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Abstract

Asymptotic properties of the local Whittle estimator in the nonstationary
case (d > 1

2) are explored. For 1
2 < d ≤ 1, the estimator is shown to be

consistent, and its limit distribution and the rate of convergence depend on the
value of d. For d = 1, the limit distribution is mixed normal. For d > 1 and
when the process has a polynomial trend of order α > 1

2 , the estimator is shown
to be inconsistent and to converge in probability to unity.

AMS 1991 subject classification: 62M10; JEL Classification: C22

Key words and phrases: Discrete Fourier transform, fractional integration, long
memory, nonstationarity, semiparametric estimation, trend, Whittle likelihood,
unit root.

Short Title: Nonstationary Local Whittle Estimation

∗The authors thank the Editor, Associate Editor, two referees, Donald Andrews and Marcus
Chambers for helpful comments on earlier versions. In particular, comments by a referee led to a
substantial improvement of the results in the paper. Shimotsu thanks the Cowles Foundation for
support under a Cowles prize and the Sloan Foundation for Fellowship support. Phillips thanks the
NSF for research support under Grants SBR97-30295 & SES 0092509. Simulations and empirical
computations were performed in MATLAB.

1



1 Introduction

Semiparametric estimation of the memory parameter (d) in fractionally integrated
(I(d)) time series has attracted much recent study and is attractive in empirical ap-
plications because of its general treatment of the short memory component. Two
commonly used semiparametric estimators are log periodogram (LP) regression and
local Whittle estimation. LP regression is popular mainly because of the simplicity
of its construction as a linear regression estimator. Local Whittle estimation involves
numerical methods but is more efficient than LP regression. The local Whittle esti-
mator was proposed by Künsch (1987), and Robinson (1995) showed its consistency
and asymptotic normality for d ∈ (−12 , 12). Velasco (1999) extended Robinson’s re-
sults to show that the estimator is consistent for d ∈ (−12 , 1) and asymptotically
normally distributed for d ∈ (−12 , 34).

The present paper studies the asymptotic properties of the local Whittle estima-
tor in the nonstationary case for d > 1

2 , including the unit root case and the case
where the process has a polynomial time trend. These cases are of high importance
in empirical work especially with economic time series, which commonly exhibit non-
stationary behavior and show some evidence of deterministic trends as well as long
range dependence. The asymptotic properties of the local Whittle estimator in the
nonstationary case over the region d ∈ (12 , 1) were explored in Velasco (1999). Velasco
also showed that, upon adequate tapering of the observations, the region of consistent
estimation of d may be extended but with corresponding increases in the variance of
the limit distribution. For the region d ≥ 1, there is presently no theory for the un-
tapered Whittle estimator and, for the region d ∈ (34 , 1), no limit distribution theory.
The unit root case is of particular interest because it stands as an important special
case of an I(d) process with d = 1 and it has played a central role in the study of
nonstationary economic time series. It is also now known to be the borderline that
separates cases of consistent and inconsistent estimation by LP regression (Kim and
Phillips, 1999) and, as we shall show here, local Whittle estimation.

This paper demonstrates that the local Whittle estimator (i) is consistent for
d ∈ (12 , 1], (ii) is asymptotically normally distributed for d ∈ (12 , 34), (iii) has a non-
normal limit distribution for d ∈ [34 , 1), (iv) has a mixed normal limit distribution for
d = 1, (v) converges to unity in probability for d > 1, and (vi) converges to unity in
probability when the process has a polynomial time trend of order α > 1

2 . The present
paper, therefore, complements the earlier work of Robinson (1995) and Velasco (1999)
and largely completes the study of the asymptotic properties of the local Whittle
estimator for regions of d that are empirically relevant in most applications. The
paper also serves as a counterpart to Phillips (1999b) and Kim and Phillips (1999),
which analyze the asymptotics of LP regression for d ∈ (12 , 2).

The approach in the present paper draws on an exact representation and approx-
imation theory for the discrete Fourier transform (dft) of nonstationary fractionally
integrated processes. The theory, developed by Phillips (1999a), employs a model for
nonstationary fractionally integrated processes that is valid for all values of d and
provides a uniform apparatus for analyzing the asymptotic behavior of their dft’s.

The remainder of the paper is organized as follows. Section 2 introduces the
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model. Consistency of the local Whittle estimator for d ∈ (12 , 1] and its inconsistency
for d > 1 are demonstrated in Section 3. Section 4 derives the limit distributions.
Results for fractionally integrated processes with a polynomial time trend are given in
Section 5. Section 6 reports some simulation results and gives an empirical application
using economic data. Section 7 makes some brief remarks on the important practical
issue of finding a good general purpose estimator of d when nonstationarity in the
data is suspected. Some technical results are collected in Appendix A in Section 8.
Proofs are given in Appendix B in Section 9.

2 Preliminaries

We consider the fractional process Xt generated by the model

(1− L)d (Xt −X0) = ut, t = 0, 1, 2, ... (1)

where X0 is a random variable with a certain fixed distribution. Our interest is in
the case where Xt is nonstationary and d > 1

2 , so in (1) we work from a given initial
date t = 0, set ut = 0 for all t ≤ 0, and assume that ut (t ≥ 1) is stationary with zero
mean and spectral density fu(λ). Expanding the binomial in (1) gives the form

tX
k=0

(−d)k
k!

(Xt−k −X0) = ut, (2)

where

(d)k =
Γ(d+ k)

Γ(d)
= (d)(d+ 1) . . . (d+ k − 1),

is Pochhammer’s symbol for the forward factorial function and Γ (·) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences of
Xt. An alternate form for Xt is obtained by inversion of (1), giving a valid represen-
tation for all values of d

Xt = (1− L)−d ut +X0 =
t−1X
k=0

(d)k
k!
ut−k +X0. (3)

Define the discrete Fourier transform (dft) and the periodogram of a time series at
evaluated at the fundamental frequencies as

wa (λs) =
1√
2πn

nX
t=1

ate
itλs , λs =

2πs

n
, s = 1, . . . , n, (4)

Ia (λs) = |wa (λs) |2.

The model (1) is not the only model of nonstationary fractional integration. An-
other model that is used in the literature forms a process Xt with d ∈ [12 , 32) from the
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partial sum of a stationary long-range dependent process, as in

Xt =
tX

k=1

Uk +X0; d ∈ [12 , 32), (5)

where Ut has spectral density f (λ) ∼ G0λ−2(d−1) as λ→ 0. Model (5) applies for the
specific range of values d ∈ [12 , 32) and this can be extended by repeated use of partial
summation in the definition. Model (1) directly provides a valid model for all values
of d. Some interest in (1) has already been shown in the literature (e.g. Marinucci
and Robinson, 2000, Robinson and Marinucci, 2001).

3 Local Whittle estimation: consistency for d ≤ 1 and
inconsistency for d > 1

Local Whittle (Gaussian semiparametric) estimation was developed by Künsch (1987)
and Robinson (1995). Specifically, it starts with the following Gaussian objective
function, defined in terms of the parameter d and G

Qm(G,d) =
1

m

mX
j=1

"
log
³
Gλ−2dj

´
+

λ2dj
G
Ix (λj)

#
, (6)

where m is some integer less than n. The local Whittle procedure estimates G and d
by minimising Qm(G,d), so that

( bG, bd) = argmin
G∈(0,∞), d∈[∆1,∆2]

Qm(G, d),

where ∆1 and ∆2 are numbers such that −1/2 < ∆1 < ∆2 <∞. It will be convenient
in what follows to distinguish the true values of the parameters by the notation
G0 = fu (0) and d0. Concentrating (6) with respect to G as in Robinson (1995) gives

bd = argmin
d∈[∆1,∆2]

R(d),

where

R(d) = log bG(d)− 2d 1
m

mX
1

logλj, bG(d) = 1

m

mX
1

λ2dj Ix (λj) .

We now introduce the assumptions on m and the stationary component ut in (1).

Assumption 1
fu (λ) ∼ fu (0) ∈ (0,∞) as λ→ 0 + .

Assumption 2 In a neighborhood (0, δ) of the origin, fu(λ) is differentiable and

d

dλ
log fu(λ) = O(λ

−1) as λ→ 0 + .
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Assumption 3

ut = C (L) εt =
∞X
j=0

cjεt−j ,
∞X
j=0

c2j <∞, (7)

where E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1 a.s., t = 0,±1,. . . , in which Ft is the σ-field
generated by εs, s ≤ t, and there exists a random variable ε such that Eε2 <∞ and
for all η > 0 and some K > 0, Pr(|εt| > η ) ≤ K Pr(|ε| > η).

Assumption 4
1

m
+
m

n
→ 0 as n→∞.

Assumptions 1-3 are analogous to Assumptions A1-A3 of Robinson (1995). How-
ever, we impose them in terms of ut rather than Xt. Assumption 4 is the same as
Assumption A4 of Robinson (1995).

Lemma 8.1 (a) in the Appendix gives the following expression for wx (λs):

wx (λs) =
Dn(eiλs ; θ)

1− eiλs wu (λs)− eiλs

1− eiλs
Xn −X0√
2πn

− 1

1− eiλs
eUλsn (θ)√
2πn

. (8)

Neglecting the third term of (8) as a remainder, wx (λs) is seen to comprise two
terms — a function of the dft of ut and a function of Xn. As the value of d changes,
the stochastic magnitude of the two components changes, and this influences the
asymptotic behavior of wx (λs) .When d < 1, the first term dominates the second term
and wx (λs) behaves like λ−ds wu (λs) , being asymptotically uncorrelated for different
frequencies. When d > 1, the second term becomes dominant and wx (λs) behaves
like λ−1s (Xn −X0) /

√
2πn, being perfectly correlated across all λs. This switching

behavior of wx (λs) at d = 1 is a key determinant of the asymptotic properties of the
local Whittle estimator, as well as other procedures like LP regression. When d = 1,
the two terms have the same stochastic order and this leads to a form of asymptotic
behavior that is particular to this case.

Theorem 3.1 below establishes that bd is consistent for d0 ∈ (12 , 1] and hence
consistency carries over to the unit root case. While bG is consistent for d0 ∈ (12 , 1),
however, it is inconsistent and tends to a random quantity when d0 = 1.

3.1 Theorem

Suppose Xt is generated by (1) with d0 ∈ [∆1,∆2] and Assumptions 1-4 hold. Then,
for d0 ∈ (12 , 1], bd→p d0 as n→∞, and

bG(bd)→d

½
G0, for d0 ∈ (12 , 1),
G0(1 + χ21), for d0 = 1.

When d0 > 1, bd manifests very different behavior. It converges to unity in prob-
ability and the local Whittle estimator becomes inconsistent. So the local Whittle
estimator is biased downward even in very large samples whenever the true value
of d is greater than unity. Kim and Phillips (1999) showed that the LP regression
estimator also converges to unity when d0 > 1.
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3.2 Theorem

Under the same conditions as Theorem 3.1, for d0 ∈ (1,M ], bd→p 1 as n→∞.

3.3 Remark

Velasco (1999) showed that bd is consistent for d0 ∈ (12 , 1) using the model (5). We con-
jecture that our consistency and inconsistency results for the local Whittle estimator
for d0 = 1 and d0 ∈ (1, 32) continue to hold under (5).

4 Local Whittle estimation: asymptotic distribution

We introduce some further assumptions that are used in the results of this section.

Assumption 10 For some β ∈ (0, 2],

fu (λ) = fu (0) (1 +O(λ
β)); fu (0) ∈ (0,∞), as λ→ 0 + .

Assumption 20 In a neighborhood (0, δ) of the origin, C(eiλ) is differentiable and

d

dλ
C(eiλ) = O(λ−1) as λ→ 0 + .

Assumption 30 Assumption 3 holds and also

E(ε3t |Ft−1) = µ3, E(ε4t |Ft−1) = µ4, a.s., t = 0,±1, . . . ,

for finite constants µ3 and µ4.

Assumption 40 As n→∞,

1

m
+
m1+2β(logm)2

n2β
→ 0.

Assumption 50 Uniformly in k = 0, 1, . . .X
j≥k

γj = O((log(k + 1))
−4),

X
j≥k

cj = O((log(k + 1))
−4); γj ≡ Eutut+j.

Assumption 60 For the same β ∈ (0, 2] as in Assumption 10 and λ,λ0 ∈ (−δ, δ),

|C(eiλ)−C(eiλ0)| ≤ C|λ− λ0|min{β,1}, C ∈ (0,∞).

Assumptions 10-40 are analogous to Assumptions A10-A40 of Robinson (1995),
except that our assumptions are in terms of ut rather than Xt. When d0 ∈ (12 , 1), we
need an additional assumption, Assumption 50, that controls the behavior of the tail
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sum of cj and γj. This assumption seems to be fairly mild. For instance, consider
the stationary Gegenbauer process proposed by Gray et al. (1989):

ut = (1− 2aL+ L2)−bεt = C(L)εt, t = 0,±1,±2, . . . ,
with |a| < 1 and b ∈ (0, 1/2). Its spectral density is fu(λ) = {4(cosλ − a)2}−b/2π,
which has a fractional pole at λ0 = cos−1 a. The asymptotic approximations for cj
and γj are given by (Gray et al., 1999, pp. 236-238)

cj ∼ Λ1(a, b) cos{(j + b)λ0 − bπ/2}jb−1,
γj ∼ Λ2(a, b)j

2b−1 sin(πb− jλ0), (9)

as j → ∞, where Λ1(a, b) and Λ2(a, b) do not depend on j. Since cj and ρj satisfy
Assumption 50 (Zygmund, 1959, Theorem 2.2, p.3), Assumption 50 allows for a pole
and discontinuity in fu(λ) at λ 6= 0. However, Assumption 50 is not satisfied if γk =
(k + 1)−1(log(k + 1))−4. When d0 = 1, Assumption 50 is not necessary, but instead
we need Assumption 60. It requires C(eiλ) to be Lip(min{β, 1}) in the neighborhood
of the origin.

The following theorems establish the asymptotic distribution of the local Whittle
estimator for d0 ∈ (12 , 1]. When d0 ∈ (12 , 34), bd is asymptotically normally distributed,
but bd has a non-normal limit distribution and slower rate of convergence when d0 ∈
[34 , 1). This phenomenon occurs because, when d0 is large, the stochastic magnitude
of Xn in the representation (8) becomes so large that it dominates the behavior of bd.
4.1 Theorem

Suppose Xt is generated by (1) with d0 ∈ (∆1,∆2) and Assumptions 1 0-5 0 hold.
Then

m
1
2 (bd− d0)→d

1
2U, for d0 ∈ (12 , 34),

m
1
2 (bd− d0)→d

1
2U + J(d0)W

2, for d0 = 3
4 ,

m2−2d0(bd− d0)→d J(d0)W
2, for d0 ∈ (34 , 1),

where J(d0) = (2π)2d0−2 Γ(d0)−2(2d0 − 1)−3(1 − d0), and U and W are mutually
independent N (0, 1) random variables.

When d0 = 1, the two main components of wx (λs) , i.e. wu (λs) and Xn/
√
2πn,

have the same stochastic magnitude, and the limit distribution of the local Whittle
estimator turns out to be mixed normal (denoted as MN below). Intriguingly, the
variance of bd becomes smaller than the case where d0 < 1, as was found in the
corresponding case for LP regression (Phillips, 1999b).

4.2 Theorem

Suppose Xt is generated by (1) with d0 = 1 ∈ (∆1,∆2) and Assumptions 1 0-4 0 and
6 0 hold. Then

m
1
2 (bd− d0)→d MN

¡
0,σ2 (W )

¢ ≡ Z ∞

−∞
N
¡
0,σ2(h)

¢
φ(h)dh,
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where W is N (0, 1), φ (·) is standard normal pdf, and

σ2(h) =
1

4

1 + 2h2

1 + 2h2 + h4
.

4.3 Remarks

(a) When d0 = 1, the variance of the limit distribution of m
1
2 (bd− d0) is less than 1

4
since σ2(h) ≤ 1

4 almost surely. Numerical evaluation gives

σ2d =
1

4

Z ∞

−∞
1 + 2h2

1 + 2h2 + h4
1√
2π
exp

µ
−h

2

2

¶
dh = 0.2028.

Thus, the limit distribution of the local Whittle estimator has less dispersion when
d0 = 1 than it does in the stationary and d0 ∈ (12 , 34) cases. A similar phenomenon
applies in the limit theory for LP regression where again the limit distribution is
mixed normal when d0 = 1 (Phillips, 1999b).

(b) Velasco (1999) shows asymptotic normality of the estimator for d0 ∈ (12 , 34)
using the model (5). We conjecture that the estimator has the same asymptotic
distributions as those given above for d0 ∈ (34 , 1] under (5), possibly with different
J(d0), although the limit distribution for d0 = 3

4 might be difficult to derive.

5 Fractional Integration with a Polynomial Time Trend

In many applications, a nonstationary process is accompanied by a deterministic time
trend. Accordingly, this section extends the analysis above to fractional processes
with an α—order (α > 0) polynomial deterministic time trend. Specifically, the process
Xt is generated by the model

Xt = (1−L)−d ut +X0 + µtα =
t−1X
k=0

(d)k
k!
ut−k +X0 + µtα, t = 0, 1, 2, . . . , µ 6= 0,

(10)
where X0 and ut are defined as above. As shown in the Appendix, the dft of a time
trend takes the form1

wtα (λs) =
1√
2πn

nX
t=1

tαeitλs = − 1

1− eiλs
nα√
2πn

[1 + o (1)].

Therefore, neglecting the reminder term and eUλsn (θ), we obtain the following ex-
pression of wx (λs) :

wx (λs) ' − µ

1− eiλs
nα√
2πn

+
Dn(e

iλs ; θ)

1− eiλs wu (λs)− eiλs

1− eiλs
Xn −X0√
2πn

(11)

' Cµλ−1s n
α−1/2 +Op(λ−ds ) +Op(λ

−1
s n

d−1).
1See also Corbae, Ouliaris and Phillips (2002), who give exact formulae for dft’s of a time trend

when α is a positive integer.
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When α > 1
2 , the second term in (11) is dominated either by the first term (if

α > d − 1
2) or the third term (if 12 < α < d − 1

2), and then wx (λs) behaves like
C (n)λ−1s , where C (n) does not depend on s. As a result, bd converges to unity in
probability, and the local Whittle estimator is inconsistent except when the true value
d0 = 1. Since Xn = Op(n

d−1/2), this result might be regarded as an instance of a
deterministic trend dominating a stochastic trend when α > d − 1

2 . In the present
case, because the dft of a deterministic trend is governed by the final observation, nα,
the outcome for unfiltered, untapered data is the inconsistency of bd. In consequence,
some caution is needed in applying the Whittle estimator to investigate the degree
of long range dependence when a time series exhibits trending behavior involving a
deterministic trend of uncertain order. The same result holds if the deterministic
trend kt is fractionally integrated in the sense that (1− L)α kt = I{t ≥ 1}, because
then kn ∼ Γ (α+ 1)−1 nα, as shown in the Appendix.

5.1 Theorem

Suppose Xt is generated by (10) with d0 ∈ [∆1,∆2], α > 1
2 , and Assumptions 1-4

hold. Then, for d0 ∈ (12 ,M ], bd→p 1 as n→∞.

6 Simulations and an Empirical Application

First, we report simulations that were conducted to examine the finite sample perfor-
mance of the local Whittle estimator using (1) with ut ∼ iidN (0, 1) . All the results
are based on 10, 000 replications.

Table 1. Simulation Results for d = 0.7 and d = 1.0

d = 0.7 d = 1.0
n bias s.d. t.s.d. bias s.d. t.s.d.
200 0.0002 0.1977 0.1336 -0.0235 0.1779 0.1204
500 0.0093 0.1451 0.1066 -0.0129 0.1280 0.0960

1,000 0.0101 0.1162 0.0898 -0.0102 0.1019 0.0809
note: t.s.d denotes theoretical standard deviation.

Table 1 shows the simulation results for d = 0.7 and d = 1.0. The sample size and m
were chosen to be n = 200, 500, 1000 and m =

£
n0.5

¤
. The estimator is seen to have

smaller standard deviation when d = 1.0, corroborating the asymptotic theory.
Figure 1 plots the empirical distribution of the estimator for d = 0.7, 0.9, 1.0,

1.5 when n = 500 and m =
£
n0.5

¤
. The estimator appears to have a symmetric

distribution when d ≤ 1, and the positive bias and skewness of the limit distribution
for d = 0.9 is not evident for this sample size. When d > 1, distribution of the
estimator is concentrated around unity, again corroborating the asymptotic result.
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Fig. 1: Densities of the local Whittle estimator: n = 500, m = n0.5

As an empirical illustration, the local Whittle estimator was applied to the his-
torical economic time series considered in Nelson and Plosser (1982) and extended
by Schotman and van Dijk (1991). We also estimate d by first taking differences of
the data, estimating d− 1, and adding unity to the estimate dd− 1. This procedure
is consistent for 1/2 < d < 2 and invariant to a linear trend. Table 2 shows the
estimates based on both m = n0.5 and m = n0.6. These series produce long memory
estimates over a wide interval that ranges from around 0.5 for the unemployment
rate to 1.38 for the bond yield. For the unemployment rate, the local Whittle esti-
mate from the raw data (bdLW ) and the local Whittle estimate from the differenced
data (bdLWD) are very close together, both indicating only marginal nonstationarity
in the data. For the bond yield, bdLWD is very different from bdLW . Especially for
the GNP measures, industrial production and employment, the presence of a linear
trend component in the data (which is supported by much of the empirical work with
this data set following Nelson and Plosser, 1982) appears to bias bdLW heavily toward
unity. These particular results indicate that, although the local Whittle estimator is
consistent for 0.5 < d ≤ 1, the use of differenced data or even data tapering (Velasco,
1999, Hurvich and Chen, 2000) may be preferable, unless the time series clearly does
not involve a deterministic trend and values of d > 1 are not suspected.
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Table 2. Estimates of d for US Economic Data

m = n0.5 m = n0.6

n bdLW bdLWD
bdLW bdLWD

Real GNP 62 0.990 0.626 0.946 0.719
Nominal GNP 62 0.983 0.901 0.930 0.909
Real per capita GNP 62 0.976 0.631 0.912 0.728
Industrial production 111 0.918 0.516 0.968 0.593
Employment 81 1.001 0.660 0.977 0.713
Unemployment rate 81 0.507 0.527 0.705 0.741
GNP deflator 82 1.143 0.973 1.049 1.099
CPI 111 1.020 1.227 0.828 1.176
Nominal wage 71 1.080 1.026 1.015 0.983
Real wage 71 1.105 0.785 1.030 0.822
Money stock 82 1.042 0.913 0.993 1.232
Velocity of money 102 1.055 0.932 0.970 0.782
Bond yield 71 0.676 1.261 0.740 1.370
Stock prices 100 0.914 0.860 0.984 0.755

7 Concluding Remarks

The results of the present paper have a negative character, revealing that the local
Whittle estimator is not a good general purpose estimator when the value of d may
take on values in the nonstationary zone beyond 3

4 . The asymptotic theory is dis-
continuous at d = 3

4 and again at d = 1, is awkward to use and the estimator is
inconsistent beyond unity.

This paper has not explicitly addressed the issue of what semiparametric estima-
tion procedure is a good general purpose procedure for possibly nonstationary cases.
Data differencing and data tapering have been explored (Velasco, 1999, Hurvich and
Chen, 2000), are easy to implement and have been shown to extend the range of
applicability of the local Whittle estimator. But these approaches do have some dis-
advantages, like the need to determine the appropriate order of differencing and the
effects of tapering on variance. Another approach is to use the exact form of the local
Whittle estimator suggested in Phillips (1999a), which does not rely on differencing
or tapering. This estimator has recently been shown by the authors (Shimotsu and
Phillips, 2002) to be consistent and have the same N(0, 14) limit distribution for all
values of d. While it is still too early for a definitive answer to the question of what
is a good general purpose semiparametric estimator of d that allows for nonstation-
arity, these approaches offer some useful alternatives for applied researchers, and the
present paper is at least a cautionary tale about performance characteristics of the
local Whittle estimator in the nonstationary environment.
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8 Appendix A: Technical Lemmas

In this and the following sections, x∗ denotes the complex conjugate of x, and |x|+
denotes max{x, 1}.

8.1 Lemma (Phillips, 1999a, Theorems 2.2 and 2.7)

(a) If Xt follows (1), then

wx (λ)
³
1− eiλ

´
= Dn

³
eiλ; θ

´
wu (λ)− einλ√

2πn
eUλn (θ)− eiλ√

2πn

³
einλXn −X0

´
, (12)

where Dn(eiλ; θ) =
Pn
k=0

(−θ)k
k! e

ikλ, θ = 1− d, and

eUλn (θ) = eDnλ ³e−iλL; θ´un = n−1X
p=0

eθλpe−ipλun−p, eθλp = nX
k=p+1

(−θ)k
k!

eikλ. (13)

(b) If Xt follows (1) with d = 1, then

wx (λ)
³
1− eiλ

´
= wu (λ)− eiλ√

2πn

³
einλXn −X0

´
. (14)

8.2 Lemma

For θ > −1 and uniformly in s = 1, 2, . . . ,m with m = o (n) ,

Dn
³
eiλs ; θ

´
=
³
1− eiλs

´θ
+O

³
n−θs−1

´
. (15)

8.3 Proof

Dn

³
eiλs ; θ

´
=

∞X
0

(−θ)k
k!

eikλs −
∞X
n+1

(−θ)k
k!

eikλs

= 2F1
³
−θ, 1; 1; eiλs

´
−

∞X
n+1

k−θ−1

Γ (−θ)e
ikλs +O

Ã ∞X
n+1

k−θ−2
!
, (16)

since (−θ)k /k! = Γ (−θ)−1 k−θ−1(1+O(k−1)) (Erdélyi, 1953, p.47). Because θ > −1
and s 6= 0, the first term in (16) converges and equals to (1 − eiλs)θ (Erdélyi, 1953,
p.57). For the second term in (16), by Theorem 2.2 of Zygmund (1959, p.3) we have¯̄̄̄

¯
∞X
n+1

k−θ−1eikλs
¯̄̄̄
¯ ≤ (n+ 1)−θ−1maxN

¯̄̄̄
¯
n+NX
n+1

eikλs

¯̄̄̄
¯ = O ³n−θs−1´ .

The third term in (16) is necessarily O(n−θs−1) because
P∞
n+1 k

−θ−2 = O(n−θ−1).

12



8.4 Lemma

(a) λ−θ(1− eiλ)θ = e−π
2
θi +O (λ) as λ→ 0 + .

(b) For θ > −1 and uniformly in s = 1, 2, . . . ,m with m = o (n) ,

λ−θs Dn
³
eiλs ; θ

´
= e−

π
2
θi +O (λs) +O(s

−1−θ). (17)

8.5 Proof

For (a), since |1− eiλ| = |2 sin(λ/2)| and arg(1− eiλ) = (λ− π)/2 for 0 ≤ λ < π, we
can write (1− eiλ)θ in polar form as |2 sin(λ/2)|θ exp [iθ(λ− π)/2]. It follows that

λ−θ(1− eiλ)θ = λ−θ(λ+O(λ3))θ [exp(−iθπ/2) +O(λ)] = e−π
2
θi +O (λ) ,

giving the stated result. (b) follows from (a) and Lemma 8.2.

8.6 Lemma

Uniformly in p = 0, 1, . . . , n− 1 and s = 1, 2, . . . ,m with m = o (n) ,

(a) eθλsp =

½
O(|p|−θ+ ) = O(|p|d−1+ ), for θ > 0,
O(n−θ) = O(nd−1), for θ ∈ (−1, 0) , (18)

(b) eθλsp = O(|p|−θ−1+ ns−1) = O(|p|d−2+ ns−1), for θ > −1. (19)

8.7 Proof

Observe eθλsp = Γ (−θ)−1 nX
p+1

k−θ−1eikλs +O

 nX
p+1

k−θ−2
 .

The required results follow from the fact that

nX
p+1

k−θ−1 =

½
O(|p|−θ+ ), for θ > 0,
O(n−θ), for θ ∈ (−1, 0) ,

nX
p+1

k−θ−2 ≤
nX
p+1

k−θ−1,¯̄̄̄
¯̄ nX
p+1

k−θ−1eikλs

¯̄̄̄
¯̄ ≤ (p+ 1)−θ−1max

N

¯̄̄̄
¯̄p+NX
p+1

eikλs

¯̄̄̄
¯̄ = O ³|p|−θ−1+ ns−1

´
,

and
Pn
p+1 k

−θ−2 = O(|p|−θ−1+ ).

8.8 Lemma

(a) Under the assumptions of Theorem 3.1, we have

(a1) E|eUλsn (θ) |2 = O(hns(θ)), (a2) E(Xn −X0 −C(1)Xε
n)
2 = o(n2d−1),

13



uniformly in s = 1, 2, . . . ,m, where Xε
n =

Pn−1
k=0

(d)k
k! εn−k and

hns(θ) =

½
n1−2θs2θ−1 = n2d−1s1−2d, for θ ∈ (−12 , 12),
n1−2θs2θ−1(log(s+ 1))2 = n2d−1s1−2d(log(s+ 1))2, for θ = −12 .

(b) Under the assumptions of Theorem 4.1, we have, uniformly in s = 1, . . . ,m,

E|eUλsn (θ)−C(1)eελsn (θ) |2 = O(n1−2θs2θ−1(logn)−4+n1−2θs−2), for θ ∈ (−12 , 12).

8.9 Proof

8.9.1 Part(a)

We prove (a1) first. When θ = 0, the stated result follows because eUλsn (θ) = 0.
When θ 6= 0, define ap = eθλspe−ipλs so that eUλsn (θ) =

Pn−1
p=0 apun−p. We suppress

the dependence of ap on θ and λs. Summation by parts gives

eUλsn (θ) =
n−2X
p=0

(ap − ap+1)
pX
j=0

un−j + an−1
n−1X
j=0

un−j. (20)

Observe that

ap − ap+1 =
nX

k=p+1

(−θ)k
k!

ei(k−p)λs −
nX

k=p+2

(−θ)k
k!

ei(k−p−1)λs

=
nX

k=p+1

(−θ)k
k!

ei(k−p)λs −
n−1X
l=p+1

(−θ)l+1
(l + 1)!

ei(l−p)λs

=
n−1X
k=p+1

·
(−θ)k
k!
− (−θ)k+1
(k + 1)!

¸
ei(k−p)λs +

(−θ)n
n!

e−ipλs

=
n−1X
k=p+1

(1 + θ)Γ(k − θ)

Γ(−θ)Γ(k + 2) e
i(k−p)λs +

(−θ)n
n!

e−ipλs ,

where the fourth line follows from (−θ)k
k! − (−θ)k+1

(k+1)! = − Γ(k−θ)
Γ(−θ−1)Γ(k+2) =

(1+θ)Γ(k−θ)
Γ(−θ)Γ(k+2) .

Define bnp =
Pn−1
k=p+1

(1+θ)Γ(k−θ)
Γ(−θ)Γ(k+2)e

i(k−p)λs , and then, since an−1 = (−θ)n
n! e

−i(n−1)λs ,

eUλsn (θ) =
n−2X
p=0

bnp

pX
j=0

un−j +
(−θ)n
n!

n−2X
p=0

e−ipλs
pX
j=0

un−j +
(−θ)n
n!

e−i(n−1)λs
n−1X
j=0

un−j

=
n−2X
p=0

bnp

pX
j=0

un−j +
(−θ)n
n!

n−1X
p=0

e−ipλs
pX
j=0

un−j

= U1n + U2n.

We proceed to show that the U·n are of the stated order. First, for U1n, we have

bnp = O
³
min{|p|−θ−1+ , |p|−θ−2+ ns−1}

´
, (21)
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uniformly in p = 0, . . . , n− 1 and s = 1, . . . ,m. (21) holds because

bnp =
1 + θ

Γ(−θ)e
−ipλs

n−1X
k=p+1

k−θ−2eikλs +O

n−1X
p+1

k−θ−3
 ,

and

n−1X
p+1

k−θ−2 = O
³
|p|−θ−1+

´
,

n−1X
p+1

k−θ−3 = O
³
|p|−θ−2+

´
,¯̄̄̄

¯̄n−1X
p+1

k−θ−2eikλs

¯̄̄̄
¯̄ ≤ (p+ 1)−θ−2max

N

¯̄̄̄
¯̄p+NX
p+1

eikλs

¯̄̄̄
¯̄ = O ³|p|−θ−2+ ns−1

´
.

Next,

E(
Pp
0 un−j)

2 = (p+ 1)
Pp
−p(1− |j|/(p+ 1))γj = O(|p|+); γj ≡ Eutut+j , (22)

for p = 0, . . . , n− 1, and it follows from Minkowski’s inequality that

E|U1n|2 = O

n−2X
p=0

|bnp||p|1/2+

2 = O

n/sX
p=0

|p|−θ−1/2+ +
nX

p=n/s

p−θ−3/2ns−1
2

=

½
O(n1−2θs2θ−1), θ ∈ (−12 , 12),
O(n1−2θs2θ−1(log(s+ 1))2), θ = −12 .

For U2n, we rewrite the sum as

U2n =
(−θ)n
n!

n−1X
p=0

e−ipλs
pX
j=0

un−j

=
(−θ)n
n!

nX
n−p=1

ei(n−p)λs
nX

n−j=n−p
un−j

=
(−θ)n
n!

nX
k=1

uk

kX
q=1

eiqλs

=
(−θ)n
n!

nX
k=1

uk
eiλs(1− eikλs)
1− eiλs

=
(−θ)n
n!

eiλs

1− eiλs
nX
k=1

uk − (−θ)n
n!

eiλs

1− eiλs (2πn)
1/2wu(λs).

E|U2n|2 = O(n1−2θs−2) follows from (22) and E|wu(λs)|2 = O(1) (Robinson, 1995,
p.1637), and the stated result follows because s−2 ≤ s2θ−1.

15



We move to the proof of (a2). Define ap = (d)p/p! so that Xn =
Pn−1
p=0 apun−p +

X0. Similar to the above, summation by parts gives

Xn −X0 −C(1)Xε
n

=
n−2X
p=0

(ap − ap+1)
pX
j=0

(un−j −C(1)εn−j) + an−1
n−1X
j=0

(un−j −C(1)εn−j).

Since ap − ap+1 = − Γ(d+p)
Γ(d−1)Γ(p+2) = O(|p|d−2+ ) and ap = O(|p|d−1+ ), the stated result

follows if
E[
Pp
j=0(un−j −C(1)εn−j)]2 = o(p), as p→∞. (23)

Now

E[
Pp
j=0 un−j ]

2 =
Pp
j=−p(p+ 1− |j|)γj ,

E[C(1)
Pp
j=0 εn−j ]

2 = (p+ 1)C(1)2 = (p+ 1)
P∞
j=−∞ γj,

E[C(1)
Pp
j=0 un−j

Pp
l=0 εn−l] = C(1)E[

Pp
j=0

P∞
r=0 crεn−j−r

Pp
l=0 εn−l]

= C(1)
Pp
j=0

Pp
l=0

P∞
r=0 crI{r = l − j}

= C(1)
Pp
r=0(p+ 1− r)cr,

and it follows that E[
Pp
j=0(un−j −C(1)εn−j)]2 is equal to

−(p+ 1)P|j|≥p+1 γj − 2
Pp
1 jγj + 2C(1)(p+ 1)

P
r≥p+1 cr − 2C(1)

Pp
1 rcr, (24)

which is o(p) from
P∞
−∞ γj ,

P∞
0 cr < ∞, and Kronecker’s Lemma. Therefore, (23)

and the stated result follow.

8.9.2 Part (b)

Let M be a generic finite positive constant. We collect some facts that are used
repeatedly: for α ∈ (−1, C) and q ≥ 2,Pq

l=2(log l)
−4 ≤ (log 2)−4

P√
q

2 +(12 log q)
−4Pq√

q ≤Mq(log q)−4,(25)Pq
l=0 |l|α+(log(l + 2))−2 ≤ (log 2)−2

P√
q

0 |l|α+ + (12 log q)−2
Pq√

q l
α

≤ Mqα+1(log q)−2. (26)

Proceeding similarly to the proof of part (a1), we obtain

eUλsn (θ)−C(1)eελsn (θ) = U̇1n + U̇2n,
where

U̇1n =
n−2X
p=0

bnp

pX
j=0

(un−j −C(1)εn−j),

U̇2n =
(−θ)n
n!

eiλs

1− eiλs
nX
k=1

(uk −C(1)εk)

−(−θ)n
n!

eiλs

1− eiλs (2πn)
1/2 [wu(λs)−C(1)wε(λs)] ,
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and bnp is defined in (21).
First, we show that, uniformly in p = 0, . . . , n− 1,

E[
Pp
j=0(un−j −C(1)εn−j)]2 = O(|p|+(log(p+ 2))−4). (27)

When p = 0, (27) follows immediately. When p ≥ 1, from (24), the left hand side of
(27) is equal to

−(p+ 1)P|j|≥p+1 γj − 2
Pp
1 jγj + 2C(1)(p+ 1)

P
r≥p+1 cr − 2C(1)

Pp
1 rcr.

The first and third terms are bounded uniformly in p by p(log(p + 2))−4 from As-
sumption 50. For the second term, we have

|Pp
1 jγj | = |

Pp
j=1

Pp
k=j γk| = O(

Pp
1(log(j + 1))

−4) = O((p+ 1)(log(p+ 1))−4),

uniformly in p, where the third equality follows from (25).
Pp
1 rcr = O((p+1)(log(p+

1))−4) follows from the same argument, and (27) follows.
From Minkowski’s inequality, (21), and (27), (E|U̇1n|2)1/2 is bounded by

n−2X
p=0

|bnp||p|1/2+ (log(p+ 2))−2

= O

n/sX
p=0

|p|−θ−1/2+ (log(p+ 2))−2 +
nX

p=n/s

|p|−θ−3/2+ ns−1(log(p+ 2))−2


= O

(n/s)1/2−θ(log(n/s))−2 + (log(n/s))−2ns−1 nX
n/s

|p|−θ−3/2+


= O

³
n1/2−θsθ−1/2(logn)−2

´
,

where the third line follows from (26), and the fourth line follows because (log(n/s))−2 ≤
(log(n/m))−2 = O((logn)−2). E|U̇2n|2 = O(n1−2θs−2) follows from (27) andE|wu(λs)−
C(1)wε(λs)|2 = O(1) (Robinson, 1995, p.1637), giving the stated result.

8.10 Lemma

Under the assumptions of Theorem 4.2, we have, for j = 1, . . . ,m,

E|wu(λj)−C(eiλj )wε(λj)|2 =
½
O(n−β), for β ∈ (0, 1),
O(n−1 logn), for β ∈ [1, 2].

8.11 Proof

The proof essentially follows from Theorem 3.15 of Zygmund (1959, p.91). An ele-
mentary calculation gives

Ewu(λj)w
∗
ε(λj)−C(eiλj )/2π =

1

2π

Z π

−π
[C(eiλ)−C(eiλj )]K(λ− λj)dλ, (28)
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where K(λ) = (2πn)−1
Pn
1

Pn
1 e

i(t−s)λ is Fejér’s kernel. From Zygmund (1959, p.90),
|K(λ)| ≤ An−1λ−2 and |K(λ)| ≤ An for a finite constant A. Assumption 60 implies
|C(eiλ)−C(eiλj)| ≤ C|λ−λj |min{β,1} for |λ−λj | ≤ δ/2 and large enough n. Therefore,
if we split the integral (28), each part is bounded as follows:Z λj−δ/2

−π
+

Z π

λj+δ/2
= O

Ã
n−1

Z π

δ/2
λ−2dλ

!
= O(n−1),

Z λj−1/n

λj−δ/2
+

Z λj+δ/2

λj+1/n
= O

Ã
n−1

Z δ/2

1/n
λmin{β−2,−1}dλ

!
=

½
O(n−β), for β ∈ (0, 1),
O(n−1 logn), for β ∈ (1, 2],Z λj+1/n

λj−1/n
= O

Ã
n

Z 1/n

0
λmin{β,1}dλ

!
= O(n−min{β,1}).

Hence Ewu(λj)w∗ε(λj)− C(eiλj )/2π has the stated order. EIu(λj)− fu(λj) has the
same order by a similar argument, and the order of

E|wu(λj)−C(eiλj )wε(λj)|2 = E[Iu(λj)−2Re[wu(λj)C∗(eiλj )wε(λj)]+2πfu(λj)Iε(λj)],

follows.

8.12 Lemma

Let vt = I{t ≥ 1} and ∆−αvt = (1−L)−α vt with α > 0. Then, uniformly in
1 ≤ s ≤m with m = o (n),

(a) w∆−αv (λs) = − eiλs

1− eiλs
1

Γ (α+ 1)

nα√
2πn

h
1 +O

³
s−min{α,1}

´i
,

(b) wtα (λs) = − 1

1− eiλs
nα√
2πn

h
1 +O

³
s−min{α,1}

´
+O

¡
n−1s

¢i
.

8.13 Proof

For part (a), First consider the case α ∈ (0, 1]. From Lemma 8.1 (b),

w∆−αv (λs) = (1− eiλs)−1w∆−α+1v (λs)− (1− eiλs)−1eiλs∆−αvn/
√
2πn. (29)

For α = 1, since wv (λs) = 0, it follows that

w∆−1v (λs) = −(1− eiλs)−1eiλs∆−1vn/
√
2πn = −(1− eiλs)−1eiλsn/

√
2πn.

From
(d)k
k!
− (d)k−1
(k − 1)! =

Γ(k − 1 + d)
Γ(d− 1)Γ(k + 1) =

(d− 1)k
k!

,

18



and the fact (α− 1)0 /0! = (α)0 /0! = 1, we obtain

(1− L)−α+1 vt =
t−1X
k=0

(α− 1)k
k!

=
t−1X
k=1

·
(α)k
k!
− (α)k−1
(k − 1)!

¸
+
(α)0
0!

=
(α)t−1
(t− 1)! .

Hence, for α ∈ (0, 1) from Lemma 8.2 we have

w∆−α+1v (λs) =
1√
2πn

nX
t=1

(α)t−1
(t− 1)!e

itλs =
eiλs√
2πn

·
Dn

³
eiλs ;−α

´
− (α)n

n!

¸
=

eiλs√
2πn

·³
1− eiλs

´−α
+O

¡
nαs−1

¢¸
.

Then the stated result follows because

∆−αvn =
(α+ 1)n−1
(n− 1)! =

1

Γ (α+ 1)
nα
£
1 +O

¡
n−1

¢¤
,

so that the second term on the right hand side of (29) dominates the first term. The
result for α > 1 is derived from (29) and by induction.

For part (b), observe that

w∆−αv (λs) =
eiλs√
2πn

n−1X
t=0

(α+ 1)t
t!

eitλs

=
eiλs√
2πn

+
eiλs√
2πn

n−1X
1

·
1

Γ (α+ 1)
tα +O

¡
tα−1

¢¸
eitλs

= eiλsΓ (α+ 1)−1wtα (λs) +O(nα−1/2),

and the required result follows from part (a).

9 Appendix B: Proofs of Theorems

9.1 Proof of Theorem 3.1

For notational simplicity we assume X0 = 0 throughout the proof, but the result car-
ries over for generalX0 with Xn−X0 replacingXn.We follow the approach developed
by Robinson (1995) for the stationary case. Define G(d) = G0m−1

Pm
1 λ2d−2d0j and

S(d) = R(d)−R(d0). For arbitrary small∆ > 0, defineΘ1 = {d : d0−12+∆ ≤ d ≤ ∆2}
and Θ2 = {d : ∆1 ≤ d < d0 − 1

2 +∆}, possibly empty. Without loss of generality we
assume ∆ < 1

4 hereafter. In view of the arguments in Robinson (1995),
bd→p d0 if

sup
Θ1

|T (d)|→p 0 and Pr

µ
inf
Θ2
S(d) ≤ 0

¶
→ 0,

19



as n→∞, where

T (d) = log
bG(d0)
G0

− log
bG(d)
G(d)

− log
Ã
1

m

mX
1

j2d−2d0/
m2d−2d0

2(d− d0) + 1

!

+(2d− 2d0)
"
1

m

mX
1

log j − (logm− 1)
#
.

Robinson (1995) shows that the fourth term on the right hand side is O(logm/m)
uniformly in d ∈ Θ1 and

sup
Θ1

¯̄̄̄
¯2(d− d0) + 1m

mX
1

µ
j

m

¶2d−2d0
− 1
¯̄̄̄
¯ = O

µ
1

m2∆

¶
. (30)

Thus, supΘ1 |T (d)|→p 0 if

sup
Θ1

¯̄̄̄
¯log bG(d0)G0

− log
bG(d)
G(d)

¯̄̄̄
¯→p 0. (31)

Let

A(d) =
2(d− d0) + 1

m

mX
1

µ
j

m

¶2d−2d0 h
λ2d0j Ix (λj)−G0

i
,

B(d) =
2(d− d0) + 1

m
G0

mX
1

µ
j

m

¶2d−2d0
,

from which it follows thatbG(d)−G(d)
G(d)

=
A(d)

B(d)
,

log
bG(d0)
G0

− log
bG(d)
G(d)

= log

µ
B(d)

B(d0)

¶
+ log

µ
B(d0) +A(d0)

B(d) +A(d)

¶
.

By the fact that Pr(| logY | ≥ ε) ≤ 2Pr(|Y − 1| ≥ ε/2) for any nonnegative random
variable Y and ε ≤ 1, (31) holds if

sup
Θ1

¯̄̄̄
B(d)−B(d0)

B(d0)

¯̄̄̄
→p 0 and sup

Θ1

¯̄̄̄
B(d0)−B(d) +A(d0)−A(d)

B(d) +A(d)

¯̄̄̄
→p 0. (32)

For d0 ∈ (12 , 1), from the arguments in Robinson (1995, p. 1636), supΘ1 |A(d)| is
bounded by

m−1X
r=1

³ r
m

´2∆ 1

r2

¯̄̄̄
¯̄ rX
j=1

h
λ2d0j Ix (λj)−G0

i¯̄̄̄¯̄+ 1

m

¯̄̄̄
¯̄ mX
j=1

h
λ2d0j Ix (λj)−G0

i¯̄̄̄¯̄ . (33)
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Define Dnj(d) = (1− eiλj)−1λdjDn(eiλj ; θ). Then from Lemmas 8.2 and 8.4 we have

Dnj(d) = e
π
2
di +O(λj) +O(j

d−2), |Dnj(d)|2 = 1 +O(λ2j) +O(jd−2), (34)

uniformly in j = 1, . . . ,m. Hereafter let Ixj denote Ix (λj), wuj denote wu (λj) , and
similarly for other dft’s and periodograms. Now

λ2d0j Ixj −G0 = λ2d0j Ixj − |Dnj(d0)|2 Iuj +
h
|Dnj(d0)|2 − fu (0) /fu (λj)

i
Iuj

+

·
Iuj −

¯̄̄
C(eiλj )

¯̄̄2
Iεj

¸
fu (0) /fu (λj) + fu (0) (2πIεj − 1) .(35)

From Lemma 8.1 (a), the fact that ||A|2 − |B|2| ≤ |A+B||A−B| and the Cauchy-
Schwartz inequality we have

E
¯̄̄
λ2d0j Ixj − |Dnj(d0)|2 Iuj

¯̄̄
≤

E ¯̄̄̄¯2Dnj(d0)wuj − λd0j
1− eiλj

eUλjn (θ0) + e
iλjXn√

2πn

¯̄̄̄
¯
2
1/2

×
E ¯̄̄̄¯ λd0j

1− eiλj
eUλjn (θ0) + e

iλjXn√
2πn

¯̄̄̄
¯
2
1/2 , (36)

with θ0 = 1 − d0. From (34), Lemma 8.8 (a), and EIuj = O(1) (Robinson, 1995,
p.1637) the right hand side is O(jd0−1), giving

E

(
m−1X
1

³ r
m

´2∆ 1

r2

¯̄̄̄
¯
rX
1

h
λ2d0j Ixj − |Dnj(d0)|2 Iuj

i¯̄̄̄¯
)
= O

³
md0−1 +m−2∆ logm

´
.

For any η > 0, (34) and Assumption 1 imply that n can be chosen so that¯̄̄
|Dnj(d0)|2 − fu (0) /fu (λj)

¯̄̄
≤ η +O(λ2j) +O(j

−1/2), j = 1, . . . ,m,

and from Robinson (1995, p. 1637), we have

E
¯̄̄
Iuj − |C(eiλj )|2Iεj

¯̄̄
= O(j−1/2(log(j + 1))1/2), j = 1, . . . ,m.

It follows that
mX
1

³ r
m

´2∆ 1

r2

rX
1

¯̄̄h
|Dnj(d0)|2 − fu (0) /fu (λj)

i
Iuj

+
h
Iuj − |C(eiλj )|2Iεj

i
fu (0) /fu (λj)

¯̄̄
= Op

¡
η +m2n−2 +m−2∆ logm

¢
.

Robinson (1995) shows
Pm
1 (r/m)

2∆ r−2 |Pr
1(2πIεj − 1)|→p 0. Using the same tech-

nique, we can show that the second term in (33) is op (1) , giving supΘ1 |A(d)|→p 0.
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For d0 = 1, first observe that

A(d)− X2
n

2πn

2(d− d0) + 1
m

mX
1

µ
j

m

¶2d−2d0
=

2(d− d0) + 1
m

mX
1

µ
j

m

¶2d−2d0 ·
λ2d0j Ixj −G0 − X2

n

2πn

¸
.

From Lemma 8.1 (b) we have

λ2d0j Ixj − X2
n

2πn
=

λ2j
|1− eiλj |2 Iuj +O(λ

2
j)
X2
n

2πn
− Xn√

2πn

λ2j2Re
£
eiλjwuj

¤
|1− eiλj |2 . (37)

The results in Robinson (1995, p. 1637) imply that

E|wuj −C(eiλj)wεj |2 = O(j−1 log(j + 1)), j = 1, . . . ,m. (38)

Using a similar decomposition as (35) and the results thereafter, with (37) and (38),
we obtain

E

"
rX
1

³
λ2d0j Ixj − 2πfu(0)Iεj −X2

n/ (2πn)
´#
= O

³
rη + r3n−2 + r1/2 log r

´
, (39)

for 1 ≤ r ≤m. In view of (30), it follows that

sup
Θ1

¯̄
A(d)−X2

n/ (2πn)
¯̄
= Op

¡
η +m2n−2 +m−2∆ logm

¢
+ op (1) .

Finally, observe that (30) gives supΘ1 |B(d)−G0| = O(m−2∆), and (32) follows.
Now we consider Θ2 = {d : ∆1 ≤ d < d0 − 1

2 +∆}. In a similar way to Robinson
(1995, pp. 1638-39) we have

Pr

µ
inf
Θ2
S(d) ≤ 0

¶
≤ Pr

Ã
1

m

mX
1

(aj − 1)λ2d0j Ixj ≤ 0
!
,

where p = exp(m−1
Pm
1 log j) ∼ m/e as m→∞ and

aj =

(
(j/p)2∆−1 , for 1 ≤ j ≤ p,
(j/p)−2d0−1 , for p < j ≤ m.Pm

1 aj = O (m) ,
Pm
1 aj

2 = O(m2−4∆),Pm
1 ajj

d0−1 = O(m1−2∆ logm+md0),
Pm
1 ajj

−1/2 = O(m1−2∆).

Applying (35) and (37) and proceeding as above in conjunction with the fact above
and m−1

Pm
1 (aj − 1)(2πIεj − 1)→p 0 (Robinson, 1995, p. 1639), we obtain

1

m

mX
1

(aj − 1)λ2d0j Ixj =

µ
G0 +

X2
n

2πn
I {d0 = 1}

¶
1

m

mX
1

(aj − 1) + op (1) .

22



Choose ∆ < 1/ (2e) < 1/4 with no loss of generality, then for sufficiently large m we
have m−1

Pm
1 (aj − 1) > δ > 0 and hence

Pr

Ã
1

m

mX
1

(aj − 1)λ2d0j Ixj ≤ 0
!
→ 0,

as n→∞. Therefore, bd→p d0, giving the stated result.
For the limit of bG(d), recall bG(d) = G(d)+A(d)G(d)/B(d), bd→p d0,G(bd)→p G0,

and B(bd)→p G0. The required result follows because

sup
Θ1

¯̄̄̄
A (d)− X2

n

2πn
I {d0 = 1}

¯̄̄̄
→p 0,

and X2
n/(2πn) = G0(X

ε
n)
2 + op (1)→d G0χ

2
1 from a standard martingale CLT.

9.2 Proof of Theorem 3.2

Define G(d) = G0m
−1Pm

1 λ2d−2j and S(d) = R(d) − R (1) . For 0 < ∆ < 1
4 , define

Θ1 = {d : 12 +∆ ≤ d ≤ ∆2} and Θ2 = {d : ∆1 ≤ d < 1
2 +∆}, possibly empty. Then,

by the same line of arguments as above, bd→p 1 if

sup
Θ1

|T (d)|→p 0 and Pr

µ
inf
Θ2
S(d) ≤ 0

¶
→ 0,

as n→∞, where

T (d) = log
bG (1)
G0

− log
bG(d)
G(d)

− log
Ã
1

m

mX
1

j2d−2/
m2d−2

2(d− 1) + 1

!

+(2d− 2)
"
1

m

mX
1

log j − (logm− 1)
#
.

supΘ1 |T (d)|→p 0 if

sup
Θ1

¯̄̄̄
¯log bG (1)G0

− log
bG(d)
G(d)

¯̄̄̄
¯→p 0. (40)

Let

A(d) =
2d− 1
m

mX
1

µ
j

m

¶2d−2
j2−2d0λ2d0j Ixj , B(d) =

2d− 1
m

G0

mX
1

µ
j

m

¶2d−2
.

Then, a little algebra shows [ bG(d)/G(d)] = (2π/n)2−2d0 [A(d)/B(d)], giving
log

bG (1)
G0

− log
bG(d)
G(d)

= log

µ
B(d)

G0

¶
− log

µ
A(d)

A (1)

¶
.
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Therefore, (40) holds if

sup
Θ1

¯̄̄̄
A(d)−A (1)

A (1)

¯̄̄̄
→p 0 and sup

Θ1

¯̄̄̄
B(d)−G0

G0

¯̄̄̄
→p 0. (41)

We proceed to approximate A(d) by

A1(d) =
2d− 1
m

mX
1

µ
j

m

¶2d−2
j2−2d0λ2d0j

¯̄̄
1− eiλj

¯̄̄−2 X2
n

2πn

= (2π)2d0−3C (1)2 n1−2d0(Xε
n)
2 + op (1) , uniformly in d ∈ Θ1,

where the second equality follows from

j2−2d0λ2d0j |1− eiλj |−2 = (2π)2d0−2 n2−2d0(1 +O(λ2j)),

(30), and Lemma 8.8 (a2). For d0 ∈ (1, 32 ], from Lemmas 8.1 (a) and 8.8, similarly as
in (36) we obtain (Dnj(d) is defined in the proof of Theorem 3.1)

E

¯̄̄̄
j2−2d0λ2d0j Ixj − j2−2d0λ2d0j

¯̄̄
1− eiλj

¯̄̄−2
X2
n/ (2πn)

¯̄̄̄

≤
E ¯̄̄̄¯j1−d0Dnj(d0)wuj − j1−d0λ

d0
j

1− eiλj
eUλjn (θ0) + 2e

iλjXn√
2πn

¯̄̄̄
¯
2
1/2

×
E ¯̄̄̄¯j1−d0Dnj(d0)wuj − j1−d0λ

d0
j

1− eiλj
eUλjn (θ0)√
2πn

¯̄̄̄
¯
2
1/2 = O(j1−d0).

It follows that supΘ1 |A(d)−A1(d)| = Op(m1−d0 +m−2∆), and uniformly in Θ1 we
have

A(d)−A (1)
A (1)

=
op(1)

(2π)2d0−3C (1)2 n1−2d0(Xε
n)
2 + op(1)

=
op(1)

(2π)2d0−3C (1)2 (
Pn
1 yt)

2 + op(1)
,

where yt = n1/2−d0(d0)n−tεt/ (n− t)!. Assumption 3 implies
nX
1

E(y2t |Ft−1) → Φ1 = Γ(d0)
−2(2d0 − 1)−1,

nX
1

E(y2t I{|yt| > δ})→ 0 for all δ > 0.

Therefore, from a standard martingale CLT we have n1/2−d0Xε
n →d N(0,Φ1). Thus,

sup
Θ1

¯̄̄̄
A(d)−A (1)

A (1)

¯̄̄̄
→p 0,

and supΘ1 |[B(d)−G0] /G0|→ 0 as before, thereby establishing (41).
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Next, consider Θ2 = {d : ∆1 ≤ d < 1
2 +∆}. Let p = exp(m−1

Pm
1 log j). Then,

S(d) = log{ bD(d)/ bD (1)}, where bD(d) = m−1Pm
1 (j/p)

2d−2j2Ixj . It follows that

inf
Θ2

bD(d) ≥ 1

m

mX
1

ajj
2Ixj ,

where

aj =

½
(j/p)2∆−1 , for 1 ≤ j ≤ p,
(j/p)−3 , for p < j ≤m.

Then,

Pr

µ
inf
Θ2
S(d) ≤ 0

¶
≤ Pr

Ã
1

m

mX
1

(aj − 1)j2−2d0λ2d0j Ixj ≤ 0
!
. (42)

In view of the fact that
Pm
1 aj = O (m) ,

Pm
1 ajj

1−d0 = O(m1−2∆ logm + m−d0),Pm
1 ajj

−1/2 = O(m1−2∆), we obtain similarly to before

1

m

mX
1

(aj − 1)j2−2d0λ2d0j Ixj =
1

m

mX
1

(aj − 1)j2−2d0λ2d0j |1− eiλj |−2 X
2
n

2πn
+ op (1)

= (2π)2d0−3 n1−2d0X2
n

1

m

mX
1

(aj − 1) + op (1) .

Since m−1
Pm
1 (aj − 1) > δ > 0 for sufficiently large m by choosing ∆ < 1/ (2e) , we

obtain Pr(m−1
Pm
1 (aj − 1)j2−2d0λ2d0j Ixj ≤ 0) → 0 as n → ∞ and hence bd →p 1,

giving the stated result. For d0 ∈ (32 , 52 ], from Lemma 8.1 (b) we have

(1− eiλj )wxj = w∆xj − nd−1n1/2−dXneiλj/
√
2π.

Because E|w∆xj |2 = O(n2d−2s−1) from ∆Xt ∼ I(d− 1) and n1/2−dXn converges to a
Gaussian random variable, the stochastic behavior of wxj is dominated byXn. Hence,
the required result follows from the same line of argument as above, and the results
for larger d0 are derived similarly.

9.3 Proof of Theorem 4.1

We follow the same line of approach as the proof of Theorem 2 of Robinson (1995).
Theorem 3.1 holds under the current conditions and implies that with probability
approaching 1, as n→∞, bd satisfies

0 = R0(bd) = R0(d0) +R00(d∗)(bd− d0), (43)

where |d∗ − d0| ≤ |bd− d0|. Now
R00(d) =

4
h bF2(d) bF0(d)− bF 21 (d)ibF 20 (d) =

4
h bE2(d) bE0(d)− bE21(d)ibE20(d) ,

bFk(d) =
1

m

mX
1

(log j)k λ2dj Ixj , bEk(d) = 1

m

mX
1

(log j)k j2dIxj .
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As pointed out by Andrews and Sun (2001, p.21), since bFk(d0) = Op((logm)
k) as

shown below, we need to show bEk(d∗) − bEk(d0) = op(n
2d0(logm)−k) rather than

op(n
2d0) as in (4.4) in Robinson. Fix ε > 0 and choose n so that 2ε < (logm)2. Let

M = {d : (logm)6|d− d0| ≤ ε}. As in Robinson (1995, p.1642) we have

Pr
³¯̄̄ bEk(d∗)− bEk(d0)¯̄̄ > (2π/n)−2d0 (logm)−k´

≤ Pr
³ bG(d0) > (logm)5−2k/(2eε)´+Pr ¡(logm)6|d∗ − d0| > ε

¢
. (44)

The first probability tends to 0 because bG(d0)→p G0. The second probability tends
to 0 if

sup
Θ1

¯̄̄̄
B(d)−B(d0)

B(d0)

¯̄̄̄
+ sup

Θ1

¯̄̄̄
B(d0)−B(d) +A(d0)−A(d)

B(d) +A(d)

¯̄̄̄
= op

¡
(logm)−12

¢
. (45)

Using (35) and Assumption 10, we obtain for 1 ≤ r ≤ m

E

(
rX
1

³
λ2d0j Ixj − fu (0) 2πIεj

´)
= O

³
rd0 + rβ+1n−β

´
,

and Robinson (1995, (4.9)) shows that
Pr
1(2πIεj−1) = Op(r1/2). In conjunction with

supΘ1 |B(d)−G0| = O(m−2∆) they give (45). It follows that

R00 (d∗) = 4
h bF2(d0) bF0(d0)− bF 21 (d0)i h bF 20 (d0)i−1 + op (1) = 4 + op (1) ,

where the second equality follows from bFk(d0) = G0m−1Pm
1 (log j)

k+ op((logm)
−3),

obtained similarly as A(d0) →p 0. Next we consider the first term on the right side
of (43). Now

m1/2R0(d0) = 2m−1/2
mX
1

νj

h
λ2d0j Ixj −G0

i
[G0 + op (1)]

−1 ,

where νj = log j −m−1
Pm
1 log j and

Pm
1 νj = 0. From Lemmas 8.1 and 8.8, (34),

and (38), we have

mX
1

νjλ
2d0
j Ixj =

mX
1

νjIuj + (2πn)
−1X2

n

mX
1

νjλ
2d0
j |1− eiλj |−2 + 2Re[Tn] +Rn,

where

Tn =
mX
1

νjD
∗
nj(d0)C

∗(eiλj )w∗εjλ
d0
j (1− eiλj )−1C(1)eελjn (θ0) (2πn)−1/2,

and Rn = Op((logm)(md0−1/2 logm+m1/2(logn)−2+(logm)2+m3n−2)) = op(m1/2).
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Rewrite Tn/C(1) as

mX
1

νjD
∗
nj(d0)C

∗(eiλj )λd0j (1− eiλj)−1(2πn)−1
n−1X
p=0

eθλjpe−ipλjεn−p n−1X
q=0

eiqλjεn−q.

Since εt is a martingale difference sequence, E|Tn|2 is bounded by
1

n2

mX
j=1

mX
k=1

|νj| |νk|λd0−1j λd0−1k

n−1X
p=0

¯̄̄eθλjp ¯̄̄ ¯̄̄eθ−λkp ¯̄̄ (47)

+
1

n2

mX
j=1

|νj|λd0−1j

n−1X
p=0

¯̄̄eθλjp ¯̄̄ mX
k=1

|νk|λd0−1k

n−1X
q=0

¯̄̄eθ−λkq ¯̄̄ (48)

+
1

n2

mX
j=1

mX
k=1

|νj | |νk|λd0−1j λd0−1k

n−1X
p=0,p 6=q

¯̄̄eθλjp ¯̄̄ ¯̄̄eθ−λkp ¯̄̄
¯̄̄̄
¯̄n−1X
q=0

eiq(λj−λk)

¯̄̄̄
¯̄ . (49)

(47) and (48) are bounded by, respectively,

(logm)2
mX
1

mX
1

jd0−1kd0−1n−2d0
n−1X
0

|p|2d0−2+ = O
³
n−1m2d0(logm)2

´
,logm mX

1

jd0−1n−d0

n/jX
0

|p|d0−1+ +
n−1X
n/j

pd0−2nj−1
2 = O

¡
(logm)4

¢
.

In view of the fact that
Pn−1
0 eiq(λj−λk) = nI{j = k}, (49) is bounded by

(logm)2n−1
mX
1

λ2d0−2j

n−1X
0

|p|2d0−2+ = O
³
m2d0−1(logm)2

´
,

giving Tn = Op(n−1/2md0 logm+ (logm)2 +md0−1/2 logm) = op(m1/2).
From Lemma 8.8 and the fact that

Pm
1 νjj

2d0−2 = (2d0− 1)−2(2d0− 2)m2d0−1+
O(logm), we obtain

(2πn)−1X2
n

mX
1

νjλ
2d0
j |1− eiλj |−2 = ΞG0m2d0−1[n1−2d0(Xε

n)
2 + op (1)],

where Ξ = (2π)2d0−2 (2d0 − 1)−2(2d0 − 2). Robinson (1995, p.1644) shows thatPm
1 νjIuj = G0

Pm
1 νjIεj + op(m1/2). Therefore,

m1/2R0(d0) = 2m−1/2
mX
1

νj [2πIεj − 1]− 2Ξm2d0−3/2[n1−2d0(Xε
n)
2 + op (1)] + op (1) .

The first term on the right converges to a N (0, 4) random variable by Robinson
(1995). For d0 ∈ (12 , 34), the second term on the right is op (1) , and the required
result follows. For d0 ∈ (34 , 1), we have

m2−2d0R0(d0) = 2Ξn1−2d0(Xε
n)
2 + op (1) = 2Ξ(

Pn
1 yt)

2 + op(1),
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where yt = n1/2−d0(d0)n−tεt/(n−t)!, suppressing reference to n in yt. Since
Pn
1 E(y

2
t |Ft−1)→

Φ1 = Γ(d0)
−2(2d0−1)−1 and

Pn
1 Ey

4
t = O(n

−1), from a standard martingale CLT we
obtain

Pn
1 yt →d N(0,Φ1), giving m2−2d0R0(d0)→d 2ΞΦ1χ

2
1 and the required result.

When d0 = 3/4, m1/2R0(d0) = 2
Pn
1 zt + 2Ξ(

Pn
1 yt)

2 + op (1) , where yt is defined
above, z1 = 0, and for t ≥ 2

zt = εt

t−1X
s=1

εsct−s, cs = 2n
−1m−1/2

mX
1

νj cos(sλj).

ξt = (zt, yt)
0 form a zero-mean martingale difference array, hence

Pn
1 ξt →d N(0,

diag(1,Φ1)) if, for any nonrandom (2× 1) vector α,
nX
1

E
h¡
α0ξt

¢2 |Ft−1i− α0diag (1,Φ1)α → p 0, (50)

nX
1

E
h¡
α0ξt

¢2
I(|α0ξt| > δ)

i
→ 0 for all δ > 0. (51)

Robinson shows
Pn
1 E(z

2
t |Ft−1) − 1 →p 0 and

Pn
1 Ez

4
t → 0. In conjunction withPn

1 Ey
4
t → 0, (51) is satisfied. Since

Pn
1 E(y

2
t |Ft−1)→ Φ1, (50) holds if

nX
1

E [ytzt|Ft−1] = n1/2−d0
nX
t=2

(d0)n−t
(n− t)!

t−1X
s=1

εsct−s →p 0.

The term in the middle has mean zero and variance bounded by

n1−2d0
nX
t=2

|n− t|d0−1+

nX
u=2

|n− u|d0−1+

min{t−1,u−1}X
s=1

ct−scu−s

= n1−2d0
nX
2

|n− t|2d0−2+

t−1X
1

c2t−s + 2n
1−2d0

nX
3

|n− t|d0−1+

t−1X
2

(n− u)d0−1
u−1X
1

ct−rcu−r.

Robinson (1995, p. 1646) shows cs = cn−s, |cs| = O(m−1/2s−1 logm) for 1 ≤ s ≤ n/2,
|cs| = O(m1/2n−1 logm), and

Pn
1 c

2
s = O(n

−1(logm)2). Therefore, the first term on
the right is bounded by n−1(logm)2, and the second term on the right is bounded byÃ

nX
1

c2t

!1/2
n1−2d0

nX
3

|n− t|d0−1+

t−1X
2

(n− u)d0−1
Ã

t−1X
t−u+1

c2r

!1/2

= O

Ã
(logm)2m−1/2n1/2−2d0

nX
3

|n− t|d0−1+

t−1X
2

(n− u)d0−1
³
(t− u)−1/2 + |n− t|−1/2+

´!
= O

³
m−1/2(logm)2

´
,

giving (50), thereby completing the proof of the theorem.
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9.4 Proof of Theorem 4.2

We follow the approach and notation of the proof of Theorem 4.1. First, from As-
sumption 10, (39) is strengthened to

E

"
rX
1

³
λ2d0j Ixj − 2πfu (0) Iεj −X2

n/2πn
´#
= O

³
rβ+1n−β + r1/2 log r

´
, (52)

for 1 ≤ r ≤m. It follows that
sup
Θ1

¯̄
A(d)−X2

n/2πn
¯̄
= Op

³
mβn−β +m−2∆ logm

´
,

thus (45) holds. Since bG(d0) = G0 +X2
n/(2πn) + op(1), the first probability in (44)

tends to 0 and R00(d∗) = 4[ bF2(d0) bF0(d0)− bF 21 (d0)][ bF0(d0)]−2+ op (1) . Using (52) and
the fact that

Pr
1(2πIεj − 1) = Op(r1/2), we obtain

bFk(d0)−µG0 + X2
n

2πn

¶"
1

m

mX
1

(log j)k
#
= Op

³
mβn−β(logm)2 +m−1/2(logm)3

´
,

giving R00(d∗)→p 4. Now

m1/2R0(d0) =
2m−1/2

Pm
1 νjλ

2d0
j IxjbG(d0) =

2m−1/2
Pm
1 νjλ

2d0
j Ixj

G0(1 + n−1(Xε
n)
2) + op (1)

.

The numerator is equal to

2m−1/2
mX
1

νj(1 +O(λ
2
j))
¯̄̄
wuj − eiλjXn/

√
2πn

¯̄̄2
= 2m−1/2

mX
1

νjIuj − 2m−1/2(Xn/
√
2πn)2

"
mX
1

νje
−iλjwuj

#
+Op(m

5/2n−2 logm).

= 2m−1/2G0
mX
1

νj [2πIεj − 1]− 2m−1/2G0n−1/2Xε
n

mX
1

νj2Re
h√
2πwεj

i
+ op(1),

where the third line follows from Robinson (1995, (4.8)), Lemma 8.10 and Assump-
tions 10 and 60. It follows that

m1/2R0(d0) =
2
Pn
1 zt − 2

Pn
1 yt

Pn
1 xt + op (1)

1 + (
Pn
1 yt)

2 + op (1)
,

where yt = n−1/2εt, xt = n1/2εtct and zt and ct are defined in the proof of Theorem
4.1. Therefore, Wn =

Pn
1 (zt, yt, xt)

0 →d W ∼ N(0, diag(1, 1, 2)) if
nX
1

E
£
(zt, yt, xt)

0(zt, yt, xt)|Ft−1
¤ → p diag (1, 1, 2) , (53)

nX
1

Ez4t +
nX
1

Ey4t +
nX
1

Ex4t → 0. (54)

29



We have already shown
Pn
1 Ez

4
t +

Pn
1 Ey

4
t → 0 in the proof of Theorem 4.1. Since

nX
1

Ex4t = n2
nX
1

c4t = O

n−2 n/mX
1

m2(logm)4 + n2
∞X
n/m

m−2s−4(logm)4


= O
¡
n−1m(logm)4

¢
,

(54) holds. To show (53),
Pn
1 E[(zt, yt)

0(zt, yt)|Ft−1] →p diag(1, 1) has already been
shown above, and

nX
1

E(x2t |Ft−1)

= 4n−1m−1
nX
1

Ã
mX
1

νj cos (sλj)

!2

= 4n−1m−1
mX
1

ν2j

nX
1

cos2 (sλj)

+2n−1m−1
XX
j 6=k

νjνk

nX
1

[cos {s (λj + λk)}+ cos {s (λj − λk)}]

= 2n−1m−1
mX
1

ν2j

nX
1

[1 + cos (2sλj)]→ 2,

since
Pm
1 ν2j ∼ m. Furthermore,

Pn
1 E(xtyt|Ft−1) =

Pn
1 ct = 0, and

nX
1

E(xtzt|Ft−1) =
nX
t=2

n1/2ct

t−1X
s=1

εsct−s →p 0,

because the right hand side has mean zero and variance

n
nX
t=2

ct

nX
u=2

cu

min{t−1,u−1}X
s=1

ct−scu−s = n
nX
2

c2t

t−1X
1

c2t−s + 2n
nX
3

ct

t−1X
2

cu

u−1X
1

ct−scu−s.

The first term is O(n−1(logm)4), and the second term is bounded by

n

Ã
nX
1

|cs|
!2Ã nX

1

c2t

!
= O

(logm)2
m−1/2 logm+m−1/2 logm n/2X

n/m

s−1
2

= O
¡
m−1(logm)6

¢
.

Thus (53) holds and Wn →d W. Therefore, from the continuous mapping theorem

m1/2R0(d0)→d
2W1 − 2W2W3

1 + (W2)2
∼ N

µ
0,
4[1 + 2(W2)

2]

[1 + (W2)2]2

¶
,
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conditional on W2, and unconditionally,

m1/2(bd− d0)→d

Z ∞

−∞
N

µ
0,
1

4
(1 + 2h2)(1 + h2)−2

¶
φ (h)dh,

where φ (·) is the standard normal pdf, giving the stated result.

9.5 Proof of Theorem 5.1

The argument follows the approach of the proof of Theorem 3.2. First we consider
the case α ≤ d0 − 1/2. Since α > 1/2, d0 > 1 must hold. Let

A1(d) =
2d− 1
m

mX
1

µ
j

m

¶2d−2 j2−2d0λ2d0j
|1− eiλj |2

1

2πn

¯̄̄
µnα + eiλjXn

¯̄̄2
,

= (2π)2d0−3
h
µnα−d0+1/2 + n1/2−d0Xn

i2
+ op (1) , uniformly for Θ1,

→d [C1n
α−d0+1/2 +C2N (0, 1)]2,

for generic nonzero constants C1 and C2, where the second equality and convergence
in distribution follow by the same argument as before. Define the other quantities as
in the proof of Theorem 3.2. Because

E
¯̄̄
j2−2d0λ2d0j Ixj − j2−2d0λ2d0j |1− eiλj |−2 (2πn)−1 |µnα + eiλjXn|2

¯̄̄
= O(j1−d0 + j−1/2 + nα−d0−1/2j),

supΘ1 |A(d)− A1(d)| →p 0 follows, giving (41). Pr(infΘ2 S(d) ≤ 0) → 0 is obtained
similarly, and we establish bd→p 1.

Next consider the case α > d0 − 1/2. Define

A(d) =
2d− 1
m

mX
1

µ
j

m

¶2d−2
n1−2αλ2jIxj , B (d) =

2d− 1
m

G0

mX
1

µ
j

m

¶2d−2
,

A1(d) =
2d− 1
m

mX
1

µ
j

m

¶2d−2
µ2

λ2j
|1− eiλj |2

1

2π

→ (2π)−1 µ2, uniformly for Θ1,

and define the other quantities as in the proof of Theorem 3.2. Then it follows that

bG(d)/G(d) = n2α−1A(d)/B(d),
and supΘ1 |T (d)|→p 0 follows if supΘ1 |[A(d)−A(1)]/A (1)|→p 0. Since

E
¯̄̄
n1−2αλ2jIxj − λ2j |1− eiλj |−2 (2π)−1 µ2

¯̄̄
= O(j−1/2 + jn−1 + nd0−1/2−α),

supΘ1 |A(d)− A1(d)| →p 0 follows, giving (41). Pr(infΘ2 S(d) ≤ 0) → 0 is obtained
similarly, and we establish bd→p 1.
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