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Abstract

We use a simple graphical approach to represent Social Welfare Functions that
satisfy Independence of Irrelevant Alternatives and Anonymity. This approach allows
us to provide simple and illustrative proofs of May’s Theorem, of variants of classic
impossibility results, and of a recent result on the robustness of Majority Rule due
to Maskin (1995). In each case, geometry provides new insights on the working and
interplay of the axioms, and suggests new results including a new characterization
of the entire class of Majority Rule SWFs, a strengthening of May’s Theorem, and
a new version of Maskin’s Theorem.

1 Introduction

In this paper we use a simple graphical approach to represent Social Welfare Functions
(SWFs) that satisfy Independence of Irrelevant Alternatives and Anonymity. Using this
representation we provide new, simple and illustrative proofs of classic results in social
choice like May’s Theorem and variants of impossibility results like Arrow’s, Wilson’s and
Saari’s Theorems. We also use the approach to provide a new and simple proof of a recent
result on the robustness of Majority Rule due to Maskin (1995).

This paper makes two contributions. The first one is pedagogical. The abstractness
of social choice is due, in no small part, to the fact that it is difficult to visualize objects
like the set of all binary relations satisfying certain properties. The approach used here
provides a simple graphical representation for these objects. Using this geometry we

*We are indebted to Eric Maskin for his guidance during this project and to Donald Saari for his
extremely useful comments. Estelle Cantillon gratefully acknowledges financial assistance from the Belgian
Fonds National de la Recherche Scientifique. Antonio Rangel gratefully acknowledges financial assistance
from Drew Fudenberg and the Bank of Spain.



provide new insights on the workings and interplay of the axioms that generate these well
known results.

The second contribution is to use the graphical representation to derive new results.
In particular, we derive (1) an axiomatic characterization for the entire class of majority
rule SWFs; (2) a modified May’s Theorem that provides a tighter characterization of
Majority Rule, and (3) a new result on domain restrictions.

This is not the first paper to use a graphical approach to social choice. Donald Saari
(1994, 1995) has made extensive and very productive use of graphics in his books Geom-
etry of Voting and Basic Geometry of Voting. In fact, the simplex and truncated cube
representations that we use are due to him. The difference between this paper and Saari’s
is that we use the method to address different questions. Blackorby, Donaldson and Wey-
mark (1990) have also provided a graphical analysis of Arrow’s Theorem. Their approach
is based on Pareto Indifference, whereas ours is based on Anonymity. Note that in both
cases, to be able to use graphs, one needs to strengthen one of Arrow’s conditions.

2 A Graphical Representation of SWFs on the Sim-
plex

Let A be the set of agents and X the set of alternatives. A preference profile for this
society is a mapping r : A — W(X), where W(X) is the set of all weak orderings
over X.! A Social Welfare Function (SWF) is a function R : D — W(X) that maps
preference profiles in the domain D C W(X)# into social preferences. Thus, we write
aR(r)b whenever, according to the SWF, a is socially at least as good as b at the profile
r. Let P(r) and I(r) denote the strict and indifference preference relations derived from
R(r).

In this paper we study SWFs that satisfy Anonymity? and Independence of Irrelevant
Alternatives (ITA).3 These two conditions simplify the structure of a SWF considerably
and are at the core of the graphical representation that we use. In particular, together
they imply that the social ranking between any two alternatives a and b, R4 s}, is fully
determined by three numbers: (1) the fraction of the population that prefers a to b, (2)
the fraction that prefers b to a, and (3) the fraction that is indifferent. Let m,.(a = b)
denote the fraction of the population preferring a to b at profile r, and define m,.(b >~ a)
and m,(a ~ b) analogously. Since m,.(a > b) +m,.(b = a) + m,(a ~ b) = 1, these three
numbers can be represented as a point in the 3-dimensional simplex. This is illustrated
in figure 1. We refer to the points in the simplex as reduced profiles because they contain
all the information that is relevant to characterize the social ranking between a and b.

1A weak ordering is a complete, reflexive and transitive binary relation.
2A SWF satisfies Anonymity if it is invariant to permutations of the individuals’ labels; i.e., for any
permutation 7 of A, and any profile r, we have that

R(rom) = R(r).

SLet r |{a,b} denote the restriction of preference profile r to the pair of alternatives {a,b}. Define
R | analogously. A SWF satisfies IIA if, for any alternatives a and b, and profiles r and 7, we have
{a,b}
that

T [{a,0} =7 [{a,03=> B(7) |{a,0}= B(7) l{a,5};

i.e., the social ranking between a and b depends only on how individuals rank these two alternatives.
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Figure 1. Graphical representation of a SWF that satisfies Anonymity and ITA

We assume that society consists of a finite number of agents. In this case, only a
grid of points in the simplex corresponds to profiles in the domain of the SWF.#* This
is illustrated in figure 2 for the case of three agents. In particular, with three agents
my(a > b), my(b = a) and m,(a ~ b) can only take the values 0, 1/3, 2/3, or 1. For any
set of agents A, let A4 denote the associated grid. (To simplify the graphical analysis,
we omit the grid from most pictures and draw A 4 as the entire simplex.)

(2/3,1/3,0)

Figure 2. Domain for the case of #4 =3

Summarizing, Anonymity and I7A imply that we can represent the ranking that the
SWEF assigns to a and b as a function of the form R|;, 4y : Aa — W({a,b}). As a result,
R|{a,b} can be graphically represented as a partition of A 4 into three types of regions: a
region where a is socially preferred to b, a region where b is socially preferred to a, and a
region where a is socially indifferent to b.

This representation, however, is still cambersome because a full characterization of the
SWF requires drawing a simplex for every pair of alternatives. In some cases it does not
matter because we are only concerned about the properties of a SWF over an arbitrary

4 All of the arguments in the paper can easily be extended, with appropriate measurability assumptions,
to the case of a continuum of agents; for example A = [0,1]. In that case the entire simplex corresponds
to profiles in the domain.



pair (or subset) of alternatives. In other cases Neutrality can come to the rescue.® With
Neutrality the name of the alternatives does not matter. This allows us to represent the
entire SWF with a single simplex. To compare any two generic alternatives a and b, all
we need to know are the numbers m,.(a > b), m,(b = a) and m,(a ~ b). Furthermore,
Neutrality implies that the SWF is symmetric with respect to the central axis and that a
must be socially indifferent to b along that axis. This is illustrated in figure 3. The SWF
on the left satisfies Neutrality, the one in the right does not.

alb’
I
I

Figure 3. Examples of a SWFs that satisfies Neutrality (left) and fails Neutrality
(right).

3 Monotonicity Axioms and the Geometry of Major-
ity Rule

In a classic paper, May (1952) showed that Majority Rule is the only SWF that satisfies
Neutrality, Anonymity, ITA, Positive Responsiveness (PR)® and Universal Domain.” How-
ever, Majority Rule is only one of a large class of SWF's that satisfy Neutrality, Anonymity,
ITA, and Universal Domain. Another popular example is Strict Majority Rule.® Under
Strict Majority Rule, aP(r)b if and only if m,(a = b) > % By contrast, under Major-
ity Rule, aP(r)b if and only if m,(a > b) > m.(b > a). Figure 4 provides a graphical
representation of these two SWFs.

5 A SWF satisfies Neutrality if for any permutation 3 of the alternatives we have that
Ripor) = o R(r),

where 1) o r is the binary relation that is obtained by changing the labels of the alternatives according to
the permutation .

6 A SWF satisfies PR if for all alternatives a and b, and profiles  and 7, we have that aP(#)b whenever
(1) aR(r)b and, for the move from r to 7, (2) a does not fall in anyone’s ranking and (3) a rises in the
ranking of at least one agent.

Note that with Anonymity the conditions for PR reduce to: (1) aR(r)b, (2) mz(a = b) + mz(a ~ b) >
mr(a > b)+ m.(a ~ b), and (3) mz(a > b) > m,(a > b), with at least one of these inequalities being
strict.

7A SWF satisfies Universal Domain if D = W (X)A4.
8In Collective Choice and Social Welfare, Sen discusses other variants of Majority Rule (see chapter
10.)
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Figure 4. Majority Rule (left) and Strict Majority Rule (right)

Given all of the structure that these four axioms impose on the SWF, it is remarkable
how they fail to discipline it: as long as the SWF is symmetric with respect to the vertical
axis, all kinds of crazy social rankings are permitted. Figure 5 displays two extreme
examples: Anti-Majority Rule, for which aP(r)b if and only if m,.(b = a) > m,(a > b),
and a SWF that allows for disconnected regions of indifference.

I
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Figure 5. Examples of SWF's that satisfy Anonymity, Neutrality, and ITA

This suggests two natural questions: (1) What additional axiom or axioms are required
to rule out these types of crazy SWFs? and (2) How does the additional axiom that
characterizes Majority Rule differ from the ones that characterize Strict Majority Rule
and other plausible SWFs? As we will see, we can give simple and intuitive answers to
these questions using the graphical representation in the simplex.

What we need are additional axioms that determine what happens to social preferences
when an alternative becomes more popular. Consider the following three variations on
monotonicity axioms:?

9A general definition of these axioms should in principle also include the additional requirement that



STRONG P-MON A SWF satisfies Strong P-Mon if for all alternatives a and b and
profiles r and 7, we that aP (7)b whenever (1) aP(r)b, (2) mz(a = b) + mz(a ~ b) >
my(a > b)+ my(a ~ b), and (3) mz(a = b) > m,(a > b), with at least one of these
inequalities being strict.

STRONG I-MON A SWF satisfies Strong I-Mon if for all alternatives a and b and
profiles r and 7,we that aP (7)b whenever (1) al(7)b, (2) mz(a = b)+mz(a ~ b) > m(a =
b)+ m,(a ~ b), and (3) mz(a = b) > m,(a = b), with at least one of these inequalities
being strict.

WEAK -MON A SWF satisfies Weak I-Mon if for all alternatives a and b and profiles
r and 7,we that aP (7¥)b whenever (1) al(r)b, (2) mz(a ~ b) = m,(a ~ b), and (3)
mz(a = b) > my(a > b).

All of these axioms state conditions under which a must be socially strictly preferred
to b when more people prefer a to b. The difference between the “P” version and the “I”
version of the axioms has to do with the conditions under which the axiom bites. P-Mon
axioms only bite if we start from a profile » at which a is socially strictly preferred to
b. By contrast, I-Mon axioms provide conditions under which social indifference can be
transformed into a strict social preference.

The difference between the strong and the weak version of the axiom is illustrated in
figure 6. It has to do with what type of movements in the domain generate a strict social
ranking. The axioms cover three different types of movements: (1) direction A, which
occurs when one agent switches from indifference to strict preference for a, (2) direction
B, which occurs when one agent switches from strict preference for b to strict preference
for a, and (3) direction C, which occurs when one agent switches from strict preference
for b to indifference. In the strong version of the axioms, a movement in any of these
three directions guarantees a strict social ranking. In the weak version of the axiom, only
a movement in direction B does.'®

Figure 6. Illustration of monotonicity axioms

alternative @ hasn’t fallen in anyone’s ranking (see footnote 6.) However, since this additional condition
is made redundant by Anonymity, we work with the simpler version.

100ther variations of I-Mon and P-Mon are possible. For example, we could define a Monotonicity
axiom that only applies to movements in the direction A.



Now consider the relationship between these axioms and Majority Rule. Using figure
4 it is easy to check that Majority Rule satisfies the three types of monotonicity. Note
also that PR is equivalent to Strong P-Mon and Strong /-Mon. In fact, we can think
of these two monotonicity axioms as a decomposition of PR into more elementary parts.
This is interesting because it allows us to improve our understanding of the role that PR
plays in May’s Theorem.

MODIFIED MAY’S THEOREM A SWF satisfies Anonymity, ITA, Neutrality, Uni-
versal Domain, and Weak I-Mon if and only if it is Majority Rule.

Proof It is trivial to check that Majority Rule satisfies these five properties. Now, to
prove that they imply Majority Rule it suffices to show that they imply the graph for
Majority Rule shown in figure 4 (left). Anonymity and ITA guarantee that we can use
the simplex to represent the SWF. Neutrality guarantees that one simplex is enough to
fully describe the SWF. Universal Domain implies that all the points in A 4 belong to the
domain. Neutrality implies that alb along the central axis. Finally, Weak I-Mon implies
that starting from the central axis, any horizontal movement to the left generates a Pb and
any horizontal movement to the right generates bPa. This yields exactly the graphical
characterization of Majority Rule. |

This result provides a characterization of Majority Rule that is tighter than May’s
Theorem since Weak I-Mon is a weaker axiom than PR: PR implies Weak [-Mon, but as
shown in figure 7, the opposite is not true. In the SWF depicted in the figure, alb for all
of the profiles on the curve, aPb to the left, and bPa to the right. Starting at point s, PR
implies that a movement to r must yield aP(r)b, which is not the case. Thus, this SWF
satisfies Weak I-Mon but not PR.

aPb

Figure 7. A SWF satisfying Weak I-Mon but not PR

The reason why we can get a tighter characterization of Majority Rule is that the
difference between the three monotonicity axioms disappears when they are combined
with the other axioms that characterize Majority Rule. This is easily seen graphically.
Because Neutrality imposes social indifference for all the profiles on the vertical axis,
Strong I-Mon and Weak I-Mon become equivalent: it does not matter that Strong I-
Mon allows for more directions to break social indifference. In addition, as the proof



illustrates, once ITA, Anonymity, Universal Domain and Neutrality have been used, Weak
I-Mon suffices to describe completely the SWF: Strong P-Mon is no longer necessary.

So far we have seen that Weak I-Mon is a sufficient additional axiom to characterize
Majority Rule. But, what about other SWF's of interest like Strict Majority Rule? Using
figure 4 it is straightforward to check that Strict Majority Rule violates Strong and Weak
I-Mon. In particular, Strict Majority Rule has thick indifference sets, but Strong and
Weak [-Mon imply thin indifference sets. Indeed, look at all of the points that represent
profiles for which m,(a ~ b) = t. This generates a horizontal line in the simplex with
height ¢. Strong and Weak I-Mon imply that there is at most one point in the line at
which « is socially indifferent to b.

This suggests that to provide an axiomatic characterization of Strict Majority Rule
we need to find a monotonicity axiom that allows for thick indifference sets. Since Weak
I-Mon is too strong, consider the following weaker version of the axiom:

¢WEAK I-MON Let ¢ : [0,1] — [0, 1] such that o(t) > 45% for all t. A SWF satisfies
¢-Weak I-Mon if for all alternatives a and b and all profiles r and 7, we have that aP(7)b
whenever (1) al(r)b, (2) ms(a = b) > m,(a > b), (3) mp(a ~ b) = m,(a ~ b), and (4)
my.(a = b) > p(m,(a ~ b)).

-Weak I-Mon is identical to Weak I-Mon except that it only applies on a subset of
the domain.!! In particular, a horizontal movement from r to 7 that raises a in the ranking
of some agents (while keeping the number of indifferent people constant) is sufficient to
break social indifference only if the amount of agents who prefer a at r is large enough:
m,(a = b) must be greater than ¢(m,(a ~ b)).

This is illustrated in figure 8. For the ¢ function depicted in the figure, the axiom bites
at the profile s since ms(a = b) > p(ms(a ~ b)), but not at r since m,(a > b) < p(m,(a ~
b)). Note also that for some profiles p(m,(a ~ b)) lies outside of the simplex. This just
says that with m,.(a ~ b) people indifferent between a and b, no horizontal movement
that raises a in the ranking of some agents is sufficient to break social indifference.

1 Because ¢ does not depend on the alternatives under consideration, our definition of p-Weak I-Mon
introduces implicitly some Neutrality among the alternatives. However, it is easy to see how such a notion
could be generalized. Furthermore, since in this paper we use p-Weak I-Mon together with Neutrality,
the distinction is unimportant.
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Figure 8. Illustration of p-Weak I-Mon

The restriction p(t) > % for all ¢ is necessary to make sure that the axiom is well
defined. To see why, consider a profile for which m,.(a ~ b) = ¢. That profile lies in
the vertical axis only if m,(a - b) = m,(b = a) = 15t If o(t) < 15, as depicted in
figure 9, the ¢ curve that characterizes the area where social indifference switches to social
preference for a over b intersects with the right hand side of the simplex (and the other
way around for the ¢ curve that determines social preference for b over a.) Now suppose
that we have social indifference along the profiles that lie on the curve . Starting with
the right curve, the axiom implies that at any profile to the left of A we must have aPb.
Similarly, starting at the left curve, the axiom implies that at any profile to the right of
B we must have bPa. Clearly, this cannot be true. As long as ¢(t) > % for all ¢, the
curves do not cross to the other side of the simplex and the contradiction cannot arise.

@ . 1]

(determines pre

(determines prefrerences for b over a)

for a over b)

Figure 9. Illustration of p-Weak I-Mon

It is easy to check from figure 4 that Strict Majority Rule satisfies o-Weak I-Mon with



o(t) = % Nevertheless, this axiom is still not enough to fully characterize Strict Majority
Rule. The problem is illustrated in figure 10, where the SWF satisfies -Weak I-Mon for
() = 1/2, but is not Strict Majority Rule. The problem is that the axiom does not bite
if there are no profiles r on the curve ¢ or to the left of it for which al(r)b.

p()=1/2 alb e()=1/2

Figure 10. A SWF where ¢-Weak I-Mon does not bite

To achieve a full characterization we need an additional axiom:

- INDIFFERENCE A SWF satisfies ¢-Indifference if for all alternatives a and b and
all profiles r, we have that alI(r)b whenever (1) m,(a = b) < p(mr(a ~ b)) and (2)
my (b= a) < p(m,(a ~ b)), where ¢ : [0,1] — [0,1] and p(t) > 35 for all ¢.

This axiom is very intuitive. Consider the horizontal line in the simplex that corre-
sponds to the profiles r with m,.(a ~ b) = t. As illustrated in figure 11, ¢ Indifference
says that a is socially indifferent to b for all the profiles that lie between the left and right
@ curves. In other words, the axiom defines an indifference set.

Figure 11. Tllustration of ¢-Indifference

The following lemma shows that adding ¢-Weak I-Mon and ¢-Indifference to our
previous axioms is enough to fully characterize the SWEF:

10



LEMMA 1 Consider a SWF that satisfies Anonymity, Neutrality, ITA, Universal Do-
main, @-Weak I-Mon, and p-Indifference. Then for all alternatives a and b and for all

r,

aP(r)b < my(a > b) > p(m-(a~ b))

Proof As before, Anonymity, Neutrality, ITA and Universal Domain imply that we can
fully characterize the SWF in the simplex. Neutrality implies that the SWF is symmetric
with respect to the vertical axis and that alIb for all profiles on that axis. So consider a
profile r in the left hand-side of the simplex. There are two possibilities (1) If m,(a >~
b) < ¢(my.(a ~ b)), then -Indifference implies that al(r)b. (2) If m,(a > b) > p(m,(a ~
b)), then (1) and ¢-Weak I-Mon implies that aP(r)b. The rest of the claim follows by
symmetry. |

Note that in order to obtain a full characterization of the SWF, the weak monotonicity
and indifference axioms may have to use the same . Let ¢, and ¢; denote the functions
for the two axioms. Then, if @um (t) > ¢;i(t) for all ¢, the SWF is not fully characterized at
the profiles that lie between the two curves: social indifference and strict social preference
are compatible with both axioms for those points. Thus, if the grid A4 is fine enough so
that there are profiles that lie between the two curves, the SWF is not fully defined. On
the other hand, if ., (t) < ¢;(t) for some t, the two axioms may be incompatible.

These arguments establish the following axiomatic characterization of Strict Majority
Rule:

THEOREM A SWF satisfies Anonymity, Neutrality, ITA, Universal Domain, p-Weak
1

I-Mon, and p-Indifference with ¢(x) = 5 if and only if it is Strict Majority Rule.
It might seem that the characterization of Strict Majority Rule requires the intro-
duction of an additional axiom. This is not quite true. ¢-Indifference is implicitly
present in the Modified May’s Theorem because, for ¢(t) = %, Neutrality implies that
p-Indifference and Weak I-Mon is equivalent to ¢-Weak I-Mon.
These axioms can also be used to provide a full and intuitive characterization of the
entire class of majority based social welfare functions:

GENERALIZED MAY’S THEOREM FEvery majority based SWF is fully charac-
terized by the axioms Anonymity, Neutrality, IIA, Universal Domain, p-Weak I-Mon,
and p-Indifference.

In fact, the theorem suggests an intuitive definition of the class of majority based
SWFs. A SWF belongs to the class of majority based social welfare functions if there
exists a function ¢ : [0,1] — [0,1] with ¢(t) > 5% for all ¢ such that, for all alternatives
a and b and for all profiles 7,

aP(r)b < my(a = b) > ¢o(m,(a ~b)).

In other words, a majority based rule specifies a threshold ¢(t) such that, whenever a
fraction ¢ of the population is indifferent between a and b, a can be socially strictly
preferred only if at least a fraction ¢(t) of the population strictly prefers a.

11



We conclude the section with a final comment about uniqueness. As illustrated in
figure 12, the ¢ functions that characterize these SWF's are not uniquely defined. With a
finite number of agents two different ¢ functions may characterize the same SWF.

L4 ' [

(determincs pre

(determincs prefrerences for b over a)

for a over b)

Figure 12. Characterization of SWF with a finite number of agents

4 A Graphical Representation of SWFs on the Trun-
cated Cube

In the next two sections we study the geometry of domain restrictions and impossibility
results. To do this we use another graphical representation that allows us to look at the
rankings over three alternatives at a time.

We restrict attention to the class of SWFs defined over a domain D C S(X)4, where
S(X) is the set of all possible strict orderings over X.2 Let a,b and ¢ be any three
alternatives. As before, we will look at SWFs that satisfy ITA and Anonymity. This
implies that the only relevant information for determining the social ranking among these
alternatives is: (1) the fraction of the population that prefers a to b, (2) the fraction of
the population that prefers b to ¢, and (3) the fraction that prefers ¢ to a. As illustrated
in figure 13, we can represent this information by a point (m,(a = b), m,.(b > ¢),m,(c >
a)) that belongs to the unit cube in R3. Alternatives a and b are compared along the
z-axis, alternatives b and ¢ are compared along the y-axis, and alternatives ¢ and a are
compared along the z-axis. For example, the vertex with coordinates (1,1,0) represents
a profile r where everyone prefers a to b, b to c and a to c. More generally, on the vertices
of the unit cube all voters have the same ranking over the three alternatives. At profiles
corresponding to one of the faces of the cube all the voters agree about the relative ranking
over two alternatives. For example, everyone prefers b to ¢ for profiles on the upper face.

12 A strict ordering is a complete, antisymmetric and transitive binary relation.

12
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Figure 13. The unit cube

Not every point in the cube represents a valid profile in S(X)4. Consider, for example,
vertex V in figure 13 where everyone prefers a to b, b to ¢ and ¢ to a, a clear conflict with
individual rationality. This suggests that the domain of any SWF is given by a subset of
the unit cube.

Consider a profile » and suppose that m,.(a > b) + m,.(b > ¢) > 1. Then there are at
least m,.(a >~ b) +m,.(b > ¢) —1 agents who prefer a to ¢ at profile r, i.e., m,(a > ¢) >
my(a = b) +m,.(b > ¢) —1. Using the fact that m,.(c > a) =1 —m,(a > ¢), this provides
an upper bound to the fraction of people who prefer ¢ to a:

my(a > b) +m,(b > c) + m,(c > a) <2.

Similarly, if m,(c = b) + m,.(b > a) > 1, then at least a fraction m,(c = b) +m,.(b > a)
—1 of the agents must prefer ¢ to a. This provides a lower bound on m,.(c > a) :

my(c = a) > m.(c = b) +m,.(b>a)—1.
Combining these two conditions we get that:
1 <my(a=Db)+m.(b>c)+m(c>a) <2 (1)

Condition (1) implies that the two tetrahedrons defined by the vertex V' and the origin
O have to be removed from the valid domain. This defines the truncated cube represented
in figure 14.'3 Note that the points on the truncated surfaces satisfy condition (1) and so
belong to the truncated cube. Also, with a finite number of agents, only a grid of points
corresponds to profiles in the domain. We denote this grid in the truncated cube by C4.

13Gaari (1994 and 1995) uses the truncated cube to represent the outcome of specific voting procedures.

13
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Figure 14. The truncated cube

The axioms that are commonly used in this literature have an interesting graphical
representation. Universal Domain (U) says that every point in C4 represents a valid
preference profile. The Pareto Property (PP)* implies a strict social ordering between
some alternatives on the faces and at the vertices. For example, on the upper face b must
be socially preferred to c. I1A implies that all the profiles that lie in a plane perpendicular
to the z-axis must yield the same social ranking between a and b (since m,.(a > b) is the
same everywhere). Similar restrictions apply for the other two axes. Finally, Neutrality
implies a strong form of symmetry with respect to the center of the cube. As shown
in figure 15, if aPb at the profiles represented by the point r, then bPa at the profiles
represented by points p, cPb at all the profiles represented by points s, etcetera. Similarly,
alb at the profiles that lie in the plane A, blc in the plane B, and alc in the plane C.

1 m(b>c)
P
s

s @
B == = mdarb)

)

c
/ r A P
/
' ms(c>a)

14 A SWF satisfies the Pareto Property if society prefers a to b whenever every individual prefers a to

14



Figure 15. Neutrality in the truncated cube

5 The Geometry of Domain Restrictions

The question of domain restrictions arises as a consequence of Arrow’s famous impossibil-
ity result. It studies the possibility of escaping the result by relaxing the universal domain
assumption. Let S(X) be the set of all strict orderings over X. There are two ways to
relax Universal Domain. First, we can restrict the set of orderings that individuals can
have but not the combinations of profiles that can arise. In this case the domain restriction
takes the form D4, for some D C S(X). Alternatively, we can place restrictions on the
combinations of individual rankings. In this case the domain restriction takes the form
D C S(X)A.

Although both approaches lend themselves to a graphical analysis in the cube, in this
section we focus mostly on the first approach. Specifically, we provide a new and simple
proof of a result on the robustness of Majority Rule due to Maskin (1995). We also use
the truncated cube to show that Majority Rule is transitive on domains that satisfy value
restriction (Sen, 1966) and to prove a new corollary of Maskin’s theorem.

We start with some properties of the truncated cube that will be useful in the analysis.
Let X = {a,b,c} and consider the six vertices of the truncated cube denoted by V;,
i=1,...,6 (figure 16). Each vertex represents a unique profile in which all of the agents

have the same preferences. Therefore, we can associate each vertex to an element of
S(X):

a=b=c Vi

c=axb Vs

_ ) b=c>a Vs
S(X) = c=b>a 7
a-c>b Vs

b=a>c Ve

Notice that V7, V5 and V3 correspond to the positive Condorcet cycle a = b = ¢ = a, and
V4, Vs, Vi correspond to the reverse cycle ¢ - b > a > c.

m(b>c)

,
ve |

i~ Vi
V3 o :
. * | vs
‘ I m{a>b)
S/
va W=~
V2
me{c>a)
Figure 16
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Now suppose that people in society can have only one of two rankings over {a,b, c}:
a>=b»>corb>c > a Itis easy to check that any such profile is represented by a
point on the line defined by the vertices V3 and V3. More generally, take any subset D of
S(X). The set of all preference profiles when individual preferences are restricted to D,
D4, is represented by the convex hull of the vertices that correspond to D (modulo the
grid). For example, S(X)4, the set of all possible profiles for society, is represented by
the convex hull (modulo the grid) of the vertices Vi, Vo, V3, Vy, V5 and Vi, which is equal
to the truncated cube.

1 mdb>c)
|

vnl Vi

/ /

bPc
v3 ’
H
cPb
VSl
— T mdarb)
aPc
v4 cPa
bPa aPb V2
/
/
m(c>a)

Figure 17. Majority rule in the truncated cube

Consider the graphical representation of Majority Rule in the truncated cube. Since
under Majority Rule aP(r)b < m,(a > b) > m,(b > a), this SWF divides the cube
into eight (possibly truncated) quadrants as depicted in figure 17. In each one of these
quadrants the social ranking is well defined. For example, in the lower-right-front quadrant
aPb, cPb and cPa. It is easy to check that six of these quadrants are compatible with
social transitivity, but two are not: the quadrant that has been removed (which faces
the V1, Va, V3 simplex), and the one that lies in the hidden corner of the cube. In other
words, the domain over which Majority Rule is transitive corresponds to the profiles in
the truncated cube from which these two quadrants have been removed.'® In particular,
notice that domains that include profiles corresponding to the vertices Vi, V5,V3 and
V4, Vs, Vi, associated with the Condorcet cycles, can be problematic for Majority Rule.

We start with a graphical proof of the following well-known result:

LEMMA 2 (Sen, 1966) Suppose that the set of agents, A, is finite and odd. Then,
Magjority Rule is socially transitive on any domain D € S(X) that satisfies value restric-
tion; i.e., on any domain D that does not contain {Vy, Vs, Va} or {Vy, Vs, Vs}.

Proof First note that because there is an odd number of agents, there is no profile with
my(a = b) = % for any {a,b}. Next, since there are only 6 vertices, if D does not contain

158aari (1995) shows how profiles in S(X)4 can be easily retrieved from reduced profiles in C4.
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{V1, Vo, V} nor {Vy, Vs, Vs } then #D < 4. If #D = 4, D* generates in the cube either (1)
the convex hull of a side face with a vertex on the opposite side, or (2) the convex hull of
two diagonally opposite edges (like V4 — V5 and V4, —Vg). In each case, it is straightforward
to see that these areas do not intersect with the two quadrants where Majority Rule is not
transitive. Since there is no domain D4 with #D = 4 that intersects with these areas, no
domain D’4, where D’ satisfies the conditions of the theorem and #D’ < 4, will intersect
either. |

Maskin (1995) provides the following characterization of Majority Rule. Define a
voting rule F : S(X)A — B(X) as a mapping from strict preference profiles to complete
and reflexive (but not necessarily transitive) binary relations. A voting rule is said to
be reasonable on a domain D C S(X) if it satisfies Anonymity, Neutrality, ITA, PP and
transitivity when individual preferences are restricted to D. His result reads as follows:'6

THEOREM (Maskin, 1995) Suppose that there is a finite and odd number of agents.
If F is a reasonable voting rule on a domain D, then Majority Rule is also reasonable on
D. Moreover, if F 1is not Majority Rule, then there exists a domain D' such that Majority
Rule is reasonable on D' but F is not.

We first prove the following lemma:

LEMMA 3 Suppose that there is a finite number of agents. There exists no reasonable
voting rule on D when D contains {V1, Va, Va} or {Va, Vs, Vs}.

Proof We consider the case where D = {V;, V5, V3}. The other case is proved analo-
gously. D? generates the simplex V;,V5,V3 in the cube (modulo the grid). The proof
proceeds in three steps.

Step 1 It cannot be that al(r)b for some profile r in D4 and alternatives {a,b}.

Suppose, towards a contradiction, that al(r)b when m,(a > b) = p. Consider the
profile ¢t = (u,1,1—p), which belongs to the line joining V4 and V3. aI(t)b by construction,
bP(t)c by PP and al(t)c by Neutrality, a contradiction of transitivity.

Step 2 We rule out any SWF that assigns the same social ranking for two or more
consecutive fractions (i.e., points in the grid).

Consider the largest set of consecutive fractions such that aP(r)b for all profiles with
my(a >=b) € M = {m',m + ﬁ,...,m” =m'+ #} for n € N. By Neutrality, we can
assume without loss of generality than m' > % By Neutrality also, we also know that
bP(r)c for all m,(b > ¢) € M. This defines a subset of the simplex for which transitivity
imposes aPc (see figure 18). But, as shown in the figure, ITA implies that this restriction
must hold for stretch M’ of fractions m,(c > a) longer than M. This contradicts the
assumption that M was the longest such stretch in the first place.

16Dasgupta and Maskin (2000) generalize this result to a continuum of individuals. The proof is similar.
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Figure 18. Proof of Lemma 2 (n =1 and #A = 5)

Step 3 We rule out any SWF for which the social ranking over pairs of alternatives
alternates from one fraction to the other.

Let 1 be a feasible fraction in [§,1) and consider the two profiles s = (y, pt, 2 — 2p1)
and t = (p+ ﬁ, w— ﬁ, 2 — 2u). Since the sum of the coordinates in each case is equal
to two, these two profiles belong to the Vi, Vo, V3 simplex. Without loss of generality we
can assume that aP(r)b for m,(a > b) = u (otherwise relabel the alternatives.) Then,
by Neutrality, aP(s)b and bP(s)c, and by transitivity aP(s)c. Since the social ranking
alternates from one consecutive fraction to the next, aP(r)b for m,(a > b) = p also

implies that bP(t)a and cP(t)b, so cP(t)a by transitivity. This contradicts ITA. [ |
This allows us to prove Maskin’s theorem:

Proof The first part is straightforward. Suppose that F' is a reasonable voting rule on a
domain D. By Lemma 3, D does not contain {V;, Vs, V3} or {Vy, V5, Vs}. Lemma 2 then
implies that Majority Rule is transitive, and thus reasonable on D.

To prove the second part consider the domain D’ = {V5, V5, V,} which generates the
front face of the truncated cube. By lemma 2, we know that Majority Rule is reasonable
on this domain. Since F' is not majority rule, there exists y < 1/2 such that aR(r)b at all
profiles r with m,.(a = b) = u. By Neutrality, bR(r)c at all profiles r with m,.(b > ¢) = p.
Now consider the profile s = (p, i, 1) which belongs to the front face of the truncated cube.
By construction, aR(s)b and bR(s)c, so by social transitivity aR(s)c. This contradicts the
PP. Thus, F cannot be reasonable on D’.

The first part is straightforward. Suppose that F' is a reasonable voting rule on a
domain D. By Lemma 3, D does not contain {Vi, Vs, V3} or {V4, Vs, V). Lemma 2
then implies that Majority Rule is transitive, and thus reasonable on D. To prove the
second part consider the domain D’ = {V;, V3, V4} which generates the front face of the
truncated cube. By lemma 2, we know that Majority Rule is reasonable on this domain.
Since F' is not majority rule, there exists p < 1/2 such that aR(r)b at all profiles r
with m,(a = b) = p. By Neutrality, bR(r)c at all profiles r with m,(b = ¢) = p. Now
consider the profile s = (u, 11, 1) which belongs to the front face of the truncated cube. By
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construction, aR(s)b and bR(s)c, so by social transitivity aR(s)c. This contradicts the
PP. Thus, F cannot be reasonable on D’. |

The geometry exploited in the second part of the proof suggests an interesting corollary
to Maskin’s Theorem. In particular, the second part of the proof shows that Majority
Rule is the only reasonable SWF in a any domain that satisfies value restriction and
includes a complete face of the truncated cube. By contrast, if the domain does not
include a complete face, there may be other reasonable SWFs. Consider, for example,
D = {V4,V3, V4, Vs} that defines a plane that cuts the truncated cube diagonally from
top to bottom. It easy to check that 2/3 Majority Rule is reasonable in this domain.

COROLLARY Suppose that there is a finite and odd number of agents. Then Majority
Rule is the unique reasonable voting rule on any domain that satisfies value restriction
and contains a complete face of the truncated cube (modulo the grid.)

Proof By lemma 2 we know that majority rule is reasonable on these domains. Unique-
ness follows directly from the second part of the proof of the previous theorem. |

The argument in the second part of the proof also illustrates the role that #A odd
plays in the result. With an even number of agents then the profile s = (1,1/2,1/2)
depicted in figure 17 belongs to the domain. By neutrality, at that point we must have
that blc and alc. Transitivity implies that alc, which violates the PP since s lies in the
right face of the cube. Thus, there is no reasonable SWF defined on the face of the cube
with an even number of agents.

A natural question is whether the uniqueness result in the previous corollary holds
only on the faces of the cube. In this case the second part of Maskin’s Theorem would be
driven by an arbitrarily small subset of the domain. (In fact, in the limit with a continuum
of agents it would be driven by a set of measure zero.)

To see this consider the class of Majority Rule SWFs in the domain S(X)4. By
the Generalized May’s Theorem developed in section 3, each SWF in this class is fully
characterized by a number ¢’ € 1/2,1) that denotes the threshold required to turn social
indifference into strict social preference.!'” The SWFs are represented in figure 20. It is
easy to check that the SWF is transitive everywhere except for the darkened volumes in
the center of the faces of the cube. For example, transitivity is violated in the front dark
area since under ¢ Majority Rule we must have cIb, bla, and cPa. However, for ¢ close
to 1 (Unanimity) or for ¢ close to 1/2 (Majority Rule) the volume of these areas shrinks
to almost zero, and to a set of measure zero in the limit case of a continuum of voters.1®
This suggests that Majority Rule is the unique reasonable SWF in an arbitrarily small
part of the domain.

17Since individual indifference is not allowed, we only need to characterize the SWF at the base of the
simplex; i.e., ¢’ = ©(0)”.

I8Figure illustrates a related result by Balasko and Cres (1997) who have studied how the transitivity
of super majority rule changes with the threshold ¢ of the super majority. They show that Condorcet
cycles become rare events for super majority rules larger than 53%.
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Figure 19. ¢ Majority Rule in the truncated cube

6 The Geometry of Impossibility Results

In this section we use the truncated cube to provide a simple and intuitive proof of
Arrow’s Theorem and some of its variants. Again, we use geometry to highlight how the
impossibility results arise from the interplay of the different axioms. The usual statement
of Arrow’s theorem takes the following form:

ARROW’s THEOREM (standard version) If there is a finite number of voters
and at least three alternatives, then there is no SWF satisfying U, I1 A, Non-Dictatorship
and the PP.

Since our graphical representation restricts us to anonymous SWFs, we prove the
following (weaker) version:

ARROW’s THEOREM (with A) If there is a finite number of voters and at least
three alternatives, then there is no SWF satisfying U, ITA, Anonymity and PP.

Proof Consider any set of three alternatives {a,b,c}. By U, the truncated cube Cx
represents all the possible preference profiles over these alternatives. Let p* be the smallest
fraction of people preferring a to b for which social preferences dictate aRb; i.e.

" = min{p| aR(r)b for some r with m,(a > b) = u}. (2)

By PP, p* is well defined. Without loss of generality, we can assume that p* < %

(otherwise just relabel the alternatives a and b.) But now look, in figure 20, at the
profiles that belong to the line LM in the front face of the truncated cube. For all of
these profiles we have aR(r)b by construction of p* and ¢P(r)a by the PP (they lie in the
front face of the cube.) Thus, by transitivity of social preferences, ¢P(r)b at any profile
that lies in this line. Given this, TTA implies that ¢P(r)b at any point on or below the
plane (perpendicular to the y-axis) defined by m,.(b = ¢) =1 — p*.
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Now consider any two profiles represented by s = (p*,1, u*) and ¢ = (0,1 — p*, p*).
The two profiles satisfy condition (1) and thus, as depicted in figure 20, they belong to
the truncated cube. Also, since they lie in the same plane (defined by m.(c = a) = p*),
ITA implies that the social ranking between a and ¢ must be the same at both points. But
at s, aR(s)b by definition of p* and PP implies that bP(s)c. Thus, aP(s)c. Similarly, at
t ¢P(t)b, since it belongs to the horizontal plane, and bP(t)a by the PP. Thus, cP(t)a - a

contradiction.
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Figure 20. Graphical illustration of Arrow’s Theorem

Arrow’s celebrated result has been revisited many times and several alternative proofs
have been provided, including very short ones like those recently proposed by Geanakoplos
(1996). The value of our proof is that it allows us to visualize how much structure is
actually imposed by the combination of ITA and transitivity of social preferences, and
how the axioms interact to produce the result.

Notice, in particular, that PP is barely needed in the proof: it is used to define u* and
in the last step when it comes to identifying profiles for which bPc and bPa. This suggests
that a relaxation of PP is possible. Two alternatives have been explored in the literature:

Weak Involvement (Weak INV) For each pair of alternatives {a,b}, there exist pro-
files, r and +/, such that aR(r)b and bR(r')a.

Involvement (INV) For each triplet {a,b,c}, there exist at least two pairs of alter-
natives for which the SWF is “onto.” (A SWF is “onto” for the pair {a,b} if there are
profiles 7 and 7’ in the domain such that aP(r)b and bP(r")a.?

Wilson (1972) finds that Weak TNV combined with ITA and U leaves the possibility
for a dictatorship, a reverse dictatorship?® or a null SWF.?! Saari (1991) finds that INV
combined with ITA and U only leaves room for a dictatorship or a reverse dictatorship.

9We could also require that there exists a profile v/ for which aI(r’')b, but this is not necessary.
201 a reverse dictatorship, the social outcome is exactly the opposite of the dictator’s strict preferences.

21 A SWF is null if aI(r)b for all a,b and all r in its domain.
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Since Saari’s INV condition only constraints social preferences along two dimensions,
this conditions seem weaker than Wilson’s Weak TNV. However, it is easy to prove
that, when combined with ITA and U, Saari’s condition implies Wilson’s. This shows that
Wilson’s and Saari’s Theorems are closely related. Formally,

LEMMA 4 If a SWF satisfies U, IIA and INV, then it is “onto” for any triplet of
alternatives {a, b, c}.

Proof Suppose, towards a contradiction, that ¢P(r)a at all profiles r in the domain. By
INYV, there exist profiles 7’ and r”” such that aP(r")b and bP(r")c. Consider a third profile
r* such that "¢, 53 = 7’| 1a0y and 7|13 0y = 7|15,y By U, r* belongs to the domain. By
ITA and transitivity, aP(r*)c. A contradiction. |

Using this fact, the truncated cube can also be used to provide a simple proof of this ex-
tension of Arrow’s theorem, with the caveat, of course, that we impose Anonymity rather
than Non-Dictatorship. Since Anonymity rules out dictatorships and reverse dictatorship,
and INV rules out Wilson’s null SWF, the impossibility result takes the following form:

WILSON’s and SAARI’s THEOREM (with Anonymity) If there is a finite num-
ber of wvoters and at least three alternatives, then there is no SWF satisfying U, ITA,
Anonymity and INV .

Proof Consider any set of three alternatives {a,b,c}. By U, the truncated cube Cx
represents all the possible preference profiles over these alternatives. As in the proof of
Arrow’s Theorem, the strategy of the proof is to construct two profiles for which the social
ranking over a and ¢ conflicts.

Suppose that there are fractions pigp, feas foe and g such that aP(r)b when m,.(a =
b) = b, bR(r)a when m,(b = a) = ppe, bP(r)c when m,(b = ¢) = e, and cR(r)b
when m,.(b > ¢) = pep. Now consider two profiles of the form s = (pap, thoe, ©) and
t = (Wpa, teb, ). If the profiles belong to C4 we are done since, by construction, aP(s)b
and bP(s)c and hence by transitivity aP(s)c. Similarly, bR(¢)a and cR(t)b hence cR(t)a,
which contradicts ITA since mgs(a = ¢) = my(a > ¢).

Thus, to conclude the proof we need to show that there are fractions pap, foa; toc, fheb,
and « such that the two profiles belong to Cjy, that is:

1 < Nab+/lbc+$§2 (3)
1 < Uba+ﬂcb+x§2 (4)
Consider all possible fractions of the population {0, ﬁ, cees %, 1}. By U, these values

correspond to possible values of m,.(a = b) for r in the domain. By I NV, starting from
my(a > b) = 0 and moving up along these fractions, the social ordering over a and b must
be switching at some point from aPb to bRa (or the other way round). Hence, pq, and
Lbe can be chosen within ﬁ of each other. The same reasoning applies for ppe and picp.
Therefore, the difference between gy + poe and pipg + ey is of at most ﬁ. This means
that there exists x that satisfies both (3) and (4). |

A comparison of the two proofs highlights the relative roles of PP and its weaker coun-
terpart, INV. In both cases the proof is centered around a violation of ITA. In particular,
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the strategy is to show that there is a plane defined by m,(c = a) = constant and two
profiles that lie in that plane with different social rankings over a and c. In Arrow’s proof
PP is used to guarantee the existence of the plane and the profiles. But clearly INV is

enough.
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