COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1277

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

ENTRY AND VERTICAL DIFFERENTIATION
Dirk Bergemann and Juuso Véaliméki

October 2000



*

Entry and Vertical Differentiation

Dirk Bergemann' Juuso Vilimikit

First Version: June 2000
This Version: September 2000

Abstract

This paper analyzes the entry of new products into vertically differentiated markets where
an entrant and an incumbent compete in quantities. The value of the new product is initially
uncertain and new information is generated through purchases in the market. We derive the
(unique) Markov perfect equilibrium of the infinite horizon game under the strong long run
average payoff criterion.

The qualitative features of the optimal entry strategy are shown to depend exclusively on
the relative ranking of established and new products based on current beliefs. Superior prod-
ucts are launched relatively slowly and at high initial prices whereas substitutes for existing
products are launched aggressively at low initial prices.

The robustness of these results with respect to different model specifications is discussed.
JEL CLASSIFICATION: C72, C73, D43, DS&3.

KeEywoRrDs: Entry, Duopoly, Quantity Competition, Vertical Differentiation, Bayesian Learn-

ing, Markov Perfect Equilibrium, Experimentation, Experience Goods.

*The authors thank Phillipe Aghion, Glenn Ellison, Ezra Friedman, Ariel Pakes and Robin Mason, in particular,

for helpful comments. Finacial support from NSF Grant SBR 9709887 and 9709340, respectively, is gratefully

acknolwedged. The first author wishes to thank the Department of Economics at the University of Mannheim for

its hospitality and the Sloan Foundation for financial support through a Faculty Research Fellowship.

TDepartment of Economics, Yale University, New Haven, CT 06520-8268, U.S.A., dirk.bergemann@yale.edu.

fDepartment of Economics, University of Southampton, Southampton, SO17 1BJ,

uso.valimaki@soton.ac.uk

UK.,

Ju-



1 Introduction

1.1 Motivation

In this paper, we analyze the optimal entry strategies for different types of experience goods in
a dynamic Cournot duopoly with vertically differentiated buyers. Our main goal is to obtain
a characterization of the features of the new product that lead to qualitatively different entry
strategies. We show that a new product that represents a certain improvement to an existing
product is launched in the market at prices above the static equilibrium level and sales quantities
below the static level. A new product that has a positive probability of being the leading brand
in the market, but also a positive probability of being revealed inferior to the current product, is
launched with a more aggressive strategy where the initial prices are low and initial sales exceed
the static equilibrium quantities.

The firms compete in a continuous time model with an infinite horizon. The uncertainty
about the new product is common to all buyers in the market. Additional information about
the quality of the new product is generated only through experiments, i.e. through purchases in
the market. The information generated is assumed to be public and while the exact mechanism
of information transmission is left unmodelled, it is motivated by considerations such as word of
mouth communication between the buyers and consumer report services. As a consequence, all
buyers have identical beliefs about the new product, and we can represent the stage game as a
vertically differentiated quantity game parametrized by the common belief about the new product.
Examples of markets where the assumptions of common value (aside from the aspect of vertical
differentiation) and common information may be valid include the entry in service markets such
as new airlines carriers or new providers of communications services. Here the common value is
the (expected) performance or reliability of the new service. The new information is the sum of all
idiosyncratic experiences by the buyers. Since an individual buyer decides based on the expected
performance, all idiosyncratic experiences are of equal value in providing information.

We have chosen a model of quantity competition as the stage game. With this choice, we
extend the scope of viable new products. In particular, quantity competition allows for the
possibility of launching an innovation which brings the two competitors closer to each other

without change in the leadership. In a model of price competition, such innovations would never



be profitable and as a result, improved substitutes would never be observed. In those models, the
profits of both firms vanish as the substitutability of the two products increases and as a result,
the static profit functions of the two firms are nonmonotonic in the level of differentiation. We
believe that a model where each firm’s profit is increasing in its own quality is better suited for a
dynamic investigation of a market with vertical differentiation.

In order to simplify the analysis, we assume that there is no discounting. As we want to stay
close to the model with small discounting, we use the strong long run average criterion as defined
in Dutta (1991) as the intertemporal evaluation criterion. This criterion can be justified as the
limit of models where the discount rate is tending to zero, and it retains the recursive formulation
of standard discounted dynamic programming. Under the assumptions of no discounting and
quantity competition, it is surprisingly simple to examine the Markov perfect equilibria of the
model. In section 5, we show that for quite general demand structures, the comparisons between
static and dynamic equilibrium policies can be based exclusively on information about static payoff
functions. It is sufficient to calculate the static equilibrium profits for a given belief and compare
that with the long run average profits for the same belief. Whenever the long run average profit for
the entrant exceeds the myopic profit, there is an incentive to generate additional information and
as a result, the dynamic equilibrium quantity exceeds the myopic equilibrium price. If the myopic
equilibrium profit exceeds the long run profit, the entrant is best served with a slow generation
of new information, and as a result, the equilibrium quantity falls below the myopic level. It is
hoped that the simplicity of the technique of undiscounted dynamic programming as used here
will prove useful in other applications beyond the scope of this paper.

In section 4, we assume that the underlying stage game is the standard linear model used
in the literature on vertical differentiation. This allows us to interpret the dynamic equilibria
in an economically intuitive manner. Using the curvature properties of the stage game profit
functions, we show that aggressive entry corresponds to relatively low (current) expected quality
of the entrant’s product while cautious entry corresponds to high expected quality. In the linear
model, we can also solve the dynamic equilibrium policies explicitly and as a result, we get a set
of empirically testable predictions for the model.

The paper proceeds as follows. Section 2 introduces the basic model and the learning envi-

ronment. Section 3 derives the benchmark results of the static duopoly game. The main results



are then presented for the standard linear demand specification in Section 4 where we derive the
Markov perfect equilibrium of the intertemporal game. In Section 5, we extend the model beyond
the linear specification and show that the qualitative conclusions extend to much more general

demand structures. All the proofs are relegated to an appendix.

1.2 Related Literature

Our model is related to a number of branches in the literature on imperfect competition. The
model of vertical differentiation was first developed in the context of a duopoly model by Gab-
szewicz & Thisse (1979), (1980), and Shaked & Sutton (1982), (1983). The emphasis in those
models was on the optimal choices of product qualities for competing producers. The product
characteristics were commonly known to all the participants in the market, and the quality choices
by the firms were followed by a second stage price competition. Gal-Or (1983) and Bonnano (1986)
first considered quantity competition in a model of vertical differentiation. Our primary interest
in this paper is in explaining the observed differences in the qualitative features of initial pricing.
To allow for a wide range of possibilities, we want to have the flexibility in the demand structure
afforded by vertical differentiation.

The recent literature on experimentation and strategic experimentation has considered models
closely related to the one analyzed here. Early models such as Rothschild (1974) and McLennan
(1984) consider the learning problem of a monopolist facing a fixed demand curve with unknown
parameters.! Aghion, Espinosa & Jullien (1993), Harrington (1995) and Keller & Rady (1998)
analyze a duopolistic market where two competitors learn about the substitutability between
their products. In these models, useful information becomes available whenever either of the
firms makes a sale. The main difference between these papers and the current paper is that here
the actual demand curve, and not only the beliefs about the demand, depends on past sales.
Bergemann & Viiliméki (1997) considers the entry problem of a new product in a situation where
the buyers are horizontally differentiated. Even though the analysis in that paper uses tools

similar to the current paper, the economic findings in the two papers are quite different reflecting

!The monopoly learning problem is further analyzed, among others, in Prescott (1972), Kihlstrom, Mirman &
Postlewaite (1984), Easley & Kiefer (1988), Aghion, Bolton, Harris & Jullien (1991), Mirman, Samuelson & Urbano
(1993), and Treffler (1993).



the differences between vertical and horizontal differentiation. A strategic learning model in
continuous time without discounting appeared also in an early version of Bolton & Harris (1999).

To our knowledge, the current paper is the first model of entry with vertical differentiation
and uncertain demand.? In the absence of vertical differentiation, the previous models of entry
cannot generate qualitatively different predictions for the speed of entry for different types of
new products. The public observability of utility signals is central to some recent models of
word-of-mouth communication such as McFadden & Train (1996).

Finally, conditions for initially high prices have been obtained in asymmetric information
models of entry. In those papers, the monopolist is assumed to know the true value of the
product, and the prices chosen serve as signals of the true quality. A prominent example of such
models is Bagwell & Riordan (1991) where high and declining prices serve as signals of high
product quality. Judd & Riordan (1994) consider a model with initially symmetric information
where private signals are received by the monopolist and the buyers after first period choices. The
firm then faces a signalling problem in the second period. The results in these models depend
on the details of the information revelation mechanism and the cost structure. In our model,
the results depend only on the quality difference between the products which can in principle be

inferred directly from the realized prices.

2 Model

In this section we first describe the preferences of the buyers and then introduce the stochastic
environment in which the game is played. The incumbent I and the entrant E compete in
quantities in a market with vertically differentiated products. Time is continuous and the time
horizon is infinite, with ¢ € [0,00). The incumbent is well established in the market and its
product characteristics are common knowledge at the beginning of the game. The entrant has a
new product whose value is initially uncertain and whose value can be learned over time through

experience. The marginal cost of production is normalized to zero for both firms.

A recent paper by Ching (1999) provides structural estimations for a model with very similar features to the
one considered here. He estimates the entry behavior for generic drugs in model of vertical differentiation with

market learning about a common uncertain parameter (attributes of the generic drug).



The preferences of the buyers are described by a model of vertical differentiation. The buyers
are characterized by a parameter  which is assumed to be distributed on the interval [0,1]
according to a twice continuously differentiable density function f (#). In much of the paper, we
will assume that f () is uniform. The parameter ; of buyer 7 can be interpreted as her willingness
to pay (or the inverse of the marginal utility of income). Each buyer has a unit demand at each
instant of time. The incumbent’s product, also called the established or safe product, has quality
s with s > 0 to all buyers. The value of the safe product to buyer ¢ is then the product of his

willingness to pay and the value of the product, or
0;s.
Symmetrically, the value of the uncertain product for individual 7 is given by
;1.
The value, u, of the new product is initially unknown to all parties. It can be either low or high:

pE s byt

with 0 < p; < pg < oco. Initially all market participants have a common prior belief g that the

new product has a high valuation, or

ap = Pr(p = py) .

The expected value given a belief « () in period ¢ is denoted by p (a(t)), where

ple(t)) = o (t) g + (1 — (1)) .-

Since the buyers are nonatomic, they have no individual effect on prices and quantities and
as a result, they choose according to their myopic preferences at each stage.® To complete the
description of the stage game payoffs, we need to specify the profit functions for the two firms. The
profits resulting from a vector of quantities (Qr (t), Qg (t)) are given by P; (t) Q; (t) for i = I, E,
where the P; (t) are obtained from static market clearing conditions. The dynamic game payoffs

for the two firms are discussed in section 4.

3We are implicitly assuming that the firms’ information sets consist of all past market observations, i.e. all past

prices and quantities.



The uncertainty about the new product can only be resolved over time by experience with the
new product. The information contained in any individual purchase is noisy and thus can only
provide an improved but not perfect estimate of the new product. We assume that the evolution

of the belief about the quality of the new product is governed by the following diffusion process:

da (t) _ \/QE (t)a(t) (1 — Oé(t)) (:uH _HL)dB (t), (1)

)

where B (t) is the standard Wiener process and gg (t) is the sales quantity of the entrant in period
t. In the appendix, we provide a microfoundation for this particular form of the evolution of the
beliefs. There we derive the diffusion process « (t) from a discrete time model with a finite number
of buyers, where each buyer is sampling from a normal distribution with known variance o? and
unknown mean g, which is either p; or . As we take the limit both with respect to the number
of buyers and the time elapsed between any two periods, the resulting evolution of the posterior
belief is given by the stochastic differential equation above.

Observe that being a posterior belief, a (¢) follows a martingale, i.e. has a zero drift. The
variance of the process is at its largest when « (t) is away from its boundaries as the marginal
impact of new information is at its largest when the posterior is relatively imprecise. The economic
assumption behind the form of this particular process is that the variance in the posterior belief
is linear in the quantity of sales by the entrant. In other words, the informativeness of the market

experiment grows linearly in the sales of the entrant. The remaining term in the expression,

By —Hr
o2

, is sometimes referred to as the signal to noise ratio as it measures the strength of the
signal f1;; — 1y to the inherent noise in the observation structure, 2. For notational convenience

we define

E(a(t)) — \/a(t) (1_a(t)) (IMH_ML)

2
From equationl, we see that as long as ¢g (t) is bounded away from 0 for all ¢, « (t) converges
to a* € {0,1} almost surely. In fact, the convergence is fast enough to make the following limit

finite almost everywhere:

T—o00

i oy [ [ ot ()~ (@) ],

where ¢ (-) is an arbitrary continuous and piecewise smooth function of . This result allows us

to use the strong long run average as the intertemporal evaluation criterion in our model.



3 Static Equilibrium

In this section, we derive some of the basic equilibrium properties in a static model for the case
where f(6) is the uniform density. The value of the safe product is s and of the new product
is p(a) for a given .. In the description of the equilibrium conditions we shall assume that
() < s. The corresponding results for p(a) > s are symmetric and stated in the relevant
proposition as well. Define oy, as the belief at which the expected value of the new product is
equal to the established one:

(o) =5 & ay = Sl
MKy — M,

The static prices are denoted by Pg and Pr for the entrant and the incumbent respectively.
The quantities are denoted by Qg and Q7. The equilibrium prices and quantities are denoted
by P; () and Q; () as we are interested in the comparative static behavior of the equilibrium
variables as a function of the belief a. Naturally, the evolution of the belief « is of no relevance
in the static model.

The equilibrium conditions are given by the profit maximization conditions of the firms and

the indifference conditions of the marginal buyers. The latter can be stated as

(1—QI)S—P[:(1—@1)#(0&)—PE.

and

(1-Qr—Qp)u(a)— Pg=0.

The first indifference condition implies that at the equilibrium prices, buyers with valuations
0 € [1 — Qy,1] prefer the incumbent. The second indifference condition implies that buyers with
valuations 0 € [1 — Qr — Qg,1 — Q)] prefer the entrant. It also follows that all buyers get a
nonnegative expected utility from their purchases, but the segment with the lowest valuations

may not buy at all. The market clearing prices for given quantities {Qg,Q;} are:

Pg=p(a)(1-Qr — Q)

and

Pr=s5(1-Q)—p(a)Qp.



The static profit functions of the firms can then be written as functions of the quantities {Qg, Qr} :

e (Qe,Qrla) = p(a) Qe (1 - Qr — Qr)

and

71 (Qp,Qrla) =Qr(s(1 - Qr) — pu(a) Q) -

For p(a) = s, the profits coincide with those in the homogenous goods Cournot model. The
Nash equilibrium of the duopoly is obtained by solving simultaneously for profit maximizing
{Qg (a),Qr (a)}.* We observe first that the entrant’s best response function is independent of
the level of differentiation. The quantity set by the incumbent firm, Q; determines the size of the

market for the entrant, and the entrant behaves as a monopolist on the residual demand and sets

Qe (Qr)=5(1-Qr). (2)

N[ =

The best response function of the incumbent is given by:

Q1 (Qp) =+ - %, 3)

N =
[\
@

For every p («), the optimal reaction to Qg = 0 is given by the monopoly quantity Q; = % For
w(a) = s, the effect of the entrant’s decisions on the optimal reactions of the incumbent is at
its strongest. As p () decreases, the best response function of the incumbent becomes flatter,
eventually converging to a constant on the monopoly quantity. In a sense, the incumbent firm
becomes strategically independent of the entrant as p(a) declines. We may rewrite the best

response function as a convex combination:

Qr(Qg) = (o) Qwm + .

rEwn e Q1 (Qr (o)),

+ p(a)
so that the best response function of the incumbent is a weighted average of the monopoly best
response Qpr = % and the Cournot best response at zero differentiation, o = a;,. The equilibrium

quantities are derived explicitly in the appendix, here we merely state the monotonicity properties

in the belief .

"With the linear demand specification, the profit function of each firm is concave in its own quantity, and

therefore first order conditions are also sufficient for optimality.



Proposition 1 (Static Policies)

1. Pg(a),QEg (o) and Pg () Qg () are increasing in o.

2. Pr(a),Qr (a) and Pr(a) Qr (o) are decreasing in c.

Proof. See appendix. W

As expected, the quantity and the price of the entrant are increasing in «. The entrant can
increase both his sales as well as his margins as the quality is improved. The incumbent responds
to an increase in the value of the competing product both by lowering his sales as well as his
margins. It is worthwhile to point out that the monotonicity result extends over the entire range
of posterior beliefs, and holds also around the point a,, where the leadership between the two
firms is changing. This is one instance where the model with quantity competition behaves in a
more regular manner than the one with price competition, which displays nonmonotonicities in
the prices and quantities around the switching point a,.

The experience gained by the buyers may change the posterior belief « either upwards or
downwards. By the law of iterated expectation, the mean of the change is zero, but the variance
is positive. As a result, the curvatures of the profit functions of the two firms in « are going to

play a central role in the analysis of the intertemporal competition.
Proposition 2 (Curvatures)
1. For p(a) < s,

(a) Pg(a),Qr (a) and Pg (o) Qg (o) are convex in «,

(b) Pr(a),Qr(a) and Pr (o) Qp () are concave in a.
2. For u(a) > s,

(a) Pg(a),Qg () and Pg (o) Qp (o) are concave in a,

(b) Pr(a),Q () and Pr(a) Qp () are convex in .

Proof. See appendix. W

10



An intuition for the curvature as well as the change in the curvature of the policies and
revenues can be given as follows. For low posterior beliefs where ;1 () < s, a marginal increase in
« increases the profit of the entrant through two channels. First, it increases the price for fixed
quantities. This direct effect is the same at all levels of a as long as the quantities supplied are
unchanged. There is also the indirect effect from a stronger competitive position of the entrant
and the corresponding reduction in the quantity of the incumbent. This effect is strongest when
« is close to a;;,, and vanishes for very low values of a. The combination of these two effects leads
to a convex profit function as long as p () < s. As « increases beyond a,, the position of the
entrant resembles increasingly one of a monopolist. The indirect effect then becomes weaker and
it is only the ability of the new firm to increase its prices which increases its profits.

This general argument already indicates that the curvature properties continue to hold for
more general class of densities over the space of the vertical differentiation parameter 6 than the

uniform density assumed here.

4 Dynamic Equilibrium

We define the Markov perfect equilibrium for the duopoly game in subsection 4.1, where we
also introduce the familiar dynamic programming equations with discounting. In subsection 4.2
we consider the limit case of no discounting under the optimality criterion of the strong long run
average. In subsection 4.3 we then characterize the unique equilibrium and associated equilibrium

policies.

4.1 Equilibrium

In the equilibrium analysis, we restrict ourselves to Markovian policies to focus on the interaction
between the information revealed in the market and the policies adopted by the buyers and sellers.
The equilibrium prices and quantities in the dynamic setting are denoted by p; (o) and ¢; («) to

distinguish them from their static counterparts. The value functions of the firms can then be

11



described by the Hamilton-Jacobi-Bellman equations®

1V (@) = ma {pE (@) g (@) + 25 (0) T (0) V4 <a>} and @
Vi 0) = mox {1 ()1 () + 55 0) 2 (0) Vi (o) )

for the entrant and the incumbent respectively. In these equations, the first term on the right hand
side represents the flow payoff resulting from the equilibrium sales at the equilibrium quantities.
The second term represents the flow value of information which is composed of the variance of
the posterior belief weighted by the second derivative of the value functions, which measures
the marginal value of information. The variance term is equal for both firms as information is
symmetric and only sales by the entrant generate more information about the value of the new
product. The attitude towards information is represented by the curvature of the value function
of each firm. As we will see shortly, the (sign of the) curvature may differ and even change in
equilibrium as a function of the posterior belief a.

Since every buyer is of negligible size, her decision doesn’t influence the market experiment and
hence her value of information is independent of her decision. The purchase decision of each buyer
is therefore exclusively determined by the current payoff offered by the various alternatives. In
consequence, the sorting of buyers in the intertemporal equilibrium will display the same structure
as in the static equilibrium. Buyers with high valuations will buy from the alternative with the
myopically superior payoff and buyers with low valuations will buy from the alternative with
the myopically inferior payoff. Thus the equilibrium prices are determined again by the supplied

quantities and the indifference condition of the marginal buyers as in the static equilibrium:

pE (o) = p(a) (1 —qr (@) —qr (@),
pr(a) =s(1—qr(a)) —p(a)ge (@),

(6)

?See Dixit & Pindyck (1994) or Harrison (1985) for a complete derivation of the dynamic programming equation
in continuous time when uncertainty is represented by a Brownian motion. The derivation is based on a discrete
time version with a random walk where the limit is taken as the time elapsed between any two periods converges

to zero.

12



if 1 (a) < s, and symmetrically:

pe (@) = p(a) (1 =gp () = sqr (@), )
pr(e) =s(1—qr(a) —qe(a)),

if p(a) > s. The difference with the static equilibrium is that the value function of the sellers

now contains the intertemporal considerations represented by the second derivative of the value

function.

Definition 1 (Markov perfect equilibrium) A Markov perfect equilibrium is given by
{qE () ,qr (@)} such that the equations (4)-(7) are satisfied for all o € [0, 1].

The first order conditions for the firms differ in the intertemporal problem only through the
added variance term. As the sales quantities today affect the variance only linearly through
the sales of the new firm, the equilibrium quantities can be given explicitly as a function of
s, it (o) and ¥2 (a) VH (). But after inserting the equilibrium quantities and prices into the value
functions of buyers and sellers, they become a set a nonlinear differential equations, which can
only be approximated via numerical techniques. For this reason we consider the limiting case as
the discount rate vanishes or r — 0 and then derive the equilibrium policies under the strong

long-run average criterion.

4.2 Optimization without discounting

In establishing the equilibrium policies under no discounting, the strong long run average criterion
has the important property that the optimal policies under this criterion are the unique limits
to the associated policies under discounting. The equilibrium policies to be derived therefore
maintain all the qualitative properties of the equilibrium with small, but positive, discount rates
r > 0. In particular, they preserve the intertemporal trade-off of the experimentation policies
under discounting.’

We start by fixing the policies of all other players to a set of arbitrary (Markovian) policies

and consider the decision problem of the entrant. In the next subsection, we return to the full

%See Dutta (1991) for a detailed analysis of the link between optimality criteria under discounting and no

discounting.
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equilibrium problem. The reformulation for the incumbent only requires the obvious substitutions.
The long run average payoff for the entrant under an initial belief ay is given by:

1 T
vp(a0) = sup i e, { [ s ) p a0 ]
a(a(t) T Jo

If « (t) converges almost surely to zero or one, then the long run average starting at any arbitrary

belief ay is equal to
VE (040) = (1 — 040) VE (0) + U (1) .

As vg (0) and vg (1) are simply the full information payoffs associated with the static payoffs at
a = 0 or @ = 1, the long-run average can be computed exclusively on the basis of the static
problem. In contrast, the strong long-run average is defined through the following optimization
problem:
T
Vi (o) = sup i B | [ (a5 (0 ()i (0 0) = v (2 () ] 0
an(a(t) T 0
Thus the strong long run average criterion maximizes the expected return net of the long-run
average. The limit as T'— oo in (8) is well-defined and finite. The strong long-run average hence
discriminates between policies based on finite time intervals as well. The infinite horizon problem
(8) can be represented by a dynamic programming equation as follows:
o (o) = ma {a (@) i () + 55 0) 2 (0) Vi o) | ©
The difference between the dynamic programming equation under discounting (4) and no dis-
counting (9) is simply that the flow payoff, rVg (), is replaced by the long-run average payoff,
vg (o), whereas the right hand side of the equation remains identical. However as the long-run
average is independent of the current policy ¢g («), we can rewrite (9) to read:
0= mox {qE (@) 5 (@) = v& (@) + =gz (@) T2 () V (a)} '
qp(c) 2
After dividing the entire expression through gg («) (assuming that gg (o)) > 0 can be guaranteed),

the optimality equation can be rewritten as

_ v (@), 1 "
0 = max {pE (a) — = } + 55 (@) Vi (@) (10)



Here we can now detect the advantage of the undiscounted program relative to the discounted
one. The first-order conditions for entrant, and in fact for all agents in the game don’t involve
the second derivative of the value function any more. The only modification relative to the static
program is the introduction of the long-run average but as we saw above, it can be computed
on the basis of the static equilibrium as well. It is this replacement of the value function by the
long-run average in the limit as discounting goes to zero which makes the undiscounted problem

much more accessible.

4.3 Equilibrium Analysis

Consider now the entire set of equilibrium conditions under no discounting. The dynamic pro-
gramming equation for the entrant is
1
0 = s { i (@) (2) = v () + 55 0) 2 (0) VE ) | (1)
B{&
and for the incumbent it is by extension:
1
0 = max {p1 (@) ) =1 ) + s (0) 3 )V} ()} (12)
ar(e
where v7 (o) and vg () are the long-run average payoffs of the sellers. The behavior of the
buyers is again given by the static indifference conditions of the marginal buyers. The indifference
conditions of the buyers (see (6) and (7)) determine the equilibrium prices as a function of the
supplied quantities. A Markov perfect equilibrium is then a solution to the dynamic programming
equations of the firms after inserting the equilibrium prices into (6) and (7):
1
0= max {(ﬂ(a) (1 =g () =m(a) s (@) gz (@) = vp (@) + 5q (@) =% (@) VE (a)} , (13)
B{&
and for the incumbent:
1
0= max (5 (1~ a1 (@) = m (@) a1 (@)1 () = 01 )+ g6 (@) 2 @)V (@)} (19
7(a

As suggested earlier, we divide both equations through ¢g (o) and rewrite (13) and (14) as:

0 = max
qr(a)

(n(a)(1—qg (o)) —m(a)qr () e (o) — vg (@) 1, v
{ (@) b3 @i, 09

15



and

[0 —g(@) - m@ap@)ar@) v @)
O‘q,@{ e }+22 @VI(@).  (16)

The unique equilibrium quantities are then derived by standard first-order condition and given

by

and
where

m (a) = min {s, u(a)}.

It can be verified that the quantity g7 (o) is continuous at o = auy,, but not differentiable. The
equilibrium prices pg (o) and p;r («) follow from the indifference conditions (6) and (7) of the
marginal buyers. The monotonicity properties of quantities and prices, which we observed in the
static equilibrium (as a comparative static result) are preserved in the dynamic model indicating

how the equilibrium variables evolve as a function of the posterior belief a:
Proposition 3 (Prices and Quantities)

1. pg (a), qg (o) and pg () qg () are increasing in «.

2. pr(a), qr (@) and pr (a) qr () are decreasing in a.

Proof. See appendix. H

As the expectation about the quality of the new product improves, the entrant can achieve
higher sales at higher prices. Conversely, the incumbent lowers its sales and yet has to suffer a
decrease in the equilibrium price. However the changes in the responsiveness of the equilibrium
variables to changes in the posterior belief is modified by the intertemporal considerations. A
local argument may suffice here to give the intuition. We saw earlier that the static revenue of

the new firm is convex if (o) < s. This means that the entrant would prefer a lottery with
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expected value of « rather than the expected value itself. The dynamic effect is that the entrant
seeks to increase the level of experimentation in the market by increasing it sales. As a becomes
sufficiently large so that p (o)) > s, the local argument points in the other direction, as the entrant
now becomes averse to more information and this tends to lower the quantity it is supplying to
market relative to the myopic policy. As a consequence, the entrant acts the most aggressively

for low posterior values. This leads to the following results:
Proposition 4 (Curvatures)

1. qg (@) is concave in «,
2. pg (a) is conver if p(a) < s, and concave if p(a) > s,
3. qr (@) is convez in «,

4. pr(«) is convex in o.

Proof. See appendix. W

In response to the aggressive attitude of the new firm for low posterior beliefs, the incumbent
reacts most strongly by lowering its sales for low posterior beliefs as well and hence the quantity
offered by the incumbent becomes globally convex. While a lower quantity can partially help the
incumbent to prevent a decline in its price, the equilibrium price of the incumbent is subject to
the same factors as its supply. It suffers the biggest decline for low posterior values and gradually
becomes less affected by a change in the posterior belief. The only exception is the equilibrium
price of the new firm which maintains the curvature properties from the static equilibrium. As the
new firm becomes less aggressive in terms of its supply response with an increase in the posterior
belief, the equilibrium price absorbs a larger share of competitive advantage as « increases towards
m, the point of symmetric competition. However as « increases beyond «yy,, the new firm behaves
gradually more like a monopolist and any price increase is then due to a direct increase in the
value of the product rather than the indirect effect of the improved competitive position.

The curvature properties of quantities and prices can be directly translated into a time series
profile by exploiting the martingale properties. Due to the aggressive initial sales the expected

future sales of the entrant are falling and expected future prices are rising over time. Conversely,
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the quantity and the price of the incumbent are expected to recover over time from the entry of the
new firm and hence increase over time. These properties are due to ¢z (@) being a submartingale,
whereas the latter is due ¢; () and pr () being supermartingales.

The change in the curvature properties has already indicated how the behavior of the firms
in the dynamic equilibrium are modified relative to their myopic best response functions. Next
we show that we can strengthen the distinction between aggressive and defensive behavior of
entrant (and incumbent) by partitioning the state space into two intervals, identical for entrant
and incumbent, where static and intertemporal policies can be ranked unambiguously.

To illustrate this point, it is helpful to go back to the value functions of both firms before any

modifications:

0 = ma { (00 (1= g (@) = (0)a (0)) 5 (0) = v (0) + Gz (0) S () Vi (@)} (19

and for the incumbent:

0 = s { (s (1= 1 () = m (@) (@) s (@) = w1 (@) + a5 ()2 @) VY (@) (20
Suppose the value of information to the entrant is zero at some critical posterior belief «., or
Vi (o) = 0, then its dynamic best response function at a. is identical to the static one. As
intertemporal considerations in terms of V() or V}’(a) enter the best response function of
the incumbent only indirectly through the choices of the entrant (see (20)), it follows that if
Vi (ae) = 0, then necessarily ¢; (o) = Qi (ac) and p; (o) = P; (o) for both firms i = E, I.
Moreover since the dynamic programming equation (19) has to hold it follows that at a, the
flow revenues (static or intertemporal) have to be equal to the long-run average value vg ().
We recall that the long-run average vg () at o, is the expected value of the static equilibrium
revenues at & = 0 and a = 1 weighted with 1 — a, and «, respectively. Thus even if we don’t
know Vg (a) or Vi (a), we can find the points where static and intertemporal values coincide
through a comparison of static values with the long-run average. Conversely, at all points where
static revenues and long-run average diverge we can expect to see discrepancies between static

and intertemporal policies.
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Proposition 5 (Single Crossing)
1. The difference pg (@) qg (o) — vg (o) crosses zero at most once and then from below.
2. The critical point o, satisfies ae > Q.
3. A necessary condition for crossing to occur is iy < s < [ip.

4. A necessary and sufficient condition for crossing to occur is:

[pE (0) g5 (0)]" — v (0) <0,

and
lpe (1) qp (1)) — v (1) <0.

Proof. See appendix. B

The proof proceeds by establishing the above properties first for static revenues Pg (o) Qg ()
and then extending them to intertemporal flow revenues pg («) ¢z (o). Thus there is at most one
critical point where the value of information for the entrant is zero. As the equilibrium policies
we derived earlier as well as the long-run average are continuous, it follows that the preference of
the entrant towards information represented by V. («) changes signs at most once. As the sign of
the term V}/ (o) predicates the bias in the intertemporal policy, the proposition shows that this
bias changes at most once, and in fact a necessary condition is that there is uncertainty about

the ranking of the alternatives, or

Hp <8 < [g-

The evolution of equilibrium revenue and long-run average for the entrant are displayed below for

the case that the necessary and sufficient condition is satisfied.
INSERT FIGURE 1 HERE

By the Bellman equation (19), the sign of the second derivative, V}] («), of the value function
is the opposite of the difference pg () ¢ (@) —vg () and hence the difference also represents the

evolution of the value of information for the new firm. The relationship between the flow revenues,
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long-run average and value of information is less clearly connected for the incumbent. This is due
to the fact that the value of information, V}’ («), doesn’t enter the first order conditions of the
incumbent, as the value of information is a function of the sales of the new firm, but not of the

established firm.
Proposition 6 (Value of Information)

1. Vg (@) is conver in a for all o < o, and concave in a for all o > a.

2. Vi («) is convez in «.

Proof. See appendix. B

Finally we can establish how the presence of market learning affects the equilibrium policies of
the firms on either side of the critical value a.. For all posterior beliefs o < o, the value of more
information is positive to the entrant. In consequence, his entry strategy is to supply the market
aggressively. As we formally state below, this leads to lower than myopic prices for the incumbent
as well as the entrant. The incumbent is trying partially to offset the increase in supply by the
entrant through a decrease in his own supply. As the value of information becomes negative for
a > ag, the entrant lowers its supply, and this sets off an adjustment of prices and quantities
in the expected direction. Both equilibrium prices increase and the incumbent gains a relatively

larger market share.
Proposition 7 (Static vs. Dynamic Strategies)

1. For a < ap:

(a) qg (o) > Q (@) and pg (o) < Pg (o),

(b) qr (o) < Qr () and pr (o) < Pr ().

2. For a > a.:

(a) g (@) < Qp (@) and pp (o) > Pp (o),

(b) qr (o) > Qr () and pr () > Pr ().
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Proof. See appendix. B
The behavior of the equilibrium prices and quantities are displayed (in their differences) below

for the same environment as in Figure 1.
INSERT FIGURE 2 HERE

When we combine the time series behavior of the equilibrium together with the properties of
the equilibrium policies relative to their static counterparts, a rather complete picture regarding
the entrance and deterrence behavior emerges. As the policies depend essentially on the current
position of the firms in the quality spectrum, it might be helpful for the interpretation to consider
the two polar cases relative to the intermediate case where iy, < s < pg. If pp < pg <'s, we refer
to the new product as a substitute and if s < p;, < py, then we refer to it as an ¢mprovement.
A substitute is at best equal to the established product, whereas an improvement is at least as
good as the established product. The first scenario may represent the introduction of a generic
pharmaceutical or a no name product, whereas the second may represent a new version of a
current product with additional features whose (positive) contribution is yet uncertain.

With a substitute entry is aggressive, and the equilibrium price of the entrant is below the
static price. Over time, the expected equilibrium price of the entrant is increasing and the
expected supply is decreasing as the entrant becomes more established and less aggressive. The
effect of entry with uncertain valuations on the incumbent is that both sales as well as prices are
uniformly lower for the incumbent. But the submartingale property of both equilibrium variables
then shows that sales and prices are expected to increase over time. The entry strategy with an
improved product is substantially different. The supply is at all times lower than with a static
equilibrium, as the new firm will lose more through a (gradual) decrease in the posterior than a
(gradual) increase. In consequence, the new firm will start with lower than myopic quantities and
is essentially cream-skimming. Over time, its expected price is decreasing and the expected sales
and revenues of the incumbent are increasing. Thus the aggressiveness of the strategy is almost

entirely predicated by the relative position of the new firm to the established firm.
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5 Robustness

In this section we discuss in some detail how robust our equilibrium results are to different
modelling assumptions. In Subsection 5.1 we remove the assumption of a uniform distribution
on 6 and extend the analysis to more general inverse demand functions. In Subsection 5.2 we
discuss how our qualitative results would be changed by considering price rather than quantity

competition.

5.1 Quantity Competition and General Distributions

We begin the analysis by considering a general distribution F' (f) over the unit interval. Associated
with any given distribution F' (#) and any given belief « is a static profit function m; (Qg, Q1 |)
for firm 4. In addition, denote by 7 (QF |a) the profit function of the entrant when he faces a
competitive fringe with quality s rather than a single competitor. We make the following three

assumptions on the behavior of the static profit functions for the remainder of this section:
1. i (Qg,Qr|av) is concave in Q; for all ¢ and all a.
2. 15 (QE |a) is concave in Qg for all a.
3. The static best response functions satisfy the stability condition: —1 < @ (Q;) < 0, Vi.

As our main interest is in the dynamic aspects of the competition model, we do not attempt
to present the most general conditions on F'(#) which would guarantee that the fairly standard
assumptions above on the static profit functions are met. Yet it can be verified that a sufficient
condition for all three assumptions jointly is that the distribution function F' () is convex, which
includes the uniform density model analyzed so far.

We proceed to show that the qualitative properties of the entry and deterrence behavior can be
derived in this general setting based exclusively on the interaction between static profit functions
and long-run average values.

As before, the following dynamic programming equations characterize the Markov perfect

equilibria:

1
0= H;%X {ﬂ'E (gE,q1 o) —vE () + éqEEQ (a) Vi (a)} ,
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and

1
0= H}ﬁx {m (g, q1 |a) — vy () + inEQ () V] (a)} ,

where vg () and vy () are the long-run average revenues under the static profit functions
7y (Qp,Qrla) and 7 (Qp,Qr |a). For gg > 0, we may divide the above equations by ¢g to

obtain:

0= max{WE (9,91 |a) = v (@) } + 122 () Vg (),
9B dE 2

0= max{m g1 l0) — vr (a)}+ 132 ()} ().
a1 qE 2

In order to facilitate the comparison with the static equilibrium which is a solution to

max {76 (Qp, Qr|a) —vE (a)},

and

max {mr (Qp,Qrla) —vr ()},

we consider the first order conditions to the dynamic programming equations. These can be

written as:

0
UEG —TE (gm,qr o) =7g (9B, qr |a) —ve (a), (21)
qr

and

0
8—(][”1 (C]E7QI |a) =0. (22)

We observe that the first order condition of the incumbent leads to the same best response
function as his static one. Moreover if the right hand side in (21) vanishes, then the equations
(21) and (22) reduce to the static equilibrium conditions. Hence we know that the dynamic
equilibrium conditions are satisfied at the static equilibrium values of {Qg («),Q ()} if and
only if 7 (Qp (o) , Q1 () |a) = vg (). Thus the coincidence of static and dynamic equilibrium
policies is in general linked to the equality of static equilibrium profit and long-run average for

the entrant.
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Denote by Q; (g;) the myopic best response of firm i to the firm j’s quantity, where we omit
the dependence of @; on « for notational simplicity. As indicated by equation (22), the static
and the dynamic best response are identical for the incumbent, or g7 (¢5) = Q1 (gg). All dynamic
equilibria must therefore lie on the reaction curve of the incumbent: {¢g,qr (¢g)} . Assumptions

1 and 3 guarantee that there is a single stable static equilibrium, and thus we know that for all

qe > Qg (a), gz > Qr (Qr (gr)) and hence by the strict concavity of 7g (¢z,qr) in qg,

org (a8, q1 (q8) |a)
oqE

<0, (23)
for all gz > Qg (a). A similar argument can be made for the case where ¢z < Qg (a) to show
that

org (qe,q1 (q8) o)
0qE

> 0. (24)

As the first order condition of the entrant in the dynamic equilibrium requires that

sgn <87TE (QEéZIE (qE) @)

) =sgn (7 (qm, @1 (98) |a) — vE (@), (25)

a local argument around the static equilibrium quantities {Qg (o), Q; ()} based on (23) and
(24) seems to suggests the direction in which dynamic quantities deviate from static ones. In fact,

the argument is facile for the case that

e (Qr (@), Qr (o) |a) <vg (a),

and requires more care for the case of

e (Qr (@), Qr (o) |a) > vg (a),

only to the extent that we want to guarantee that all equilibria have the desired property. Assume
therefore initially the following relation between the static equilibrium profits and the long-run

average:

75 (Qe (@), Q1 (a) |a) <vg (a).

All we have to do to determine the location of the dynamic equilibrium is to find out how

sgn (mg (9,491 (qr) |a) —ve () behaves on the locus designated by {qm,qr (¢z)}. The claim
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is that every quantity g which satisfies the dynamic equilibrium conditions must display gz >

Qg (o). To see this we observe that either we have

e (q8,q91 (q8) |a) < vg (a) for all ¢, (26)

or

75 (qe, a1 (qr) |a) > vE (@) = g > QE (). (27)

In the first case, the static profit function remains for all pairs {qg, q; (qg)} below the long-run
average, and the equilibrium condition (25) together with the stability condition (23) implies
that ¢ (o) > Qg (). Consider next the case of (27). If there exist values {qg,qs (qr)} such
that the static profit exceeds the long-run average, then the stability condition (23) informs us
that the equilibrium condition can not possibly hold at gz > Qg (). Hence we can conclude
that whenever 75 (Qp, Qs |a) < vg (a), the dynamic equilibrium quantity sold by the new firm
exceeds the static equilibrium quantity, or ¢g (o) > Qg (). To establish this argument we only

used the stability condition of the static best response function. The complementary results for

g (Qp (a),Qr (@) |a) > vg (a),

are proven in the appendix under the additional concavity assumptions.

Proposition 8

Suppose that assumptions 1-3 hold. Then:
1. m5 (Qp (a),Qr(a)|a) <vp(a) = qp (@) > Qp(a),
2. 1p(Qp (a),Qr (@) |a) > vp (a) = gp (a) < Qg (a).

Proof. See appendix. R

Under assumptions 1-3, the predictions for the dynamic model are then straightforward. To
determine whether the equilibrium quantities of the new firm exceed or fall short of the myopic
quantities, all we need to do is to compare the myopic equilibrium profits to the long-run average
profits. If the static equilibrium profits are below the long run average profits, then the new firm
will adopt an aggressive sales policy and by the property of the best response function, the incum-

bent will adopt a more defensive stance. In contrast, if the static equilibrium profits are above the
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long-run average revenues, the entrant will proceed cautiously with the introduction of the new
product and the incumbent will increase his supply to the market. The dynamic programming
equations also inform us that the entry strategies are always associated with V7 (o) > 0 and
Vi (o) < 0, respectively. The change in the entry strategy can therefore generally be located as
in the uniform model analyzed earlier at the intersection 75 (Qg (o) ,Qr (o) |a) = vg («v), where

all the necessary data can be computed on the basis of the static profit function alone.

5.2 Price Competition

Finally, we sketch how the qualitative results would be affected by a model of price competition.
We show that despite some fundamental differences in the static equilibrium profit functions, the
dynamic equilibria of the two models share very similar properties.

The most important change in terms of the static equilibria of the two models is that the
equilibrium profits are no longer monotone in the quality of the new product. As emphasized in
the literature on vertical differentiation, the competitor with lower quality product doesn’t want
to increase the quality of his product if this brings the inferior product too close to the superior
product. In consequence, the equilibrium prices and revenues are not monotone in « either, rather
they display a global minimum at o = a.;,. At the point «a,,, price competition with identical
products leads to the Bertrand outcome with marginal cost pricing. The static equilibrium profit
functions display a kink at «,,, but on the intervals [0, o) and (,,,c0) they are concave for the
entrant as well as the incumbent.

In the dynamic model, the strategic interaction is more complex with price competition. With
quantity competition, the only variable which affects the evolution of future states, i.e. the level
of sales by the entrant, is directly a decision variable of the entrant. In obtaining the dynamic
best response of the incumbent, we can therefore ignore the impact of his current decision on
future states. But this implies that the best response of the incumbent to any output decision by
the entrant is the same in the static and the dynamic model. As a result, all comparisons can be
carried out by analyzing the shifts in the best response function of the entrant. In a model with
price competition, the price decisions by the firms jointly determine the sales level of the entrant.
In consequence, we have to analyze the joint effects of changes in the two best response functions

on the dynamic equilibrium. To see how this interaction is resolved in equilibrium, we check how
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the static policies are modified by intertemporal considerations. The graphic below illustrates the
static equilibrium revenues as well as the long run average revenues for the case that the value of

the new product can either be lower or higher than the established product.
INSERT FIGURE 3 HERE

Due to the local minimum at o = «y, the long-run average is always above the static revenues.
Thus if the static policies were in fact the dynamic equilibrium policies, then the respective
Bellman’s equations would indicate that Vi (a) > 0 as well as V]’ (o) > 0. But this would imply
that both firms would like to see more sales by the entrant relative to the static equilibrium. We
can therefore conjecture that the entrant will lower and the incumbent will raise its price relative
to the static equilibrium price. In consequence, sales by the entrant must be larger (and the
incumbent’s sales must be lower) than in the static equilibrium. If on the other hand, the product
is an improvement, and s < p; < pg, then the long-run average revenue is lower than the static

equilibrium revenue as the following graphic illustrates.
INSERT FIGURE 4 HERE

By the same intuition as above we can then infer from the value functions that if the static
policies were indeed equilibrium policies in the dynamic model, then it would have to be that
Vi (o) <0 as well as V' (o) < 0. But this implies that both firms perceive sales by the entrant as
carrying a negative value of information. The strategic response relative to the static solution for
the new firm is to raise its price, and for the incumbent to decrease its price. This leads to lower
quantities for the entrant and higher quantities for the incumbent. Thus the qualitative behavior
of entrant and incumbent are similar in a model for quantity competition.

The only difference between the two models arises when p; < py < s. By the concavity
of the static profit function, the static revenues of the new firm are always below the long-run
average. Observe, however, that a marginal improvement actually brings the new firm closer to
its competitor in the quality spectrum and this leads to lower profits. If we interpret the random
product quality as reflecting the uncertain value of some new features in the product, it would be

unlikely that these features would be included in the product if p; < pugy <s.
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6 Conclusion

This paper analyzed the entry game in a model with vertical differentiation. The precise location of
the new product relative to the existing product was initially uncertain and was learned over time
through experience. We derived the optimal entry and deterrence strategies for the competitors.
It was shown that their qualitative properties depend on the current position of the new product in
the quality spectrum. This allowed particularly sharp characterization results for the polar cases
of a substitute or an improvement respectively. By focusing on the Markov perfect equilibrium of
the game, we derived a set of time series implications which may be amenable to empirical tests.

The current analysis faced some restrictions by the very nature of the model. First, we
assumed that the value and the uncertainty about the new product was common to all buyers,
after controlling for the element of vertical differentiation. It may be interesting to pursue how
the equilibrium strategies would be affected if the experience by the buyers would contain an
idiosyncratic element (see Milgrom & Roberts (1986) for a simple monopoly model). The second
limitation is the “once and for all” nature of the innovation presented by the new product. This
was reflected in the model by the fact the posterior beliefs converged to either of the absorbing
states a € {0,1} almost surely.

The techniques employed in this paper, however, generalize beyond the present model. The use
of the undiscounted optimization criterion, and in particular the notion of the long-run average,
allowed us to make a series of predictions based almost exclusively on the static equilibrium
behavior. While the long-run average here was computed on the basis of the absorbing and
mutually exclusive posterior beliefs, the technique extends naturally to ergodic distributions of
the state variables. This should make the methodology used in this paper an attractive candidate
for a much richer class of strategic models such as investment games and models of industry
evolution, for which there are very few explicit solutions currently known (e.g. Ericson & Pakes
(1995)). In particular, it would seem feasible to combine dynamic competition models such as the

one analyzed here with an ongoing process of innovation.
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7 Appendix

We first present a derivation of the Bayesian filtering equation (1) based on a discrete time model
with a finite number of buyers. The limiting behavior of the discrete learning model will lead to
the Brownian motion depicted in (1) as the number of buyers becomes large and the time elapsed
between any two periods converges to zero. Suppose therefore in an economy with N buyers,
each individual experiment with the new product by buyer ¢ is an independent and identically
distributed random variable Z; with a normal distribution of unknown mean py = p/N and

known variance (712\,

= 02/N. The parameter ; can take on the values p; or uy. Notice that
mean as well as variance of the individual experiment are scaled with resect to the total number
of buyers N. The utility for buyer ¢ is then given by 6;x;, where x; is a sample realization of
Z;. Based on the individual experiences of all buyers, we can describe the aggregate or market
experience in every period. As the informational content in every realization x; is independent

of the willingness to pay 6; of individual i, we take the market experience to be the sum of the

individual random variables while omitting the weights 6;:
N
Z(N) =) &
i=1

As mean and variance of the random variable z; are normalized by the number of buyers in the
market, aggregate mean and aggregate variance of the market experiment x (V) is independent
of the number N of buyers and given by (u,0?). If only a number k of buyers experiment with

the new product, where k < N, then the aggregate experiment is given by the random variable:

k
E(k)=> &,
i=1

which is again normally distributed with mean % w1 and variance %02. If we take the limit as N

goes to infinity, the distribution of an aggregate experiment with a fraction n of the buyers, where

is given by
Z(n) ~ N (nu, n02) .

29



Next we take the limit as the time between any two periods converges to zero. In the continuous
time limit the market experiment then becomes a Brownian motion which can be described by

the stochastic differential equation

dx(n(t)) =n(t)pdt + oy/n(t)dB (t), te€0,00).

The flow realization in period t is given by the true mean p weighted by the fraction of buyers
participating in the experiment and the random term of the standard Brownian motion dB (t)
weighted by the standard deviation a\/m .

Based on the evolution of the market experiment the market can update the prior belief aq
to the posterior belief « (t). Based on standard result for Bayesian updating in continuous time,
it can be shown that the posterior belief a (¢) also evolves as a Brownian motion.” It can be

represented by

da(t) — \/n(t)a(t) (1 —O[(t)) (IMH _IML)dB (t) )

_ >
and as in equilibrium n (t) = ¢g (t), equation (1) follows.
All proofs to the propositions in the text are collected below.

Proof of Proposition 1. The unique solution to the best response functions (2) and (3) yield
the following equilibrium quantities:

p(a) + M(a) —m () s+ M (a) —m(«)

Qi (0) = P ™ and Q4 (0) = “ppe e, (28)
where m (a) and M () are defined as follows:
m (@) £ min {s, ()}, M(a) 2 max{s, u(a)}.
The equilibrium prices are given by:
Pp (o) = p (@) Qp (a) and Py (a) = sQp (). (29)

The monotonicity properties follow directly from the relevant derivatives. B

"See Liptser & Shiryayev (1977), Chapter 9, for the derivation of the filtering equation for the continuous time,

Brownian motion model.
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Proof of Proposition 2. The curvature properties follow directly from the second derivatives

of (28) and (29), respectively.

The next lemma records the construction of the long-run averages for the firms.
Lemma 1 (Long-run averages)
The long-run averages are given by:

g (g, + M (0) = m (0))? by + M (1) —m (1)?

vp (a) = (1—a) (40 (0) — m (0))? (4M (1) —m (1))

; (30)

and

(s 4+ M (0) —m (0))?

L ol (s+M(1) — m(l))Q-

(4M (1) —m (1))*

s
vy (a) = (1 - )
Proof. The long-run average values v; () are equal to the expected full-information payoffs:
v (@) = (1 —a)v; (0) + aw; (1),

if ¢ (a) is bounded away from zero for all a. It can be verified from (17) that this indeed
guaranteed in equilibrium. But v; (0) and v; (1) are simply the values to the full information
static equilibrium problems when the value of the new product is known to be either p; or pg.

The composite values are then computed immediately. B

Next we record without proof some properties of ratios and products of p(a) and vg (a).

Lemma 2

1. The ratios %2 and 1/%.%2 are increasing and concave in .

2. The product vg () pu (o) is increasing and convex in «.

3. The product \/vg (o) p () is increasing and concave in o.

Proof of Proposition 3. The first order conditions associated with (16) and (15) deliver the
solutions for gg (o) and ¢y () given in (17) and (18). The market clearing conditions (6) and (7)

lead to the equilibrium prices:
— (e ~ [ve(a) . 1 1m(a) |vg(®)
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and

Next we prove the monotonicity properties. Consider first p(a) > s, or m (a) = s. A necessary

and sufficient condition for g («) to be increasing is that:

which is equivalent to

p, + M (0) =m (0) _ py +M (1) —m(1)
AM(0)—m(0) = 4M@1)—m(@)

which can be shown to hold for all values of y;, p;; and s. It then follows directly that g7 (o) and
pr (a) are decreasing in . It remains to show that pg (a) is increasing. Suppose initially that

i, g > s. It is sufficient to show that:

p(a) = vp(@)vg (a)

is increasing in a. As p(a) > vg (a) for all ¢, it suffices to show that

p (@) (o)
d(@) =\ e @)

By Lemma 2, the rhs is convex and decreasing, and evaluating the inequality at o = 0 is sufficient

as i (o) and v}, () are constant. We then obtain

Mg — Fr Apg — s
> . 31
pug—s)?® _ pppp—s)® 2up — s (31)
(4pg—s)® (4pp—s)?

As the lhs is increasing in pp, it is sufficient to evaluate it as pg | i, in which case the inequality

reads as
(4py, — 5)? = 8 — 2ups + 57,

which is satisfied by hypothesis of p; > s. Suppose next that p; < s < pgy. Then at (31), the

argument changes only slightly as vg () has a different form, or:

Mg — My, 4s — p,
2 7 2 .
Bp(2upg—s) _ pr(s) S
(4pg—s)° (4s—pp)?
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As the lhs is now decreasing in py, it is sufficient to evaluate it in the limit as pg — oo, where

the inequality reads

Py
S

which completes the argument.

Consider next p () < s. The price is then given by:

pi () = Syu(a) — V(@) o (@) + 32

p(a) vg (@).

Suppose initially that p;, gy < s. It is now sufficient to show that

S(@) = V(@) us (@) (32)

is increasing in a. By the multiplication rule this is equivalent to showing that

i (@) /(@) os (@) = 4 (a) vg (@) + 1 (a) U ().

As the term in (32) is concave in «, it remains to show that the inequality holds at o = 0 or after

cancelling some terms:

Fa — Pr (g —pg) s + Hygs s

ds—pp, — (4s—pp)? (As—pp)®  (4s—py)

As the rhs term is increasing faster in pz than the lhs, it is sufficient to evaluate it at pgz = s, or

7 -

S~ HL >(5_:UL)3_‘_1 Hps
iy 2 29
As—pp — (4s—pp)” 9 (4s—pp)
which is satisfied for all u; < s. Suppose now that p; < s < pg, it is then sufficient to show that
Py (o) >0 at o = 0 by Lemma 2, which is equivalent to showing that at o = 0:
1

o (31 (@) (@) v (@) + (1(@))* v (@)) = 1 (@) v (@) + pa (@) v ()

p (@) V(o) vg () +

Since the lhs is increasing faster in gy than the rhs it is sufficient to evaluate the inequality at

iy = s, and again it can be verified that the inequality holds for all p; < s.H

Proof of Proposition 4.(1.) By Lemma 2.

(2.) It follows directly from Lemma 2 that pg () is convex for p (o) < s and concave for p (o) > s.
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(3.) By Lemma 2.
(4.) By Lemma 2.1

The proof of Proposition 5 relies on the following two lemmata. The first states that the
difference Pg (o) Qp (o) — vg () satisfies identical single crossing properties as pg () gg (o) —
vg (o). The second shows that the crossing point is necessarily identical for the two differences.
Denote by A. the crossing point for the static revenue function.

Lemma 3

1. The difference Pg (o) Qg () — vg (a) crosses zero at most once and then from below.
2. The critical point A. satisfies Ae > Q.
3. A necessary condition for crossing is py < s < .

4. A necessary and sufficient condition for crossing to occur is:
[P (0) Qg (0)) = vz (0) <0 and [Py (1) Qg (1)) —vE (1) <0.

Proof. (1.) Observe initially that Pg (0) Qg (0) —vg (0) = 0 and P (1) Qg (1) —vg (1) = 0.
We first show that if p;, < py <s,ors < pu; < py, then Pg (o) Qg (o) —vg () never crosses at
any o € (0,1). By Lemma 1, vg («) is linear in «, and by Proposition 2 Pg () Qg («) is either
convex or concave respectively. This together with the behavior at the end points excludes an
interior crossing point. Consider next p; < s < py, then the revenue function Pg (o) Qg (o)
changes curvature behavior exactly once at & = «,,. As the curvature changes from convex to
concave, the boundary behavior then implies that Pg («) Qg (o) —vg («) has to cross from below
and can cross zero at most once.

(2.) It is easily verified that at o = oy, Pg (am) Qr (am) — vE (am) < 0.

(3.) The necessary condition follows from the arguments given for (1).

(4.) The necessary and sufficient conditions follow from the curvature and boundary behavior

of the static and long-run revenue functions. M
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Lemma 4 o, = A,.
Proof. As pg(a)qg (o) and vg (a) are continuous a change in sign for pg (o) gg (o) — vg («)

requires a point a = a, at which

pe (ac) g (ac) —vp (ac) = 0. (33)

At such a point «., either
qp (ac) = Qg (ac) (34)
qr (ac) 75 QE (ac) . (35)

Suppose first (34) were to hold, then it follows by the equilibrium conditions (16) and (6)-(7)
that pg (o) = Pg (a¢) as well. But then it is has to be the case that a. = A.. Suppose to the
contrary that (35) would hold, then we show that (33) can’t hold. Since gz (a.) # Qr (ac), it
has to be the case that V}} (o) # 0, by the first-order conditions from the Bellman equation (13).
But then the hypothetical policies at a. don’t satisfy the Bellman equation and hence cannot be
equilibrium conditions. Thus if a, € (0,1) it has to be that o, = A.. It remains to show that if
Pg (o) Qg (o) —vg () changes sign, then pg (o) gg (o) —vg (o) necessarily changes signs as well.
This is established easily as at a., ¢ (a¢) = Qg () is a solution to the first order condition (15)

and as the solution is unique, the claim follows. W

Proof of Proposition 5. (1.)-(3.) By Lemma 3, the difference pg (a) ¢g () — vg (a) shares the
single-crossing behavior with the difference Pg (o) Qg (o) —vg (o). By Lemma 4, they also share
the crossing point.

(4.) As the myopic and intertemporal policies are identical at the endpoints, or ¢g (o) = Qg (@)
and pg (o) = Pg(a) for a € {0,1}, it follows that the gradient of the flow revenues at the

endpoints are necessary and sufficient conditions as well.ll

Proof of Proposition 6. (1) By the Bellman equation (11) the sign of the second derivative is
the opposite of the sign of pg () ¢g (o) — vg (). The result then follows from Proposition 5.
(2.) The flow revenues p; («) ¢r () are convex in a and vy () is linear in a. It then follows after
observing that py (0) ¢; (0) = v (0) and pr (1) qr (1) = vy (1), that pr () g7 (o) < vy (e) for all
a € (0,1). By the Bellman equation (12), this implies that V' (o)) > 0 for all o € (0,1).1
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Proof of Proposition 7. We first observe that the asymmetry in the relationship between myopic
and intertemporal quantities for the sellers follows directly from the best response function based
on (16). It is therefore sufficient to consider the relationship between ¢g () and Qg («). It
follows from the first order condition (13) of the entrant, that ¢z (o) > Qg («) if and only if
Vi (a) > 0. Likewise ¢p (o) < Qg («) if and only if V}/ (o) < 0. The results concerning the
equilibrium quantities follow then directly from Proposition 6.

For the equilibrium prices consider first the interval a € [0, v, ]. As the inequality ¢g (o) > Qg («)
leads to g7 (o) < Qr («), the best response function based on (16) implies together with market
clearing condition (6) that pg (o) < Pg (), which in turn leads to p; (o) < Pr(a). Consider
next the interval o € [y, a¢]. The inequality gp (o) > Qg («) leads to gr (o) < Qr (). The
best response function based on (16) implies together with market clearing condition (7) that
pr () < Py (), which in turn leads to pg (o) < Pg («). In the remaining interval a € [a., 1], the
inequality gg (o) < Qg («) leads to g7 (a) > Qr («). The best response function (16) together with

market clearing condition (7) implies that p; (o)) > Py («), which in turn leads to pg (o) > Pg ().

Proof of Proposition 8. The case of 75 (Qg (), Q1 (@) |a) < vg () was argued in the text.
Suppose now that 75 (Qg () ,Qr (a) o) > vg (a). Suppose first that ¢ < Qg (), then we want
to show that at qg, 7 (¢g, 91 (qg) |o) > vg (). The argument is by contradiction. Suppose not,
then it would follow from the Bellman equation that Vi (a) > 0, but then gr < Qg (), cannot be
an equilibrium, as the entrant would have an incentive to deviate and increase the quantity. By a
similar argument, we can exclude the possibility of gz > Qg () where 7g (¢g, ¢ (qE) |o) > vE (@)
holds simultaneously.

Finally we present sufficient conditions to rule out possible equilibria in the region where
qr > Qp (o) and 7g (g, ¢ (¢r) |o) < vg («). Observe first for all ¢g sufficiently close to Qg (o),
we have:

org (qr,q1 (q8) |a)
g dqE

<7g(qe,q (qE) |a) —vE (a). (36)

A sufficient condition to rule out equilibria with ¢y > Qg («) is therefore that the derivative of

the lhs is always below the derivative of the rhs for ¢z > Qg () . Using the fact that
e (98,9 (q8) |o) = pe (qe, @1 (qr)) q&
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we may rewrite the inequality (36) as

5 OpE (a8, q1 (g8))
E aQE

< —vg (o).

The sufficient condition can then be written as

opE (98,91 (48)) <32pE (aB,q1 (q)) | 0*pE (qm,q1 (48)) , )
2 + + < 0. 37
s qE o2 901045 qr (qe) (37)

As the first term is always strictly negative independent of the F' (), it follows that it is sufficient
to show that

°pe (qe,q1 (qr)) | 9%pE (qp,q1 (qB))
-+ <0.
aq3, dq10qE a1 (ap) <

Consider first 1 (a) < s, then the equilibrium price of the entrant can be written as:
pe=p(@) F~ (1 g5 —qr),
and hence

0%pe (98,91 (qr)) _ pe (g8, 41 (48))
dqz, dq19qE '

The sufficient condition (37) can then be written as

2
25pE (¢r, a1 (g8)) +qE8 pE (98,91 (4B))

oqE o4z,

(1+4qz(qm)) <0. (38)

By the assumption of concavity of the profit function of the duopolist:

0 02
o OPE (98,91 (qr)) +am vE (98,91 (qE))

< 0.
oqr g,

Now if

O*vE (g8, 41 (98))
ang

>0,

then (38) holds since ¢} (gr) < 0 by the stability of the best response. On the other hand, if

O*vE (g5, 491 (98))
g%,

<0,

then (38) holds since

Opg (QE; qr (CIE))
dqp

<0,

37



and 1+ ¢ (¢g) > 0.
Next suppose that p () > s. Then the price of the entrant is given by:

pe=p(@) F(1—qp)+s[F 1 (1—qp—a) - F " (1-qp)]

Let H (-) be the inverse function of F, or H = F~!, and let h be the first derivative of H. The

condition (37) can be written as:

—2[h(1 —qr) (n(a) —=s) + h(1 —qr —q1) s] +

qe [M (1 —qg) (p(e) —s) + (1+q; (gg)) K (1 —q5 —q1) s] <O0.
By concavity of the profit function of the monopolist, we know that

—2h(1—qg —qr) (n(a) =) +qeh’ (1 —qe —ar) (1 (@) — s) <0
and also

—2h (1 —qp) (n(a) — ) + qeh’ (1 — qp) (1 (e) — 5) <O0.
But since 0 < 1+ ¢ (¢g) < 1,
(—2h (1= g5 —ar) (@) = s) +apl’ (1 — g5 —a1) (1 (@) = 5)) (1 +d; (g8)) <0,
and therefore
—2h(1—qu —qr) s+ (1+4d; (qr)) ael’ (1 —qz — q1) s < 0.

Finally adding (41) and (42) yields (39).1
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T
g (o) ge (a) — vg (o)

pele)ge(a) — ve (a) and Pg (o) Qg (o) — vg (o).

FIGURE 1:
Equilibrium revenue minus long-run average for entrant:

for pp = 5,8 =L pug =2,
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FIGURE 2:
Static and dynamic equilibrium policies
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