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Abstract

Semiparametric estimation of the memory parameter is studied in models of
fractional integration in the nonstationary case, and some new representation
theory for the discrete Fourier transform of a fractional process is used to assist
in the analysis. A limit theory is developed for an estimator of the memory
parameter that covers a range of values of d commonly encountered in applied
work with economic data. The new estimator is called the modified local Whittle
estimator and employs a version of the Whittle likelihood based on frequencies
adjacent to the origin and modified to take into account the form of the data
generating mechanism in the frequency domain. The modified local Whittle
estimator is shown to be consistent for 0 < d < 2 and is asymptotically normally
distributed with variance % for % <d< ;Z. The approach allows for likelihood-
based inference about d in a context that includes nonstationary data, is agnostic
about short memory components and permits the construction of valid confidence
regions for d that extend into the nonstationary region.
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1 Introduction

Fractional integration and the study of the so-called I (d) processes has recently at-
tracted a good deal of attention amongst theorists and empirical researchers. In
applied econometric work, I (d) processes with fractional d > 0 have been found to
provide good empirical models for certain financial time series and volatility mea-
sures, as well as certain macroeconomic time series like inflation and interest rates.
Fractional processes accommodate temporal dependence in a time series that is in-
termediate in form between short-memory series (the so-called I (0) processes) and
unit root time series (I (1) processes). Fractional models encompass both stationary
and nonstationary processes depending on the value of the memory parameter, and
include both I (0) and I (1) processes as limiting cases when the memory parameter
takes on the values zero and unity. For these reasons, fractional integration is attrac-
tive to empirical researchers, providing some liberation from the classical dichotomy
of I (0) and I (1) processes. Growing evidence in applied work indicates that fraction-
ally integrated processes can describe certain long range characteristics of economic
data rather well, including the volatility of financial asset returns, forward exchange
market premia, interest rate differentials, and inflation rates.

The memory parameter, d, plays a central role in the definition of fractional
integration and is often the focus of empirical interest. When —% <d< %, the
process has a stationary representation. For this range of d, two commonly used
semiparametric estimators (log periodogram regression, local Whittle estimator) are
shown to be consistent and asymptotically normally distributed by Robinson (1995a,
1995b). When d > %, the process is nonstationary and there are several ways of
defining the observed series in terms of weakly dependent inputs. One model, which

has been used in the existing literature, defines an I (d) process with 3 < d < 3

as a partial sum of I (d — 1) processes. According to this model, we can estimate
d by taking first differences of the data, estimating d — 1, and adding one to the
estimate. Indeed, recent works by Velasco (1999a, 1999b)! extend Robinson’s result

to show that those two semiparametric estimators are consistent for —% <d<1

and asymptotically normally distributed for —% <d< %. Hence, if we apply this
‘differencing + adding-back’ approach, the estimator is consistent for % <d<2and
asymptotically normally distributed for % <d< %.

However, this model and approach does have some shortcomings. First, it employs
different data generating mechanisms depending on the value of d, e.g. whether d < %,
a parameter which is not known a priori and which we have to estimate from the data.
Second, the model for d > % obscures the relationship between the observed data and

the component innovations. For example, an I (0.7) process is defined as a cumulative

1Velasco (1999a, 1999b) also show that the use of data tapering makes the estimators consistent
and asymptotically normally distributed for —% <d< %, albeit at the cost of an increase in variance.



sum of an I (—0.3) process, and the motivation for this construction of economic data
is unclear. Appendix C in Section 9 of the paper provides some further discussion
of these issues and various alternate models of fractional integration, including the
model used here and another model that works from distant past rather than infinite
past or fixed point initializations.

The approach taken in the present paper is to define fractionally integrated pro-
cesses as weighted sums of short-memory input variables, which are treated nonpara-
metrically?. This model gives a valid representation for all values of d and enables us
to treat the I (d) processes uniformly without any discontinuity in the data generating
mechanism. It also relates the observed series directly to its component innovations,
so that the impulse responses are just the weights on the short memory inputs. The
paper uses a new representation and approximation theory for the discrete Fourier
transform of a fractionally integrated time series (based on Phillips, 1999) which
provides us with a representation that is valid in both nonstationary and (asymptoti-
cally) stationary cases. It is particularly helpful in analyzing the asymptotic behavior
of the discrete Fourier transform and, hence, the periodogram of nonstationary frac-
tionally integrated time series. So, it provides the key element in developing our
theory and motivating the estimator we will use.

With this representation theory in hand, we develop a limit theory for a new
estimator of the memory parameter of a fractional process allowing for nonstationary
values of d. The new estimator is called the modified local Whittle estimator and
employs a version of the Whittle likelihood based on frequencies adjacent to the
origin and modified to take into account the form of the data generating mechanism
in the frequency domain. The approach was suggested in Phillips (1999) without
any formal development of its properties or asymptotic behavior. The present paper
takes up this study and demonstrates that the modified local Whittle estimator is
consistent for d € (0,2) and asymptotically normally distributed with variance % for
d e (%, %) and d € (%, E) . For d € [2,2) , the limit distribution is nonnormal and
the rate of convergence decreases. Thus, the approach allows for likelihood-based
inference about d in a context that allows for nonstationarity, using a limit theory
that is equivalent to that which applies in the stationary region for the unmodified
Whittle estimator (Robinson, 1995b). In this respect, our theory complements recent
work by Velasco (1999a), extending further the domain of d where valid inference is
possible. Phillips (1999) proposes another semiparametric estimator of d (an exact
local Whittle estimator) that requires no prior information on the value of d. While
the derivation of an asymptotic theory for the exact local Whittle estimator is very
difficult, that of the modified Whittle estimator is much more feasible. Part of the
motivation for the modified Whittle estimator is that it is constructed to minimize
an objective function that approximates that of the exact local Whittle estimator.
The analysis of this estimator therefore serves as a stepping stone towards a more
general theory of estimation of d. Additionally, the modified estimator is related to
an alternate ‘differencing + adding-back’ estimator and can be motivated in terms

*Tanaka (1999) uses a fully parametric version of this model and shows that the MLE of d is
consistent and asymptotically normally distributed for any values of d.



of this approach as well.

The remainder of the paper is organized as follows. The new representation and
approximation theory that we need are developed in Section 2. Section 3 defines the
modified local Whittle estimator and proves its consistency. Section 4 demonstrates
asymptotic normality. Section 5 reports some simulation results and gives an em-
pirical illustration. Section 6 concludes the paper. Some technical results are given
in Appendix A in Section 7. Proofs are collected together in Appendix B in Section
8. Some alternative nonstationary representations are discussed in Appendix C in
Section 9.

2 Preliminary Representation Theory and Asymptotics

2.1 A Model of Nonstationary Fractional Integration

We consider the fractional process X; generated by the model
(1-L0D)" (X — Xo)=w, t=0,1,2,... (1)

where X is a random variable with a certain fixed distribution. Our interest is
primarily in the case where X; is nonstationary and % < d <2, s0in (1) we work
from a given initial date ¢t = 0, set u; = 0 for all ¢ < 0, and assume that u; (t > 1)
is stationary with zero mean and continuous spectrum f,(A) > 0. Expanding the
binomial in (1) gives the form

S Dk (x4 x0) =, )
k=0

where
I'(d+ k)

(d)y, = T

is Pochhammer’s symbol for the forward factorial function and I'(-) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences of
X:. An alternate form for X; is obtained by inversion of (1), giving

= (d)(d+1)..(d+k—1),

t-1
Xp=(1-L) %+ Xo= ﬂut—k + Xo. (3)

This model gives a valid representation for all values of d. When d > %, Xy is
nonstationary, while X; is asymptotically stationary when 0 < d < % The impulse
responses of X; to unit changes in u;_j, are given directly in (3) and we may similarly
obtain impulse responses to unit changes in innovations in u; using (3) in conjunction
with (4) below. Further, the above formulation is convenient for the construction of
the likelihood and an estimator of d using a likelihood-based approach is developed
in Section 3.



Throughout this paper it will be convenient to assume that the stationary com-
ponent u; in (1) is a linear process of the form

ut:C’(L)Et:chet,j, Zj|cj| < oo, C(1)#0, 4)
7=0 7=0

for all ¢t and with ¢, = iid (0, 02) and Fs} = u, < co. The summability condition in
(4) is satisfied by a wide class of parametric and nonparametric models for u; and
enables the use of the techniques in Phillips and Solo (1992). Under (4), the spectral

density of uy is fy,(A) = %
the linear process form (4) is much more restrictive than the local assumptions about
fu(A) at A = 0 that are used in other work, notably Robinson (1995b), and which
reflect the local nature of the semiparametric problem of estimation of the memory
parameter d.

Define the discrete Fourier transform (dft) of a time series a; evaluated at the

fundamental frequencies as

P
Z?’;O cje”A‘ . In spite of its generality, the specificity of

1 : 2
we (As) = Zatem‘s, As = %,5 =1,...,n. (5)

Our approach is to algebraically manipulate (2) so that it can be rewritten in a
convenient form to accommodate dft’s. The following Lemma by Phillips (1999)
provides an exact representation of wy, (A) in terms of functions of the data X;.

2.2 Lemma
If X, follows (1), then

n

1

V2mn

Xo

¢, (6)
V21 |

wa () = wy (N) Dy, (ei’\; d) _ (5@0 (d) — ™ Xy, (d)) n

where Dy, (ei/\; d) =10 _&(_]j) kX and

n—1 n
B (i - . ()
Xy (d) = Doy (e AL;d) X =Y AP Xy, = Y R
p=0 k=p+1

The expression (6) may be interpreted as a frequency domain version of the original
model (1). We can introduce a new transform

e Qi) = w5 () = Dy (1) —= (Ban (@ = Fru@) . (@

for which .
vz (As;d) = Dy, (e“‘s;d) wy, (As) ,



holds exactly. While this representation gives an exact relationship, the terms X 20 (d)
and X an (d) in the right hand side of (7) contain involved functions of X; and d. This
makes asymptotic analysis very difficult, and hence it is useful to find approximations
of them both for developing asymptotics and for suggesting simplified procedures. The
following lemma gives another representation that forms the basis of the approxima-
tion in frequency domain form.

2.3 Lemma
(a) If Xy follows (1), then
e'in)\ . ei/\

\/%—nUAn (f)_ \/27]_—n

where Dy, (ei’\;f) Yo —’ﬂe’“, f=1—d, and

we (M) (1 - eD‘> =D, (a*; f) wa () — (emAXn - X0> L (8)

n—1 7
Usp (f) = Dy (e*“L; f) U =3 Pt Py frp= 3 (=) ik ()
p=0

k!
k=p+1
(b) If Xy follows (1) with d =1, then

iX e inA
wy (V) (1 e ) = (V) — = (e X, XO) . (10)
The representation (8) results from algebraic manipulation and hence is valid for
all values of d. However, the value of d affects the order of magnitude of the terms
Uxn, (f) and X, and, consequently, it affects the extent to which the (normalized)
dft of the observed data, wg (), can provide an approximation of the dft of the
component innovations, wy, (A) .

2.4 The Modified Discrete Fourier Transform

The representation (8) suggests the use of the quantity

e X, — Xo

Vg ()\5) = Wg (>\5) + 1— eiAs 27]‘71

ein)\ .

_ (1_—1>\){D (e ) wa () - T ()] (11)

and I,, (\j) = vz (As) vz (Xs)™ to approximate vy, (As; d) and I, (As; d) = vy (As; d) vg (As3d)™ .
This is done by approximating X 2.0 (d) and X Aon (d) by Dy, (ei/\S; d) (1 — ei)‘S) ! e X
and D, (ei/\S; d) (1 - e”‘S)f1 e X,,. We call v, (\s) and I, (\s) the modified discrete
Fourier transform and modified periodogram, respectively. In the following, we con-

fine our attention to the case d € (0,2), which is the range of values of d commonly
encountered in applied economic work. Indeed, for this range of values of d and for




the frequencies in the vicinity of the origin, the second term in (11) becomes neg-
ligible compared with the first term, and the (normalized) modified periodogram is
well approximated by the periodogram of u; and hence &;. The following lemmas
establish this relationship and they are used in the following sections to examine the
asymptotic behavior of the modified local Whittle estimator.

2.5 Lemma

Let éxn (f) = ZZ;(% f)\pe%pkgnfp-
(a) For d € (3,3)\ {1},

_ /\(510 (1) g)\sn (f)

1—e?s \/2mn

Mo, () = e2%C (1) w. ()

+ 78, + 18, (d) +7E, (d),

where E }r“ }2 =0 ()\%) , B ‘Tls),n (d)}z =0 (52d74) , and

s,n

§2d—2p1-2d
E }rﬁ,n (d)}Q = { gESQd—Qn—l) 7) ’ ;Z: Zi E )

uniformly in s.
(b) For d € (1,3)\ {1},

where E }r“ }2 =0 ()\2) and

ER

uniformly in s.
(c) For d =1,
AsVz (Ag) = iC (1) we (Ng) + 18

s,n

where B }ra }2 =0 (/\g) uniformly in s.

ER

(d) For d € (0,3],
)‘glvw (As) = e (1) we (As) + r?,n + Tls),n (d),

where E |rg }2 =0 (/\g) and E |r? (al)}2 = O (s**=2n'~21logn) uniformly in s.

s,n

(e) For d € [3,2),

Mo, (As) = e3%C (1) w. (Ns) + Ton+ 0, (d) + 75, (d),

’ s,n

where E |r? ‘2 =0 ()\g) ,E|rt (d)}2 =0 (s***logn), and E }rgm (d)}2 =0 (s> 2n71)

s,n
uniformly in s.

s,n



2.6 Corollary
(a) For d € (3,3)\ {1},

O (1) 2, ()|

1—ers \/2mn

AT, (Ns) = |e29C (1) we (As) — + RS, + RS, (d)+ RS, (d),

where E }Ra

S7n} -

O (sd=1nz—1 , forde (i1
ER;,nu)—{ E ) (z.,

O(\), E }Rgm (d)| =0 (s*?%), and

uniformly in s.
(b) For d € (5,3)\{1},

XL, (As) = 1C (V) L (As) + Ray + B2, (d),

where I, (Ns) = wq (As) wg (Xs)", E ‘R?n‘ =0(X\s), and

*1, forde(%,l)
‘_{ ( %) forde(l,%)

uniformly in s.

(c) For d=1,
/\EIU (/\5) = |C(1)|2 I (/\5) + R?,n?
where E|R%,.| = O (Xs) uniformly in s.

(d) For d € (0,%],
AQdI ( ) |O( )|2 Ie (/\8) + R?,n + Rls),n (d) + Rg,n (d) ’

where E }Ra

57“} -

O(Xs), E|R,, (d)| =0 <sd’1n%_d (log n)%) , and E|RS, (d)| =
O (st_in_Qd log n) uniformly in s.
(e) For d € [3,2),

XLy (As) = [C (V) L (As) + Riy + RSy (d) + RS (d) + RS, (d) + BY, (d)

where
E|R:,|=0(X), E|R,,|=0 <sd*2 (logn)%) , E|R,|=0 <Sd71n—%> ’
FE }Rg’n‘ =0 (52‘1’4 log n) , FIRL,|=0 (52‘1*271*1) ;

uniformly in s.



3 Modified Local GGaussian Estimation: Consistency

We propose a new estimator of d which is based on maximization of the likelihood
function of u;. Our concern is with the case where little is known about the short
memory component process u; and its spectrum fy, (A) is treated nonparametrically.
This is accomplished by working with a set of m frequencies {)\ % s=1,.., m}
that shrink slowly to origin as the sample size n — oo, and this makes the resulting
estimator free from misspecification of dynamics of the component process u;.

The (negative) Whittle likelihood based on frequencies up to A, and up to scale

multiplication is
Zlogfu +Z f (12)

where m is a number such that = 4+ — 0 as n — co. Using the relationship (7), we
can transform (12) to be data dependent, in conjunction with the local approximation
fu(Xj) ~ fu (0) = G. This yields the objective function (Phillips, 1999)

m (G, d) = %i llog ()Dn (e’“f;d))_Q G> + MI” (Aj; d)

Jj=1

The estimator of d that minimizes K, (G,d) does not rely on approximations of
the discrete Fourier transform and may be expected to provide good semiparametric
estimates for all values of d. The examination of the asymptotics is very difficult,
however, so we apply the approximate relationship

I, (A]) ~ I ()‘j; d) ; D, (ew\j;d> ~ )\;i’

to obtain the objective function

m

1 Az
Qm (G,d) = — > [log (GA;Qd) + é[v (Aj)] . (13)

We call this expression the modified local Whittle likelihood function, because it is ob-
tained by replacing the periodogram ordinates, I (A;) in the local Whittle likelihood
function (Kiinsch (1987), Robinson (1995b))

2d
Q7 ( Z {log (GA;M) + %Im (Aj)] , (14)

by the modified periodogram ordinates, I, (A;) .
We propose to estimate G and d by minimising @, (G, d), so that

(@, c?) =arg min @ (G,d),

0<G<oo, dEO

where © = [A1, Ag] and A; and Ay are numbers such that 0 < A; < Ag < co. The
number A; can be chosen as close to zero as may be desired. It will be convenient



in what follows to distinguish the true values of the parameters by the notation
Go = fu (0) and dp. R
Concentrating (13) with respect to G, we find that the estimate d satisfies

d = arg m(}n R(d),

where

o 1 &
R(d) =1log G (d) — 2d— Zlog)\], ):EZ)@‘%(A])
=1

The following results show that d is consistent in both the (asymptotically) sta-
tionary and nonstationary cases. When dg € (2, g) no condition is required on the
rate of expansion of m. When d; € [5, 2) , an additional condition % + mij*Z -0
is necessary in order to achieve consistency. This condition is fairly weak, though,
because m = o (n0'5) is sufficient even when the condition is strongest, i.e. when

do = 2. When dy € [Al, %], however, the rate condition on m becomes stringent.

Then, the condition ”17%11#@” — 0 implies that m has to grow fast for d to be
consistent, and it will be difficult to satisfy when A; is small.

3.1 Theorem

If%+%—>0 as n — 00, then,fordoe(%,%),c/l\—@do as n — o0.

3.2 Theorem

If dy € [%,2) and %—i—%—i—%—l—@ — 0 as n — oo for some o > 0,  then,
c/l\—>p dp.

3.3 Theorem

If do € [Aq, 3] and%%—%%—nlimllwﬂ() as n — oo, then, c?—>pd0.

m

3.4 Theorem
If c?—>p dop as n — oo, then, G (c?) —p Go.

3.5 Remarks

(a) Using the result from Corbae, Ouliaris and Phillips (1999), it is straightforward
to show, for X; = t, that

Ut

t Z)\s e S
V2 Z c 1 1— et v 27m

Hence, the modified discrete Fourier transform and the modified local Whittle esti-
mator are invariant to a linear trend.

10



(b) Interestingly, the modified estimator, which is derived above from the frequency
domain data generating mechanism, is closely related to the ordinary Whittle estima-
tor with the first differenced data. Indeed, it can be shown that, when d — dy > —%,
Qm (G,d) = QF Ax (G,0) + 0, (1) holds where 6 =d — 1 and

* 1 & — A3
QmAX (G,(S) = E Z llog (G)‘] 26) + éIAm (A])] >

J=1

which is the objective function of the local Whittle estimator with first differenced
data.

4 Modified Local Gaussian Estimation: Asymptotic Nor-
mality

The following theorems establish asymptotic normality of the modified local Whittle

estimator for dy € (%, %) \ {%} under somewhat stronger conditions on the expansion

rate of m.

4.1 Theorem

3
If %_;_mm%—ﬂ) as n — oo, then, for dy € (%,1],106 have

m3 (E—do) :N(O,i).

3
1 m?2 logm m2d0—1(log m)?
If -+ o + poy

— 0 as n — oo, then, for dy € (1, %) , we have

m3 (J—do) :N(O,i).

4.2 Theorem

3
If %+%+%—»0 as n — oo for some a > 0, then, for dy € (%,%),we have

1/~ 1
m3 <d—d0) -~ N (O,Z>.
4.3 Remarks

(a) The variance of the limiting distribution is the same as in the stationary case (see
Robinson (1995b)).

(b) The rate condition - + @ — 0 corresponds to assumption A4’ of Robin-
son (1995b) with 3 = 1. Indeed, since C (¢"*) is differentiable with a bounded

derivative, if we define f, (A) = |1 — eiAer |C () ‘2 , then it follows that f, (\) =
ICOPA 2 (1+0 (V).

11



2dg—1(

m logm)?

(c¢) An additional condition on the rate of m, — 0, becomes necessary
when dy € (1, %) When dy < %, this condition is redundant because it is dominated
3

by &:gm — 0. Indeed, this is a fairly weak condition, because mlogm = o (n®%)

is sufficient for it to hold even when it is strongest, i.e. when dg = %

When dy € [;1, 2) , d has a nonnormal distribution and the rate of convergence
decreases.

4.4 Theorem

3
o 3. 2dg—2(]¢ 12
If %4_%4_’”1“%’”4_’" (logm) — 0 as n — oo for some a > 0, then

(a) For dozé ,if Eletff < oo for p >4,

\/E(C?—%) =& + &,

where
& =N (0, i) . &= (2m) 2B, (1)2.
(b) For dy € (%,2),

2 — do) (2m)?% 4

a3 o

it (3 dy) = |

5 Simulations and An Empirical Illustration

This section reports some simulations that were conducted to examine the finite
sample performance of the modified local Whittle estimator (hereafter, modified esti-
mator) and the unmodified local Whittle estimator (hereafter, unmodified estimator),
though no theoretical results are available yet for the unmodified estimator. We gen-
erate I (d) processes according to (3) with Xo = 0 and w; ~ #dN (0,1). The bias,
standard deviation, and mean squared error (MSE) were computed using 1,000 repli-
cations. Sample size and m were chosen to be n = 500 and m = n® with o = 0.55,
0.65, and 0.75, respectively.

Tables 1 and 2 show the simulation results. For values of d smaller than 0.5, the
modified estimator has positive bias, and the bias decreases as m increases. This con-
firms the theoretical result that a large value of m is required to achieve consistency
when d < 0.5. For all values of d, its standard deviation is larger than the theoretical
value, and becomes very large when d = 0.2. The unmodified estimator has little bias
when d < 1.0, but has a large negative bias and larger variance when d > 1.2 (see
also Velasco (1999a)). For the value 0.6 < d < 1.0, the variance of the two estimators
are almost equal. In sum, the modified estimator gives better estimates of d unless
there is a strong prior belief that the value of d is smaller than 0.5.

12



Table 1. Modified local Whittle estimator: n = 500, m = n®

a=0.55 (m=30) a=0.65 (m=>56) a=0.75 (m=105)
Theoretical s.d.= 0.0913 Theoretical s.d.= 0.0668 Theoretical s.d.= 0.0488
bias s.d. MSE bias s.d. MSE bias s.d. MSE
d=0.2 0.1325 0.1608 0.0434 0.0939 0.1157 0.0222 0.0634 0.0837 0.0110
d=04 0.0445 0.1278 0.0183 0.0269 0.0877 0.0084 0.0111 0.0621 0.0040
d=10.6 0.0018 0.1163 0.0135 —0.0016 0.0784 0.0062 —0.0092 0.0530 0.0029
d=0.8 -0.0146 0.1111 0.0126 -0.0124 0.0774 0.0061 —0.0186 0.0542 0.0033
d=10 -0.0133 0.1131 0.0130 -0.0116 0.0762 0.0059 —0.0212 0.0518 0.0031
d=12 -0.0122 0.1125 0.0128 —0.0139 0.0752 0.0058 —0.0262 0.0512 0.0033
d=14 -0.0143 0.1201 0.0146 —0.0143 0.0788 0.0064 —0.0279 0.0555 0.0039
d=1.6 0.0015 0.1200 0.0144 —0.0045 0.0806 0.0065 —0.0246 0.0551 0.0036
d=1.8 0.0203 0.1219 0.0153 0.0112 0.0809 0.0067 —0.0145 0.0586 0.0036
Note: The theoretical s.d. is valid for 0.6 < d < 1.6.
Table 2. Local Whittle estimator: n = 500, m = n®
a=0.55 (m=30) a=0.65 (m=>56) a=0.75 (m=105)
Theoretical s.d.= 0.0913 Theoretical s.d.= 0.0668 Theoretical s.d.= 0.0488
bias s.d. MSE bias s.d. MSE bias s.d. MSE
d=0.2 -0.0147 0.1151 0.0135 —-0.0091 0.0773 0.0061 —0.0080 0.0545 0.0030
d=04 -0.0015 0.1146 0.0131 —0.0043 0.0770 0.0059 —0.0101 0.0525 0.0029
d=0.6 0.0042 0.1161 0.0135 0.0018 0.0789 0.0062 —0.0054 0.0544 0.0030
d=0.8 0.0138 0.1143 0.0132 0.0127 0.0805 0.0066 0.0024 0.0588 0.0035
d=1.0 -0.0103 0.1048 0.0111 —0.0098 0.0695 0.0049 —-0.0204 0.0469 0.0026
d=12 -0.1127 0.1079 0.0244 -0.1211 0.0825 0.0215 —0.1400 0.0712 0.0247
d=14 -—-0.2933 0.1265 0.1020 —-0.3128 0.1094 0.1098 —0.3399 0.0994 0.1254
d=1.6 —0.4953 0.1482 0.2673 —0.5191 0.1330 0.2872 —0.5494 0.1176 0.3157
d=18 —0.7124 0.1533 0.5310 —-0.7370 0.1314 0.5605 —0.7666 0.1104 0.5999

Note: The theoretical s.d. is the one for the modified Whittle estimator.

Figure 1 plots the empirical probability distribution function of the modified and
unmodified estimator for the values of d = 0.3,0.7,1.3,1.9. The sample size and m
were chosen as n = 500, m = n%% = 56, and 10,000 replications are used. When
d = 0.3, the distribution of the modified estimator is positively biased, whereas both
estimators have an approximately unbiased normal pdf when d = 0.7. When d is larger
than unity, the modified estimator still works well, whereas the unmodified estimator
appears to converge to 1. The convergence to the squared fractional Brownian motion,
which theoretically will occur when d = 1.9, does not show up with this sample size.

As an empirical illustration, the modified local Whittle estimator was applied to
the logarithm of the monthly UK wholesale price index. The series constituted 797
observations over the period 1885:1-1951:5. The first panel of Figure 2 graphs the
series. The second panel of Figure 2 plots d for different values of m (specifically,

m = n%? ..., n%% were used). As m increases, d initially increases and then stays

13
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Figure 1: Modified and unmodified local Whittle estimates

around the same level. The estimates of the memory parameter over the stable area
are in the region (1.3,1.4), indicating the series is I (d) with d > 1. The third panel

shows the residual fractionally differenced series 1; = (1 — L)% (X; — Xg) , where d is
the estimate with m = n%6. The spectral density estimates of i; are displayed in the
fourth panel.

6 Conclusion

This paper explores the properties of a new semiparametric estimator, the modified
local Whittle estimator, of the memory parameter in models of fractional integration.
An alternate model of fractionally integrated processes that has some advantages as
a generating mechanism is employed, and some new representation theory for the
discrete Fourier transform of a fractional process is used to assist in the analysis. The
new estimator is simple and convenient to use and involves only a minor adjustment
over the well known local Whittle estimator. The limit theory for the modified
estimator covers a range of values of d that is commonly encountered in applied work
with economic data and is the same as that which is known to apply to the local
Whittle estimator in the stationary range. It is therefore more efficient than the
modified log periodogram regression estimator analysed in Kim and Phillips (1999),
which is also suitable for use over a similar range of nonstationary values of d.

As suggested in Phillips (1999), a further possibility is to use the exact form of
the discrete Fourier transform (8) in constructing the local Whittle likelihood. Such

14
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Figure 2: Wholesale price index data and estimates of d

a likelihood does not rely on approximations of the discrete Fourier transform and
may therefore be expected to provide good semiparametric estimates for all values
of d. However, this method involves much more demanding computations than the
modified Whittle estimator discussed here and an asymptotic theory is yet to be
worked out.
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7 Appendix A: Technical Lemmas

This section provides technical lemmas that are useful in the evaluation of the modi-

fied discrete Fourier transform on frequencies As = % — 0. The lemmas are divided

into two groups. The first gives approximate representations of the sinusoidal poly-
nomials Dy, (¢"*+;d) and f, in (8). The other gives asymptotic approximations to
the term Uy, (f) and X, in (8).

7.1 Component Approximations (deterministic part)

7.2 Lemma

For f> -1 and)\sz%—ﬂ),

D, (e“‘s;f) = (1 - e“‘s)f +0 (n_fs_1> , (15)

uniformly in s.

7.3 Proof

D, (e“‘S;f) _ zn: (_.]!c)keik)\s

k=0
o EDeien - N 5Dk ik,
= 2 e 2 e
k=0 k=n+1
, 1 © . ©
= oF (=f,1;L;e™) - o lethds !
where the third line follows from the fact that (Erdélyi, 1953, p.47)
(= L(=f+k) L -1
— = L (1+0 (k1)) . 17
M O T(HT(k+1) T (/) (1+0 (k7)) (17)
Because f > —1 and s # 0, the first term in (16) converges and equals to (1 — eD‘S)f

(Erdeélyi, 1953, p.57). For the second term in (16), by Theorem 2.2 of Zygmund
(1959) we have

0 n+N
Z k/.*f*1€27rzsk/n < (n + 1)*f*1 m]\E%X Z eQﬂzsk/n 7
k=n+1 k=n+1

and the ordinary summation formula gives

n+N N n
2 : 627rzsk/n — § :627rzsk/n -0 <_) )
S
k=n+1 k=1

uniformly in N. The third term in (16) is O (n™/s™) because > 3%, . k=772 =
O(n 7 1) and s/n—0. A
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7.4 Lemma

For X\ | 0, uniformly in A,
N\ f o
A*f<1——eM) = e HitoWn, (18)
N\ f g
A/ (1 — e*”\> = 210N,

7.5 Corollary
For f>—1 and )\S:%HO,

A\ 'D, (ei’\s; f) = N/ (1 — ei/\s)f + X770 (n_fs_1>

::e%ﬁ+oug+o@44) (19)
uniformly in s.
7.6 Proof
Note that |1 —e*™| = |2sin(3)|. An elementary geometric argument (see the at-

tached figure) implies that, for 0 < \ <,

arg <1—€i/\) = )\;W and arg (1—67’»‘) = W;)\.

Hence we can write (1 — e”‘)f in polar form as
N\ A
— 2\ — 1 —_
(1 e) {28111(2)
N
2sin | =
81n(2>
i (W Toos (M _ 7Y s (M7
sin { 5 cos | 5 5 tsin| 5 5 .
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and all the reminder terms are uniform in \. Therefore, uniformly in A,
A#<Lﬂﬁy - (A+OQ%)[s<7g>+OQme%}%)+num}
= (1+o(W) 3o
= (1+0(\) [Fi oM
= e 2l o(N.
The approximation of A=/ (1 —e~*)” follows the same line of argument. M

7.7 Lemma

Uniformly in p and s,

~ O f,fr 0,
M)Mpz{oﬁf,éﬁaqm, (20

B P = Ot ). forf> L (21)

7.8 Proof
The approximation (17) yields

.};\sp _ ( )) e2misk/n
k=p+1
1 n ' n
— k/,ff71€27rzsk/n +0 k/,ffo )
L'(=f) kzp—:i—l (kzp;rl )

Using the results derived in the proof of Lemma 7.2, we obtain

- —f— - wisk/n - —f— 0O - ’ for 07
S ETHA+0 (k) ermer —O(Z k! 1)_{Ogif)), f;«;:(_Lo),

k=p+1 k=p+1

giving part (a). Part (b) follows from

n p+N
Z k,fffle%risk/n < (p+1) max Z eQﬂzsk/n 7
k=p+1 k=p+1
p+N
Z eQWisk/n - 0 (ﬁ) ,
k=p+1 5
" n
2 = 0o ( *f*l) -0 —
Z p pftls )’

k=p+1



since s<n. A

7.9 Component Approximations (stochastic part)

The following lemmas give asymptotic approximations to the term U an (f) and X,
in (8) when Ay = 22 — (. Note that the stochastic order of magnitude of Uy, (f)

changes depending on the value of f.

7.10 Lemma
For A 2” — 0,

ﬁAsn (f) =C 1) ern(f)+ Ts,n (f),
where

5>\n E pre_Zp En—p>

p=0

_[ oW, for />0,
Elrsm (f)* = { O (n72f) =0 (n?*?), for f € (-1,0),

and

uniformly in s.

7.11 Proof
Applying the BN decomposition

u=C(L)eg=C(1)eg — (1 — L)z, chat g, G = Z Css

s=j+1

to U,n (f) yields

n—1
UASn (f) = f)\spe_ipksunfp
p=0
n—1 _ '
= Prpe P [C (1) enep — (1 = L) Eny)
p=0
= C 6)\Sn Zf)spe ipAs 1 — )En,p.

Note that the assumption » 32 j ;| < oo implies that 2% c < 00 hence E [&]* <

00. Rewrite the second term as follows:
n—1 "
3 B (- D)2y
p=0
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n—1

B fASO€”+ZfAsPe Py ka e PTINE, ) — e TIE

p=1 p=1
n—1
e Z [f/\spe_ip)\s _ f)\s(p—l)e Z(p 1)>\ :| en “p +fA 05n f)\s(n—l (n 1))\ 0.
p=1

In view of the results in the proof of Lemma 7.7,

Ho=001), Fupy=0@"711),  for f>0,
f,\s() =0 (n’f) s f)\s(n—l) =0 (nif*l) , for f € (—1,0) .

Hence, using the fact that E [&]* < co, we have

2

‘f/\ 0€n
2

‘f/\ 0En

>From Lemma 7.7,

=0(1), ‘f/\s(n pe 1)‘550) =0 (n2172), for f >0,
=0 (n7%) ’f)\ (1€ "~ 1))‘550‘ =0 (n=472), for f € (-1,0).

Pt = Pupene TN = f {6””5 - e*i(pfl)As} L eilp-DAs |:!]T.)\sp - JT.AS(P*U}
= }’;\Spe*ip/\s (1 _ ei)\g) _ e*’i(pfl))\ ( p«]'(‘)p ipAs

- o(in)o () +olr) =0 ()
It follows that
2

E ni o™ = e @&, | < niniO (/1) 0 (/1) BB sy
= p=1 g=1

0(1), for f >0,
{ O(n_Qf), for f € (-1,0),

and the result follows from Loéve’s ¢, inequality (Davidson, 1994, p.140). W

7.12 Lemma

For f € (0, %) and any number L such that L — oo and % — 0, the following hold
uniformly in s:

(@) ERa P = 0(n')=0(n),
() Eoan (P = O(L¥+20) =0 (12 + 20272,

o)) o i (2))

20
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7.13 Proof

For part (a), it follows from Lemma 7.7 that

2 (= o) =y
Opz:;p2 O(le).

For part (b), we write €, (f) as the sum of two components, the first involving L+1
components. Specifically,

n—1
Elenn (PP =Y | Frpe™
p=0

L n—1 2
F |5>\sn (f)| = E Z fASpe iDAs Enp+ Z f)xspe ipAs En_p

p=0 p=L+1
2 2
L ~ . n—1 " '
< 2F ZfAspe_ZpAS€n7p +2F Z f)\spe_zpksgnfp ) (23)

where the second line follows from Loéve’s ¢, inequality. By Lemma 7.7, each of the
terms in (23) is bounded by

3 (h)’ = 0[] <o)
sD pa ’

p=0
n—1 » 9 n—1 1 n n n—1 1 n ;
_ L _ nw _ r=2
> (ha) =0 X | =0l X am | =o(r)
p=L+1 p=L+1 p=L+1

For part (c), Minkowski’s inequality yields
1/2 1/2
L | 2\ U/ 1 | 2\ V/
E|) " fape Penp +{E| D hape ™eny

p=0 p=L-+1

- ozt 1) +0 ((g)%f),

giving the required result. W

E|exmn (f)]

IA

7.14 Lemma
(a) For f € (—1,0), the following holds uniformly in s:

EExn (f)|2 =0 (n1_2fs_1) =0 <n2d_13_1) )

(b) For f € (—%,0) and any number L such that L — oo and % — 0, the following
holds uniformly in s:

1-f 2 d 2
Bl (=0 <”TL—f + %L‘Qf—1> =0 (%Ld_l + %LQd_3> .
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7.15 Proof

For part (a), using Lemma 7.7 we get

) ol D) n—l n pl-f 71
B (NP =X |fape [ =0 | X! A | = prf H =0 (a5t
=

p=0

Part (b) is proved by the same argument as used in Lemma 7.12. Specifically, we
have

2 2
n—1
Een (f)? <2E Zf)‘ pe Pee, ol +2F Z fAspe Phegy, bl (24)
p=0 p=L+1
and
L L 7}0 L nlff
> (f) = o S| =05 =0 (),
p=0 p=1 p p=1
n—1 » 9 n—1 ng ng n—1 n2
S (h) = 0 ¥ am)=o(B X pe) =0,
p=L+1 p=L+1 p=L+1

giving the required result. W

7.16 Lemma
(a) For f € [%, 1), the following holds:

N _ [ O(logn), for f=
E|€)\Sn(f)2_{0(1)’ forfe(%,l).

(b) For f € (—1, —%] , the following holds uniformly in s:

- s [ O (n1’2f5’2) =0 (n2d’1572) , for fe ( ,—%) ,
(NI = 0] (s_2n2 logn) , for f = —%

7.17 Proof

Using Lemma 7.7, we have, for part (a),
2 = O (logn), for f=1
=0 p72f — { g ) - 2>
(Z o). for f= (1),
n—1 n2 n2 n—1 Caja
=0 Zp2f+252 =0 Ezp
p=1 p=1

P
_ 0] n1_2fs_2) , for f= (—1,—%) ,
O (s~ 2n? logn) , for f= —%,

n—1
Efenn (NP = | Frpe
p=0

and for part (b),

i
L

~ . 2
Elenn(DP = Y |Fupe™™

[en]
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giving the required result. W

7.18 Lemma
For d € (%,Q)Qnd 1<t <n, we have
(a) Xy — Xo=C (1) X§ +r, where X{ = 2 10 ((;?;k& E and

_[oq), = forde(;
E |rt|2 = { 0 (th—2) , forde ((12 2)]

uniformly in t,
(b) E|X{|> = O (n*1),
(c) E|X,* =0 (n?1).

7.19 Proof

When d = 1, see Phillips and Solo (1992) page 976. For d # 1, applying the BN
decomposition to u; and substituting into (3) yields

t—1

Xt XO = i ﬂut_k = i @ [C (].) Et—k — (]. - L)gt—k] = O (1) Xf—z @ (1 - L)gt—k-

k! k!

k=0 k=0 k=0
Rearrange the second term as follows:

t—1

“L N d — (d
%(1—[/)&—1@ = Z% Z_agtkl
k=0 k=0
(d) — (d ! (d),_; -
= |0 ZTk Z 't k_(t—1§!80
k=1 k= 1
t—1
i (ERE (iditl;!zo, (25)
k=1
where the fourth line follows from the fact that
(d), (dyy 1 [D(d+k) T(d+k-1)
K (k—1)! — T(d [F(k‘+1) - T(k) ]
_ T(d+k-1)
= T@rey @Dk
_ T(d+k-1) _(d—1),€. (26)

Td-DT(k+1) &
The mean square of the first term in (25) is

2

t—1 t—1 t—1 t—1 t—1
E Zk‘d_QEt_k =F de 5 k] [Zld & 1] = de_QZld_QE(gt—kgt—l)a
k=1 k=1 1=1 k=1 1=1

(27)
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and the result follows from the fact that ng,k < 00 and Cauchy-Schwartz inequality.

Trivially E2Z = O (1) and E ’ ((fl“l‘)l! 30’2 =0 (1), and part (a) follows from Loéve’s ¢,
inequality.

For part (b) and (c), F[X{]? is bounded by o234+ L k24D = O (#21) =
0O (nQd_l) , giving the required result. W

8 Appendix B: Proofs

8.1 Proof of Lemma 2.2 and Lemma 2.3
See Theorem 2.2 and 2.7 of Phillips (1999). M

8.2 Proof of Lemma 2.5

Multiplying both sides of (8) by A4 (1- ei/\S)_l yields

Agl s (Xn — Xo) _ )‘ng” (ei/\s; f) Agl ﬁksn (f)

d J—
/\swaz ()‘s) + 1— ei/\s o 1_ ei/\s Wy, ()‘s) 1— ei/\s o .
(28)
Using Lemma 7.4 and Corollary 7.5, we have
XD, (P f)  AID, (M f) e L 0(0)+0 (s )
1—eihs oA —er) e 2+ 0(N)
= £ﬁ+oug+o@44y (29)
N d—1
1—ers © (AS ) ’ (30)

Since Fe* < oo and > 20 J lejl < 00, wy (As) can be approximated as follows (Han-
nan, 1970, p.248):

wy (A) = C (™) w. (A) + 7 (M),

where
o2
o’

uniformly in s. C' (") is differentiable with a bounded derivative because Y72 j [¢;| <

E |w, (/\8)|2 Ery, (/\8)|2 =0 (niz) )

0o. Therefore, Taylor expansion gives C' (e“‘s) = C (1) + O (Xs) uniformly in s. It
follows that

wy (As) = C (D) we (As) +0 (As)we (Ns) + 70 (Xs) = C(Dwe (Ns) +75 (Xs),  (31)

where E ‘7’,11 ()\5)‘2 =0 ()@) . Combining (??) and (?7), we obtain the approximation
of the first term in (??), viz.
/\(siDn (eiASE f)

1—ere  u ()
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= EUC (1) w. (A) +eE UL (A) + [0 () +0 (s )] [C (D) we () + 7 (A)]
= 20 (1) w. (\) + 78 (As) + 75 (Ns)
where E [r2 (\s)|* = O (A2) and E |r2 (/\S)‘2 =0 (s7272) = O (s*71).
Now we derive the bound of the second term in (??). It follows from Lemma 7.10

and (??) that

N D) o M COELD M )

1—es \f2rn  1—es 21n 1—ers \/2mn’
where
2
2l X ] _ [ O =0 (8220 ford € (3,1),
1—es o | | O ()\gd*QnQd*‘g) =0 (s*2n), forde(1,3),
uniformly in s, giving part (a).
For part (b), using Lemma 7.12 (a) and 7.14 (a), we get
2
5 MW ()| [ o (/\gd_QnQd_Q) =0 (s*72), for d € (3,1),
1—e*s fm | | O (Agd*QnQd*%*l) =0 (s*3), forde (1,3).

It follows from Minkowski’s inequality that

T [ 0(242), forde (b,1),
1 O 1

Xy Usn(f) 1
(32‘1_3) , forde ( ,%) ,

FE .
1—ers \/2mn

2 (Xs) +

uniformly in s, giving the required result.
For part (c), a straightforward application of Lemma 2.3 (b) yields

As €M (X, — Xo) As

Aswy (As : = - u (As
w ( )+ 1_61)\3 27rn 1_€ZASw ( )

= (egi +0 (As)) [C (1) w: (As) + 15 (Ns)]

= iC (1) we (As) + O (Ny) [C (1) we (Ns) + ,,,Tll ()\S)] n o5y
= iC (1) We (As) +T§,n-

For part (d), using Lemmas 7.10 and 7.16, we have

d 2
As  Tsn (f)
1—e*s \/2mn

-0 (Agd_2n_1) -0 (SQd—in—Qd) ’

XC (1) 2. ()|

1—ers /2

[ O ) = O (522120 for d  (0,1),

E B { O (A\22p~Llogn) = O (s*~2n'~2logn), ford= 3.
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It follows that

/\g [7/\371 (f) i

1—ers \/2mn

2 (Xs) + =0 <52d72n172d log n) )

giving the required result.
For part (e), a similar calculation yields

)‘g Ts,;n (f) i

1—es \mn

-0 </\§d—2n2d—3) -0 (SQd—Qn—l) ,

2
1—ers \2mn
(0] (/\gd_QnQd_Qs_Q) =0 (st_‘l) , for d € (%, 2),
(0] (Agd—stzn logn) =0 g2d—4p3=2 oo n) =0 (52‘1’4 logn), ford= %

Thus )
)‘glc (1) g)\sn (f)

1—es /o

2 (\s) + =0 (82d74 log n) ,

and the stated result follows. W

8.3 Proof of Theorem 3.1

We follow the general approach developed by Robinson (1995b) for the stationary
case. Define G(d) = Gok 3™ | X2") and 5 (d) = R(d) — R (dy) . Rewrite S(d) as
follows:

S(d) = R(d) - R(d)

= logG (d) — log G (do) — (2d — 2dg)— Zlog)\

G (d)

G (do) 1 o | 2(d—do)
—log ———=+log | — A
Gol ZT 1 A]<d a0) Go (m ; j

—(2d — 2dy)— Zlog)\
_ G (d) é (do) 1 O g4y, mAHI )
= log G log Ca + log (m z:: / 20 —do) +1

m2(d—do)
—(2d — 2dg)— Zlog]—l—log Sd a1

= log
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1 m
—(2d — 2dy) | — log 7 — (1 -1
34240 | 3 Slog ~ Qogm 1

+(2d — 2dg) — log (2(d — do) + 1) .

For arbitrary small A > 0, define ©; = {d s dy — % +A<d< Ag} and Oy =
{d:A; <d<dy— 5+ A}. Without loss of generality, we assume A < } hereafter.
Since the function x — logx achieves a unique relative and absolute minimum on
(—=1,00) at z = 0, and @ — logx > 0.56% if |2| > §, d —, dy if

sup |T'(d)| =5 0,

1

Pr <infS (d) < 0) — 0,
©9
as n — 0o, where

A~ al m2(d—do)
T(d) = log—GC(;éO) —10g%— ( Z 24 2d°/—(d d0)+1)

and

1 m
+(2d — 2dy) | — > “logj — (logm — 1)
j=1

>From Lemma 1 and Lemma 2 of Robinson (1995b), for d € ©;, we have

LY logj— (logm—1) = 0<logm),
m

. m
7j=1
2Ad —do) + 1 = [ |24 2P B 1
- ;(m L= 0(—5 (33)
Note that
G (d) — G(d)
G (d)
m m d—d
- + Z] 1 A?dI’U ( ) GOL Z] 1 )\3( 2
- m 2(d—do
GOE Z] 1 AJ( )

Ly () oy - ao v (2)"

Gty (2
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2(d— do) + 1) 5 Sy (&) i X201, (3) ~ Go

N\ 2(d—do)
20d-d)+1 Gk, (£)

_ AW
= 5 (34)

Therefore, by the fact that Pr(|logY| > ¢) < Pr(|Y — 1| > ¢/2) for any nonnegative
random variable Y and € < 1, supg, |T'(d)| — 0 if

>From Corollary 2.6 (b) and (c), we have

XL, () = 10 (P e () + B + B ()

where E ‘ Ry,

=0 ();) and

O (j% 1), fordye (3,1),
B|R,, (o) =4 0 fordo=1,
O <jd°_§) , fordy € (1, %) ,

uniformly in j. Thus, in view of the fact that Go = f,, (0) = % |C' (1), A(d) can be
written as

AW = P2 <d—do>+u%i(%)2d_2d° 201, () - 4]

= Ay (d)+ Ax(d) + Az (d),

where
R j 2d—2dg o2
o = S (2 - )
=1
1 m ] 2d72d0 1 m ] 2d*QdO b
a@) = a3 (L) R a@=anY (L) R,
j=1 =1

and g = 2 (d — dy) +1. We proceed to consider the successive terms 4; (d) i =1, ..., 3.
For the first term Aj (d), since Ec? < oo, we have, uniformly in j and k, (Priestley,
1081, p.405)

EL(\) = ;’—W (35)
Var (I: (A;)) = O(1), (36)
Cov (L (Nj), (W) = O(n'), j#k (37)
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.\ 2d—2d,
~From (??), (??), and (??) and the fact that £ > (#) "—0(1)ford e O,
(see (77)), it follows that

RS 2]

J=1

= 3 (2) et

Jj=1

1 m ] 2d—2dy k 2d—2dg
s ; (g) (a) CovlL (\) L ()]
J

1 I /) 4o 10 /) 2420 B g g 24-2do
— -1
-olmx(d) )olm=x(Z)  X(G)
j:1 jil k=1
_ > _
_ 0 (log_gz{ltl)}r)4d for 4d — 4dy > —1 L0 (nil)
O(m 0) for —2+4A < 4d — 4dy < —1

= O(m™ +m ogm+n~1) =0 (m™* +n71). (38)
Therefore, for all d € ©1 we have
A1 (d) = 0, (m*2A + n*%) . (39)
Next consider As (d) and Az (d). E'|As (d)] is bounded by

1 m ,] 2d_2d0j 1 m ] 2d—2d0m m
a;(ﬁ 5=0 aZ(a) T=0()

j=1

E|A3(d)| =0 for dy = 1, and for dg € (3,1) , we get

A RO A S
BlAs(@)] = O aE(a) j

m
— O | m2do—2d-1 ijdfdoq
J=1

O (mdo*l) for 2d — dy >0
0O (deO_Qd_l log m) for 2d —dp <0

= O (mdo*l +m 2 log m) .

For dy € (1, %) , we obtain

1 m ] 2d—2dg o
plas@l = o3 ()



m
3
— O m2d0—2d—1 E j2d—d0—§
J=1

3

O (m—2 for 2d — dp —
0O (deO_Qd_l log m) for 2d — dg —

= 0 <md°7% +m %A logm) .
Thus, Az (d) = O, (n"'m) and

)
Op (mdo—l + m—QA ]Og m) , for d() S (%7 1) 9
Az(d) =4 0 3 o=

Op (md0—§ + m*QA log m) s for d() S (1; %) )

for all d € ©1.
In sum, A (d) is bounded uniformly for all d € 0, as follows:

O, (mdo’l) , fordy € (%, 1) ,

A(d) =0p (m’2A logm +n"7 + n’lm) +¢ 0 \ for do = 1,
O, <md°_§> , for dy € (1,%) i
(40)
Finally, observe that
I A oA
B(d):[2(d—d0)+1]GoE;(E> =Go+0(m ), (41)
uniformly for all d € ©1, hence Pr (infg, B (d) < Gp/2) — 0.
>From (?7)-(??) we deduce that, uniformly over d € 01,
A(d) ‘
sup |——=| =0, (1). 42
Also we have established
G G(d) - G(d)
=1 1.
o)~ T Ga "

Now we consider Oy = {d A1 <d<dy— % + A} . Using the same notation and
technique as Robinson (1995b), we proceed to prove that,

Pr <inf5’ (d) < O) — 0.
S

Let p = exp (m~! Y T"logj) and S (d) = log {IA) (d) /D (do)} , where

~ 1 j 2(d—do) o
[ < y 440 .
b=y (1) 0.

j=1
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It follows that
1nfD ) > —ZCLJJQdOI

where
N 2A-1

z , for1<j<p,
~2do—1
<]3—3) , forp<j<m.

Then,

Pr <inf5(d) < 0) <Pr %i (aj = 1) j*® 1, (A) <0 ) =Pr %zm: (a; — 1) I”‘(AJ')

©9

>From Corollary 2.6 (b) and (c), (??) is equal to
Pr(Bi+ By + B3 <0),

where
IC ()] &
B =  — /
1 m Z (a] 1) IE (A]) )
7j=1
1 & a 1 b
B B DR By Y1) R )
j= =

We proceed to consider the successive terms as above. For By,

m

2 m 2

j=1
As m — oo, p ~ m/e and ) 1<, ~ Fag- In view of the magnitudes of the
moments of I, ();) discussed above and the fact that (note that A < 1/4)

zm:aj = D a+ ) a +O< 2ot /mx‘QdO‘lda:> =0(m),
j=1 P

1<j<p p+H1<i<m

in:an — p274A zp:jélAfQ +p4d0+2 i jf4d072 =0 (m274A + m) ;
=1 =1

Jj=p+1
we have
- 2 2
1 o
E E;(% —1) [Ie (/\J) - %}

2 % 1

= O mQZ +O mQZ ;ak—l)ﬁ

= Om™*+m ) +0(n?) (44)



Thus

1 m
BIHPGOEZ(%_D'
7j=1
E|By| is bounded by
li(a-—l)l:O li(a»—l)ﬁ :0<T)
m J n m J n n/’

For Bj, we have

This is o (1) because

1 pl28 2 plt2do ™
£ Z%‘jdo*l _ ijAerH 4 Z j2d =0 <m—2A log m + mdoq) ’
m m m
j=1 j=1 J=p+1
— p 1+2d m
1o~ g3 1-24 . _5 0 5 _ _3
— E ajjdo 2 = P E j2A+d° 2—|—p E ] 2 do:O(m 2A10gm+md° 2),
m m m
j=1 j=1 j=p+1

and
1§:d 1 do—1 1§:d 3 ) do—2
_ j 0— — O (m 00— ) , - ,] 0_§ — (m 0_5) X
mj:1 mj:1

Choose A < 1/(2e) < 1/4 with no loss of generality, then for sufficiently large m,

m

1 1 1
Jj=1 1<j<p
Hence,
1 m
B1 + By + B3 —, GOEZ;((L]' —1)>Gy6 > 0.
=
It follows that
Pr(Bi+Bs+B3<0)—0 asm — oo. (45)

Therefore, d —p do, giving the stated result. B
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8.4 Proof of Theorem 3.2

The proof has the same structure as that of Theorem 3.1 and we therefore provide
only the relevant parts. First, it follows from Corollary 2.6 (e) that

1 m ] 2d—2dg o
A(d) = [2(d—d0)+1}EZ(E> [)\j oI, (A;) — Go
j=1

= A1 (d) + Az (d) + A3 (d) + A4 (d) + A5 (d) + A6 (d)

where
C 1 2 m ] 2d—2dg 0.2
A (d) = g’ 7(77,)’ Z E) [Is (A])_%] )
j=1
1 m j 2d—2dg 1 m ] 2d—2dy b
Ay (d) = QE Z <E) R?,m Az (d) = QE Z (E) Rj,n (do)
j=1 j=1
m . 2d—2dg m . 2d—2dg
1 j . 1 J e
Ag(d) = QEZ m Rjn(d0)7 As (d)zgaz m Rjn(do)a
j=1 =1
1 m j 2d—2dg
Ag(d) = 9 > <E) R} 5 (do)
j=1

It has already shown that A (d) —, 0 and Ay (d) —, 0. For A; (dy) i = 3, ...,6, we
obtain

1 m .\ 2d—2dg ' i | m .
E|As(d)] = O (m Z <%) j9=2 (logn)2 | = O [ (logn)2 m2do—2d-1 Z;]Qd—do—Q
j:

J=1

1 m . 2d72d0- L ) m -
E|As(d)] = O (EZ<%> 913 | = O [ n-3m2do—24-1 ZJQdfdo—l

_ 1 On G\ 9dg—4 _ 2dg—2d—1 ~ 2d4
E|A5(d)| = O(m <E> J logn | =0 | (logn)m jz:;j

(logn) m?¥®=% 4+ (logn) m~2A log m) )

_ AN A 2dg—2 -1 | _ 1. 2dg—2d—1 C~ 2d2
El|As(d)] = O EZ<E) J n =0 |n""'m Z]

=1

= O (n_1m2d0_2 +n"tm2A log m) .
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2d0 2

It follows that S0 | A; (d) —, 0 if Ll omoo
Similarly, we have

[COF - IS

— 0 as n — oo.

B = —— jz; (@ = 1) L (A7) —p Go— ; (a; —1),
1 & u
By = 4 Z(aj —1) Ry = 0,
7j=1
1 & 1 & .
Bs = m Z (aj - 1) Rg,n (do) , Ba= m Z (aj - 1) Rj,n (do) )
j=1 Jj=1
1 & . 1 &
Bs = EZ( — 1) Rj,, (do) BG_EZ( — 1) R}, (do)
Jj=1 7j=1

Bs, ..., Bg converge to zero in probability, because

1 m
B1ml = 0 (535004 o) =0 (G St ().
j=1
E|By = O %E(Qj_l)jd()ln% =0<n7%m’2A10gm+n’%md°’1>,
]:
1 m
E|Bs| = O EZ(%‘_U 7** tlogn =O((logn)mfmlogm—#(logn)m2d0*4>,
j=1
1 « oy A
E|Bs] = O E;(aj—l)j%o Zp~t :O<n m™22 logm + n~tm2do- 2)
J:

m2do—2

Hence Y0 B; —, GO—Z] Lla;—1) > 0if 2+
follows. W

— 0asn — ooand d — dy

8.5 Proof of Theorem 3.3

As above, we deal only with the relevant parts. It follows from Corollary 2.6 (d) that
A(d) = A1 (d) + Az (d) + A3 (d) + A4 (d),

where A; (d) —, 0, Az (d) —, 0, and

m

1 j 2d—2dg b 1 m 2d—2dg
M@= (L) R, A =on> () B,

j=1 j=1
For A3 (d) and A4 (d), we obtain

2d—2dg | 1
ElA;(d)| = O —Z( ) j% n3 % (log n)?
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O (nz (logn)% mdo_l) , for 2d — dgy > 0,
- O (nz=d (logn)% m?2do—2d=1 oo m) , for 2d —dy <0,
ElAs(d)| = O = i (i>2d2d0 j2% 2% Jog n
m = \m

m
— O nl—Qdo (log n) deo—Qd—l Zde—Q
7j=1

B o) (n1_2d0 (logn) m2d0—2) , for d > 1/2,
o) (nl—Qdo (logn) m2do—2d—1 log m) , ford<1/2.

Note that, for dg < % we have
n3—do (log n)% m2do—2d—1 logm = ndo—3 (log n)fé (n1_2d° (logn) m2do—2d—1 log m)
= 0 <n1_2d° (log n) m2d=2d=1 o0 m) .

Hence, E |Az (d)] — 0 and E'|A4 (d)| — 0 if (note that d > Ay)

1—2dy 1 1—2dg 1 1
n ogn n ognlogm
224, 0 and g 7oy wu
Since Ay < dg < 1, this is satisfied if

nl=281 Jognlogm
— 0.

m

For the parameter space ©2, we change the definition of a; as follows:

\ 2(d—do)
(%) U, for1<j<p,

aj = A —2do—1
<%) , forp<j<m.
It still holds that .
i D() > > 01 ),
and hence
Pr <%1§5(d) < o) <Pr %;(aj —1) IA](;d]o) <0
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Since d > /A4

D> a4 = p

1<j<p

2 _
Z% =

1<j<p

and it follows that » 0",

>0 and dy < 1, we have 2d — 2dy > —1. Thus

2(d

pi

0—d) 20d—do) ., P . m 1 S m
1;,;7 2(d— do) e2(d—do)+1 7~ 2A¢’
- A(d— O (m) for 4 (d — do) > —1
o—d) 4(d—do) _
Z ’ { O (m*d%-Dlogm) for 4(d —dg) < —1
1<j<p

O <m2 (m—l 1 Ado—d)—2 logm)) — ) (mg) ’

aj = O(m) and 37", a3

o (m?) . Therefore, using the

1 m
same argument as above, we have By —p Goz; > 5 (a; — 1), B2 —, 0, and

E|Bs(d)] =

E|By(d)] =

_|_

O

o) o) S O
3|~ SIH

_|_

S

O

(
(

(
(

|
(

<n12d0 ]Og?’L 2d0 2d— IZJQd 2+m2d0 Z ]

>~ (a; = 1) % 'n3 ™% (log )

1 & 1 1
3l ke (log )
m

Jj=1

12 j 2(d—dp) R L .\ —2do—1 )
i el 'dO*1 l § _ 'dofl —7d0 l
() ot 30 (2) et omn)

n3—do logn% m2(do—d 12]2(1 do—1 |, 2do Z jdo—2 4 — Z]do 1
J=p+1

néfdo (logn) % (mdo*l + deO*Qd*1 log m))

n'=2% Jogn < do—1 4 yp2do—2d-1159 m)) =o0(1),

m
Z 2d0 2,,1-2do log n
Jj=1

=1 Jj=p+1

.

1 m
_ZJQdO 2 1— 2d010gn
m

7=1

Jj=p+1

O (nt—2do logn <m2d0_2 + deO_M_1 logm +m™ ))

O (nl2do logn <m71 + 2do—2d-1 log m)) =o0(1),
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P 2(d do) 1 j
2do—2,,1-2do | L
E ( 7 n ogn + - E (

p

—2dp—1
> j2d072n172d0 logn

1 m
1 2y —2
S 4 - ;y

N



1-2A .
because “——08m0g" _, () Therefore, > ;_, Bi —p Go= > iei(a;—1) > 0 and

d —, do follows. W

8.6 Proof of Theorem 3.4

Since d —p do and G(d) is a continuous function of d, we may analyse G (do) . We
have
G (do) —G(do) _ I3 AL (A) = Go _ A(do)
G (do) Go B (do)

So

~

G (do) —p Go,

which gives the required result. B

8.7 Proof of Theorem 4.1
We work from the first order conditions for c/i\, viz.
0=FR (J) = R'(do) + R (d*) (3 -~ do) : (46)

where |d* — do| < ‘cf - do‘ . As in the proof of Theorem 2 of Robinson (1995b) we get

the following expression for R” (d)

4| Py (d) By (d) = Fi (d)’]
Fy (d)?

R/l (d) —

)

where

>From (?7) and (?7), we have
A(d) -~
S| = o (e ).

so, by the argument on pages 1642-43 of Robinson (1995b), R” (d*) = R" (dy)+o0p (1) .
Now, from Corollary 2.6 (b), we find

sup

~ 1 & )
Fy (do) = — Zl (log )" Xj I, (A;) = C1 + Ca + Cs,
]:
where
P & K
G o= — Z(logj) L (),
7j=1
1 = Nk pa 1 = Nk pb
Gy = E,Zl“‘)g” RS CFEZI(IOM Rj (do) -
J= J=



We proceed to consider the successive terms as above for k£ = 0,1,2. For (1,
IC (] & Ak o 1 ¢ K
= T;(logj) I (A) — 5~ +G0E;(10g]) :

A similar argument to that above and the fact that

m

~— N logj~1 N ~ (1
mj§1 ogj ~ logm, > " (log j)* ~ (logm)?,

yield

. <lognzz>2’“> o <<1og;n>2’“> o (aogg)%) |

giving Cy = £ 3| (log §)* (Go + 0, (1))
For Cy, E'|Cs| is bounded by
1 & K J 1 & N K
2 o) (m;mgﬁ n) o ((logm)")
E|C3| =0 for dy =1, and for dy # 1, we obtain
(G O(%Z}il(l og j)* jdo= 1) O(MZ] Lje), fordg € (3,1),
3l = m . _3 ogm)F m -3
O (& X7 log )" j%0=3) = 0 (Ll ym o 2), for do € (1,3)
Hence

G | >~ (1o )" | [1+ 0, (1)].
j=1

Then

G2 LS (logj)? — (L 77110'2
R"(do) = i [m . <m =l gj)) ] [1+o0p,(1)]

_ { {%{ m + ) (logm)>? —2m10gm+2m+0(1)H

(
4 li{(m+ ) (log m) — m+0(1)}2 }[1+op(1)}

= 4+o0 (1 (47)
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Next we consider the first term on the right side of (??). We have

Gi(do) 2
R, (do) = 2Ci1( O) —E21Og)\j,

G (dp) =
where
1 & ~ 1 &
Gi(do) = — > (log \) NIy (A), G (do) = — > AL, (V)
7j=1 j=1
Then
mAR (do) = m3 |28 D) 2 S log
G (do) ™M
o X (leg ) XL () (z]_l log AJ) G (do)
- Vm G (do)
m 2do 1 m m 2dg

2 Z]:l (log A;) AL (Aj) — <E Zj:l log AJ) 23—1 AL (Aj)

- Vm G (do)

g X (o — £ YT log ) ML (Ay)

vm G (do)
BTy N6 () - Gol
G (do) ’
where . .
vi=log\; — — Zlog)\j =logj—— Zlogj,
j=1 j=1

and Z;n:l v; = 0. For the denominator, from Theorem 3.4 we have

é (do) —>p Go. (48)

By Corollary 2.6 (a) and (c), the numerator can be decomposed as follows:

2 o= [\2 . _ [ D1+ Dy+ D3+ Dy+ Ds+ Dg, fordye (3,3)\{1},
ﬁz}yﬂ |:)\] Iv ()\j) - GO} - { D1 +D4, for dO — 1’
]:
where
2|C (D & o
Dl = \/m ;V] Ifz‘()\])_% ’
m 2d ~ 2
D, = 2CWESS, A" [Enlh)
Vvm = ]}l—ei/\j}Q 2mn
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Moo E L (fo) Mooz o
2‘0 ZV 62 wg J €xj (fO) + J €y (fO)e_fdmwg()\j)* ’

Aj) 1—e 2mn 1—e% /2mn

2 m
— _ j : b . e

For D1, {5t} satisfies the assumptions
E(g|F;1)=0, E (5%|Ft,1) =0?, E (5?|Ft,1) =pus, as., FE (521) = fy,

for t = 1,2, ..., thus we can apply the result in Robinson (1995b) pp.1644-1647 to
conclude

2
260 - Z [ ) — 1} —q N (0,4G3) . (49)
>From Lemma 7.12 (b), for do € (3,1), E|D,| is bounded by

1 i’” Mzdo 2E‘5Aﬂz fO)‘
J

ﬁjzl 27n
2d 2
_ 0 log o 1 L2d071+ﬁL2d072
n J
_ O<10 y2do—1,,12do  2do—1 | ,2~2do [ 2do— 2>>

v /mL %1 3 mL\ 22
= 1 T2 — 27 2o .
O(ogm(m 2(71) + m2 <n>
—2

When dy > 3, thisis o (1) by choosing L = 2. When dy < 3, choose L = n (logm)?%-T
then we have

2do—1
(logm) m-2 (m_L) m2do—3 (logm)~' — 0,
n
7\ 2do—2 4 aa
(logm) m§_2d0 (m_> = m- (logm) 2dg ?Jrl — 0.
n

Therefore, Dy = oy, (1) for dy € (3,1) . For dg € (1,3), from Lemma 7.14 (a), E |Ds|
is bounded by

m ~ 2
o S 2L L 1"”&% =0 (logm (m**%)) =0 (1),
Jj=1

and for dy € [%, %) , from Lemma 7.14 (b), we have

Xbo B & (fo)]?

J
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j 2do—2 J,do—1ydo—1 j 2dp—2 [,2d0—3,
n J n J

by letting L = 2 (logm)?2d0 -3 %0 3 , giving Dy = o0p, (1) .
For Ds, in Vlew of the fact that

1 n 1 n—1 1 n—1

* —ipA % A igA

we)' =D ey = a3 T ey = ) e
p=1 n—p=0 q=0

we obtain the decomposition

/\ * exnlfo)
vi 1-— e”‘

We ()‘j)*

ﬂ\

2mn

ﬂl

m

m do n—1 n—1

E /\ 1 g f)\ e Pig,, E e'Ng,
Aj 27T7’L jP 14 q

: p:O

q=0

It follows that

[\)

A Ea(fo)
E|—— T i )
\/ﬁ;yjl—e“f omn ws (%)

0 —

n—1
e
— 7T2mn2 Zy‘jl Z)\] Zf)\ pe —ipA Jgn —p Zelq ]En_q
q=0
0 _
o (S e ) (Seran]| @
s=0

Because {g;} are independent,

Hq, ifp:q:’f':S,
E(epegeres) = o, ifp=q#r=s,p=s#q=r,p=r#q=s,

0, otherwise.
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Therefore, (??7) is bounded by
m m n—1 » _
7WZZMWWﬂ%§ﬂmMM (51)
j=1 k=1 p=0
m n—1 _
Sl A3 | g (52)
k=1 q=0

n—1
) (Zelq A~ A’“) (53)
q=0
2

mmjdo—lkdol n12
" Z;@) () wxe

7j=1 1

20_4 m i1 n—1 _
S X (Y | P
j=1 p=0

‘f )\kp

S I e (Z)f&p

7j=1k=1

(72) is bounded by, for do € (3,1),

2

m m m
Z Z]do—lk,do—ln—Qdonl—Qfo

j=1k=1

- 0 ((log m)2 m2d0n1>

m2do—1 (log m)2>

3

()" S ) —ot0,

and for dy € (1,3),

() —(ffZﬁf) —o(1).



-logm i\ % el i
= I DS
ﬁ;(n) L2l
- 2
logm < | /i\2 11 &N~ AN = S
- 22 (L) i+ (1) 1 X e
i j=1 p=0 p=L+1

>From Lemma 7.7, the first term in the bracket is
.\ do—1 4 L .\ do—1
O J ’ 1 Z 1 -0 J ’ lLl—fo -0 <jd0—1n—doLdo)
n n plo n n ’
p=0
and the second term is
.\ do—1 n—1 -\ do—1
ol (2 1 Z " V1 _ol (2 ’ 50} = o (jdo—2,1—do pdo—1
n n plotly n j J ’
p=L+1

It follows that

<.
Il
—_

logm 4 (L do logm /ny\1-do
- ot (1) a2 ).
( mm <n> - m \L
Choose L = #, and we obtain

d
md 3 L i
n

_1/n\1-do _1 1l-dg —dg 1
mo 2 J— m 2m 2 = m 2 = 0 5
(L) logm

I
3

do—L _do 2dg—l=dg o=t 1
072m 2 =m 2 =m 2 =o0 ,

logm

thus (?7?) is o (1) . For dg € (1, %) , (?7?) is bounded by

logmi<j>d°11 nz:l‘f
J - i
vm n n\ = J
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Using Lemma 7.7, we have

j=1 p=0
logm o= (i %11 oy
= 0 Jm Z <ﬁ> ﬁzpfoﬂj
7j=1 p=1
N R Y A
- NZD n j

= O logm jd°_2 =0 (mdo_% logm) ,

and, hence, (7?7)is o(1).

In view of the fact that ZZ;& e =M) = n1(j = k), (?7?) is bounded by, for
do € (3.1)
)2 2do—2 n

_ 0 logm Z(i) zgpzfo
-

Jj=1

logm2 % J 2do=2 nl-2f
= —=2J0
o["EmLY: (4)

(logm 2d0 2 Z ‘
f/\]p

mn

= 0 ((logm)QdeO_Q) ,
and for dy € (1, %) ,

(logm)? )\2(1072”_1 Rk
Y NPT B
J=1 p=0

logm 2 n 2do—2 (] n
_ —f
-0 >(2) (Tt

J=1 p=1

logm 2do—2
- 0O ( ) 2d071j71

M

_ (logm)Q . -2dp—3

= 0 ((log m)? m2d0_3) .

Therefore, (??) converges to zero, and thus D3 = 0, (1).
Dy, D5 and Dg are all op, (1) because

m m 3
1 logm Ji m?2 logm
E|Dy = O ﬁi vl A ] =0 E - :O<T>’
j=1 j=1
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m 0 (ks2), for do € (3,1),

E|Ds| = vi|jh=2 | = Vm
‘ ‘ zz: .7’ O mdo_% logm) " fOr dO € (17 %) 9
E | Dg| @) % j=1 |VJ|JdO tnz=d) =0 néidomd(r%bgm)’ for do € (%’1)’
6 pr—
o(Re i) oo v e
Furthermore,

(NI

ndo—% n

dO*%l % do—
m S logm Ogm:<m_) =502 logm 0,

3

eom?

if unwgm —=0.
Therefore, we obtain

mz R (dg) = Gio (0,4G3) . (54)

It follows from (?7), (?7) and (??) that

1/~ _ m3R (do) 1 2\ _ 1
m# (d—do) = — = 1Y 0468 =V (0.7),

giving the required result. W

8.8 Proof of Theorem 4.2

3
The proof follows the same line of argument as Theorem 4.1. The condition &:gm

0 implies that

m2do=2 (log m)"? ms log m (logm)** 0
= — U.
n n m§72d0
Thus, d is consistent and also we have supg, ‘%‘ = 0p ((log m)_6> , which gives

R" (d*) = R" (dp) + 0p (1) . It follows from Corollary 2.6 (e) that

m 6

Fi(do) = -3 (log j)* X2 T, () = 3

j=1 j=1

where C; = L 5™ (log j)" (Go + 0, (1)), Co = 0, ((logm)k> , and

m j:

1 m
E|Cs| = mz log j)F jdo—2 logn)% =O((logm)kmd° 2(logn)%>
j=1
1 m
E|Cy = EZ log j)F j%— I3 :O<(logm)kmd°*1n*%),
7j=1
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1 m
E|Cs| = - Z log j)* j2%~*1logn | =0 ((logm)km2d°_4 logn>,
j=1
1 m
ElCs| = o Z log j)* j24—2p =0 <(logm)km2d°72n71) ,
j=1

giving Fl, (do) = Go | & 327, (log )F| [1+ 0, (1)].
Before we evaluate TQE 27:1 v [/\?do I, () — GO} , we derive the approximation
of /\?dOIv (A;) for do € (3,2) . First, note that (see (26))

AXy = Xi— X

t—1 (t—-1)-1
d d
= Y Dy Dy
k=0 k=0
-1 -1
_ (d)ku _ Z (d)gy1-1
= _k| t—k (k + 1 1)' t (k—i—l)
k=0 k=1
-1 -1
_ (d)y, (d)y, 1
= u+ Z Ty Utk Z e 1)!ut—k
1 1
d—1 d—1
= w+ —( T )kut,k = ( %l )kutfka
=1 k=0

and AXg=0.Letdy=dp—1 € (%,1) and 70 =1 — dp. From Lemma 2.5 (a) we
have

MoC (1) Ean (fo)  ADe™s AX,
1— et 2mn 1 —es /2

where E ‘rsn} =0 ()\3) B }rls’,n (do) ‘2 =0 <5280’4) ,and E }rg,n (do) }2 =0 <5280’2n1’230)
uniformly in s. Lemma 7.18 (c) yields

Mowag (As) = e3%0C (1) we (A)— 778 (do) 475, (do) 4

Ao AX,
1 — e \/2mn

hence we obtain

i -0 <)\§EO—2n2&0—2) -0 (82&0—2) = 0(1),

Mo (1) B (o)  Ae™s AX,
1 — eirs 2mn 1 — e \/2mn
+R?,n + Rz,n (EO) + Rg,n (EO) )

AZoTy o (N) = €290 (1) we (As) —

where BR[| = O (), B[R, ()| =0 (+%72)  and B[R, (@) = 0 (% nd =)

uniformly in s.
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>From Lemma 2.3 (b), we have

b= (1- e“s)_l was () -

Thus

A 2
Iv()\s):)l—e |7 ae ),

and, in view of the fact that E )\330 Ing (Ns)

=0(1), it follows that

NPI ) = NPT (1+0 (M) Ine (As)
- o = 2
XPC (1) Exan (fo)  MPe™ AX,
1—es  \2mn 1—e?s \2mn
+Re, + R, (do) + RS, (do) ,

e3%1C (1) w. (\s)

where the order of magnitude of the reminder terms is the same as above.
Finally, we obtain the expression

2 « :
ﬁ jz;l/j |:)\?dofv (/\]) — GO} = ;Dka

where

vm = 27
~ 2 d
D 210(1)12§:V' A Ea(fo)] Do 2 AXES Ajdo
P Vm S ment 2 T mamn g ey
d ~ <\ * do ~ —
2|C(1>|2 % Tdoi A’ ENin (fO) ALY ENin (f()) S
Dy, = ‘' /1 . 5 @0t s J J J J 5 dod As)*
! vm ;Vj ’ wE(J)l—e_Mj 2mn I o we ()"
do ,—iX; do i)
20 (1) AX,, & e Xoemii N .
Ds = = o 2 | H e () T T T ')
J:
2do _—iA; 2do i),
pp = WA, | A G+ o (o)
6 \/m 2mn 4 7 J ‘1—€Z>‘J 252m \J0 }1—€i>‘j‘2 Ain \J 0 )
J:

2 &, 2 & 2 N, R (d
Dr= Zm vl Dy= 7yl (), Do=7md it ().

It has already shown that D; —4 N (O, 4G8) and Do+ Dy+D7+Dg+Dy = o, (1) .
For Ds, from Lemma 7.18 (c) we have

AXy 1 X~ 93,2 logm ¢~ 53,2 9do—3
E|D3|_E<nzao_1>0 \/m;”” =0\ U JZ;J =0 (™ Zlogm)
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which is 0 (1) if dp < 3 & do < I.
For Ds, rewrite

m do _7;)\.
LmAj% 2 vy )
as B . N
-1 m 0p—1
f—in% X ﬂ\/,n—; = vjwe (Aj) 1)\_7 = D51 X Dss.
In view of the fact that
o2 I o2
E[we (\))" we (\)] ;;E [5 e ’“J} [5 emk} _ %_n];emkmp =T 1G=#),

we have
logm)? o~ o7 2 9d,
E D2 — (_ 2do—2 | _ (1 2d02): 1
| Ds2|” = O - ;J O ((logm)“m o(1),

hence D52 = o, (1) . D51 = Oy (1) by Corollary 7.18 (c), and Ds = o, (1) follows.
For Dg, rewrite
28 LY

1 AX, ¢
m nnZ’/J }2 An(fo)
as

AX, B3 JL Aoy

a1 X N Z ﬁa)\n(fo) Dg1 x Degg.

We have E |Dg1|* = O (1), and from Lemma 7.12 (c), E | Dg| is bounded by

na()i% logm i ] 28072 Laofé n nEO*% logm i l 28072 ﬁ 1/2 Laofl
vm : n NGD n J

J=1

= 0 <7’L%_EO (log m) 2d0__Ld0 7+ nl—ao (]Og m)2 m—%mmax{Qﬁg—%,O}Lﬁo—1>

do—3  _ do—1 — -
= O <logm <m_L> * o1 + (logm)? (m_L) mmax{d017%d0}> =o0(1),
n n

by setting L = . Dg = 0, (1) follows from Cauchy-Schwartz inequality. Therefore,
m2 R’ (dy) = GLON (0, 4G8) , giving the required result. W
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8.9 Proof of Theorem 4.4

2d, 12

The condition M — 0 implies that supg,
gives R" (d*) = R" (dy) + 0p (1) . Recall

53| = o (1ogm)™®) , which

4—2d0R/ (d )
2o (F_ g ) _m 0
m’ < 0 R” (d*)
_ m2*®(Dy 4+ Dy+ Dy+ Ds + Dg + Dy + Dg + Dy), (55)
4Gy + Op ( )
m="* Dy (56)
4Gy + 0, (1)
where
py = 2AXEgh NP
vm 2mn et 11— e |
2 (27T)28072 AXQ ~ ode 2
2 (277)280_2 AXE 2do—2 | AXn logm 2dg—1
= Z ij Z
\/ﬁ 2rn2do—1 nQdO 1
The second term is _
m24=3 logm
0,(1)0 — =o0p(1).
Now evaluate the summation:
= 9d0— = 1 & N og— TN g = gd 1 & .
S Sl [ D ST Pl S S ED 9T
j=1 J=1 J=1 J=1 j=1 j=1
For the first term, we have
m _ “m _ 1 _ “m _
Zj2d0_2 logj = / x2do—2 log xdx + 3 <m2d°_2 log m) +0 <logm/ £U2d0_3d37)
— J1 J1
2do—11 m m, 2do—2
— (I 08T —/ - dx + O (logm)
2dy — 1 1 2dp—1
28071 1 28071
- e L O(logm),
2do—1  (2dp 1)
and, for the second term,
m _ 1 m “m _ 1 _ “m _
ZdeO*Q — Zlogj = </ 22 2qy + 5 <m2d°72 + 1) +0 (/ deOde>>
= me3 J1 J1
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X <logm—1+0<bgm>>
m
m2do—1 logm
= — O(1 1 -1+0
<2d0—1+ ( )> <Ogm " < m >>

— m?% 7 logm — mih] + O (logm)
2dp — 1 2dp — 1 '
Therefore,
m _ 2do—1 2dg—1 Yy — 2 2do—1
S vt - - ——— + O (logm) = (2o~ )mz +0O (logm).
: (2do —1)"  2do —1 (2dp — 1)

>From Akonom and Gourieroux (1987), if F'|e;|’ < oo for p > max {E%’ 2} , we
0-3

have .
AXE —
2% 0B (1) = L_/ (1— )™ 1 dB (s).
ndo—2 ° T (do) Jo
When dy = 1 E% = 4 and we need an additional moment condition E |e]f < oo

for p > 4 for convergence. When dy > 7 —0 o < 4 and the condition E |e;|* < oo
suffice. It follows that, for dy € [Z, 2) ,

I_2dy _ 2dg—2 AX ml—2do 2do—2
L
72 | C(1)* (AXE)? g NS o
. 2do—2 n 1—2dp :2dg—2
= 2(2m) o1 T (1) m Zw
L e QA g 22
2 O (9dy —1)?

For dg = %, (??) converges to N (O, 4) and

m%_QdODg (1 — Eo) (271')230 2

T1Goro, () YT (2gp—1) By, (1)*=(2n) 2B 1 (1)

mi=2opy  (1-dp) (2m)*0?

. . (2= do) (2m)* "
1Go+ 0, (1) (24— 1)’

(2do — 3)?

Baofl (1)2 = Bd0—2 (1)2 )

giving the required result. W
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9 Appendix C: Different Characterizations of Nonsta-
tionary I (d) Processes

Two main approaches to defining a nonstationary I (d) process have been used in
the literature to date. They are by no means exhaustive. The first, which is used in
Hurvich and Ray (1995) and Velasco (1999a, 1999b), is to define the observed process
X; as the partial sum of a stationary fractionally integrated process, viz.

t
Xe=Xo+» z, t>1, (57)
j=1

where z; is a stationary I (d — 1) process and satisfies

_ — (d-1);
2y = (1 - L)l dst = Z j' ]gtfjv (58)
g=0 '

where ¢; is a short-memory stationary process. Combining (??) and (??), we obtain
(1-L) (X, — Xo) = (1-L)" e,

leading to a definition of the operator equation
(1-L0)*(X; — Xo) =g, t>1, (59)

in terms of (??) and (??). X, is said to be integrated of order d.

A second definition (Phillips, 1999), corresponding to that in (2) above, defines
the nonstationary fractionally integrated process X; directly in terms of the short
memory inputs by using a finite order expansion of the operator (1 — L)_d, viz.

- (@)
Xy =Xo+ Z k—,k&:flc’ (60)
k=0

where ¢, is a short-memory stationary process. This leads to the operator expression
(1-L0)(X; — Xo) =g, t>1, (61)

and again X; is integrated of order d. The two definitions (??) and (??) are different,

however, because the stationary input formulation (??) implies that, by the first

definition, X; (: Xo + Z;Zl (1—1) 5j) involves inputs €5 with s < 0. In fact,
for each t we have

d—1 d—1

(1 _ L)l—d g = ( )O ( )

= €+

d—1
= 15H+__+w

1l (t+k)!

E k+ ...

so that the infinite past history of the short memory stationary inputs e, figures in
X;.
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Some further comparisons involving the impulse responses may be helpful. When
de (%, 1) , according to the first definition, X is integrated of order d < 1 and the
increments z; constitute an I (f) process with negative f = 1 —d. In other words, the
increments have negative correlation and are often described as antipersistent. On
the other hand, according to the second definition, X; is integrated of order d < 1
because the coefficients of ;,_, are not unity but decay slowly, too slowly for the
process to be stationary and have finite variance. Thus, the second definition gives
the anticipated slow decay of the impulse responses directly, and as such is more
apparently intermediate in form between a unit root process and a stationary long
memory process or a short-memory process (but see (?77) below).

In some cases, the empirical context may be helpful in motivating the formative
process. Suppose that d € (1,%). Then, according to the first definition, X; is
integrated of order d > 1 because it is the accumulation of stationary increments z;
that have long memory with f =1 —d > 0. According to the second definition, X
is integrated of order d > 1 because the coefficients of ¢;_j increase as k increases.
When it is known that the process of interest is the result of an accumulation of past
long-memory shocks (perhaps, like the diameter of a tree), the first definition would
seem to be appropriate. However, when it is expected that the shocks each period
have short memory but may have increasing impulse responses over time on the
observed variable, then the second definition seems more appropriate. For instance,
in seeking to characterize a time series like GDP as a nonstationary I (d) process
with d > 1, the first definition posits GDP as the sum of past shocks which have long
memory, whereas the second definition posits that the shocks to GDP each period
have short memory but the cumulative effect of these shocks is allowed to increase
over time, perhaps by way of some internal feedback mechanism.

Whether the first or the second definition is used, it will often be useful to extract
the impulse responses from the short memory components to the observed series.
In the second definition these appear directly as the coefficients % in (7?7). By
rearrangement of the series in the first definition, one finds that the impulse responses
are the same in this case as well. In particular, it can be shown that an I (d) process
by the first definition can be written as

t—1
Xe=Xo+¢& (d) + Z %Q_k, (62)
k=0
where the term £, (d) has an order of magnitude that is dominated by that of the
third term asymptotically. Thus, the essential difference between the definitions can
be interpreted as one relating to initialization.

As with the definition of unit root processes, there are alternative ways of dealing
with initial conditions for nonstationary fractional processes and these may or may
not affect large sample behavior. If X is taken to be any Op,(1) random variable
then its value has no affect on large sample behavior. Similar considerations apply
to the term &, (d) in (?7). However, when X has the same stochastic order as X; for
t = O(n) then initializations do matter, as indeed has been found to be the case for
unit root time series (e.g., Phillips and Lee, 1996, and Canjels and Watson, 1997). In
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the present case, the generalization might involve a distant past initialization of the

form
[ns]

d
Xo=X§=)_ @e_k,
k=0

or one might extend (?7) directly by writing

In both these cases, the effective initialization is pushed into the distant past and
is parameterized by k, which measures the extent of the pre-sample history on the
current data X;. While & is not consistently estimable, in general, it will figure in the
asymptotic theory, just as it does in the case of unit root asymptotics (Phillip and
Lee, 1996). The present paper does not deal with this additional level of difficulty,
but works from the definition (??) with X = Op(1).
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