e¢ cient. While it is well-

known that asymmetric information may o¤er advantages in a principal-agent model (see Crémer,
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1995), our analysis shows that this argument is particularly prevalent when the agency relationship

is open-ended and the agent has the option to extend it over a very long horizon.

The dynamic model shows that the relative advantage of arm�s length funding increases over

time. In the beginning, there may be no di¤erence between the speed with which funds can be

released, especially for high return projects. But as projects become protracted and prospects

become relatively poor, arm�s length funding eventually o¤ers an increasing advantage compared

with relationship funding, which does not o¤er a commitment to stop at a given time and therefore

allows the entrepreneur to threaten an in�nite series of deviations even when only few pro�table

rounds of experimentation are left. As bargaining power shifts to the investor, the advantage of

arm�s length contracts towards the end of the projects increases even further.

The typical �nancing cycle of business start-ups involves close relationships with �nanciers early

on, and this is exempli�ed by the activity of venture capitalists who not only provide capital, but

also monitor the projects very closely and get involved as advisors (see Gompers and Lerner 1999,

Casamatta 2003). There is evidence that the value of relationship funding decreases over the typical

�nancial cycle of an innovative �rm: for example, in venture funded projects, syndicates tend to

grow and to include more uninformed investors later on (Hege, Palomino and Schwienbacher, 2003).

There are also empirical �ndings that, in banking relationships, �nanciers assume a more passive

role over time (e.g., Smith and Ongena, 2001). As projects mature and require more capital, while

having more tangible assets and research results to o¤er, their funding sources tend to become

more diverse: funding typically starts with equity-dominated venture �nancing and adds more and

more debt-like instruments, like mezzanine �nancing, over time as the �rm grows and its funding

needs expand (Berger and Udell, 1998). Thus, even before a successful technology start-up reaches

�nancial maturity and is funded by genuine outside investors, such as dispersed shareholders or

bondholders, many ventures go already through a process of gradually decreasing the reliance on

relationship �nanciers. This pattern is consistent with the comparison of the two funding modes in

our model which lends support to the notion that the �nancial cycle of innovative projects evolves

from more to less informed investors.

7 Conclusion

In this paper we present a dynamic agency model in which time and outcome of the project wis

uncertain. The model prominently features three aspects which together are de�ning elements for

a wide class of agency problems of research and development activities: (i) the eventual returns

from the project are uncertain, (ii) more information about the likelihood of success arrives with

investment into the project, and (iii) investor and entrepreneur (innovator) cannot commit to

future actions. The analysis focuses on Markovian equilibria, but we showed that this is a rather

mild or even immaterial restriction in the context of the model. The equilibrium analysis proceeds
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sequentially, starting with symmetric information and ending with asymmetric information. The

funding level was determined endogenously and depends on the returns of the project, the discount

factor and the informational asymmetry between entrepreneur and investor.

The impatience of the entrepreneur is an important determinant in the volume of funding as

the severity of the incentive constraint increased with the discount factor. This is in contrast to

the results in the theory of repeated moral hazard games, where discount factors close enough to

one often allow the equilibrium set to reach the e¢ ciency frontier. In addition, we showed that the

recursive structure of the incentive constraint leads to distinct funding dynamics under asymmetric

information, where with large discount factors, the incentive constraint tends to actually relax over

time and allow a larger funding rate as the projects approaches its terminal period.

The basic trade-o¤ between arm�s length and relationship �nancing revealed in this paper is

that arm�s length �nancing o¤ers the advantage that the investor is implicitly committed to a

�nite stopping horizon, while relationship �nancing saves up on the learning rent since investor and

entrepreneur update beliefs symmetrically.

Finally, some possible extensions of our model should be mentioned. First, a worthwhile exten-

sion is to consider the equilibrium behavior when there are competing projects, formed by di¤erent

entrepreneurs. As competition may limit the rent of each entrepreneur, parallel research for an

identical objective might be an arrangement that improves e¢ ciency despite the inevitable dupli-

cation of R&D e¤orts. In a winner-takes-all competition the threat of preemption by a competitor

will limit the intertemporal rent of each entrepreneur. Similarly, launching competing research

teams may increase the ex ante value for an organization despite the multiplication of research

e¤orts.

Second, it is conceivable that the entrepreneur may initially own some, perhaps small, invest-

ment funds. We then might ask how inside and outside funds are optimally mixed over time. We are

con�dent that a delayed use of the entrepreneur�s equity can be shown to be optimal in some cases.

This should notably be the case if the entrepreneur�s funds help alleviate �nancing constraints when

the promise of the project deteriorates, as it is typically the case under relationship �nancing. The

open-horizon principal-agent model developed here should allow us to analyze the relative merits of

these di¤erent incentives tools and their role in mitigating the contracting problems of compounded

information rents.
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8 Appendix

Lemma 1 In every SPE no funding occurs for �t < �S.

Proof. The proof is by contradiction. Suppose there exists a subgame perfect equilibrium with

funding in period t, or

�ttstR+ (1� �tt) �VE (ht+1) � ct + �VE
�
h0t+1

�
;

or

�ttstR� tc+ (1� �tt) �VE (ht+1) � �VE
�
h0t+1

�
; (A1)

and

�tt (1� st)R� tc+ (1� �tt) �VI (ht+1) � �VI
�
h00t+1

�
; (A2)

yet

�ttR� 2ct < 0. (A3)

As entrepreneur and investor can always guarantee themselves at least a zero lifetime utility by

o¤ering contracts without funding (i.e. t = 0) and by refusing all other contracts, respectively, it

follows that

VE (ht) � 0; VI (ht) � 0

for all histories ht and all periods t. A necessary condition for the validity of (A1) and (A2) is

therefore

�ttstR� tc+ (1� �tt) �VE (ht+1) � 0; (A4)

and

�tt (1� st)R� tc+ (1� �tt) �VI (ht+1) � 0: (A5)

Under the hypothesis of (A3), it follows that at least one of the agents, entrepreneur or investor,

must incur a loss in period t in exchange to a strictly positive continuation utility in period t+ 1,

and from (A4) and (A5), we can infer that

VE (ht+1) + VI (ht+1) �
2ct � �ttR
� (1� �tt)

> 0. (A6)

It follows that entrepreneur and investor jointly expect to be compensated for the current loss in

the future. Yet, due to discounting and the possibility of a positive realization the current loss

translates in higher present value gains starting from tomorrow. But future gains can only be

generated from the value of the project, yet since �t is decreasing over time, (A3) implies that

�t+1t+1R� 2ct+1 < 0,
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and a repetition of the same argument allows us to infer that by forwarding (A6) by one period,

we obtain the following condition

VE (ht+2) + VI (ht+2) �
1

�
�
1� �t+1t+1

� �2ct+1 � �t+1t+1R+ 2ct � �ttR� (1� �tt)

�
> 0,

and by induction on t, we then come to the conclusion that the value functions of the entrepreneur

and investor are growing without bounds as t!1, which delivers the desired contradiction as the
sum of the value functions has to be �nite as the value of the project is �nite.

Lemma 2 In every SPE only break-even contracts have a positive probability of being accepted.

Proof. Suppose in equilibrium a contract (st; t) is o¤ered and accepted. Then it has to satisfy:

�ttstR+ (1� �tt) �VE (ht+1) � ct + �VE
�
h0t+1

�
;

and

�tt (1� st)R� tc+ (1� �tt) �VI (ht+1) � �VI
�
h00t+1

�
. (A7)

Denote for the purpose of this proof a break-even contract by �st, where �st is given by:

�st =
�tR� c
�tR

.

We �rst show that in every equilibrium and at every t:

st � �st.

The proof is by contradiction. Suppose that the equilibrium contract is given by st < �st. It then

follows that every other contract s0t with

st < s
0
t

which is more advantageous for the entrepreneur must be rejected by the investor. It follows that

his outside option which is given by VI
�
h00t+1

�
must satisfy

0 <
�tt (1� st)R� tc

�
� VI

�
h00t+1

�
,

as the value function along the equilibrium path satis�es VI (ht+1) � 0. Consider then the contin-
uation equilibrium starting at h00t+1. It follows that starting at t + 1, the investor must be o¤ered

some contracts with strictly positive net value to him to generate the strictly positive continuation

payo¤. Yet, again for him to reject all lower o¤ers by the entrepreneur, it must be that his outside

option, represented by a decision to reject a lower o¤er must be su¢ ciently high, and in fact, since

VI
�
h00t+1

�
= �t+1t+1 (1� st+1)R� t+1c+

�
1� �t+1t+1

�
�VI (ht+2) = �VI

�
h00t+2

�
,
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it follows that

0 <
�tt (1� st)R� tc

�2
� VI

�
h00t+1

�
,

and thus by induction we �nd a sequence of continuation games in which the equilibrium value

of the investor grows without bound, which leads to the desired contradiction, as the value of the

game is �nite and the value of the entrepreneur is guaranteed to be nonnegative.

It remains to discuss the case of st � �st. As st � �st for all t, it follows that VI (ht) = 0 for all

ht. In this case, the intertemporal participation constraint (A7) of the investor becomes

�tt (1� st)R� tc � 0;

which can only be satis�ed with

st = �st;

for all t, which is the desired conclusion.

Proof of Theorem 2. (1.) and (2.) The incentive constraint for the entrepreneur in period t is
given by:

�tsttR+ � (1� �tt)V (�t+1) � ct + �V (�t) :

The participation constraint for the investor is given by

�t (1� st) tR � ct: (A8)

The participation constraint is always binding and the sharing rule is given by:

st = 1�
c

�tR
.

The incentive constraint for the entrepreneur becomes:

�ttR� ct + � (1� �tt)V (�t+1) � ct + �V (�t) ;

and if funding is constrained in �t, the incentive constraint is binding with:

�ttR� ct + � (1� �tt)V (�t+1) = ct + �V (�t) : (A9)

The equilibrium value for the entrepreneur can then be expressed by

V (�t) =
ct
1� � ;

and the indi¤erence condition leads to a di¤erence equation determining the equilibrium funding

t:

�ttR� ct + � (1� �tt)
ct+1
1� � = ct + �

ct
1� � : (A10)
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Suppose initially that t = � and t+1 < �, then it must be that

�t�R� �c+ (1� �t�) �V (�t+1) � �c+ �V (�t)

and in consequence

V (�t) �
c�

1� �
whereas

V (�t+1) =
ct+1
1� � <

c�

1� � .

It follows that a necessary and su¢ cient condition for maximal funding is given by

�t�R� �c+ (1� �t�) �
c�

1� � � �c+ �
c�

1� �
or:

�t � � =
2c

R� �c�
1��

:

As the critical posterior belief � is a probability:

� =
2c

R� c��
1��

� 1, 2c+
c��

1� � � R;

we obtain the distinction between low and high return projects. It follows that for all �t < �,

�t < �, as the funding volume has to be lowered. By the same argument, there is maximal funding

for �t � �.
(3.) We proceed by contradiction in two steps. We �rst show that if  (�) were to be decreasing

in � on some segment, then it can only occur for

R < 2c+
c��

1� � : (A11)

We then argue by contradiction that even if R satis�es inequality (A11),  (�) has to be increasing.

To this end, we rewrite the di¤erence equation (A10), using the fact that

�t =
�t+1

(1� t + �t+1t)
;

to get �
t+1 � t

� 1� t
t

= �t+1

�
t

�
2� �
�

�
� (1� �)R

�c

�
+ 2

1� �
�

(1� t) : (A12)

For an arbitrary and �xed t+1 and �t+1, we then investigate the nature of the solution for t. The

rhs of the equality (A12) is linear in t. The lhs is convex function of t, initially decreasing, zero

at t = t+1, displaying a minimum at t =
p
t+1 and remaining negative thereafter. It follows

that a necessary condition for t+1 � t is that

�t+1

�
�

�
2� �
�

�
� (1� �)R

�c

�
+ 2

1� �
�

(1� �) � 0: (A13)
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By previous part of the Theorem,

�t+1 �
2c

R� c��
1��

;

the inequality (A13) can be written as

2c

R� c��
1��

�
�

�
2� �
�

�
� (1� �)R

�c

�
+ 2

1� �
�

(1� �) � 0;

and after cancelling the obvious terms:�
2c
1� �
�

�R1� �
�

+ c�

�
� 0:

From this we can infer that t+1 > t requires

R < 2c+
c��

1� � : (A14)

We proceed by contradiction using again the di¤erence equation (A10), which is now valid

everywhere (for all �t) by the earlier argument. Consider �rst the rhs of (A10). We �rst show that

for �t > �t+1 and for all equilibrium values t 2 [0; �]:

�t

�
t �

1� �
�

R

c

�
+ 2

1� �
�

< �t+1

�
t �

1� �
�

R

c

�
+ 2

1� �
�
,

or

t <
1� �
�

R

c
,

which has to hold as
ct�

1� � < R;

as the agent cannot receive more than the gross value of the project. Next suppose there is an

increasing segment, or t � t+1, then it follows from the above property and the lhs of the

di¤erence equation that t+1 < t+2. It follows that if funding is weakly increasing at some time

segment t and t+1 it will be strictly increasing thereafter. Further if we view the di¤erence equation

as function expressing t+1 in dependence of t , then for a �xed �t it is a convex function and

hence t+2 � t+1 > t+1 � t. As �t is decreasing over time, this makes the di¤erence equation
even more increasing. It follows that if the function is not monotonic decreasing, then it must be

increasing at an increasing rate, but this leads to the desired contradiction as funding has to be

lower than � < 1 everywhere by virtue of (A14).

Proof of Theorem 3. ()) It is a direct implication of the de�nition of the MPE that the

equilibrium value functions of the players depend only on the payo¤-relevant state of the game.

The set of equilibrium values at any � is therefore a singleton for every player and it follows that

any MPE is also a weakly renegotiation-proof equilibrium.
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(()We �rst show that every weakly renegotiation proof equilibrium has to be an MPE. The

uniqueness of the weakly renegotiation proof equilibrium then follows from the uniqueness of the

MPE. We �rst observe that every weakly renegotiation-proof equilibrium is a subgame perfect

equilibrium. By Lemma 2, it is then su¢ cient to consider break-even contracts. This implies that

the value function of the investor is equal to zero along every continuation path, or VI (ht) = 0

for all ht. By De�nition 3 of the weakly renegotiation proof equilibrium, it then follows that the

equilibrium value function of the entrepreneur has to take on the same value for any two histories,

ht and hs, which generate the same posterior belief. In other words, for all ht and hs, we have

� (ht) = � (hs)) VE (ht) = VE (hs) . (A15)

Consider then the incentive constraint of the entrepreneur in any subgame perfect equilibrium in

period t:

�ttstR+ (1� �tt) �VE (ht+1) � ct + �VE
�
h0t+1

�
.

By Lemma 2, we can restrict our attention to break even contracts, which leads to

�ttR� tc+ (1� �tt) �VE (ht+1) � ct + �VE
�
h0t+1

�
:

By the earlier argument, represented by the implication (A15), the posterior belief � has to be

su¢ cient statistic for the history ht with respect to the value function of the entrepreneur, and

hence

�ttR� tc+ (1� �tt) �VE (�t+1) � ct + �VE (�t) : (A16)

It is immediate from here, that every weakly renegotiation proof equilibrium must also be a MPE

as it satis�es the equilibrium conditions of the MPE. But as the MPE is unique by Theorem 2, it

follows that the weakly renegotiation proof equilibrium is unique as well.

Proof of Theorem 4. We characterize the equilibrium funding through a sequence of Lemmata.

Lemma 3 establishes necessary and su¢ cient condition for restricted and unrestricted funding at

�T = �S . Lemma 4 establishes the switching point from restricted to unrestricted funding and

establishes the di¤erence equation which governs the equilibrium funding as it is restricted. Lemma

5 establishes properties of the �xed point and thereby the areas where funding is restricted and

unrestricted. Lemma 6 establishes the monotonicity of the funding volume as a function of time.

Lemma 3 The equilibrium funding volume at �T = �S is given by

T = �, � � 2� �
2� 2�; (A17)

and

T < �, � <
2� �
2� 2�: (A18)
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Proof. We consider the ultimate �T and penultimate prior beliefs �T�1 with �T = �S . We begin
with (A17). Consider the incentive constraint (26) evaluated at the penultimate period, T � 1:

�T�1�R� c� � c�+ �
�T�1
�T

�VE (�T ) . (A19)

We can express �T�1 in terms of � and �T :

�T�1 =
�T

1� � (1� �T )

and rewrite (A19) as

�T
1� � (1� �T )

�R � 2c�+ � 1

1� � (1� �T )
�VE (�T ) . (A20)

By hypothesis �T = �S , and hence

VE (�T ) = �TTR� cT = cT . (A21)

Inserting the value (A21) into the incentive constraint (A20), we obtain after rewriting:

� (1� �T ) 2c � �cT . (A22)

The incentive constraint (A22) is most di¢ cult to satisfy if T is chosen maximally, i.e. T = �.

Using the fact that �T = �S = 2c
R , we get

� (R� 2c) 2 � �R�,

which can be written as

R (2� �) � 4c. (A23)

Using the fact that we distinguish between low and high return projects, we can express the

inequality (A23) in terms of � and � exclusively. For suppose that

R < 2c+
c��

1� � ,

then for

R (2� �) � 4c,

it follows that

2c+
c��

1� � >
4c

2� �
or

� >
2� �
2� 2� .
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On the other hand for

R � 2c+ c��

1� � ;

and

R (2� �) < 4c;

we necessarily have
4c

2� � > 2c+
c��

1� � ;

or

� <
2� �
2� 2� .

Thus, it follows for R � 2c + c��
1�� as well as for R < 2c + c��

1�� , that � �
2��
2�2� is a necessary and

su¢ cient condition for full funding in the terminal period. It further follows that if

� <
2� �
2� 2�;

then for (A22) to hold: T < �. �

Lemma 4 The equilibrium switching point is given by:

� =
2c� 2 c�

1�� + c
��
1��

R� 2 c�
1��

:

Proof. We �rst derive the di¤erence equation for the investor�s funding decision, provided that
the incentive constraint of the entrepreneur is binding. The beliefs of entrepreneur and investor are

symmetric along the equilibrium path. In consequence, the contracts on the equilibrium path are

the break-even contracts and satisfy:

�ttstR = �ttR� ct. (A24)

The value of the entrepreneur along the equilibrium path can then be represented as:

VE (�t) = �ttR� ct + � (1� �tt)VE (�t+1) : (A25)

We can now directly consider the recursive incentive problem of the entrepreneur. The incentive

constraint of the entrepreneur changes to re�ect the divergence of the beliefs o¤ the equilibrium

path. It is given by:

�ttR� ct + � (1� �tt)VE (�t+1) � ct + �
�t
�t+1

VE (�t+1) .

Since 1� �tt = �t
�t+1

(1� t), the incentive constraint may be rewritten as:

�ttR� 2ct � �t
�t
�t+1

VE (�t+1) : (A26)
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When funding is restricted, (A26) must hold with equality, and hence can be written as

VE (�t+1) =
1

�

�
�t+1R�

�t+1
�t

2c

�
: (A27)

Substituting (A27) back into (A25) and using �t+1
�t

= 1�t
1��tt

, we get

VE (�t) = (�tR� 2c) + ct (A28)

Forwarding (A28) for one period and equating to (A27) yields

(�t+1R� 2c) + ct+1 =
1

�

�
�t+1R�

�t+1
�t

2c

�
Solving, substituting for �t+1�t

leads to the di¤erence equation:

t+1 = 2 +

�
�t (1� t)
(1� �tt)

R

c

1� �
�

� 1
�

�
(1� t)
1� �tt

�
2

�
:

Making use of the backwards expression of the belief ratios, �t
�t+1

= 1
�t+1t+(1�t)

and solving, we

get the backwards di¤erence equation of the form t = f(t+1; �t+1):

t =
1

(1� �t+1)

�
1

2
t+1� � (1� �)

�
�t+1R

2c
� 1
��

, (A29)

where we observe that t is a linear increasing function of t+1.

The equilibrium switching point � is given by the unique � which results in a �xed point of the

di¤erence equation � = f (�; �) at full funding level:

� =
2c� 2 c�

1�� +
c��
1��

R� 2 c�
1��

;

which completes this lemma.�

Lemma 5

1. The switching point � satis�es � 2 (�S ; 1) if either

(a) R � 2c+ c��
1�� and � <

2�2�
2�� , or

(b) R < 2c+ c��
1�� and � �

2�2�
2�� .

2. The switching point satis�es � =2 (�S ; 1) otherwise.

Proof. The proof is omitted as it simply requires the algebraic veri�cation of the conditions stated
in Lemma 5 applied to the switching point �.�
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Lemma 6

1. If � < 2��
2�2� , the funding volume t is decreasing over time.

2. If � � 2��
2�2� , the funding volume t is increasing in time.

3. The monotonicity is strict in either case provided that t < �.

Proof. To describe the monotonicity properties of the di¤erence equation it is useful to analyze
the �xed point of the mapping:  = f (; �), for all  < �. It is given by

 (�) =
(�R� 2c) 1����

2�� 21��� (1� �)� 1
�
c
:

The �xed point  (�) has a derivative which leads to:

0 (�) > 0, � <
2� �
2� 2� (A30)

and

0 (�) < 0, � >
2� �
2� 2� . (A31)

We start with � < 2��
2�2� and show that the di¤erence equation t must be strictly decreasing in time

t. The argument is by contradiction. Suppose then there exists t and t + 1 such that t � t+1,

then it follows by the property of the �xed point as a function of �, as displayed in (A30), and the

fact that t is linear increasing in t+1, as displayed in (A29) that s�1 < s for all s < t. The

funding �ow in the period t = 0 is then determined, using again (A29), by:

0 =
1

1� �0

�
1

2
�1 � (1� �)

�
�0R

2c
� 1
��

: (A32)

Consider then the limit �0 ! 1. Since

lim
�0!1

1

1� �0
=1,

and 0 is bounded by 0 2 [0; �], it follows that that the expression in brackets in (A32) has to go
to zero as �0 ! 1, or

1 = 2
1� �
�

�
R

2c
� 1
�
. (A33)

As t is supposed to be a local maximum, it follow from (A29) that an upper bound for t is

obtained by setting t+1 = t, or

t �
(R�t+1 � 2c) 1����

2�t+1 � 21��� (1� �t+1)� 1
�
c
.
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Yet, we �nd that
(R�t+1 � 2c) 1����

2�t+1 � 21��� (1� �t+1)� 1
�
c
< 2

1� �
�

�
R

2c
� 1
�

provided that

� � 2� �
2� 2�;

which leads to the desired contradiction. Thus there is no local maximum either, and hence,

t � t+1 for all t.
Consider next the case of � � 2��

2�2� . We argue as above by contradiction. Suppose there is a

segment t and t+1 such that t > t+1. Then it follows again from the �xed point property, (A31),

that for all s � t, s�1 � s. As � 2 (�S ; 1), it further follows that there must be at least one local
minimum, say at t. For the local minimum at t, we obtain a lower bound by setting as above

t+1 = t,

t >
(R�t+1 � 2c) 1����

2�t+1 � 21��� (1� �t+1)� 1
�
c

(A34)

The rhs presents the value of the �xed point  (�), which is decreasing by (A30). The lower bound

is therefore lowest for �t+1 = 1, from which it follows that the local minimum t must satisfy

t >
(R� 2c) 1���
(2� 1) c ; (A35)

yet as it is a local minimum it has to satisfy

t � 1 = 2
1� �
�

�
R

2c
� 1
�
, (A36)

where 1 was computed earlier at (A33). But for

� � 2� �
2� 2� ,

the conditions (A35) and (A36) lead to a contradiction.�

Proof of Corollary 2: It is immediately veri�ed that the derivation of the Markov sequential
equilibrium above only relied on a backward induction argument. In the construction of the equi-

librium the belief �t merely served to summarize the information of the players but never to restrict

the history contingency of the strategies employed by the agents.

Proof of Theorem 5: Denote by st and 
a
t the funding volume in the symmetric and asymmetric

case, respectively. Consider �rst the case of

� � 2� �
2� 2� .
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If in addition, R � 2c+ �c �
1�� then 

a
t = � everywhere, and thus the condition 

a
t � st for all �t,

with strict inequality in the �nal periods, is satis�ed. For R < 2c + �c �
1�� , we know by Theorem

2, that the funding volume st is increasing in � and by Theorem 4 that the funding volume at is

(weakly) decreasing in �. A necessary and su¢ cient condition for at � st is therefore given by

lim
�0!1

(at � st ) � 0. (A37)

For the symmetric information case, condition (A10) in the proof of Theorem 2 can be solved as

the following di¤erence equation:

t+1 � t
t

= �t

�
t+1 �

1� �
�

R

c

�
+ 2

1� �
�
. (A38)

As we solve the respective di¤erence equations, (A38) and (A29) from the proof of Theorem 4, for

0 as �0 ! 1, we �nd:

lim
�0!1

s0 = lim
�0!1

a0 =
1� �
�

�
R

c
� 2
�
,

which establishes the validity of (A37).

Consider next the case of

� <
2� �
2� 2� ,

where by Theorem 2 and 4 at and 
s
t are both increasing in �. We proceed by establishing a lower

bound on at and an upper bound on 
s
t , denoted by 

a
t
and st , respectively. We then show that

a
t
� st , completing the result. As at � at�1 in this case, a lower bound 

a
t
is established by

looking for the �xed point at�1 = 
a
t in the di¤erence equation (A29),

a
t
=

1��
�

�
�tR
2c � 1

�
1
2 � (1� �t)

1
�

. (A39)

Considering then the di¤erence equation of the symmetric environment (A38) and using the fact

that by hypothesis st�1 � st in (A38), we obtain an upper bound: Comparing (A39) and (??)
and requiring that a

t
� st leads to, after multiplying and cancelling the obvious terms,�
R

2c
� 1

�t

�
+

�
R

c
� 2

�t

�
1� �
�

(1� �t) � �t
�
R

2c
� 1

�t

�
which holds for all �t � �S .
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