COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1269

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

EQUIVALENCE OF THE HIGHER-ORDER ASYMPTOTIC EFFICIENCY
OF k-STEP AND EXTREMUM STATISTICS

Donald W. K. Andrews

July 2000



Equivalence of the Higher-order Asymptotic
Efficiency of k-step and Extremum Statistics

Donald W. K. Andrews!
Cowles Foundation for Research in Economics
Yale University

July 2000



Abstract

It is well known that a one-step scoring estimator that starts from any
N1/2_consistent estimator has the same first-order asymptotic efficiency as the max-
imum likelihood estimator. This paper extends this result to k-step estimators and
test statistics for £ > 1, higher-order asymptotic efficiency, and general extremum
estimators and test statistics.

The paper shows that a k-step estimator has the same higher-order asymptotic
efficiency, to any given order, as the extremum estimator towards which it is stepping,
provided (i) k is sufficiently large, (ii) some smoothness and moment conditions hold,
and (iii) a condition on the initial estimator holds.

For example, for the Newton-Raphson k-step estimator, we obtain asymptotic
equivalence to integer order s provided 2¥ > s 4 1. Thus, for k = 1, 2, and 3, one
obtains asymptotic equivalence to first, third, and seventh orders respectively. This
means that the maximum differences between the probabilities that the
(NV/2-normalized) k-step and extremum estimators lie in any convex set are o(1),
o(N—3/2), and o(N~3) respectively.

Keywords: Asymptotics, Edgeworth expansion, extremum estimator, Gauss-Newton,
higher-order efficiency, Newton-Raphson.
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1 Introduction

In this paper, we consider the differences between statistics that are based on
an extremum estimator ¢y and corresponding statistics that are based on a k-step
estimator fp j that starts from some initial estimator 6y o and takes k steps towards
Oy. Robinson (1988, Thm. 2) shows that the stochastic difference between such
estimators declines to zero as N — oo and that the magnitude of the difference
declines very quickly as a function of k. Here, we show that the convex variational
distance (defined below) between the distributions of such estimators declines to zero
very quickly as N — oo at a rate that increases very quickly as a function of k. This
result establishes the equivalence of the higher-order asymptotic efficiency of the
k-step and extremum estimators. The magnitude of the order of equivalence depends
on k, on moment and smoothness conditions, and on the initial estimator.

We also establish analogous results for the ¢, Wald, Lagrange multiplier (LM),
quasi-likelihood ratio (QLR), and J test statistics based on the k-step and extremum
estimators. The results hold for a variety of different types of k-step estimators,
including Newton-Raphson (NR), default NR, line-search NR, and Gauss-Newton
(GN) k-step estimators. The results hold for stationary asymptotically weakly de-
pendent time series observations, as well as independent and identically distributed
observations. The results hold for a variety of different extremum estimators, includ-
ing generalized method of moments (GMM), maximum likelihood (ML), and least
squares (LS) estimators. The results cover GMM estimators with a fized weight
matriz, called FW-GMM estimators and GMM estimators with an estimated weight
matriz based on a preliminary FW-GMM estimator, called EW-GMM estimators.

Let B, denote the class of all convex Borel measurable sets in RY. The convex
variational (CV) distance between the distributions of two Ly—valued random vectors
Y] and Y5 is defined to be

dov(V1,Yz) = sup |P(Yi € B) — P(Yz € B)|. (1.1)
BEBLY

We say that two N 1/2_consistent estimators 51, ~ and 527 ~ of a parameter 0y € ©
C R have equal s order asymptotic efficiency if

dov (NW(@LN —0y), NY2(Byy — 90)) —o(N%) fora=(s—1)/2.  (1.2)

Analogously, two test statistics 71 y and 75 y have equal s order asymptotic efficiency
if dCV(Tl,NaTQ,N) = O(N_a) for a = (S — 1)/2.2’3

Higher-order asymptotic efficiency is defined in terms of CV distances rather
than stochastic differences, because the main use of asymptotic results is to provide
approximations to the distributions of statistics. The magnitudes of the errors of
these approximations are assessed directly by CV distances. Higher-order asymptotic
efficiency measures the rate at which these errors go to zero as N — oo.

For the NR, default NR, and line-search NR k-step estimators, we show that the
CV distance between the distributions of the (N1/2-normalized) k-step estimator and
the corresponding extremum estimator is of order o(N~¢) for any a > 0 with 2a an



integer, provided 2% > 2a+2. In terms of equality of s order asymptotic efficiency, the
requirement is 28 > s + 1. Hence, for k = 2, we have a = 1 and s = 3; for k = 3, we
have a = 3 and s = 7; for kK = 4, we have a = 7 and s = 15; etc. Analogous results are
shown to hold for ¢, Wald, and LM test statistics. For the QLR statistic based on an
EW-GMM estimator and for the J statistic for testing over-identifying restrictions,
somewhat weaker conditions suffice: 2 > 2a + 1 or 2¥ > s. For the QLR statistic in
likelihood contexts, even weaker conditions suffice: 251 > 2a + 3 or 281 > s 4 2.

For GN k-step estimators, we show that the CV distance between the distributions
of the (N'/2-normalized) k-step estimator and the corresponding extremum estimator
is of order o(N~%) for any a > 0 with 2a an integer, provided k& > 2a 4 1. In terms
of equality of s order asymptotic efficiency, the requirement is k > s. Hence, in this
scenario, for k = 2, we have a = 1/2 and s = 2; for k = 3, we have a = 1 and s = 3;
for k = 4, we have a = 3/2 and s = 4; etc. Analogous results are shown to hold
for ¢, Wald, and LM test statistics. For the QLR statistic based on an EW-GMM
estimator and for the J statistic, weaker conditions suffice: k£ > 2a or k£ > s — 1. For
the QLR statistic in likelihood contexts, even weaker conditions suffice: 2k > 2a 4 1
or 2k > s.

These results extend results of Pfanzagl (1974), Pfanzagl and Wefelmeyer (1978),
Janssen, Jureckova, and Veraverbeke (1985), Robinson (1988), and others. One-
step estimators were first considered by Fisher (1925) and LeCam (1956). Papers in
the literature that consider higher-order asymptotic efficiency of estimators include
Pfanzagl (1974), Pfanzagl and Wefelmeyer (1978), Akahira and Takeuchi (1981),
Rothenberg (1984), and Robinson (1988), among others. Papers that consider k-step
bootstrap estimators include Davidson and MacKinnon (2000) and Andrews (1999).
Davidson and MacKinnon (2000) point out that k-step likelihood ratio bootstrap
statistics require fewer steps than other k-step bootstrap test procedures, which is
analogous to what we find here.

Proofs in this paper rely heavily on methods used by Hall and Horowitz (1996),
who consider higher-order properties of bootstrap procedures for GMM estimators.
In turn, the methods of Hall and Horowitz (1996) build on those of Bhattacharya
and Ghosh (1978) and Gétze and Hipp (1983, 1994). Parts of our proofs are similar
to those of Robinson (1988). The methods of Robinson (1988) are related to those
of Pfanzagl (1974) and to results in the numerical analysis literature on convergence
of iterative optimization algorithms, e.g., see Dennis and Schnabel (1983, Sec. 5.2).

The remainder of the paper is organized as follows: Section 2 provides an outline
of the results and their proof. Section 3 defines the extremum estimators and test
statistics. Section 4 introduces the k-step estimators and test statistics. Section 5
presents the assumptions used. Section 6 states the higher-order equivalence results.
An Appendix contains proofs of the results.

2 Outline of the Results

In this section, we provide an outline of the methods and results established in
detail in the sections below.



An extremum estimator EN of a parameter € € © is defined to minimize a criterion
function Jy (6) over ©. For example, Jy (6) could be a GMM or ML criterion function.
The true parameter value is 6q.

Let END denote the estimator used to initiate the k-step estimator. The k-step
estimator is defined recursively as follows:

2JN(@J\f,j—l) for j=1,...,k, (2.1)

gN,j = gN,j—l - (QN,j—l)il 20

where @y j—1 is a matrix that depends on @NJ_L For NR steps, Qn j—1 = (0?0000
JN(On,j—1)- In this case, the definition of 6y is motivated by the approximation of
(0/00)Jn(0) at the k — 1 step by the affine function

Anj_1(0) = (8/00)In(On 1) + (820000 ) In(On 1) (0 — On 1) (2.2)

The value of # that solves the approximate first-order conditions Ay ;_1(f) = 0 is
easily seen to be 6y . For brevity, in this section we only consider the NR choice of

Qn,j—1-

We want to show that for some a > 0,

v |P(NY2(@x .k — 00) € B) — P(NY2(0y — p) € B)| = o(N"%).  (2.3)
S Lg

This implies that N/2 (@Vk — ) and N'/2 (EN — 0p) are asymptotically equivalent
to order s = 2a + 1. First, we show that the distribution of N1/2 (EN —6y) possesses a
well-behaved Edgeworth expansion with remainder of order o(/N~%). In consequence,
a small change in 2 yields a small change in P(N 1/2 (/9\/1\\7 —0p) + z € B). This is used
to show that (2.3) holds if N¥/2(6y j — 69) and N'/2(0x — ) are close in the sense
that R R

P(|INY2(On e — 60) = N'2(On — 00)l| > 1) = o(N ) (2.4)

for some constants ny = o(N ). Note that the left-hand side of (2.4) equals
P[0 — Onl| > N~V2ny).

We show that (2.4) holds with 7,y = N~2" In? ( ) for the NR choice of Qp ;1.
This value of 7,y corresponds to quadratic convergence of 9 Nk to [ ~ as the number of
steps k increases, which is very fast. For this definition of 7y, 7y = o(IN %) provided
2% > 2a + 2. For k = 2, this holds for & = 1, which corresponds to asymptotic
equivalence to order s = 3, because s = 2a + 1. For k = 3, this holds for a = 3,
which corresponds to asymptotic equivalence to order s = 7. For a different choice of
@n,j—1, such as the GN choice, the convergence of 0y to 0 may be slower and £
may need to be larger to obtain the same order of asymptotic equivalence.

To establish (2.4), we show that (i) the difference between 0 Nk and Oy depends
on the difference between (9/06)Jy(6) and its affine approximation Ay j_1(0) both
evaluated at § = Oy and (ii) the latter difference is a quadratic function of the
difference between §N7k_1 and 5N. Our proof parallels the standard proof in the
numerical analysis literature of the quadratic convergence of the NR algorithm, e.g.,



see Dennis and Schnabel (1983, Sec. 5.2). For notational simplicity, let V2.J Nk—1
denote (9%/0000")Jy (On k1) By the definition of Oy x,

. P 9 - .
Ong —0ONn = Ong—1 — (VQJN,k—l)il%JN(eN,k—l) — 0N
0 ~ 0 ~ ~ ~
= (ViInp 1) ! (%JN(QN) - %JN(QN,k—l) ~V2iIng 10N — 9N,Ic1)>
9 .
= (Vi ng-1)™! (@JNWN) - AN,k1(9N)> ; (2.5)

where the second equality holds because (Q/(‘?(‘))JN@N) = 0 with probability
1 —0o(N~%) by the first-order conditions for fy. Element by element Taylor ex-
pansions of (9/06)Jn(0n) about O ;1 give

9 -~ ~ s 3 A

—JINON) — Ani—10n) = |(On — Onp1) ——= TN (0] On —Onk—1)/2

89JN( N) — Ang—1(0n) [( N —Onk-1) 89r6¢989’JN( Ni—1) 0N = On 1)/ L
(2.6)

Whel“f [Yr]pee denotes a vector whose r-th element is 7, and 6y, . lies between Oy

and QN,kfl.

Combining (2.5) and (2.6) gives

10Nk — OnI| < CnllOn -1 — On||?, where

Ly
_ 3
(V2N -1) DI HWJN(QEJ;M)/QH- (2.7)
r=1 r

Cn :jfif‘.’fk”

We show that there exists a constant K < oo such that
P((y > K) =0(IN7%). (2.8)

Repeated substitution into the right-hand side of the inequality in (2.7) gives:

~ ~ ~ ~ ~ ~ 2k _
B =Bl < ChllBno—nl* = ¢4 (N[00 = Ol ™ (V)" N2 n (),
. ' (2.9)
where ¢ = Y77 2771,
The initial estimator §N70 is assumed to satisfy: For all € > 0,
P(N'2|[0x0 — 00| > In(N)e) = o(N~9). (2.10)

We show that this holds if §N70 is an extremum estimator, provided the estimator
criterion function is sufficiently smooth and terms that arise in its Taylor expansion
about 6y have sufficiently many finite moments. (See Lemma 1 below.) In addition,
we show that an analogous result holds for 6 : For all £ > 0,

P(N'Y2|[6y — 6o]| > In(N)e) = o(N~%). (2.11)



Equations (2.10) and (2.11) and the triangle inequality combine to yield:
P(NY2|[0x0 — On]| > In(N)e) = o(N~9). (2.12)
Combining (2.8), (2.9), and (2.12) gives: For € > 0 sufficiently small,
P(|[fne — On] > N2 (V)
< P(CR(NY2 (B0 — ][I0~ (V))?
(

P(K?%% > 1)+ 0o(N~%)
(N—). (2.13)

k

> 1)

IN

I
S

This establishes (2.4) with ny = N=2" In?" (N), which, in turn, implies that (2.3)
holds provided 2¥ > 2a + 2.

The proof of analogous results for the GN k-step estimator is similar, though
more complicated, and requires k to be larger for a given value of a. The reason that
k needs to be larger for the GN k-step estimator than the NR k-step estimator is
that additional terms arise in (2.5) when @y ;1 does not equal V2J ~,k—1 and these
terms increase the difference between §N7k and 5N.

The proofs for results concerning ¢, Wald, LM, QLR, and J test statistics also are
similar to the proof outlined above, but more complicated. The conditions relating
k and a required for the t, Wald, and LM statistics are the same as those for the
normalized estimator N1/2 @Nk — 6p), because the differences between the k-step
and extremum versions of these test statistics are approximately linear functions of
NY2(@y . — Ox). The conditions required for the QLR and .J statistics are weaker
than for the other statistics. The reason is that the differences between the k-step
and extremum versions of these statistics are approximately quadratic functions of
N1/2(9N k= HN) and N1/2 (9N x —On), where 9N 1 and @y are restricted analogues of
[ N,k and [ ~ that satisfy the null hypothesis.

3 Extremum Statistics

In this section, we define the extremum estimators and corresponding test statis-
tics that are considered. We consider extremum estimators that are either GMM es-
timators or estimators that minimize a sample average. We call the latter “minimum
p estimators,” because the sample average is taken to be N1 Zf\i 1 p(Xi,0), where
X; € R+ is a random vector, § € © C R is an unknown parameter, and p(-,-) is a
known real function. ML, LS, and regression M estimators are examples of minimum
p estimators. GMM estimators are based on the moment conditions Eg(X;,6y) = 0,
where g(-,-) is a known Lg-valued function, X; is as above, 6y € © C R is the true
unknown parameter, and Ly > Lg.

Minimum p estimators can be written as GMM estimators with g(X;,6) = (9/00)
p(Xi,0). It is useful to consider minimum p estimators separately, however, for two
reasons. First, the k-step estimator may differ depending on whether the extremum
estimator is written in minimum p or GMM form. The traditional one-step scoring



estimator is obtained by writing the ML estimator as a minimum p estimator, not a
GMM estimator. Second, the identification condition for consistency of a minimum p
estimator requires that there is a unique minimum of Ep(Xj;,0) over § € O, whereas
the identification condition for consistency of the GMM estimator based on the first-
order conditions of the minimum p estimator requires that there is a unique solution
to the equations E(9/00)p(X;,0) = 0 over § € ©. The latter may have multiple
solutions even though the former has a unique minimum.

The observations are {X; : i = 1,...,n}. They are assumed to be from a (strictly)
stationary and ergodic sequence of random vectors. We assume that the true moment
functions {g(X;,0p) : i > 1} (for a GMM or minimum p estimator) are uncorrelated
beyond lags of length x for some 0 < k < oco. That is, Eg(X;,00)g(Xitj,600) =0
for all 5 > k. This assumption is satisfied with £ = 0 in many time series models in
which the estimator moment functions form a martingale difference sequence due to
optimizing behavior by economic agents, due to inheritance of this property from a
regression error term, or due to the martingale difference property of the ML score
function. It also holds with 0 < k < co in many models with rational expectations
and/or overlapping forecast errors, such as McCallum (1979), Hansen and Hodrick
(1980), Brown and Maital (1981), and Hansen and Singleton (1982). For additional
references, see Hansen and Singleton (1996).

A consequence of the assumption that Eg(X;,00)g(Xiyj,60) =0 for all j > & is
that the covariance matrix estimator and the asymptotically optimal weight matrix
for the GMM estimator only depend on terms of the form g¢(X;,6)g(Xit;,0) for
0 < j < k. This means that the covariance matrix estimator and the weight matrix
can be written as sample averages, which allows us to use the Edgeworth expansion
results of Gotze and Hipp (1983, 1994) for sample averages of stationary dependent
random vectors, as in Hall and Horowitz (1996).

To this end, we let

Xi= (X}, X{ 1, Xj ) fori=1,..,n—kK. (3.1)

All of the statistics considered below can be closely approximated by sample averages
of functions of the random vectors X; in the sample y :

Xy ={X;:i=1,.... N}, (3.2)

where N =n — k.

We consider two types of GMM estimator. The first is a fized weight matriz
GMM (FW-GMM) estimator that utilizes an Ly x Ly non-random positive-definite
symmetric weight matrix 2. In practice, {2 is often taken to be the identity matrix
Ir,. The second is an estimated weight matriv GMM (EW-GMM) estimator that
uses a weight matrix that depends on a preliminary FW-GMM estimator and is
asymptotically optimal. In the literature this estimator is sometimes called a “two-
step GMM estimator”. We do not use this terminology, because we reserve the term
“k-step GMM estimator” for the iterative estimator that is the main focus of this

paper.



The FW-GMM estimator, 5N, minimizes Jy(0) over ©, where

N ! N
0) = (le g(Xi,9)> Q (le g(XZ-,(‘))). (3.3)
i=1 i=1

The EW-GMM estimator which, for economy of notation, we also denote by 5N,
minimizes Jy(6,0x) over ©, where

N
In(0,0y) = (leg(Xi79)> Qn(0n) ( 129 X;,0) ); where
=1

Qn(9) = Wy'(6),

12( (X:,0)9(X;,0) +ZHXZ7XZ+J79))’

j=1
H(X;, Xiy5,0) = 9(Xi,0)9(Xi15,0) + 9(Xisj,0)9(Xi,0)', (3.4)
and EN minimizes (3.3). ~
The minimum p estimator, which we also denote by 6, minimizes py () over O,
where

=N"! Z p(X;,0). (3.5)

For this estimator, we let g(X;, ) denote (8/6«9) (Xi,0).
The asymptotic covariance matrix, o, of the extremum estimator [ N is

(D'QD) D' IOD(D'QAD) ! for FW-GMM
o (D'QyD)~t for EW-GMM
D’lﬂo_lD’1 for minimum p,  where
_ _ 9,
Q= (EWn(6p))~" and D = B 9(Xi;00)- (3.6)

A consistent estimator of o is

oN = O’N(/H\N), where

(D (0)2Dy(6)) "D (8) Q205 (0)2Dn (6)
we@ — | xOyv@Dy@) for FW-GAM
(D (€)' Sy () Dy (6)) ! for EW-GMM
DO (0) D (0) for minimum p, and
N
Dy(f) = N ng(Xi,e)- (3.7)
i=1

Let 0,, 0o, and (5N)T denote the r—th elements of 6, 8y, and On respectively.t
Let (on)y denote the (r,r)-th element of ox. The t statistic for testing the null
hypothesis Hy : 0, = 0 is

Ty = NY2((On), = 0,) /(08112 (3.8)

7



Under Hy and the assumptions given below, T, has an asymptotic N(0,1) distrib-
ution.

Let n(6) be an L,—valued function that is continuously differentiable at 6y. The
Wald statistic for testing Ho : n(6g) = 0 versus Hj : n(0g) # 0 is

Wi = N(bx) Gyoniiy) 1), where

iy = (). (3.9)
Under Hg and the assumptions given below, Wy has an asymptotic chi-squared
distribution with L,, degrees of freedom.

Next, we consider the LM statistic for testing Hy : 8 = 0 versus H; : 3 # 0, where
0= (7, 3) and 3 € RF5. By definition, the restricted FW-GMM estimator, denoted
On = (Thy,0')’, minimizes Jy () over ©g = {0 € © : § = (7/,0') for some 7 € RL7}.
The restricted EW-GMM and minimum p estimators, also denoted by 8y = (74, 0)’,
minimize Jy (0,03 ) and py (), respectively, over ©g, where 0%, denotes the restricted
FW-GMM estimator.

The LM statistic is

L]\/[N = UN(EN)/UN(gN), where
Un(0) = Ui, n(0)Uan(8),

: : -z
Ul,N(G) = <[OIILI6]O'N(9)[OIIL5]I> [O:IL,@L and

NY2(Dn(0)QDy (0)) 12 In (0) for FW-GMM
Upn(0) = { NY2(Dy(0)Qn(0)Dn(0) 15 In(0,60%) for EW-GMM  (3.10)
Nl/QDJT,l((‘))%pN((‘)) for minimum p.

Under Hp and the assumptions given below, LMy has an asymptotic chi-squared
distribution with Lg degrees of freedom.
The QLR statistic for testing Hp : 3 = 0 versus Hy : 3 # 0 is

IN(Jn(On,0%) — In(On,0y)) for EW-GMM
QLRy = - = .
2N (pn(On) — py(ON)) for minimum p.

Under Hy and the assumptions given below, QLR has an asymptotic chi-squared
distribution with Lg degrees of freedom when QLRy is based on the EW-GMM
estimator. When Q LRy is based on the minimum p estimator, the asymptotic chi-
squared result requires D = Qg ! For example, the latter holds in an ML context by
the information matrix equality, provided the model is correctly specified.

We do not consider a QLR statistic that is based on the FW-GMM estimator,
because such a statistic has an asymptotic chi-squared null distribution only if €2
=Qy ! The latter is rarely satisfied in practice, because one rarely knows €.

The J statistic for testing over-identifying restrictions is

Iy = Kn(@n)' Ky (@y), where

(3.11)

N
En(0) = Q0 (0n)N"Y2Y " g(X3,0), (3.12)
i=1

8



EN is the EW-GMM estimator, and 51\7 is the FW-GMM estimator. If L, > Lg
and the over-identifying restrictions hold, then Jy has an asymptotic chi-squared
distribution with L, — Lg degrees of freedom under the assumptions given below.
(This is not true if Oy is the FW-GMM estimator and Q%Q () is replaced by Q1/2
in (3.12).)

4 k-step Statistics

Here, we define the k-step estimators and k-step ¢, Wald, LM, QLR, and J statis-
tics. The k-step estimator is denoted 0 ;. The starting value for the k-step estimator
is a consistent estimator 0y . For the FW-GMM estimator, we define recursively

QJN(EN,j,l) for 1 <j <k (4.1)

/‘Q\N,j = gN,jfl - (Qnj-1)7" 50

For EW-GMM and minimum p estimators, ENJf is defined in the same way with
(0/90)Jx(On ;1) replaced by (8/06)Jn(On 10N k) and N=2SN  g(Xi,0n,-1),
respectively, where the derivative is taken with respect to the first argument of Jy (-, -)
and Oy j, denotes the ki-step FW-GMM estimator, defined in (4.1), that starts from
the same estimator gN,O as the k-step EW-GMM estimator. We assume that k1 > k.

The Lg x Ly random matrix Qu, j—1 depends on ENJ-,l. It determines whether
the k-step estimator is a NR, default NR, line-search NR, GN, or some other k-step
estimator. The NR, default NR, and line-search NR choices of Qn ;—1 yield k-step
estimators that have the same higher-order asymptotic efficiency. The results below
show that they require fewer steps, k, to approximate the extremum estimator 5N to
a specified accuracy than does the GN k-step estimator. The NR choice of Qu ;—1 is

%H,JN (On1) for FW-GMM
N =9 325 InOn i 1,0nk) for EW-GMM (4.2)
Dn(Onj-1) for minimum p,

where the derivatives of Jy(,-) are with respect to its first argument and 5N7k1 is

defined as above. Note that the expression for 5N7k for a minimum p estimator with
the NR matrix Q%I]ﬂl is just the usual one-step scoring estimator starting from

gNJf_l in the case of the ML estimator with score function g(z,8) (= (0/00)p(x,8)).

The default NR choice of Qn j—1, denoted Qﬁ j—1, €quals Q%ﬁ_l if Q%ﬁ_l leads
to an estimator /9\N7j via (4.1) for which JN(ENJ) < JN(/(‘)NJ_Q for the FW-GMM
estimator, but equals some other matrix otherwise. In practice, one wants this other
matrix to be such that Jy(f0n;) < Jn(0n—1) (but the theoretical results do not
require this). For example, one might use the matrix (1/¢)Iy, for some small ¢ > 0.
(See Ortega and Rheinboldt (1970, Theorem 8.2.1) for a result that indicates that
such a choice will decrease the criterion function.) For the EW-GMM and minimum
p estimators, Jy(-) above is replaced by Jn(-,0n k) and py(-) respectively.



The line-search NR choice of Qn j—1, denoted QJLV%_I, uses a scaled version of
the NR matrix Q%ﬁ_l that optimizes the step length. Specifically, let A be a finite
subset of (0, 1] of step lengths that includes 1. One computes 6 ; via (4.1) for Qn, ;1

(1/a)QN] 1 | for each o € A. One takes QN] 1 to be the matrix (1/a)QN] ; that

minimizes J. N((‘) ~,;) over all & € A for the FW-GMM estimator. (If the minimizing
of value of « is not unique, one takes the largest minimizing value of a in A.) For
the EW-GMM and minimum p estimators, one replaces JN((‘)NJ) by JN((‘)NJ,QN k1)
and pN(H ~,;j) respectively.

The GN choice of @y, j—1, denoted QGN 1, uses a matrix that differs from, but is

a close approximation to, the NR matrix Q% Nj—1- In particular,

2D§V7j_1QDN,j71 for FW-GMM
QNJ 1= 2D§V7j_1QN(9N,k1)DN,j71 for EW-GMM (43)
Dy 1 for minimum p,

where Dy ;1 is determined by some function A(:,-) as follows:

N
Dyjo1 = N7 A(X;,0n,-1) € RE*F0 and
i=1

EA(X;,00) = E X;,00). (4.4)

0
o977
The latter condition is responsible for Dy ;_1 being a close approximation to
Dy (0w j—1), which appears in QNF_;. Note that, for the FW-GMM and EW-GMM
estimators, Q%ﬁ_l is the sum of two terms, one of which contains N~ SN | (5%/900¢")
9(Xi,0n,j-1). The latter term is omitted in Q%@_l. It is close to zero, because it is

multiplied by the factor N—! Zfil g(Xi,gN,j,l), which is close to zero.
For an example of a GN matrix for FW-GMM or EW-GMM estimators, consider
a nonlinear instrumental variables (IV) estimator for which

g(XZ',@) = U(XZ,O)L(ZZ, 9) and E(U(XZ,QQNZZ) =0 a.S., (45)

where U(X;,0) € R is a residual, L(Z;,0) € Rbs is a function of some IVs Z;, and Z;
is a subvector of X;. In this case,

0 0 0
WQ(XZH ‘9) = (Zlv 0) 89/U(X17 0) + U(le ‘9) 90’

The GN choice of Q1 omits the second summand of (9/960")g(X;,0) in Dy ;1
because EU(X;,00)(0/00')L(Zi, 00) = 0. That is, QFYY_; is as in (4.3) and (4.4) with

L(Z:,6). (4.6)

0

A(‘)’E’lve) = (Z’lve) 69/

U(X:,0). (4.7)

10



For an example of a GN matrix for a minimum p estimator, consider the LS
estimator of a nonlinear regression model:

Y: = q(Zi,00) + U fori=1,...,n
(X’lve) ( (Z’lae)) /27

9(X:6) = — (Y~ 4(%,0))s5a(Z:,0), and
3 8 0 02

where Y; is a scalar dependent variable, Z; is a vector of regressor variables, U; is an
unobserved scalar error with E(U;|Z;) = 0 a.s., and q(-,-) is a known real function
that is twice differentiable in its second argument. The GN matrix Q%{g_l omits the
second summand of (9/90")g(X;,0), because E((Y; — q(Z;,00)) (0%/0006")q(Z;,60)
= 0. That is, Q%{}Ll is as in (4.3) (for minimum p estimators) and (4.4) with

6 0

A(X;,0) = —=q(Z;,0)—q(Z;, ). 4.9
A second example of a GN matrix QY Nj-1 for a minimum p estimator is the sample
outer-product estimator of the information matrix in a ML scenario. Suppose that
pn(0) is a normalized negative log likelihood function and g(X;,8) = (9/06)p(X;,0)
is the negative score (or conditional score) function for the X;-th observation. By the

information matrix equality,

0
Ewg(Xi, 00) = Eg(X;,00)9(Xi,00)" (4.10)
when the model is correctly specified. In this case, the NR matrix QY # j—1 1s the sam-
ple analogue of the expectation on the left-hand side of (4.10): QN2 G
= N1 Zij\il(ﬁ/&‘)’)g(Xi,@NJ_l) The GN matrix QN] | is the sample analogue
of the expectation on the right-hand side of (4.10). Thus, QN] 1 is as in (4.3) (for
minimum p estimators) and (4.4) with

A(X;,0) = g(X;,0)9(Xs,0). (4.11)

The GN matrix does not require calculation of the second derivative of the log like-
lihood function.

Alternatively, in an ML scenario, one can use a GN matrix () ;—1 based on the
expected information matrix:

GN2 E9

Njo1= X;,0) ; (4.12)

0=0n ;1

89/.9(

where Ep denotes expectation when the true parameter is 6. In this case, the function
A(X;,0) of (4.4) is Ey(0/00)g(X;,0), which is non-random and does not depend on
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X,. The expected information matrix is often used in the statistical literature on
one-step and k-step estimators in likelihood scenarios, e.g., see Pfanzagl (1974).

For GMM estimators that have the same number of moment conditions as the
dimension of @, such as ML estimators defined via the likelihood equations, O
is the same whether defined using € or Qy (ENJQ) (because the moment conditions
N1 Zl]\il 9(Xi,0) have an exact zero with probability that goes to one at an appro-
priate rate as N — 00).

Next, we define the restricted k-step estimator Txj of 7 that is used by the
k-step LM and QLR statistics when the null hypothesis is Hg : 3 = 0. The restricted
estimator Ty of 7 yields the corresponding restricted estimator Oy ) = (ﬁ\ﬂk,O’ )
of 0. The starting value for the restricted k-step estimator is an estimator @y g
= (Thy¢,0’) that is consistent under Hq : 8 = 0. For the restricted FW-GMM esti-
mator: we define T j, recursively via:

40 . = .
?N,j = ?N,j—l - (QTN,jfl) 1EJN(9N7J‘_1) fOl" 1 S ] S k, (413)

where (0/071)Jn(0) denotes the vector of partial derivatives of Jy(6) with respect
to the first L, elements of 6 and QJTV i1 is an L, x L; matrix that depends on
TnN,j—1- The matrix Q]Tvd.il determines whether the restricted k-step estimator is a
NR, default NR, line-search NR, GN, or some other k-step estimator. Often, Q?V i1
equals the upper L; x L; block of Qn j—1 defined with 51\/,]-,1 in place of ENJ-,l.
For EW-GMM and minimum p estimators, 7y is defined as in (4.13) with
(0/01)JN (0N j—1) replaced by (6/87')]1\7(91\77]-,1,«9}‘\,,,“) and (0/07)pn (TN j—1), Te-
spectively, where the derivative is taken with respect to the first L, elements of the
first argument of Jy (-, -) and & , denotes the restricted k;-step FW-GMM estimator

that starts at the same estimator 6y o as the restricted k-step EW-GMM estimator.
We assume that k1 > k.
The restricted NR matrix, QT NR , default NR matrix , Q?\}?,l, line-search NR

matrix, Q;ij.‘il, and GN matrix, QN]-J,VP are defined as in (4.2)-(4.4), but with
9%/0000', O ;_1, On,j—1, Dn(9), and Dy j_1, replaced by 8%/0797", On j_1, O j_1,
the first L, rows of Dy(6), and the first L; rows of Dy ;1 respectively.

We define the k-step ¢ statistic, Ty i », Wald statistic, Wy , LM statistic, LMy,

QLR statistic, QLR k, and J statistic, Jy, J.k> 8S in (3.8)—(3.12), but with (EN)T, EN,
ON, O, and %, replaced by ON;M, ONk, 9Nk1, QNk, and Oy 1, respectlvely, in all

parts of their definitions, where () N,k denotes the r-th element of [ Nk 0 Nk, denotes
the k1-step FW-GMM estimator, and 07 N,k denotes the restricted ki-step FW-GMM
estimator.

5 Assumptions

We now introduce the assumptions. They apply to the FW-GMM, EW-GMM,

or minimum p estimator.

12



Let a be a non-negative constant such that 2a is an integer. The following as-
sumptions depend on a and are used to show that the CV distances between the
distributions of the k-step and the extremum statistics are o(IN~%). This corresponds
to equality of s = 2a+ 1 order asymptotic efficiency. The larger is a, the stronger are
the assumptions.

Let f(X;,0) denote the vector containing the unique components of X;, g(X;,0),
and g(X;,0)g(Xi1;,0) for j =0,...,k, and their derivatives with respect to 6 through
order d = max{2a + 2,3}. Let f(X;) = f(Xi,60). Let (87/067)g(X;,0) denote the
vector of partial derivatives with respect to 8 of order j of g(Xj,6).

Assumption 1. There is a sequence of iid vectors {g; : i = —o00,...,00} of
dimension L. > L, and an L, x 1 function h such that f(X;) = h(e;,&i-1,8i-2,...).
There are constants K < co and & > 0 such that for all m > 1

E||h(gi,eiz1,...) — h(€i€i-1y -y Eimm, 0,0, .|| < K exp(—&m).

Assumption 2. (a) © is compact and g is an interior point of ©. (b) Either
(i) On minimizes Jy(0) or Jy(0,0xN) over 8 € O; 6y is the unique solution in © to
Eg(X1,0) = 0; for some function Cy(x), ||g(x,01) —g(x,02)|] < Cy(x)||01 —02]| for all
x in the support of X7 and all 01,02 € ©; and ECJ(X7) < oo and E||g(X1,0)||% < oo
for all 0 € © for go = max{2a+1, 2} or (ii) 0y minimizes pn(0) over 6 € ©; 0y is the
unique minimum of Ep(X1,0) over § € ©; and E|p(X1,0)|? < oo for all # € © and
Esupgeg |9(X71,0)||7 < oo for o = max{2a + 1, 2}, where g(z,0) = (0/90)p(x,0).

Assumption 3. (a) Eg(X1,00)9(X14;,00) = 0 for all j > k for 0 < k < oo0.
(b) © and Qq are positive definite and D is full rank Lg. (c) E||lg(X1,60)||"* < oo
for ¢ = max{4a + 1, 2a + 3, 4}. (d) g(=,6) is d = max{2a + 2, 3} times differen-
tiable with respect to 9 on Ny, some neighborhood of 6y, for all z in the support of Xj.
(e) There is a function Caf(X;) such that £ (X1, 0) — F(X1,600)| < Caf(Xl)
x||@ — 6o]| for all § € Ny. (f) ECE (Xl) < oo and B f(X1)||22 < oo for ga = 2a + 3.
(g) If the Wald statistic is considered, the L,-valued function 7(-) is d times contin-
uously differentiable at 6y and (9/96")n(6) is full rank L, < Lg. If the LM or QLR
statistic is considered, the true parameter 6y = (7(,0)" under Hy is such that 7¢ is
in the interior of {7 : (7/,0')" € Og}.

Assumption 4. There exist constants K7 < oo and § > 0 such that for arbitrarily
large ¢ > 1 and all integers m € (671, N) and t € RI™() with § < ||t|| < N€,

2m+-1
E|E (exp <\/—_1t’ Z f(X'S)) {ej:lj—m| > K1}> < exp(—9).
s=1

Assumption 5. The initial estimator §N70 satisfies: For all € > 0,
P(|[0x0 — 80|l > N"2In(N)e) = o(N~9).

If the LM or QLR statistic is considered, the restricted initial estimator EN,O
= (Ty,0,0')" satisfies the same condition under Ho.

13



Assumption 6. The matrices {Qn;_1:j =1,...,k} satisfy: For some sequence
of non-negative constants {¢y : N > 1} with limy_,cc ¥y =0,

82
P(HQNJ_I 89691

for FW-GMM estimators. For EW-GMM and minimum p estimators, analogous
conditions hold with (82/9006").Jx (O j_1) replaced by (82/8989')JN(0NJ 1,0Nk)
and DN((‘) ~,j—1) respectively. If the LM or QLR statistic is considered, {Q% ] 1
Jj = ., k} satisfy the same condition with the same constants {¢ : N > 1},
but Wlth (0%2/07107")Jn(ON 1) in place of (62/8969’)JN(9N] 1) for the restricted
FW-GMM estimator and analogously for the restricted EW-GMM and minimum p
estimators.

IN(Onj-1)l] > ) = o(N™) for j =1,....k

When considering the QL Ry, statistic, we use the following assumption.

Assumption 7. The QLRy statistic has an asymptotic y? expansion with re-
mainder o(N~%). That is, there exist polynomials {m;(z) : ¢ = 1,...,[a]} in z whose
coefficients are O(1) such that

sup |P(Ay € B) / (1+ ZN_ZWZ f2(2)dz] = o(N™9),
BeB;

where fy2(-) denotes the density of some x? random variable.

Assumption 1 is the same as condition (1) of Gétze and Hipp (1994). It is an
assumption of asymptotically weak temporal dependence of the sequence of random
vectors { f(X;) : ¢ > 1}. It implies that { f(X;) : ¢ > 1} are strong mixing. Assumption
1 holds automatically if {X; : ¢ > 1} are iid. Assumption 2 is a standard assumption
used to obtain consistency of extremum estimators. Assumption 3 is similar to condi-
tions in the literature used to obtain asymptotic normality of extremum estimators.
But, when a > 0, it imposes stronger smoothness and moments restrictions than is
typical. In addition, Assumption 3(a) is more restrictive than usual. See Section 3
for a discussion of Assumption 3(a). Assumption 4 is the same as condition (4) of
Gotze and Hipp (1994). It reduces to the standard Cramér condition if {X; :7 > 1}
are iid.

__ The following Lemma shows that Assumption 5, concerning the initial estimator
0,0, is not too restrictive. It is satisfied for a broad class of extremum estimators.

Lemma 1 Suppose §N70 s an extremum estimator that minimizes a criterion func-
tion Jn o(6), JN70(9,5N70), or pno(0) over ©, where Jn (), JN70(9,5N70), and py (9)
are defined as in (3.8), (3.4), or (3.5), respectively, with g(X;,0), €, QN(-),~5N,
p(X;,0), and f(X;,0) replaced by some quantities go(Xi,0), Q°, Qno(-), Ono,
po(X;,0), and fo()w(i,Q) respectively. Suppose Assumptions 1-4 hold with the same
changes. Suppose On ¢ is a restricted extremum estimator that minimizes one of the
above criterion functions over Og, but with 51\770 replaced by 9}‘\]70 mn JN70(9,5N70),
where O o minimizes Jyo(0) over ©g. Then, Assumption 5 holds.
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Comment. In Lemma 1, the conditions on g1, g2, and d in Assumption 3 for the
initial estimators 6 and 5N70 can be weakened to ¢; > 2a+3, ¢2 > max{2a+1, 2},
and d > 3 for a FW-GMM or minimum p estimator and to ¢; > max{4a + 1, 2a + 3,
4}, @2 > max{2a+1, 2}, and d > 3 for an EW-GMM estimator. (This holds because
the proof of Lemma 1 only relies on Lemma 5 in the Appendix and not on Lemmas
8 or 9. See the Comment following Lemma 9 in the Appendix.)

Next, we provide sufficient conditions for Assumption 6 for the NR, default NR,
line-search NR, and GN choices of matrices @ ;—1. Of course, other choices of ma-
trices Qn,j—1 are possible.

Lemma 2 Suppose Assumptions 1-5 hold for some a > 0 with 2a an integer. Then,
Assumption 6 holds with ¥ = 0 for all N > 1 for the NR, default NR, and line-
search NR choices of Qn j—1 for j = 1,...,k. In addition, Assumption 6 holds with
Yy = N~V2In(N) for the GN choice of Qn 1 for j = 1,....k, provided Assump-
tions 1 and 4 hold with the elements of A(X;,00) (defined in (4.4)) added to f(X;),
the function A(-,-) satisfies E(A(X;,00) —(8/00')g(X;,00)) = 0, A(X;,0) is contin-
uously differentiable in 6 for 6 € Ny, A(Xi,Oo) is continuously differentiable in Xi,
E||A(X:,0) — (0/00)g(X:, 00))] [ < o0, E supgen, [1(0/00,)ACK,, )% < oo for
all 7 =1,..., Ly for g3 = max{2a + 1, 2}, and E||(8/0%)A(X;,00)|| < 0.

Assumption 7 is shown to hold under regularity conditions in iid likelihood con-
texts by Chandra and Ghosh (1979, Sec. 4). Furthermore, it should be possible to
use the same line of argument in the non-iid likelihood case and in the EW-GMM
case making use of the Lemmas given in the Appendix. However, the arguments for
these cases would be quite long and involved. For brevity, we do not provide such
results.

6 Equivalence of the Higher-order Asymptotic
Efficiency of k-step and Extremum Statistics

The higher-order asymptotic equivalence of the k-step and extremum statistics
is established in parts (b)—(d) of the following Theorem. Part (b) gives conditions
under which the CV distances between (N1/2(9N,k —00), TN jers Wh o, LMy ;) and
(N1/2(5N —00),Tnr, Wn, LMpy), respectively, are o(N~¢) for some a > 0. Part (c)
does likewise for (QLRyk, Jn) and (QLRy, Jy) when QLRy is based on the
EW-GMM estimator. Part (d) does likewise for QLRy 1 and QLRy when QLRy is
based on the minimum p estimator. The conditions required for part (d) are weaker
than those for part (c), which, in turn, are weaker than those for part (b).

In part (a) of the Theorem, the difference between the k-step estimator and the
corresponding extremum estimator is shown to be of greater magnitude than py
with probability o(N~%), where

BNk =

’

N-27 2t (N) for NR, default NR, and line search NR matrices
N-E+D/21nP 1 (N) - for GN matrices.
(6.1)
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Thus, for the NR procedures, the difference decreases very quickly as k increases
and for the GN procedure the difference decreases more slowly as k increases. More
generally, for ¢ as in Assumption 6, py j is defined by

fn = ji%aka*Q’“*“ ™ (N)d,. (6.2)

The key condition in part (b) of the following Theorem is
pne = o(N~LH2), (6.3)

where 2a is a non-negative integer. Given this condition, the CV distances between
the k-step and extremum statistics are o(IN~¢) and these statistics have equal as-
ymptotic efficiency to order s = 2a + 1.

If Assumption 6 holds with ¢, = 0, as it does for the NR, default NR, and
line-search NR procedures, then (6.3) holds if

28 > 924+ 2 or, equivalently, 2F > s+ 1, (6.4)

where 2a and s are integers. Thus, for k = 1, we have a = 0 and s = 1; for k = 2, we
have a =1 and s = 3; for k = 3, we have a =3 and s = 7; for k =4, we have a = 7
and s = 15; etc.

If Assumption 6 holds with ¢,y = N~1/2In(N), as it does for the GN procedure
under the conditions in Lemma 2, then (6.3) holds if

k > 2a + 1 or, equivalently, k > s, (6.5)

where 2a and s are integers. Thus, for £ = 1, we have a = 0 and s = 1; for k = 2,
we have @ = 1/2 and s = 2; for kK = 3, we have a = 1 and s = 3; for k = 4, we have
a=3/2 and s = 4; etc.

The weaker conditions used in parts (c) and (d) of the Theorem for QL Ry, and
Jn . are discussed in Comments 2 and 3 following the Theorem.

The main result of the paper is the following Theorem. It holds when /(‘51\7711€ is the
FW-GMM, EW-GMM, or minimum p k-step estimator. As above, By, denotes the
class of convex sets in RE.

Theorem 1 Suppose Assumptions 1-6 hold for some a > 0 with 2a an integer in
parts (a)-(d) below.

(a) Then,
P(|[0n, — On| > py ) = o(N79),
P(|Tngr — TNy > N /QMNk) = o(N™*),
P([Wae =Wl > Ny ) = o(N7%),
P(|LMyy, — LMy| > N2y 1) = o(N %),
P(|QLRy) — QLRy] > In*(N Jing) = o(N™%)

when (‘)N and Oy are EW-GMM estimators,
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P(|QLRy — QLRy| > NpZip) = o(N~7)
when EN and O are minimum p estimators, and
P(|Jng = In| > 10*(N)py i) = o(N~).
(b) Suppose pyj, = o(N~@H2) . Then,

sup [P(N'*(On 1 —00) € B) — P(N'/?(8y — 60) € B)| = o(N~%),
BEBLG

sup |P(Tngr € B) — P(Tn, € B)| = o(N %) under Hy,

BeB;
sup |PWn i € B) — POWyn € B)| = o(N™%) under Hy, and
BeB;
sup |[P(LMny € B) — P(LMy € B)| = o(N™%) under Hy.
BeB;

(c) Suppose pip ) = o(N~¢ In"2(N)). Suppose Assumption 7 holds when consider-
ing the QLRyy, statistic. Then, for the QLR ), statistic based on the EW-GMM
estimator and for the Jy  statistic,

sup |[P(QLRny € B) — P(QLRy € B)| = o(N™%) under Hy and
BeB;

sup |P(Jny € B) — P(Jy € B)| = o(IN %) under Hy.
BeB;

(d) Suppose jupy = o(N=(a+1)/2) and Assumption 7 holds. Then, for the QLRy
statistic based on the minimum p estimator,

sup |P(QLRny € B) — P(QLRN € B)| = o(N %) under Hp.
BeB;

Comments: 1. When a = 0, part (a) gives the stochastic differences between the
statistics Oy 1 and @ etc., as in Robinson (1988) (although Robinson (1988) does not
consider test statistics). When a > 0, part (a) gives stronger results than stochastic
difference results. It shows that the difference between k-step and extremum statistics
is very small except on sets with very small probabilities. These stronger results are
used to establish parts (b)—(d) of the Theorem. Parts (b)-(d) show that the convex
variational distances between the distributions of N/ 20Nk —06p) and N 1/2 (On —6o)
etc. are o(N~?). Parts (b)-(d) establish that the k-step and extremum estimators
and test statistics have equal s order asymptotic efficiency for s = 2a + 1.

2. Here we discuss the condition py, = o(N~¢ In"2(N)) in part (c). When
Assumption 6 holds with ¢ = 0, as it does for the NR, default NR, and line-search
NR procedures, this condition holds provided

28 > 924+ 1 or, equivalently, 2F > s. (6.6)

Thus, for k£ = 1, we have a = 1/2 and s = 2; k = 2, we have a = 3/2 and s = 4; for
k =3, we have a = 7/2 and s = 8; for k = 4, we have a = 15/2 and s = 16; etc.
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If Assumption 6 holds with ¢ = N —1/2 In(N), as it does for the GN procedure
under the conditions in Lemma 2, then the condition pp , = o(N ¢ In"2(N)) in part
(c) holds if

k > 2a or, equivalently, k > s — 1, (6.7)

where 2a and s are integers. Thus, for £ = 1, we have a = 1/2 and s = 2; for k = 2,
we have @ = 1 and s = 3; for kK = 3, we have a = 3/2 and s = 4; for k = 4, we have
a =2 and s = 5; etc.

3. Next, we discuss the condition puy ; = o(N~(¢+1/2) in part (d). When As-
sumption 6 holds with {5 = 0, as it does for the NR, default NR, and line-search
NR procedures, this condition holds provided

281 > 94, + 3 or, equivalently, 281 > s 4+ 2. (6.8)

Thus, for k =1, we have a = 1/2 and s = 2; k = 2, we have a = 5/2 and s = 6; for
k =3, we have a = 13/2 and s = 14; for k = 4, we have a = 29/2 and s = 30; etc.

If Assumption 6 holds with 1, = N—1/2 In(N), as it does for the GN procedure
under the conditions in Lemma 2, then the condition py, = o(N ~(a+D/2) in part
(d) holds if

2k > 2a + 1 or, equivalently, 2k > s, (6.9)

where 2a and s are integers. Thus, for £ = 1, we have a = 1/2 and s = 2; for k = 2,
we have a = 3/2 and s = 4; for k = 3, we have a = 5/2 and s = 6; for k = 4, we have
a="7/2 and s = §; etc.

4. The reason that weaker conditions are needed in parts (c) and (d) of the
Theorem than in part (b) is because part (a) of the Theorem holds for the statis-
tics considered in parts (c) and (d) with the lower bound in the probability being
1H2(N)/LN7]€ or Ny3 ., rather than the larger quantity Nl/QuMk, which is the lower
bound for the statistics considered in part (b).

The reason for these results in part (a) is as follows. Consider the QLR 4 statistic
based on the minimum p estimator, for which part (a) holds with lower bound N3, .
We have 7

QLR — QLRy = 2N (pn(Onk) — pn(On)) — 2N (pn (On k) — py(@n)).  (6.10)

The first and second terms on the right-hand side are quadratic forms in
On x—0n and Oy —0x respectively. Hence, |QLRy x—QLRy| is of the same order as
N||0nx — On|? and N|[Bxx — On][2. The result of part (a) for |[On — O] and
1fn, — x| holds with lower bound fuyy. Thus, the result of part (a) for
|QLRN x — QLRy| holds with lower bound IV :“?V,k'

The reason that the first term on the right-hand side of (6.10) is a quadratic form
in 5N7k — 51\7 is that a two-term Taylor expansion of pN(§N7;€) about 5N gives

32
2000’ "N
where the linear term in §N7k — EN is zero with probability 1 — o(N %), because

(0/00)pn (51\7) = 0 by the first-order conditions for . An analogous result holds for
pn(Ong) — pn(On).

. . 1 ~ ~ . ~
pn(Ongk) — py(ON) = 5(9N,k —0n) (0%)(Onk —On), (6.11)
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For the QLR 1, statistic based on the EW-GMM estimator and the Jy , statistic,
the calculations above need to be altered somewhat because of the difference between
(3/89)]1\/(?0\]\/,91\77;61) and (0/00)Jn(0n,0n). The former appears in the Taylor ex-
pansion (with respect to the first argument) of JN(5N7K,§N,k1) about §N7 which is
analogous to the Taylor expansion of (6.11). But, it is the latter, (8/80)JN(5N,§N),
that equals zero with probability 1 — o(N~%). Hence, the linear term in the Taylor
expansion is not identically zero. In consequence, the lower bounds in part (a) for the
Q LRy statistic based on the EW-GMM estimator and the Jy j statistic are larger
than for the QL Ry i statistic based on the minimum pestimator, but smaller than
for the other statistics considered. In turn, this implies that the condition needed in
part (c) is stronger than that required in part (d), but weaker than that required in
part (b).
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7 Appendix of Proofs

In the first subsection of this Appendix, we state Lemmas 3-9 that are used in
the proofs of Lemmas 1 and 2 and Theorem 1. In the second subsection, we prove
Theorem 1. In the third subsection, we prove Lemmas 1-9.

Throughout the Appendix, a denotes a constant that satisfies @ > 0 and 2a is an
integer. In addition, C denotes a generic constant that may change from one equality
or inequality to another.

7.1 Lemmas

Lemma 3 Suppose Assumption 1 holds.
(a) Let m(-) be a matriz-valued function that satisfies Em(X;) = 0 and E||m(X;)]|P
< 0o forp>2a and p > 2. Then, for all ¢ > 0,

P(||N~ 1Zm )| >¢€) = o(N~%).

(b) Let m(-) be a matriz-valued function that satisfies E||m(X;)||P < oo for p > 2a
and p > 2. Then, there exists K < oo such that

P(||N~ 1Zm || > K) =o(N™%).
(c) Suppose Assumptions 3(f) and 4 also hold. Then, for all € > 0,
N ~ ~
P(IINTY2Y (f(Xi) = EF (X))l > In(N)e) = o(N79).
i=1

Lemma 4 Suppose Assumptiolls 1-3 hold. Let 5171\/ and 52,1\7 denote any estimators
that satisfy: For all e > 0, P(||0;n — Ool| > €) = o(N~¢) for j =1,2. Then, for all
€ >0 and some K < o0,

P(||Dn(01,n) = DI > ) = o(N™%),
P([|Qn (01,5) — Qo[ > ) = o(N7),
0? -

P(HWJN(HLN,QZN) — 2D/QODH > 5) = O(Nia),

03 -
P(||ﬁJN(91,N792,N)|| > K) = o(N™%),

N —
P(INT"Y " g(Xi,01n)l| > €) = o(N7%),

i=1

and analogous results hold for (9%/0000')Jn(01.5) — 2D'QD and (9°/06°)Jn (01 n).
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Lemma 5 Suppose Assumptions 1-4 hold. Let §N denote the FW-GMM, EW-GMM,
or minimum p estimator. Then, for all € > 0,

P (N1/2||§N — 0o|| > 1n(N)5> = o(N™9).

Lemma 6 Let {Ay : N > 1} be a sequence of Lg x 1 random wvectors with an
Edgeworth expansion or asymptotic x* expansion with coefficients of order O(1) and
remainder of order o(N~—%). (That is, in the case of an Edgeworth expansion, there
exist polynomials {m;(z) : i = 1,...,2a} in z whose coefficients are O(1) such that
SUPpep,, |P(AN € B) —fB(l—l— 21221 N_’/Qm(z))qﬁz(z)dd = o(N™%), where ¢y,(2) is
the density function of a N(0,%) random variable, ¥ is nonsingular, and By, , denotes
the class of all convex sets in R*A. In the case of an asymptotic x? expansion, Ly = 1
and there exist polynomials {m;(z) : i = 1,...,a} in z whose coefficients are O(1) such
that suppep, |P(An € B) — [,,(14+ 51 N-imi(2)) f2(2)dz| = o(N %), where f,2(z)
is the density function of a x? random variable.) Let {§;n : N > 1} be a sequence
of random vectors with P(|[§; n|| > 1) = o(N~%) for some constants 1y = o(N~9)
Jor j =1,2, where §; y € RYA and §o.n € R. Then,

sup |P(Anx +& n € B) — P(Ax € B)| =0o(N"“) and
BEBLA

sup |P(ANvAn +&n € B) — P(AyAx € B)| = o(N%).
BeB;

For any function m(X;, 6), let my(6) = N~} SN m(X;,0).

Lemma 7 Suppose Assumption 1 holds, m()?i,O) 18 differentiable with respect to
0, and Esupgey, |[(0/00) m(X1,0)|]P < oo for p = max{2a + 1, 2}. Let 6, x and
01,5 be any estimators that satisfy P(||01n — 6o|| > €) = o(N~?) for all e > 0 and
P(||02.n — O1.n] > nn) = o(N~9) for some sequence of constants {ny : N > 1} for
which ny — 0. Then,

P([[mn(0a,n) —mn(01,n)|] > 1y) = o(N ).

Let Sy = N1V f(Xi,60) and S = ESy.
Let Hy(6) = ((9/06")n(8)on (8)((0/06")n(8)))~"/* N'/21(8).

Lemma 8 Suppose Assumptions 1-4 hold. Let Ay denote Nl/Q(EN — 0o), Tnr,
HN(/(‘)N), UN(/(‘)N), or KN(/éN) (where the statistics may be defined using FW-GMM,
EW-GMM, or minimum p estimators in each case except KN(EN), i which case 51\7
is the EW-GMM estimator). Let L denote the dimension of An. For each definition
of Ay, there is an infinitely differentiable function G(-) with G(S) = 0 such that

sup |P(Ay € B) — P(N'2G(Sy) € B)| = o(N79).
BeB,
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We now establish Edgeworth expansions for the random vectors
0'71/2N1/2(9N — 90), TN,T‘7 HN(HN), UN(HN), and KN(QN) Let d)() denote the dis-
tribution function of a vector of independent standard normal random variables. Let
B;, denote the class of convex Borel measurable sets in RE.

Lemma 9 Suppose Assumptions 1-4 hold. Then, there exist (vector-valued) polyno-

mials m;(6), Tri(0), Ti(6), (), and Ti(6) in & = 0/0z for i = 1,...,2a such
that

. 2a
sup |P(c™2NV2(0y —0y) € B) — / 1+ N~ r5(6)]¢(2)dz| = o(N™%),
BEBy, B i=1

. 2a
sup |P(Tx, € B)— /Bu # 3N (@6 = ol )

. 2a
P Ox) € B) - [+ >N (8)]6(2)dz] = o),

. 2a
sup |P(Ux(By) € B) — / 1+ N 2m,(6)](2)dz] = o(N~),

BEBLO JB i=1
and
N . 2a .
sup |P(Kn(On) € B) — / 145 N=V2105(8)]6(2)d2] = o(N~2).
BGBLg B =1

Comment. The conditions on ¢, g2, and d in Assumptions 3 are not needed
in all of the Lemmas above. In particular, Lemma 4 uses ¢; > max{4a + 1, 4},
g2 > max{2a+1, 2}, and d = 3. Lemma 5 for the FW-GMM and minimum p estima-
tors uses q1 > 2a + 3, q2 > max{2a + 1, 2}, and d = 3. Lemma 5 for the EW-GMM
estimator ¢; > max{4a + 1, 2a + 3, 4}, g2 > max{2a + 1, 2}, and d = 3.

7.2 Proof of Theorem 1

We establish the first result of part (a) first. To start, suppose EN is the
FW-GMM estimator. A Taylor expansion about 0y ;1 gives

0

0= %JN@N)
= Brnt) + =2 Ty Brps) @y — Bwo) + R
= 598 On-1) + 55 IN(One-1) (O — On k-1 Nk
9 ~ N N P
= %JN(QN,I@—I) +Qni—1Onk —Ong—1) + Qni—1(0N —On k)
2 A~ AN —~
+(WJN(9N,I€71) —Qng—1)ON —Onp—1) + Ry (7.1)

2

WJN@N,k—l) —Qni-1)On —Ong_1) + Rk,

where

= QN,Icfl(/H\N —gN,k) + (
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o3 ~ ~
Onp1,)ON = Ong-1)/2|

_ ) /
Ryi = [(ON —Onj—1) —89T8989’JN .

€] 1, denotes an Ly vector whose r-th element is &, 6)}7,#1,74 lies between §N and
5N7;€,1, the first equality holds with probability 1 — o(N~%) by Lemma 5, and the
fourth equality holds because (9/80)Jx (O k1) + Qnh-1 (Onk —0Onk_1) = 0 by the
definition of §N7k. Rearranging (7.1) yields

1Bk — Ol
< N Qng—1) " Ryill + 1(Qng_1) I(WJN((‘)N,/%A) —Qnx—1)ONng—1—OnN)||

Cn(l0n 1 — 0N+ ¥n][On g1 — On]]), Where

Ly 3
0
_ -1
Gor = o, (@) ™M1 3 g I O s 2

IN

92 .
+1(@Qnj—1) DIl - ¢N||WJN(9N,J>1) —Qnj 1| +1}, (7.2)

@NbN = w;,l if ¥y > 0 and @NbN = 0 if ¥y = 0. Repeated substitution into the right-
hand side of the inequality gives an upper bound that is a finite sum of terms with
dominant terms of the form:

CCR[0n0 — On [P Wy for j =0, ...,k (7.3)

where ¢ is a positive integer. To see this, consider the solution in terms of xg of the
equation xy = xzfl + Axg_1. Collect all terms in powers of A that are multiplied by
the smallest number of x( terms.

An upper bound on the right-hand side of the inequality in (7.2) is

¢t ,néaxk(AN)Q’“*"N*Q’“*“ 2 (N)yd,, where Ay = NY2|[0y o — Oy||In"1(N).

T R (7.4)
For all ¢ > 0, P(Axy > ¢) = o(N™%), because Ay < NY2[[0ng — 6o||In"1(V)
+N2|[6y — 6o||InL(N), P(NY2|[n,0 — 6ol| > In(N)e) = o(N~%) by Assump-
tion 5, and P(N1/2||§N — 6ol] > In(N)e) = o(N~%) by Lemma 5. In addition, by
Lemma 4 and Assumptions 3(b) and 6, there exists a finite constant K such that
P({y > K) = o(N~%). Combining these results with (7.2) and (7.4) gives:

< P(CC(K[}\N > 1)
= P(CK% >1)+0o(N™%
= O(N_a)v (75)

where the last equality holds for e > 0 sufficiently small. Hence, the first result of
part (a) of the Theorem holds for the FW-GMM estimator.
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The proof of the first result of part (a) for the minimum p estimator is the same
as for the FW-GMM estimator with Jy(6) replaced by py (@) throughout.

The proof for the EW-GMM estimator is similar to that given above for the
FW-GMM estimator with Jy(6) replaced by Jn(0,0n) or Jn(6,0nk,) in the appro-
priate places. However, two additional terms arise on the right-hand side of (7.1)
because Jy(0,0n k) # Jn(0,0n). These terms are

I U
My = (WJN(QN,/%A’@N) - WJN(HN&A,@N,M))(QN — Oy x—1) and
o~ 8.
Myn = %JN(QN,I@—I;HN) - %JN(QN,k—h@N,kl)- (7.6)

These terms can be shown to satisfy
P(IMjn[ > pyg) = o(N %) for j =1,2. (7.7)

In consequence, the result of part (a) of the Theorem holds for the EW-GMM esti-
mator.
To prove (7.7), we first show that

P24 On ) = Q3 Ol > 1) = o(N7%) (7.8)

using Lemma 7 with my(0) = ijl(e), 51,1\7 = EN, EQ,N = §N7k1, and Ny = iy -
The conditions of Lemma 7 are verified using the result of part (a) of the Theorem
for the FW-GMM estimator, the assumption that k; > k, and Lemma 5. The proof
of (7.7) also uses the first, second, and fifth results of Lemma 4 with 6, N = =9 Nk—1,
where the condition on «91, ~ holds by applying the proof of part (a) of the Theorem
for the EW-GMM estimator recursively for £k = 1,2, ... . The proof of (7.7) also uses
P(||§N —5N7k_1|| > K) = o(N~%) for some 0 < K < oo, which holds by applying the
current proof recursively because K > py 1 for N large.

Next, we establish the second result of part (a) of the Theorem. Let o, denote
(0N)rr. Let 0, denote o, with 9 w~ replaced by 9 ~,k in all parts of its definition in
(3.7). We use the following;:

T gor = Tiv| < NY2(0 s = Onl|/0}?
N2 |0y — 00|l - |0y — oV (op o) 2 (7.9)

By (7.9), the second result of part (a) is implied by the first result plus the following:
There exists a K < co and a § > 0 such that

P}/ = 012 > puyg) = o(N7%), (7.10)
Pl — bol] > K) = oV, (7.11)
P(0gy < 6) = o(N™9), and (7.12)

P(o, < 8) = o(N™%). (7.13)
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Equation (7.11) holds by Lemma 5. Equations (7.12) and (7.13) hold by Lemma 5,
the first result of part (a) of the Theorem, and the first and second results of Lemma
4.

Equation (7.10) is implied by (7.12), (7.13), and

Pk — a2l > pin) = o(N~) (7.14)
by a mean value expansion. Equation (7.14) is implied by

P(|Dn (@) = Dv(On)l| > pn ) = o(N ") and
P(I24 (On ) = ' On)I| > p1n 1) = o(N 7). (7.15)

These results hold by Lemma 7 with ny = up , 5171\] = @N, and 527]\[ = EN,k, using
Lemma 5, the first result of part (a) of the Theorem, and Assumption 3.

We now prove the third result of part (a). Let Hy = Hy(fy) and Hyp
= HN(ENJﬂ). We have

Wi —Wn| = |(Hvi — Hv) Hy i + Hy(Hy g — Hy))|
< |[Hnx — Hn||([[Hy k]| + [[HN]])- (7.16)

Hence, it suffices to show that

P(||Hyx — Hy|| > NY2py ) = o(N™*) and
P(||Hn|| > M) = o(N™%) for some M < oo. (7.17)

The second result of (7.17) holds by Lemma 9 by appropriate choice of the set B. The
first result of (7.17) is implied by the matrix version of (7.14), mean value expansions
ofn(QN 1) and (0/00)n (9N %) about By, and the first result of part (a) of the Theorem.
The proof of the fourth result of part (a) is analogous to that of the third result
with Hp () replaced by Un(6). R R
To prove the sixth result of part (a), a Taylor expansion of py(0y ) about 6y
yields

2

Non@xcs) — o 0) = N — ) 5o o (O3 B — ) /2 (119
with probablhty 1 —o(N~%), where 9+ lies between 5]\, r and EN The linear term in
[ Nk — [ ~ in the Taylor expansion is zero because (0/00)p N(9 ~) = 0 with probability
1 —o(N"%) by the first order conditions for minimization of py(0) over © using
Lemma 5 and Assumption 2(a). By (7.18), part (a) of the Theorem for ||9Nk — 9N||

and the first result of Lemma 4, we obtain

P(N|onOnp) — pn(On)] > Nk 1)
< P(C|lBxk — On]1> > 1) + (N2
o(N~9). (7.19)
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By an analogous argument, (7.19) also holds with ENJf and 51\7 replaced by 5N7k
and 0y, respectively, using the first-order conditions for 7. Since QLRy ) —QLRy
=2N(pn(On k) —pn(On)) —2N(pN(§N7k) —pN(gN)), this result and (7.19) imply the
sixth result of part (a).

Next, we prove the seventh result of part (a). By the triangle inequality, we have

[Ing — In| < N|InOn s On i) — InOn i, On)| + N|InOn e, On) — In (O, 0)]-
(7.20)
To bound the second summand on the right-hand side of (7.20), a Taylor expansion
of Jn(Onk,0n) about fy yields

2

WJN(HE,gw)(ﬁN,k —Oy)/2 (7.21)

JN(EN,kvgN) — In(On,0N) = N@N,k - gN)/

with probability 1 — o(N %), where 6% lies between /9\N7k and @y and the derivatives
here and below are taken with respect to the first argument of .J NA(-, -). The linear
term in 6 — 6y in the Taylor expansion is zero because (0/06)Jn (0w, 0n) = 0 with
probability 1 — o(IN~%) by the first order conditions for minimization of J N(G,gN)
over O using Lemma 5 and Assumption 2(a).

By (7.21), part (a) of the Theorem for ||§Nk —5N||, and the third result of Lemma
4, we obtain

P(N|Jn Ok, 0n) — In(On,0n)] > NuZi )

P(Cl[ng — On|* > 13) + o(N79)
= o(N7%). (7.22)

IN

The first summand on the right-hand side of (7.20) is
N R N N N R
Byi = INTV2Y " g(X, 0n k) O (O gy) — Qv (ON)INTY2D " g(X5,0np)|. (7.23)
i=1 =1
The term in square brackets satisfies
P(|2n (Ox k) = O (Ol > i) = o(N7) (7.24)

by (7.8), the second result of Lemma 4, and the nonsingularity of €. By a mean
value expansion about g,

N N N
— -~ _ _ 0
NTV2N (X, 0n k) = N2 " g(Xi,00) + N7 799X, oN)
i=1 i=1 i=1
X[NY2(On 1 — On) + NY2(0y — 09)), (7.25)
where 9']'{, lies between §N7k and fy. The terms on the right-hand side of (7.25) satisfy
N
P(INTY2Y " g(Xi,00)]] > In(N)) = o(N~%), (7.26)

i=1
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P(NY2|[0x e — On|| > NY?puy ) = o(N %), (7.27)
P(N'?[[fx — 60| > In(N)) = o(N %), and (7.:28)

N
PN %g(Xi, o)l > K) = o(N~®) for some K < 0o,  (7.29)
i=1

where (7.26) holds by Lemma 3(c), (7.27) holds by part (a) of the Theorem, (7.28)
holds by Lemma 5, and (7.29) holds by the first result of Lemma 4.
Combining (7.25)—(7.29) gives

N
P([|[N"1? Zg(XiﬁN,k)ll > max{ln(N), N2y 1)) = o(N ). (7.30)

Combining (7.23), (7.24), and (7.30) gives
P(By i > piy g, In*(N)) = o(N~9). (7.31)

Combining (7.20), (7.22), and (7.31) gives the seventh result of part (a) of the The-
orem.

To establish the fifth result of part (a), we write QLRy) and QLRy as
2Nk — 271\77}€ and 2Jy — 2J v, respectively, where 7N,;€ and Jy denote the k-step J
statistic and the J statistic both based on T, rather than @N. The seventh result of
part (a) (for the Jy x statistic) and an analogous result for the Jy j statistic (which
holds by applying the seventh result of part (a) to the criterion function Jy((7’,0")"))
gives the fifth result of part (a).

To establish part (b) of the Theorem, we apply Lemma 6 four times with 7y
= N1/2MN,k and with (AJX’%N) equal to (NI/Q(HN —/\90), ]\71/2(91\771€ - QN)),
(TN,ra TNJQJ‘ — TNﬂn), (HN(QN), WNJQ - WN), and (UN(HN), L]\f]\/’]f — L]\/[N). In
the first two cases, we use the first result of Lemma 6. In the third and fourth cases,
we use the second result of Lemma 6. By the assumption that iy, = o(N —(at1/ 2)),
we have 1y = o(N~?), as required by Lemma 6. The condition of Lemma 6 on §; y
holds by part (a) of the Theorem. As required by Lemma 6, the random vectors
U_I/QN_I/Q@N —00), Tnr, HN@N), and UN(EN) have Edgeworth expansions with
remainder o(N %) by Lemma 9.

To establish part (c) of the Theorem for the Jy statistic, we apply Lemma 6
with 7y = In>(N)py, and with (Aw, &, n) equal to (Kn(0n), Jnx — Jn). By the
assumption that py, = o(N ¢ In"2(N)), we have ny = o(N~%), as required by
Lemma 6. The condition of Lemma 6 on £, 5 holds by part (a) of the Theorem.
The random vector K N(EN) has an Edgeworth expansion with remainder o(N~%) by
Lemma 9.

To establish part (c) of the Theorem for the QLRy ) statistic based on the
EW-GMM estimator, we apply Lemma 6 with 77, = In? (N)py j, and with (An, & )
equal to (QLRy, QLRy y—QLRy). By the assumption that iy, = o(N~¢ In~%(N)),
we have 7y = o(N~?). The condition of Lemma 6 on &; y holds by part (a) of the
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Theorem. The random vector Q LRy has an asymptotic x? expansion with remainder
o(N~%) by Assumption 7.

To establish part (d) of the Theorem, we apply Lemma 6 with ny = Ny,
and with (An,&; n) equal to (QLRy, QLRyr — QLRy). By the assumption that
BNg = o(N—(e+t1)/2) " we have ny = o(N~%). The condition of Lemma 6 on SN
holds by part (a) of the Theorem. The random variable QLRy has an asymptotic
x? expansion with remainder o(N~%) by Assumption 7. O

7.3 Proofs of Lemmas
7.3.1 Proof of Lemma 1

The result holds for EN by Lemma 5 with ¢g(X;,0) etc. changed as stated in
Lemma 1. The result holds for 75 by Lemma 5 with 8 replaced by 7, with the same
changes to g(X;, 6) etc. as above, and with © replaced by {7 : 6 = (7/,0')" € O} using
Assumption 3(g) to ensure that the true value 7¢ lies in the interior of the latter set.
The result of the Lemma for 7 implies the result holds for 6. O

7.3.2 Proof of Lemma 2

The NR result of the Lemma holds by definition of QY j—1- We now establish the

default NR result of the Lemma. Let 8 ~,j denote the NR FW-GMM estimator for
j=1,... k. For the FW-GMM estimator, it suffices to show that

P(JIn(On;) — In(Bnj_1) > 0) = o(N~%), (7.32)

for all 5 = 1,...,k, because this 1mphes that P(QN] 1 F QNJ 1 for some
j=1,...,k) = o(N @). When QN] =+ HN] 1, a Taylor expansion of JN(HN]) about
HN,j—l giVGS

In(On) — In(Onj—1)
8 A 9 3
= 55N In(On 1SN, PN, T CNjagae,J (HN,jfl)gN,quN’j +T NP,
32
—§CN,jWJN(HNJ—HCNW?VJ + T,k ;» Where
. .
Inj = 6ZCN,j,rCN,jWJN(HN,];JCNJ;
r=1 r

Cny = Ong —On-1)/l10n; — Onj-all, dn ;= 110N — On j-1ll, (7.33)

Cn,jr denotes the r-th element of (n,j» and 91“\',7].71 lies between /9\N7j and gNJ_l. The

second equality holds by the definition of @NJ. Using (7.33), the left-hand side of
(7.32) is less than or equal to

62

WJN(gN,j—l))/Q + T dn; > 0). (7.34)

P(_)‘min(
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The latter is o(N~%), because for 6 = A\pin(D’'Q2D) > 0,
2 o~
P(Mmin(==JIn(On ;- 0) =o(N™%),
O I (O j-1)) < ) = o(N'™)
P(|T'n | > K) =o(N"¢) for some K < oo, and
P(6y; > ) = o(N™, (7.35)
where the first result holds by the third result of Lemma 4 for the FW-GMM estimator
with 6, N = (‘)N j—1 and Assumption 3(b), the second holds by the fourth result of
Lemma 4, and the third holds by two applications of part (a) of Theorem 1 for the
NR FW-GMM estimator—one with £ = j — 1 and one with £ = j. This completes
the proof for the FW-GMM estimator. The proofs for the EW-GMM and minimum
p estimators are analogous.
We now establish the line-search NR result of the Lemma. We consider the
FW-GMM estimator first. Let 0y ; be the NR j-step estimator:

Ong = ONj-1 = ¢N,j-17N,-1, Where

0 0
onj1 = QN 1)~ laHJN(GNJ V|l and y ;o1 = (QNF_1)~ 169‘]]\[(9]\[7] 1)/¢Nj-1-

(7.36)
Let

o . ~ ~
Onj = Onj1 — QNT_1) g N (O 1) = On i + (1= oy ;7w (7:37)
It suffices to show that

P(aeglg#l In(Oy ;) — In(On;) <0) =o(N7%) (7.38)
for all j = ..k, because this implies that P(QN i1 Q%,I]%'—l for some

j=1,...k) = o(N ).
A Taylor expansion of Jy (5% ;) about Oy ; gives

o, . , o -
In(On ;) — In(On ) = (1 — O‘)SDN,jflﬂ-N,jfl%JN(eNJ)
2

~

‘*’5(1 - O‘)QSO?Vj—lW}V,j—IWJN(QNJ)T(NJ—l
1 o n
+6(1—a) O 127%] TN 1509690 " INOF o, (7.39)

r=1
where 63 ; lies between 5?\[ ; and 0 ~,j and 7y j_1 denotes the r-th element of 7y ;1.
Element by element Taylor expansions of (0/00)Jy (ENJ) about ?0\]\[7 j—1 give
0o . ~ o . ~ 0* ~

%JN(HN,]') = %JN(9N,3'—1) + WJN(QNJA)(‘L)N,J' —On,j-1)
1 ~ ~ o° ~
+35[0n; — 9N,j71)'39 5000 N VO 1) Ong = On 1)L,
1 0’ o+
=0+ SONJ 1 1m«f NOX 1 )TN—1]Le (7.40)
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where 9;;7177" lies between gN,j and 5N,j,1 and the second equality holds using the

definition of /9\N7 5
The following properties hold: For 6 = Apin(D'QD) > 0 and all € > 0,

o
POnin g5

0° —a
P(||893JN(9}+] DI > K) =o(N™%) for some K < oo, and

P(py,; >¢€) = o(N™%) (7.41)

In(On,j-1)) < 8) = o(N™9),

for j = 1,...,k, where the first result of (7.41) holds by the third result of Lemma
4 with «91 N = 9N J-1 and Assumptlon 3(b), the second holds by the fourth result

of Lemma 4 with 6, N = 9 1> and the third holds by the third result of Lemma
4 with 6)17 N = 9N7]_1 and Assumption 3(b) to ensure that ( %7‘?)*1 is well-behaved

and by a mean value expansion of (0/00)Jy (5]\/,]-,1) about 5N, application of part
(a) of Theorem 1 with & = j — 1, and the first result of Lemma 4. The second result
of (7.41) also holds with 9}3_1 replaced by 9}7j_1.

Substituting (7.40) into the right-hand side of (7.39), dividing (7.39) by gp?v7j_1
(when ¢y ;_; > 0), and applying (7.41) yields the resultant first and third terms
on the right-hand side of (7.39) to have norm greater than ¢ > 0 with probability
o(N~?) and the second term to be strictly positive with probability 1 — o(N %)
(uniformly over a € A with « # 1), which gives (7.38). This completes the proof for
the FW-GMM estimator. The proofs for the EW-GMM and minimum p estimators
are analogous.

Lastly, we establish the GN result of the Lemma. For the minimum p estimator,
it suffices to show that

0 -
PN~ 12 (Xi,Onj-1) = 579(Xi, O =)l > N7V In(N) = o(N ). (7.42)

0

For the FW-GMM estimator, we also need to show that

N 62

1 1 1/2 —a

P([|[N~ ;g X@,HN] 1)/ QN 289 aH,g(XZ,QNJ Dl > N"21n(N)) = o(N %)

(7.43)

for r =1,..., Ly. For the EW-GMM estimator, (7.43) must hold with €2 replaced by
QN (On g, )-

First, we establish (7.42). By mean value expansions about #p and the triangle
inequality,

0 ~
HN 1 E ngeN,] 1 69/Q(Xi79N,j—1))H
1 0
< HN E Xz;QO e/g(X’lveO))H
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N

0 ~
+N71 su A(X;,0
; 9€N0,7"p§L9 897‘ ( ( )

32
00,0

oo O - [P j—1 — ol .

(7.44)

In addition, ||0n.;_1 — 6o|| < [Bn.j—1 — On|| + [ — bo||. Hence, it suffices to show
that

N

0 —a

PN Y (AR b0) — 9(Xi, )| > N2 In(N)) = o N,
i=1

N
0 2 u
VY, g AKe6) — 55Xl > K) = o),
=1 0,">Lyg r
(iii) P(|[0nj—1 — On|| > N~VY2In(N)) = o(N~%), and
(iv) P(|[6x — bol| > N2 1In(N)) = o(N~%) (7.45)

for all j = 1,...,k and some K < oo. Condition (i) holds by Lemma 3(c) with
p = 2a+ 3, (ii) holds by Lemma 3(b) with p = min{g2, g3}, (iv) holds by Lemma 5,
(iii) holds for j = 1 by the assumption on the initial estimator 5N70, and (iii) holds for
Jj =2, ...,k by recursively applying part (a) of Theorem 1 with £ = j — 1, which holds
without assuming Assumption 6 by the present proof that the result of Assumption
6 holds for Qn,; for 7 < j — 1 under the assumptions.

Next, we establish (7.43). Element by element mean value expansions give

N
NS " g(Xi,On,jo1) = 129 X;,00) + N~ 1289"9 Xi,08 1) On,j—1 — b0),

i=1 i=1
R (7.46)
where QEJ_I lies between Oy ;1 and 6. By Lemma 3(c), P(||N~* ZZ]\LI 9(X,600)||
> N~1/21n(N)) = o(N~®). Combining this with results (iii) and (iv) of (7.45), the
first result of Lemma 4, and (7.46) gives

P(|IN~ 129 X;,0n;-1)|| > N Y21In(N)) = o(N~%). (7.47)

By mean value expansions about 6y,
1 7 P —a
P(IN™ Z T 89,9 (Xi, v 1)l > K) = o(N~%) (7.48)

for some K < oo, using Lemma 3(b) applied with m(X;) = (82/86,00')g(X;,00) and
results (iii) and (iv) of (7.45). Equations (7.47) and (7.48) combine to yield (7.43).
Equation (7.43) holds with €2 replaced by Qn(0n k, ) by the second result of Lemma
4 with @) ; = O g, and the above proof of (7.43).

The results of the Lemma for the restricted matrices Qi %, QY. Q%~®, and
7,GN

N  areproved by the same arguments as for the unrestricted matrices by replacing
f by 7 in the appropriate places. [J
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7.3.3 Proof of Lemma 3

A strong mixing moment inequality of Yokoyarna (1980) and Doukhan (1995,
Theorem 2 and Remark 2, pp. 25-30) gives E|| SN, m(X;)||P < CNP/? provided
p > 2. Application of Markov’s inequality and the Yokoyama-Doukhan inequality
yields the left-hand side in part (a) of the Lemma to be less than or equal to

cPNPE| Zm DIP < e PONP/2 = o(N—9). (7.49)

Part (b) follows from part (a) applied to m(X;) — Em(X,) and the triangle inequality.

To establish part (c), we use the Edgeworth expansion given in Theorem 1.1
of Gotze and Hipp (1994) (with our f(X;) equal to their Z; and their function
WZj, ..., Zj1+p—1) equal to Z;, which makes their X; equal to their Z;). This the-
orem is a special case of Corollary 2.9 of Gétze and Hipp (1983). Conditions (2)—(4)
of Gotze and Hipp (1994) hold by Assumptions 1, 3(f), and 4. Because the result of
the Lemma can be proved element by element, we consider an arbitrary element f,(-)
of f(+). Let ®(+) denote the standard normal distribution function. By the Edgeworth
expansion, there are homogeneous polynomials 7;(6) in 6 = 9/0z for i = 1, ..., 2a such
that

2a
sup |P(N VQva )—(1+ZN‘i/27ri(6))¢'(z)]:o(N_“). (7.50)

zZER

This implies that for any constant zy

P(N"Y? Z Fo(X)| > 2n)
=1-(1+ ZN‘i/Qwi(é))(é(zN) — B(—2zy)) + o( N~

2a
= 2B (—2y) — (> N 2mi(8))(®(2w) — &(—2n)) +o(N~%).  (7.51)

Let zy = eIn(N). Using ®(—2) < Cexp(—22/2) for z > 1, we have

®(—zy) < Cexp(—e?In?(N)/2) < Cexp(—(a+1)In(N)) = CN~@+D = o(N~9),
(7.52)
where the second inequality holds for any given a > 0 and € > 0 for NV sufficiently
large. The expression 7;(§)®(zy) is a finite sum of terms of the form bz} ¢(zn)
for some integer j and real number b, where ¢(-) denotes the standard normal den-
sity. By an analogous calculation to that in (7.52), zf\,d)(zN) = & Inf(N)(2m) /2
x exp(—e21n?(N)/2) = o(N~%). This completes the proof. I
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7.3.4 Proof of Lemma 4

The second result of the Lemma follows from

P(||2' (B1,8) — Q5 (Bo)l| > €) = o(N ), (7.53)

P13 () — EQ3! (B0l > €) = o(N~%), and (7.54)

EQ N (00) = Q5. (7.55)

To establish (7.53), we take mean value expansions about 6y, apply Lemma 3(b) with

m(Xi) = supgen, ll9(Xi, )] - [1(0/00)9(Xiy;,0)|| for j = —k,...k and
P = q2, and use the assumption on 6; n. To establish (7.54), we use Lemma 3(a)
with m(XZ) = g(XZ,Qo) ( H—];HO) Eg(Xl,Ho)g(X1+j,90)/ for j = —K,...,KR and
p = q1/2. Equation (7.55) holds by definition of 2.

The third, fourth, and fifth results of the Lemma follow from the first two results
of the Lemma and the following: For some K < oo and all € > 0,

P(IN" 1ngxz,em>u>f<>—o< ) for j=1,2,3, and  (7.50)

P(||N"? Zg(Xi,gLN)H > ) =o(N™%). (7.57)
=1

The first result of the Lemma, (7.56), and (7.57) hold by mean value expansions
about 6y, multiple applications of Lemma 3(b) with m(X;) = (97 /067)g(X;, 6) for
Jj=0,..,3 or m(X;) = Cy(X;) and multiple applications of Lemma 3(a) with m(X;)
= (07/06%) g(X;,00) —E(07/067) g(X;,00) for j = 0,1 and p = ¢2, and the assump-
tion on 5171\;. O

7.3.5 Proof of Lemma 5

First, we show that for all € > 0,

P(sup ||N™ IZG (Xi,0)|| >¢) =0o(N"%) for u = 1,2, where
0cO Pt

Gl(XZ,H) = g(XZ,Gg) — Eg(Xl, 9) and GQ(Xi’ 9) = p(Xz; 9) — Ep(Xl,é))
(7.58)
Let B(6,¢) denote the ball centered at 6 with radius . By Assumption 2(a), O is
compact. Hence, for any n > 0, there exist points {#; € © : j < J} such that

U7_B(0;,n) contains ©. For u = 1, the left-hand side of (7.58) is less than or equal
to

N
P(max sup N*1 G1(X;,0) — G1(X;,0;
(]<J oad (I z; (Xi,0) (Xi, 65|
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N
HINTY Gi(Xa 65)]]) > <)
i=1

< P(max su N~ i)+ ECy 0—0:|| >¢e/2
(]<J9€Bljm) Z (X))o — 6] > ¢/2)

+P(max ||[N ! ZG1(Xi,9j)|| >¢e/2)

g<d i=1
< P(||N~ 12 Xi) + ECy(Xi))n > ¢/2)
E i=1 N
+Y PINTY Gi(X5,6;)]| > €/2)
j= i=1
— o(N-%), (7.59)

where the first inequality uses Assumption 2(b) and the equality holds by Lemma
3(b) with p = go by taking 7 sufficiently small and Lemma 3(a) with p = go. The
proof for u = 2 is the same except that Cy(-) is replaced by supycg |[(0/98)p(-,8)||.

Now, we prove that P(H@N —6o|| > €) = o(IN"%) for the minimum p estimator
under Assumption 2(b)(ii). Let p(0) = Ep(X1,60). Given € > 0, there exists a 6 > 0
such that ||@ — 6p|| > ¢ implies that p(6) —p(fg) > 6 > 0. Thus,

P(p(@x) — py (On) + px (B) = pl6o) > 0)

<
< P(p(On) — pn(On) + pn(00) — p(60) > 6)
< P@zgg!mv(@) —p(0)] > 0)

o(N™%) (7.60)

P(|[y — bo]| > ¢)

using (7.58) with w = 2. The corresponding proof for the FW-GMM estimator under
Assumption 2(b)(i) is analogous with p(f) and ppn(f) replaced by J(6)
= Eg(X1,0)QFEg(X1,0) and Jy(0) respectively. R

For the minimum p estimator, the result that P(||0xy — 6o|| > ¢) = o(N"%) and
the assumption that g is in the interior of © imply that with probability 1 — o(N~%)
By is in the interior of ©, N1 SV g(X, (‘)N) =0, and Ay minimizes not only pn(0)
but Jy(6) (defined with an arbitrary positive definite weight matrix €2) over 6 € ©.
In consequence, in the remainder of this proof, we can treat the minimum p estimator
as a FW-GMM estimator.
_ Next, we prove the result of the Lemma for the FW-GMM estimator. We have:
Oy is in the interior of © and (0/00)Jn(0n) = 0 with probability 1 — o(N"¢).
Hence, element by element mean value expansions of (9/90)Jn(6n) about 6y and
rearrangement give

- 02 G,
i =00 =~ (o W00 ) (00 (7.61)

34



with probability 1 — o(N~%), where «9; lies between EN and 0y and may differ across
rows. In consequence, the result of the Lemma follows from the third result of
Lemma 4 for the FW-GMM estimator with 0y = 9']'{,, the first result of Lemma 4
with Oy = 6, and P([[N~Y2S°N  4(X;,60)|| > In(N)e) = o(N~%), which holds by
Lemma 3(c) with m(X;) = g(X;,00) using the assumption that ¢; > 2a + 3.

Given the second result of Lemma 4, the proof of the Lemma for the EW-GMM
estimator is analogous to that for the FW-GMM estimator. [J

7.3.6 Proof of Lemma 6

For any convex set B C RF4 and any 7 > 0, let Bf = {x € Rl : ||z —y|| < 7T
for some y € B}. We have

P(An+&y € B) — P(Ay € B)
< P(An +&n € B,|[En]l < ny) — P(An € B) + P(An + &5 € B, |[En]] > 1)
< (P(An € B ) — P(Ax € B)) + P(|l¢n ]| > 1) (7.62)

The second term on the right-hand side is o(N~%) by assumption. When Ay has an
Edgeworth expansion with remainder o(/N~¢), the first term on the last line of (7.62)
is less than or equal to

20
/ (143 N=V2,(2))p(2)d — / (1+ ZN"/Q 6(2)dz + o(N~) (7.63)
B7—7~_N i=1

uniformly over convex sets B. The difference between the integrals is O(ny) = o(N %)
uniformly over convex sets B C R¥4, because ¢(z) and its derivatives of all orders are
bounded over z € R¥4. Hence, P(Ay + &y € B) — P(Ay € B) < o(N™*) uniformly
over convex sets B. When Ay has an asymptotic x? expansion, the argument is the
same but with ¢(-) replaced by f,2(-).

Let B ={x € B : ||z—y|| > 7 for all y € B}, where B¢ denotes the complement
of B. We have P(An+{y € B, ||| < ny) > P(An € By )+o(N~%). Using this, an
analogous argument shows that P(Ay € B) — P(Ay + &y € B) < o(N %) uniformly
over convex sets B, which completes the proof of the first result of the Lemma.

The proof of the second result is analogous with B C R4 and Ay replaced by
B C R and Al An, respectively, in (7.62) and B, and B replaced by {z € R*4 :
2’z € By} and {x € R4 : 2/x € B}, respectively, in (7.63). Again, the difference
between the integrals is O(ny) = o(N~%) uniformly over convex sets B. O

7.3.7 Proof of Lemma 7

By a mean value expansion and the triangle inequality,

[l (02,5) —mn (81,31 < ( 12 sup [/(9/00)m(X;,0)[|) - |25 — x| (7.64)

i=1 9€No

Hence, the Lemma holds by the assumption on ||f2 y — 01 || and Lemma 3(b) with
m(Xi) = supgey, ||(9/90)m(X;,0)||. U
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7.3.8 Proof of Lemma 8

First, we establish the result of the Lemma with Ay = N1/2 (@N —0p), where /9\N
is the FW-GMM estimator. By Lemma 5 and Assumption 2(a), 5N is in the interior
of © and (0/06)Jn(0n) = 0 with probability 1 —o(N~¢). Element by element Taylor
expansions of (0/06)J. N(EN) about 6y of order d — 1 give

d—1

o . ~ G 1.0 " _

0= 55In(0n) = 55 n(60) + ; ﬁDJ%JN(QO)(QN — 00, ...,0n — 00) + Cy, where

Cx = (DD 3y 65) = DV 10 (600)) B — B, B — 00) (7.65)
N a0 N 06 0 050 0)s .

HX, lies between EN and 60y, and Dj(a/OH)JN(HO)@N — 90,...,51\/ — 0p) denotes
DI(9/90)Jn (o) as a j-linear map, whose coefficients are partial derivatives of
(0/00)Jn(0g) of order j, applied to the j-tuple (x5 — 0p,...,0n — o). Let Ry de-
note the column vector whose elements are the unique components of (9/96)Jx(6o),
DY(9/90)Jn(00), ..., DI71(0/06)Jn (0y). Each element of Ry is an infinitely differen-
tiable function of Spy. Let R denote the probability limit of Ry. Let ey
= (Civ,0,..,0)" be conformable to Ry. The first equation in (7.65) can be writ-
ten as v(Ry + en,0n — 0p) = 0, where v(+,-) is an infinitely differentiable function,
v(R,0) = 0, and (0/02)v(R,z)|z—0 = (0%/0000")Jn(0p) is positive definite with
probability 1 —o(N~%). Hence, the implicit function theorem can be applied to v(-,-)
at the point (R,0) to obtain

Oy — 0 = ARy + en) (7.66)

with probability 1 — o(N~%), where A is a function that does not depend on N, is
infinitely differentiable in a neighborhood of R, and satisfies A(R) = 0.

We apply Lemma 6 with Ay = NY2A(Ry) and €y = NY2(A(Ry+en)—A(Ry))
to obtain

Jim - sup N P(NY2A(Ry +en) € B) — P(NY2A(Ry) € B)|=0.  (7.67)
— BeBr,

Lemma 6 applies becanse (i) P(|[¢x | > ny) < PICN'2ley|| > ny) by a mean value
expansion, (i) |lex|| = ||¢y]l, (iii) ¢ satisfies ||¢ ]| < C||0n — o||¢ with probability
1 —o(N~%), (iv) 1y, which is defined to equal N'/2~4/2In?(N), is o(N~) because
d > 2a + 2 by Assumption 3(d), (v) P(NY?|lex|| > ny) < P(CNY?||6y — 6o]|¢
> ny) + o(N~%) = o(N?) by Lemma 5, (vi) A(Ry) can be written as G(Sn),
where G(:) is infinitely differentiable and G(S) = 0, and (vii) Ay = NY2A(Ry)
= N'/2G(Sy) has an Edgeworth expansion by the proof of Lemma 9 below.

Equations (7.66) and (7.67) and A(Ry) = G(Sn) yield the result of the Lemma.

The proof for the minimum p estimator is identical because the latter satisfies
(0/00)Jn(0n) = 0 with probability 1 —o(N %) by Lemma 5.

Next, suppose 6y is the EW-GMM estimator. We take a Taylor expansion of
order d — 1 of (0/00)Jn(0n,0n) about (On,0n) = (6o, 00). Applying the implicit
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function theorem as above, there exists an infinitely differentiable function A*(-,-)
such that R N
On — 0y = A*(R}k\; + e”jv,@N — 90) (768)

with probability 1 — o(N~%), where A*(R*,0) = 0 and R%, R*, e = (C¥,0,...,0),
and (7 are defined analogously to Ry, R, ey, and (. Substituting (7.66) with On
replaced by 51\/ into (7.68) and applying Lemma 6 as above gives a result analogous
to (7.67) with A(Ry + en) and A(Ry) replaced by A*(Ry + e}, A(Rn + en)) and
A*(Ry,A(Ry)) respectively. We can write A*(Ry,A(Ry)) as G(Sn), where G(-)
is an infinitely differentiable function and G(S) = A*(R*,A(R)) = A*(R*,0) = 0.
Combining this, the analogue of (7.67), and (7.68) gives the result of the Lemma for
the EW-GMM estimator.

Each of the remaining forms of Ay (viz., T, HN(HN) UN(EN) and KN@N) is
a function of [ ~ and, possibly, On. We take a Taylor expansion of Ay /N 1/2 about
(HN,HN) (6o, 0p) to order d — 1 to obtain

An :NI/Q(A**(SN,?O\N—O(),@N—90) —I—C?\}k), (769)

where A** is an infinitely differentiable function, A**(S,0,0) = 0, (y is the remain-
der term in the Taylor expansion, and ||C]] = O(|[6x — 60]|%) + O(||0n — 6o||%).
Substituting (7.66) and/or (7.68) into (7.69) gives Ay = NY2(A**(Sy, A*(R + e,
A(Ry +en)), AM(Ry +en)) +C¥)- We apply Lemma 6 again, using the result above
for ||C5]], to obtain an analogue of (7.67) with Ay = NV/2A** (S, A*(R3, A(RN)),
A(Ry)). We can write G(Sy) = A**(Sn, A*(Ry,A(RwN)), A(Rn)), where G(-) is
infinitely differentiable and G(S) = A**(S, A*(R*,A(R)), A(R)) = A**(S5,0,0) = 0.
Combining this, the analogue of (7.67), and (7.69) gives the result of the Lemma for
AN equal to TNJ‘, HN(QN), UN(HN), or KN(HN) [l

7.3.9 Proof of Lemma 9

Given Lemma 8 and the triangle inequality, it suffices to show that the ran-
dom vectors N1/ 2G(Sn) of Lemma 8 possess Edgeworth expansions with remainder
o(N~%). First, we obtain an Edgeworth expansion for N1/2(Sy — §) via Theorem
1.1 of Gotze and Hipp (1994), as in the proof of Lemma 3(c). The Edgeworth expan-
sion for N1/2G(Sy) is now obtained from that of N/2(Sy — S) by the argument in
Bhattacharya (1985, Pf. of Thm. 1) or Bhattacharya and Ghosh (1978, Pf. of Thm.
2) using the smoothness of G(-), G(S) = 0, and Assumption 3(b). O
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Footnotes

! The author thanks Carol Copeland for proofreading the manuscript. The author
gratefully acknowledges the research support of the National Science Foundation via
grant number SBR-9730277.

2 Note that some authors, e.g., Rothenberg (1984), say that two statistics have
equal s order asymptotic efficiency if their distributions are of CV distance o( N~ (5~1))
apart, rather than o(N~(—1)/2),

3 As stated, these definitions of equivalence of higher-order asymptotic efficiency
apply for a single data generating process (DGP). They could be altered to cover mul-
tiple DGPs. For an estimator, one could require that the CV distance is o( N~ (¢~1)/2)
for all DGPs that correspond to a true parameter 8y € ©. For a test statistic, one
could require that the CV distance is o( N~(*~1/2) for all distributions in the null
hypothesis. The results of the paper cover definitions of this sort. One just needs the
assumptions stated below to hold for all DGPs of interest and then the results given
apply to all such DGPs.

4 The r-th element of @N is denoted (EN)T, rather than 5N7T, to distinguish it from
the k-step estimator, §N7k, defined in Section 4 below.
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