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Abstract

Inventory models customarily assume that demand is fully satisfied
if sufficient stock is available. We analyze the form of the optimal
inventory policy if the inventory manager can choose to meet a fraction
of the demand. Under classical conditions we show that the optimal
policy is again of the (S, s) form.

The analysis makes use of a novel property of K — concave func-
tions.
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1 The Model

It is customary in inventory theory to assume that demand is fully satisfied
if sufficient stock is available. I shall consider a variation of the classical
model in which the inventory manager may elect to meet an fraction of the

*Two colleagues at Yale, George Hall and John Rust, have established a close relation-
ship with a Connecticut company whose primary business activity is the purchase, storage
and eventual sale of a variety of steel products to local manufacturers in northeastern
United States. Rust and Hall were kind enough to invite me to visit the company and
discuss their procedures for inventory management, thereby reintroducing me to a research
topic that I had left almost forty years ago. These discussions suggested a variation of the
classical inventory model that forms the subject of the current paper. I would also like
to thank Professor Guillermo Gallego for his careful reading of this paper and suggestions
for improvements.



demand, if the sequence of costs and revenues make such a choice profitable.
Under classical conditions we show that the optimal policy is again of the
(S, s) form.

The decision not to meet the demand of a customer may be warranted if
the current sales price is sufficiently low compared to the cost of restocking
the item in the next period, so that it is profitable to refuse a sale, even
allowing for a potential loss in good will. Such a situation might arise if
the cost, sales and demand parameters vary substantially over time, possibly
in a stochastic fashion. In order to keep the notation simple, however, I
shall begin the analysis under the assumption that the costs and demand
distributions are constant over time, and examine the more general case in
the final section of the paper.

Consider an inventory model with a finite number of time periods and
with instantaneous delivery of orders. The inventory at the beginning of the
period is z and the stock is raised to y units at a cost of

(y — ) = 0; ify=ux
e = K+c-(y—x); ify>z

The demand during the period is a random variable £ with density function
®(&). The special feature of this model is that the manager may choose to
sell any quantity ¢ with 0 < ¢ < minly, £] at the market price p. Sales that
are not made at the end of the period are permanently lost. The discount
factor is a.

Let f.(x) be the maximum of the discounted expected profit with an
initial stock level of x and with n periods remaining. The cost of ordering
y — x units is ¢(y — x) and if ¢ units are sold, revenue is pq and the level of
inventory at the beginning of period n — 1 is y — ¢. Since the sales level is
decided after the demand is realized, the dynamic programming equation is
given by

falz) = max[—c(y —x +/ max  {pq+ afn1(y — q)}o(&)d¢]

y>x 0<¢<min[y,&]

= max[—c(y —x) +py + /0 max {p(q¢—y) +afn1(y — q)}o(§)

Y22 0<q<min[y,¢]

We shall demonstrate that the optimal policy in each period is an (S, s)
policy.

(1)
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In the customary treatment of inventory theory the random demand ¢ is
fully satisfied - to the extent that stock is available - and the integral

| pomax {pa+afua(y—a)be(©)d

0<g<min[y,¢]

is replaced by

p [ minly, 6(©)d¢ + afur(0) [

Y

To©)de +a [ fualy - O(E)de,

if unsatisfied demand is lost, and by

p [ minly. () +a [ fualy — o(€)d,

if unsatisfied demand is backlogged. The new possibility of discretionary
sales requires some modifications of the familiar argument.

In my paper of some 40 years ago [4] I dealt only with the case in which
demand is backlogged. In addition sales did not generate revenue directly;
there was instead a shortage cost associated with unmet demand. The objec-
tive was to minimize the discounted stream of expected purchase, shortage
and storage costs, rather than maximizing the stream of profits as in the
current paper.

The explicit introduction of revenues and the change in objective appear
in the paper by Hall and Rust [3], about which I shall say more later. They
consider only the case of lost sales and include a curious condition, which in
the current simple context is equivalent to assuming that p > ac, i.e., that
it is profitable to make a sale at the end of a period and pay the marginal
cost of reordering that stock at the beginning of the next period. When I
first came across this additional condition, I assumed that it was superfluous
and could be discarded without compromising the proof that the optimal
ordering rule was an (S, s) policy. But I was in error; without this additional
condition the optimal policy may be more complex.

It seemed odd to me that the difficulty in verifying the optimality of an
(S,s) policy arose precisely in the case in which an economic calculation
would lead one to decline the potential sale. And so I naturally wondered
whether presenting the inventory manager with the option of discretionary
sales would restore the optimality of these simple policies without any addi-
tional conditions. The major conclusion of the paper is that this conjecture
is correct.



2 A Preliminary Observation

Let us make a preliminary observation about the maximization that appears
inside the integral in the fundamental dynamic programming equation (1).
Let d > 0 be fixed and f(y) be a continuous function defined on [0, co) with
a finite number of local maxima. Define

gly)= max f(y—q).

0<q<min[y,d]

For each y, the value of ¢ that maximizes f(y — ¢q) subject to the constraint
0 < ¢ < min[y, d] need not be unique; to be specific we shall select ¢(y) to be
the maximizer that yields the smallest value of y — q. We have the following
result:

Lemma 1 The function y — q(y) is monotonically increasing in y.

Proof. The lemma follows from a simple revealed preference argument. Let

¢ = q(y)
¢ = q(y)
with 3y > y. We wish to show that 4 — ¢ > y — ¢q. Assume to the contrary
thaty' —q <y —q.
Then )
q <dand

Y

so that y — (y' — ¢') satisfies the constraints associated with y. Since it was
not selected it must be true that

fly —d) < fly—q)

with ' — ¢ > y — ¢ if we have equality.
But on the other hand

Oﬁqéy'—(y—q)ﬁ{

Oéqéy—(y'—q')é{

¢ <dand
Y

so that 4 — (y — q) satisfies the constraints associated with y'. Again it was
not selected and therefore

fly=a) < fly —q)
with ¥ — ¢ < y — ¢ if we have equality. But these two inequalities imply
that we do have equality and therefore y' — ¢ = y — ¢, contradicting the
assumption that y —¢ <y —q.



3 K — concavity

A function g(z), defined for z > 0, is K — concave if

g(z) —g(z—b)
b

g(y) < K +g(x) + (y — x)

forally > x > x—b > 0. We shall demonstrate recursively that the functions
fn(z) are K — concave.

The customary arguments for the optimality of (S, s) policies make use
of the following elementary properties of K — concave functions:

o If f(x) is K — concave, then it is also K' — concave for K' > K.

o If fi(z),..., fu(z) are all K — concave then
> _pifi(z)
1

is also K — concave if p; > 0,3 p; = 1. Alternatively if f(x,&) is
K — concave in x for each £ then so is

| st

for probability density functions ¢(&).

Our extension of the classical inventory model requires an additional prop-
erty of K — concave functions that I had not been aware of previously.

Property: Let f(y) be K — concave and for fixed d > 0, define

gly)= max f(y—q).

0<q<min[y,d]

Then g(y) is also K — concave.!

'In a private communication, Gallego [2] presented an argument for a very similar
result: if f is K — concave, then for fixed d > 0, the function

g(y) = max  f(z)

is also K — concave .



Proof. We shall demonstrate that

g(z) —g(z =)
b

fory>x>x—b>0. Let ¢ = q(y) and g2 = q(x — b) so that

g(y) < K +g(x) + (y — x)

9(y) = fly—aq)and
glx—=b) = flz—b—q).

>From the previous lemma we have y —q¢; > x — b — go. We can assume that
Yy—q > —b—q

since otherwise g(y) = g(x) = g(x — b) and the inequality is trivially correct.
We have

9ly) = fly—a)
y—q —=z
< < 1~ _ _p—
< @+ AT - S b w) + K
for any z with
y—Q12Z>CE—b—q2.
If we select
b y—x
- _ _h—
2 (y_Hb)(y q1) (y—x—i—b)(m %)
then
Yy—q—z Y-z
z—x+b+q b
so that £ : b
z) — gz —
9(y) < f(2) + (y — o) ) |+ K.

To complete the proof we need only show that 0 < x — z < minl[d, z] so that
x — z is a feasible choice for z and therefore g(z) > f(2).
It is easy to see that

b y—zx

—z= +
Tz (y—x—i—b)ql (y—x+0b

q2
)
so that 0 < x — z < d. But since z > 0, we also have x — 2z < . R
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4 The Recursive Argument

Our proof of the optimality of (S,s) policies follows standard lines: we
demonstrate recursively that the value functions f,(z) are K — concave, and
as a by-product we deduce the form of the optimal policy. I am presenting
this completely routine argument in rather tedious detail, because I would
like to take this opportunity to improve upon the casual treatment in my
early paper [4], in which various functions were assumed to be differentiable,
when they may not have been.
Assuming that f, 1(x) is K — concave, we see that

max —y) +afni(y —
oe o {p(a—y) +efir(y —9)}

is also K — concave for each &. It follows that

gn(y) = py + /Ooo max  {p(q —y) + afo1(y —q)}(§)dE

0<q<min[y,¢]

is K — concave as is ¢,(y) — cy.
If the stock level at the beginning of period n is x it is profitable to order
toy > xif

In(y) —K —c-(y—x) > gn(x)or
gn(y) —cy— K > gu(z) — cr,

and if we do order from x it is to that level y > x that maximizes

In(y) — cy.

Define S,, to be a global maximizer of g,(y) — cy, say the smallest such
maximizer if there are several. If the stock level x < S,, we purchase to S,
only if

gn(z) — cx < gn(Sy) — ¢S, — K.

e The first part of the argument for the form of the optimal policy is to
show that if we order from a particular x < S,, then we also order from
all x — b < x. For suppose to the contrary that x — b < z < .5, and

gn(x—b) —c-(x—0b) > ¢,(Sp) —cS,— K
gn(z) —cx < gn(Sp) —cS, — K

7



so that we order to S, from = but not from x —b. But these inequalities
are inconsistent with the fact that ¢, (y) — cy is K — concave since the
definition of K — concavity and the inequalities imply that

gn(Sp) — ¢S, < K+ gy(v) —cx

(S, — m)gn(w) —cx — (gn(fvb— b) —c-(x—-b))

< K+gy(z)—cz

a contradiction. If we define s,, to be the unique z < S,, (if there is
such an z) with

gn(z) — cx = gn(Sp) — cSp — K,
then for z < S, an order is placed if and only if z < s,,.

e To complete the argument for the form of the optimal policy in period
n, it is necessary to show that no ordering takes place from a stock
level z > S,,. But if y > x > S,, then

gn(7) — e — (9u(Sn) — cSh)
x— S5,

g(y) —cy < K4gu(z)—cx+(y—=z)
< K+gn(I)—C$

since g,(Sn) — ¢Sy, > gn(z) — cx for all z. This completes the demon-
stration that the optimal policy in period n is the (S, s,) policy.

Finally, to finish the recursion, we must show that f,(z) is also K —
concave. But

o = { 949 for 2 5,

gn(sn) — ¢ (sp —x) for z < sp,.

In order to demonstrate that

Fy) < K+ fulz) + (y — )12 = gn(w —b)

for y > x > = — b, we consider three cases:



e 1 < s,. In this case

fu(x) = fulz = b)
b

= cand
fu@) = fulsn) + ¢ (z = sn)
so that the inequality to be verified is
gn(y) =y < gnlsn) —csn + K
which is surely correct since
gn(y) — cy < gn(Sn) — ¢Sy = gn(sy) — csy — K.
e 1 > s, > x —b. In this case
ol =b) = fu(sn) +c- (x —b—sy,).

‘We must consider two subcases.

—If
fol@) —cx > fu(sp) —csy
= fu(Sp)—cS, — K
> fn(y) —cy— K
then
faly) < K+ fulz)+c-(y—2)
< Kt fulo) + (y -y =Sl )
because
fo(@) = fulz=0)  _ fa(z) = (fulsn) +c- (@ —b—sn))
b b

> c.
— On the other hand if
fn(x) — CT S fn(sn) — CSp,

9



then

b+ s, —2)fulz) < (b+sn—x)fn(sn) + b+ s, —2)c- (z— sp)
= bful(sn) = (x = 8n)[fulsn) — - (5p — 2+ D)]
= bfn(sn) - (:E - Sn)fn(x - b)

so that

fu(®) = fu(sn) < fu(z) = fulz =)

T — Sy, - b

Since f,, = g, for the arguments y, x, s,, we see that

Fuy) < K+ fule) + (y — o) Lnl&) = Inlsn)

< Kt fula) + (- ) 2D S ZD)

e In the final case x — b > s,, and the desired conclusion follows from the
fact that f, = g, for the three arguments y,x,z — b.

5 Extensions of the Basic Model

The decision not to meet demand fully may be economically sound if there
is sufficient variation, possibly stochastic, in the costs, revenues and demand
distributions of the model. The argument for the optimality of (S, s) policies
carries through virtually unchanged if the set-up costs K,,, the marginal costs
Cn, the selling prices p, and the demand densities ¢,,(£) are deterministic
functions of time, as long as the set-up costs satisfy the relationship

Kn 2 Oéanl

for all n. If this relation is satisfied the value function f,(x) will be K,, —
concave; if it is not satisfied then it is easy to produce examples in which
fn(z) is not K — concave and the optimal ordering policy in period n is more
complex.>

A further extension, which has been examined by several authors recently
[5], [1], [3] is to assume that these parameters evolve according to an under-
lying Markov process. The first paper assumes that unsatisfied demand is

21f demands are fully satisfied to the extent that stock is available, and excess demand
is lost, then the conditions p, > ac,_1 are also necessary.
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backlogged and the second that it is lost; both papers work with a Markov
process with a finite number of states. The paper by Hall and Rust involves
profit maximization, has a continuous state process, and assumes that unsat-
isfied demand is lost. This configuration of assumptions requires the authors
to impose an additional condition essentially stating that it is economically
sound for all demand to be met.

If the discrete process is in state ¢ at the beginning of a period, then the
cost and demand parameters of that period are given by, say,

K;, ci, p; and
¢:(§)

and the state of the system at the beginning of the subsequent period is
described by a Markov transition matrix

P =[Pl

To specify the model fully some assumptions are required about the tim-
ing of purchase and sales decisions and the inventory manager’s knowledge of
tomorrow’s state. For concreteness, I shall assume that the state of the sys-
tem next period is revealed at the beginning at that time and that ordering
and sales decisions are made prior to this knowledge.

The value function f, (i, ) will depend not only on the number of periods
remaining, and the current stock level, but also on the state of the system ¢
occurring at the beginning of period n. The recursive relationship connecting
these value functions is given by

fulia) = maxl-c(y—2)+ [ max {pg+a X Pfii(io - 0)}é(©)d)

Y2z 0<¢<min[y,§

= max[—¢(y —z) + py
y>z

+/Ooo max ]{pi(q—y)+OéZP¢,jfn71(j:y—Q)}¢¢(§)d§]-

0<g<min[y,§

It is straight-forward to argue that if the functions f,,_1(j,z) are K,,_1 j —
concave then f,(i,z) will be K,,; — concave if the condition

Ky > Oézpz',an—l,j
J

holds. The optimal policies will therefore be of the (.S, s) form if this condition
is satisfied for all n and 1.

11
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