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Abstract

In this paper we introduce a family of minimum distance from independence
estimators, suggested by Manski’s minimum mean square from independence es-
timator. We establish strong consistency, asymptotic normality and consistency
of resampling estimates of the distribution and variance of these estimators. For
Manski’s estimator we derive both strong consistency and asymptotic normality.

1 Introduction

Manski (1983) introduced minimum distance from independence estimators in his pa-
per on CED estimation. In particular, he considered minimum mean square distance
from independence estimation of semi-parametric implicit simultaneous equations
models, the central topic of this paper. He proved strong consistency of his estima-
tor, but was unable to derive the first-order asymptotic distribution. At the end of
his paper, he conjectured that the theory of empirical processes might prove useful
in deriving the asymptotic distributions of CED estimators.

For the case of the minimum mean square distance from independence estimator,
we show that his conjecture is correct. That is, using the methods of empirical process
theory we give a new proof of the strong consistency of Manski’s estimator under less
stringent assumptions and demonstrate the normality of the asymptotic distribution.

Recently, Brown and Matzkin (1998) extended Manski’s analysis to non-parametric
simultaneous equations models where they proposed to minimize the Prohorov dis-
tance from independence. They also were unable to derive the limiting distribution
of their estimator, but they did derive a necessary and sufficient condition for identi-
fication in nonlinear simultaneous equations models, based on earlier work of Brown
(1983) and Roehrig (1988). This condition plays a significant role in our applica-
tions. Moreover, Brown and Matzkin proposed a random utility model of consumer
choice over continuous alternatives. The first-order conditions for the consumer’s
optimization problem subject to her budget constraint, where prices and incomes are
exogenous random variables, constitute the structural equations for this model. If
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the random utility function V(y,e) = U(y) + ¢ - y, then they derived necessary and
sufficient conditions on the family of permissible deterministic utility functions U (y)
to identify their model assuming ¢ and x = (p,I) are stochastically independent,
where p is the vector of commodity prices and [ is the consumer’s income.

For U(-) parameterized by a compact subset of Euclidean space, we extend their
analysis to pure trade models. Here the structural equations consist of the first-order
conditions of each agent in the economy, each of whom has a random utility function of
the form specified by Brown and Matzkin, and the market clearing conditions. In this
model prices and consumptions are now endogenous variables, i.e., y = (y4,y8,D),
and the random observable individual endowments and incomes are the exogenous
variables, i.e., * = (wa,wp,Ia,Ip). The intended use of this model is in the field
of applied general equilibrium theory where the models are estimated rather than
calibrated, see Mansur and Whalley (1984) for an extended discussion. This model
appears in the next section of the paper.

Manski’s estimator, although computationally quite tractable, is difficult to an-
alyze theoretically. Hence prior to our discussion of the asymptotic properties of
Manski’s estimator, we introduce another family of minimum distance from indepen-
dence estimators which are easier to analyze and are also computationally attractive.
We show strong consistency, asymptotic normality and consistency of the resampling
estimates of the sampling distribution and variance of these estimators. For Manski’s
estimator we derive both strong consistency and asymptotic normality.

The main tools in our analysis are techniques derived from the theory of empirical
processes. For instance, see Pakes and Pollard (1989) for a lucid discussion and
econometric application of empirical process theory. Their paper and this paper are
related both in method and economic motivation. An application of their results is
the estimation of a discrete random choice model and an application of our results is
the estimation of a continuous random choice model as in Brown and Matzkin. Two
significant differences between our paper and the Pakes and Pollard paper are that our
estimator is an extremum estimator, i.e., we minimize a random criterion function,
and their estimator is a Z-estimator, i.e., they approximately solve a family of random
equations. More importantly, Theorem 7 (Wegkamp (1995, 1999)) employed here
subsumes as special cases: M-estimation, Cramer—Von Mises estimation, regression
and minimum distance from independence estimation, see Andrews (1997, 1999) and
Pollard (forthcoming) for similar results. Additional references on empirical process
theory and their statistical applications can be found in Dudley (1999), Pollard (1984,
1985) and Van der Vaart and Wellner (1996). Econometric applications can also be
found in Andrews (1994).

2 Estimating a Simple Pure Trade Model

In applied general equilibrium analysis, there are two methods for determining para-
meter values: calibration and econometric estimation. The latter method, although
theoretically more appealing, suffers from a number of limitations. In particular, the
random shocks to tastes and technology enter the model in an ad hoc fashion, i.e.,



in most cases they are simply added to reduced forms of the deterministic structural
equations, such as demand or supply functions. In addition, given the nonlinear na-
ture of the structural equations, assumptions of model identification are problematic.
In fact, as pointed out by Mansur and Whalley (1984) in their survey article, these
issues have not been successfully resolved even for simple textbook models of gen-
eral equilibrium such as the pure trade model, the Robinson Crusoe model, or the
two-sector model. Surprisingly, to our knowledge, this is still the case.

In this section of our paper, we consider a simple pure trade model with two coun-
tries, where the tastes of each country is characterized by a random utility function,
representing the distribution of tastes within the country. The analysis is partial
equilibrium in that the random utility functions V(y,y0,¢) = U(y) + yo + € - y are
quasi-linear with a random linear perturbation.

The assumption of quasi-linearity plays a number of roles in our analysis. Most
importantly, this specification gives rise to monotone individual demand functions for
fixed realizations of e, see Quah (1999) for discussion. If we posit a distribution econ-
omy where the income distribution is fixed, then monotonicity of individual demand
implies monotonicity of aggregate demand, a sufficient condition for uniqueness of
the equilibrium price vector, see Hildenbrand (1994). This uniqueness of equilibrium
price vectors is an essential ingredient in our proof of identification.

Let us denote the two countries as A and B and the aggregate endowment in the
world as (w,wp). Then the countrywide endowments are (w4,wpq) = a(w,wp) and
(wp,wo) = ap(w,wp), where aq,ap > 0 and ag + ap = 1. We now normalize
prices (p,po) such that (p,po) - (w,wp) = 1.

The observable exogenous random variables are (w,wq). The unobservable exoge-
nous random variables are €4 and £pg, the random shocks to tastes. The observable
endogenous random variables are the equilibrium price vector (p,po) and the con-
sumptions of country A, (ya,y04). a4 and ap are deterministic and fixed.

As noted earlier these assumptions are sufficient for uniqueness of the equilibrium
price vector, conditional on the realizations of ¢ = (e4,ep) and (w,wq), but they
limit our ability to identify each country’s characteristics, i.e., (Ua, f:,) and (U, fep)
where f;, and f., are the distributions of ¢4 and ep, respectively, since (w4,wpa)
and (wp,wop) are dependent, i.e., linearly related. Hence we assume that Uy = Up.
That is, each country has the same quasi-linear location function, but the distribution
of tastes about the location function in each country may differ.

The remaining assumptions follow those of Brown and Matzkin, except we as-
sume that the quasi-linear utility functions under consideration are parameterized
by a compact subset of RY, with nonempty interior, denoted ©. All distributions
have smooth densities and their supports are in the positive orthants of the relevant
Euclidean spaces. The final identifying assumption is that ¢ = (e4,¢p) is stochasti-
cally independent of (w,wy). N

We now proceed to show that this model is identified, i.e., if 8 # 6 then the
resulting distributions of data are unequal. The structural equations can be expressed
in terms of each country’s F.O.C.’s for utility maximization subject to their budget
constraints. We use the market clearing conditions to express the F.O.C.’s for country



B in terms of country A’s consumptions.

Structural Equations

ea=p/po — DU(ya) (1)

ep =p/po — DU(w — ya) (2)
yoa = (a4 —p-ya)/po (3)
Yo = (ap —p- (W —ya))/pPo (4)

We can solve these equations in two steps, because of the assumption of quasi-
linear utility functions. First, we solve (1) and (2) for ¢ = p/po and y4. Then we
substitute these values into the budget constraints, (3) and (4), to solve for yo4 and

Po-
Hence the relevant structural equations for our estimation procedure are

ea=q—DU(ya) (5)

eg=q—DU(w—ya4) (6)
This is a system of 2k equations in 2k unknowns, ¢ and y4, with 2k unobserved
random variables ¢ = (e4,ep). We write this system as ¢ = g(q,ya,w,8) where 6
indexes U. The standard assumptions on U that it is smooth, strictly concave and
monotone with interior optima on budget sets, together with our earlier assumptions,
guarantee the existence of a unique smooth function h(e,w,0) = (¢,y4) such that
e =g(h(e,w,0),w,d). Brown and Matzkin (1998) have shown the following necessary
and sufficient condition for identification: If 0,5 € 0 and 0 # 6 then

Oh(e,w,0) L h(E,w,0)
Ow Ow

Applying the implicit function theorem to the structural equations (1) and (2), we
deduce that

where € = g(h(e,w, 9),w,5).

Mo [1opugn TV 0]

Our assumptions of smoothness and strict concavity of U(-) guarantee that D?U(y )
is negative definite, hence invertible. Moreover, these assumptions guarantee that
[D2U(ya) + D?U(w —ya)] ! exists.

Let R = D?*U(ya) and S = D*U(w — y4), then

I -R]' [S(R+S)! RER+S)?
[I S ] —(R+9)"t (R+9)7!

and

05" ()= G
B(’(R + S)) ;S

n o




Therefore Oh(e,w,0)/0w = Oh(¢,w 9)/6w iff

(i) R(R+S)~ 15 R(R—I—S) 1S and

(ii) (R+S8)"'S = (R+ S)"1S
(i) and (ii) imply (R — R)(R+S)"1S = 0. Since (R+ S)1S is nonsingular we sece
that R = R. We have proven the following theorem.

Theorem 1 The structural equations ea = q — DU(ya) and ep = q — DU (w — y4)
are identified iff for all 6,0 € © if 6 + 0 then g 4 such that DU (3§ 4) # D*U(y,4).

One obvious example of a family of utility functions with this property are Cobb—
Douglas utility functions.

3 Identification

Identification is a necessary condition for the criterion function of extremum estima-
tors to have a unique global optimum. In our case it is also sufficient. Compactness
of ® and the continuity of our criterion functions imply that the optimum is well
separated.

Minimum distance from independence estimators, as defined by Manski (1983),
are extremum estimators where the criterion function (-, -) is a metric on the space
of joint distributions of (z,¢e). Hence v(f(x,¢), f(z)f(e)) = 0 iff  and ¢ are stochas-
tically independent, where f(z,e) is the joint distribution of (x,e) and f(x), f(e)
are the associated marginal distributions. Our discussion of identification of semi-
parametric implicit simultaneous equations models follows the expositions of Brown
(1983), Roehrig (1988) and Brown-Matzkin (1998).

A structure S is an ordered pair (g(x,y,0), f(x,e)). The structural equations are
defined as ¢ = g(x,y,0). We define a model M as an indexed family of struc-
tures {S;}icr, where S; = (g(x,y,6;), fi(z,e)) and © = {0,;};c;. All structures
S =(g(x,y,0), f(z,e)) satisfy the following assumptions:

Assumption 1 3! reduced form y = h(x,e,0) such that
e=g(z,h(z,e,0),0).
Assumption 2 0g/0y has full rank a.e.

Assumption 3 f(x,e) = f(z)f(e), i.e., x and ¢ are stochastically independent.

The following definitions will prove useful:
Definition 1 If (z,e) ~ f(x,¢) then (x,h(x,e,0)) ~ fo(x,y).

Definition 2 If SO = <g($,y,90),f0($,€)> and Sl = <g($,y,91),f1($,5)> then SO
and Sy are observationally equivalent if fo(x,y) = fi(x,y) a.e.



Definition 3 A structure Sy is identifiable in M if there is no other structure in M
that is observationally equivalent to Sy.

Definition 4 ¢ ; = g(x, h(x,¢,00),0;)
Definition 5 Sy; = (g9(x,y,6:), foi(x,€0,4))-

Theorem 2 (Brown—Roehrig) Sy is observationally equivalent to S; iff fi(x,e) =
f(m’ ($,€07i) a.e.

Theorem 3 (Brown-Roehrig) fi(z,e) = fo.i(x,c0,) a.e. iff

ag(x, h(ib‘, ) 90)7 92)
ox

Theorem 4 (Brown-Matzkin) Jg(z,h(x,¢e,0),0;)/0x =0 a.e. iff

=0 a.e.

Oh(x,e,00)  Oh(x,e¢,0;)
oz N oz

a.e.
e=¢0,i

Theorem 5 (Brown-Matzkin) If Sy is identifiable in M, then fo(z,e) is the
unique global minimum of v(foi(x,€04)), fo.i(€0:4)fo(x)) overi e I.

Proposition 1 If © is compact and M(0;) = v(foi(x,€04)), foi(€0,4) fo(x)) is con-
tinuous in 0, then the unique global minimum of M (0;) over i € I is well separated.

4 Consistency and Asymptotic Normality of a General
Class of Estimators

Under suitable regularity assumptions, we derive a strongly consistent estimator of
fp and we obtain its limiting sampling distribution. Before stating our results, we
need some notation.

The parameter space © is a subset of R¥, and g : R x R¥ — RY. Let F,
Gy and Hy be the cumulative distribution functions of X, ¢(Z,0) and (X, ¢(Z,0)),
respectively. Let F},, G,9 and H,g be their empirical counterparts based on the data
Zy = (X1,Y1),...,Zn = (X, Ys). Define

Dy(s,t) = Hg(s,t) — F(s)Gp(t), (7)

and
Dypo(s,t) = Hpg(s,t) — Fr(s)Gro(t). (8)

Motivated by the independence between X and e = g(Z, ), we propose to minimize
the empirical criterion

M) = /X | /y D2y(s,) dpu(s, 1 (9)

6



for some bounded measure pon Z2 =X x Y C R? x R, The resulting minimizer is
denoted by (2), ie.,
My, (0) < M, (6) for all 6 € ©.
We will assume without loss of generality that a minimizer exists, since otherwise
we can always take any # € © which minimizes M,, within a constant 1/n? without
affecting the results.
The theoretical counterpart of M,

M) = /X | /y D3(s, ) dpa(s, 1) (10)

is minimized for 6 = 0y, and M (0y) = 0 by the aforementioned independence between
X and ¢g(Z,0p).

The first result, Theorem 6, states two general conditions for which this procedure
yields a consistent estimate. We need that the deterministic function M has a well
separated unique minimum at 6. Proposition 3.5 shows that this is the case provided
the mapping 6 — Dy(s,t) is continuous p-a.e. and the parameter space © is compact.
The stochastic assumption needed for the consistency, to wit, the uniform convergence
of D, to Dy is met if the class

A={{z€Z:9(2,0) <t}, 0€O,t €Y} (11)

is a P-Glivenko-Cantelli class, where P is the probability measure of Z. This in
turn is satisfied if the collection {g(-,0) : @ € ©} is a subset of a finite dimensional
vector space, or if the functions g(z,0) are smooth in z. We will specify the type of
smoothness later, but first we establish the following lemma.

Lemma 1 Suppose that the collection A is a P-Glivenko—Cantelli class. Then

a.s.

sup | Do (s,t) — Dy(s,t)] — 0,
0coO

uniformly in s € X andt € ).

Proof Rewrite the difference
Dng(s,t) — Dg(s,t) = (Hng(s,t) — Hg(s,t)) =+

+ Fo(s){Go(t) — Gro(t)} + Go(t){F(s) — Fu(s)}

The last term tends to zero by the Glivenko—Cantelli theorem, uniformly in s and
t, and the fact that |Gg(t)| < 1. For the second term, we observe that

Gro(t) = Go(t) = (Pn — P)Agy,

where P, is the empirical measure putting mass 1/n at each observation Z;, P = Py is
the probability measure of Z = (X,Y’) and the set Ag; € A . The Glivenko-Cantelli

7



property of A guarantees the law of large numbers P,(A) —, 5. P(A), uniformly in
A € A, so that indeed

sup |Gro(t) — Gy(t)| = Sl;p |(Pn — P)Ag | — 0.
®

as the VC property yields the uniform law of large numbers. For the first term, we
can use the same reasoning as in the above, by simply noting that

Hn@(sat) - HQ(sat) = (Pn - P)(AQ,t N (BS X y))u

where By = {z € X : © < s}. Because {B; : s > 0} is a P-Donsker class, and the
Glivenko—Cantelli property is preserved under pairwise products, it follows that the
collection {Ag; N (Bs x V) :0 € ©,s5 € X,t € Y} is P-Glivenko-Cantelli as well and
consequently

sup |Hpg(s,t) — Hy(s, t)] =2 0.

0co

The proof is complete. |

Corollary 1 Suppose that {g(-,0) : 0 € O} is a subset of a finite dimensional vector
space. Then A is P-Donsker (and hence P-Glivenko—Cantelli) for all probability

measures P.

Proof Since t = (t1,...,tq)7 and g(2,0) = (g1(2,0),...,94(2,0))", we can write
Ap as an intersection
Agy= A5 0 nAYY,

where 4
Al ={z€ Z:gi(2,0) < t;}.

It is well known that {Ag% : 0 € ©} is a VC-class of sets if {g;(2,0) : 6 € O} is a
subset of a finite dimensional vector space, see Pakes and Pollard (1989), Lemma 2.4,
p. 1031. Actually, in that case the stronger result that {AS% :0e€0,te)Y}isaVC

class, is true. Hence all {Ag% :0 €0,t e Y} are VC classes for i = 1,...,d. The VC
property is closed under intersections, so that A forms a VC-class of sets, and hence
is P-Donsker. |

The following corollary states that smooth functions typically satisfy the Donsker
property as well. Although we only need A to be Glivenko—Cantelli, rather than
Donsker, we need the Donsker property later for the asymptotic normality result.
First we need some notation.

For every k = (ki,. .., k) € N*, define the differential operator D* by

k _
b oM 9k
1 ---0%n



Let Cﬁ}ra be the class of real valued, continuous functions on the the unit cube S™
in R™ possessing uniformly bounded partial derivatives of order k < p, i.e., for some
constant Cj independent of f,

D¥ <Ch.
i RIS G
Moreover the p-th order partial derivatives of each f satisfy a Lipschitz condition of
order a (0 < @ < 1), i.e. there exists a Cy > 0 independent of f such that

|DFf(a) = D*f(y)| < Caollx — yl|*

for all z,y € S™ and all £k € N" with k& +... + k, = p. The constants C; +
Cy < M. In our application the dimension n equals d + d = dim(Z), and the
standard compactness conditions for spaces of smooth functions used in economic
theory, e.g., see Mas-Colell (1985), Section K in Chapter 1, are sufficient to guarantee
the assumptions of the next result.

Corollary 2 Suppose that Z C [0, 1}d+d/ with nonempty interior and that each co-
ordinate mapping of g(z,0) € C$;(Z). Then the collection A is P-Donsker for all
probability measures P with an uniformly bounded density and o > d + d'.

Proof Corollary 2.7.3 in Van der Vaart and Wellner bounds the entropy of bracketing
of the collection of subgraphs of C{. For o > d + d’, the bracketing central limit
theorem implies that this collection of subgraphs is P-Donsker. Example 2.10.8
in van der Vaart and Wellner states that pairwise products of uniformly bounded
Donsker classes is again Donsker, so that the collection A is P-Donsker. |

Now we are in the position to state our consistency result.

Theorem 6 Suppose that M(6) has a well separated unique minimum at 0 = 6.
Furthermore, assume that Dpg(s,t) — Dp(s,t), almost surely, uniformly in 6. Then
0 = argmingcg My, (0) —.5. 0o.

Proof Using the minimization properties of 3 and (Z)n, we have
My, (0) < My (00) +0p(n1) L0 (06) < M(D1). (12)
We will show below that

sup | M, () — M ()] = o, (13)
7

and consequently, | M, (6,,) — M (8,,)| —p 0. But this in combination with (12) yields

that M(0) —p M (o). Since M has a unique, well separated minimum at ¢, we must
have that 8 —p 8p. This is a fairly standard argument and can be found in Van



der Vaart (1999). We will now establish the uniform convergence (13). But this is
immediate from

| My (0) — M(0)| = |u[Dno — Do + Dg]* — p[Do)?|
< u[Dng — Do) + 2|pu[Dpg — Dg] Do)

since both |Dy| < 1 and |D,p| < 1. By assumption and dominated convergence, the
term on the right converges almost surely to zero, uniformly in 6. |

Before establishing the limit distribution of \/ﬁ(g)—@o), we repeat some definitions.

Definition 6 (stochastic equicontinuity) Let (T,d) be a pseudo-metric space and
let {Z,(t) : t € T} be a stochastic process indexed by T. A sequence {Z,} is called
stochastically equicontinuous at ty € T iff for every positive n and € there exists a

neighborhood V' of tg for which

limsup P {sup | Zy(t) — Zyn(to)| > 77} <e.

n—0oo tev

Equivalently, {Z,} is stochastically equicontinuous at to € T iff for any T, —p to,
we have | Zy(Ty) — Zn(to)| —p 0.

The key to establishing asymptotic normality for the estimators that we consider
is the notion of stochastic differentiability.

Definition 7 (stochastic differentiability) Let {Z,(t) : t € T} be a stochastic

process, indexed by T C R¥. A sequence Z, is called stochastically differentiable at

to € T with derivative W, iff Yn > 0 and Ve > 0 there exists a neighborhood V' of t

for which

Zn(t) — Zp(to) — (t — to) Wi,
|t — to

limsup P {sup > 77} <e.

n—oo tev

Equivalently, o sequence Z, is called stochastically differentiable with derivative W,, at
to € T iff for any T, —p to, we have | Zn(Tr) — Zn(to) — (Tn—t0) Wh| = 0p(|Tn —to|).

We will require that in our particular case, \/n(Dy,g—Dp) is stochastically equicon-
tinuous at #y. A sufficient condition is given in the following lemma.

Lemma 2 Suppose that A is a P-Donsker class, 0 — g(z,0) is Lipschitz at 0, then
V1 (Do — Dy)(s,t) is stochastically equicontinuous at 6 = 6.

Proof Again we write the decomposition

\/E(DnO - D@)(l‘,t) = \/E(Hné - H@)(mat)
— Fa(2)v/Gro — Go)(#) — Golt)VA(Fy — F)(z).

10



This is a sum of three terms, each stochastically equicontinuous at 5. We also
apply Slutsky’s lemma for the F),(z) in front of the second term, and continuity of
0 — Gy at 0y — which follows from the Lipschitz condition on 6 — g(z,0) — in front
of the last term. First we observe that the class {A(0,z,¢) : 0 € ©} is a P-Donsker
class, where

A0, x,e) ={z=(21,22) € Z:9(2,0) <e,21 <z}

Hence, general empirical process theory dictates that
Vn(Hyg — Hp)(x,€) = v/n(Pn — P)(A(0,2,¢)),

weakly converges to a tight Gaussian limit, and in particular, the process is stochasti-
cally equicontinuous at #y. The stochastic equicontinuity is wrt the Lo(P) metric on
these sets, not the Euclidean distance on ©. This point is also discussed in Pakes and
Pollard (1989) after Lemma 2.16 on p. 1036. That is, we know that for all e, > 0
there exists a ¢ > 0 such that

IP’{ ( sup IV/n(P, — P)Ag i — Vn(P, — P)Agy 21| > 6} <n.
P

Ag,z,thOO,z,t)Qgé
By the assumed Lipschitz condition of 6 — g¢(z,0), we find that
P(Ap — Avout)? = P(Ag 1) + P(Agg ) — 2P(Ag 00 N Aggt) — 0

So indeed,
V1 Dng,, (2,1) = Do, ()] = /WDy (,t) == 0,
for all 8,, —p 0y. This concludes the proof. [ |

The proof for the asymptotic normality is complicated by the fact that our es-
timator is not an M-estimator so that we cannot appeal to the standard theory for
this large class of estimators (cf. Pollard (1985)). However, Wegkamp (1995, 1999)
extended these results to a broader class of estimators which minimize a random
criterion. Tailored to our application, it reads as follows.

Theorem 7 Suppose that
0o = arg mingeg M(6) lies in the interior of ©;
M is twice differentiable at 6y with a non-singular second derivative V' at 6y;
0 —p Oy;
oy, = /n(M,— M) is stochastically differentiable with derivative W,, at 0, i.e.,
an(0) = an(60) + (0 — 60) Wi, + 0p (10 — 65]) for all § -5 6,

then 6 = 0y — V—in"Y2W,, 4+ op(n—1/2).

11



Proof See Andrews(1997, 1999), Pollard(forthcoming), or Wegkamp(1995, 1999).1

We conclude with our main result, the asymptotic normality of the estimator.
Theorem 8 Suppose that
(A1) 8y lies in the interior of O,
(A2) 6 —p 0,
(A3) There exists a vector A € Ly(p) (coordinatewise) such that
Do(-) = (0 — 00)" A(") + 1|6 — bol| Re (),
where pR?(0,-) — 0 as 6 — 6,
(A4) \/n(Dng — Dg)(s,t) is stochastically equicontinuous at 6 = 6.

Then
b= 6o —2v-"! / A(Dn gy — Doy) dpi+ 0p(n=112), (14)

where V. = pAAT.

Before proving this result, we deduce the asymptotic normality from the stochastic
expansion (14). For this argument, recall that

Doy — Doy = Dnoy = [HTZ@O(S’t) - H90(S7t)}
+ Fn(5)[Goo (1) = Groo (1)) + Goo (1) [F'(s) = Fu(s)].
As a result, the asymptotic normality follows by an application of Donsker’s theorem,
the continuous mapping theorem (cf. Van der Vaart and Wellner (1996), Theorem
1.3.6, page 20) and Slutsky’s lemma, since \/n[Hpg,(s,t) — Hy,(s,t)], \/n[Ga,(t) —

G, (t)], and \/n[F(s) — F,(s)] all converge to Gaussian processes. We now prove
Theorem 8.

Proof We simply verify the conditions of the preceding Theorem 7. First, by
condition A3

M) = (6 — 00)" tAAT (0 — 80) + o(]|0 — 6p||*) for 6 — 6.

Notice that the matrix V = pAAT is positive definite. It remains to show the
stochastic differentiability of \/n(M, — M) at 6y. Observe that by A4 we have for all
9 —p 90

|Dyp — Dy) = (Dpg, — D)l = 0p(n~1/?)

so that the continuous mapping theorem implies

11|(Dyg — Dg) — (Dpgy — Da, )| = 0p(n=1/?),

12



since p is a bounded measure. Using A4, Donsker’s theorem, the continuous mapping
theorem and the Cauchy-Schwarz and Markov inequalities repeatedly, we obtain the
following string of order calculations which hold uniformly in a neighborhood of 6g

(1(Dyg — Dg)?* — 1D2g, = 11{(Dno — Dp) — Dugy }* + 26Dngy {(Dyo — Dg) — Doy }

= op(1/n),
and
UA(Drg, — Dg,) = 0p(n™?),
1tDg[Dypg — Do) = 11(0 — 00)' A[Dng — Do] + p1]|0 — 6o|| Re[Dg — D]
= 146 = 60)' A[Drg, — Dag,] +0p(n2(10 — 6o]l)
since

|14(0 = 60)' A{[Dnp — D] — Drgo }| < 16 — 90||\/HAA’\/M{[Dn9 — D] — Drg, }?
= op(n/2]16 — b))

and

|11 116 — 60| Rog[Dyng — Dyl < |16 — Ool|\/ 1eRE~/ 11| Do — Do)

= op(n™?(16 - fol|)
Combining all the above bounds we obtain

M, (6) — M(6)
= pu[Dg + Dpg — Dg)* — p[Dy)?
— M,y (60) — M(00) + 21Dg[Dyg — Do) + 0p(1/n)
= M(60) — M(60) + 2(0 — 00)" A[Drg, — Da,] + 0p(1/n) + 0p(n™?|10 — f||)

This shows that the process /n(M,(0) — M(0)) is stochastically differentiable at 6.
The proof follows from Theorem 7 with W, = v/n [ ADyg, dp.

5 Consistency of Resampling Estimators

In this section we show that the bootstrap consistently estimates the distribution of
V(0 — 6), and that the delete -d jackknife consistently estimates the variance of
linear combinations of §. Let Z7, ..., 72} be iid observations from P,, and let M}
be the bootstrap counterpart of M, based on the bootstrap sample. The resulting
estimator minimizing M over 6 is denoted by 0. It converges in probability to 6
provided M has a unique and well-separated minimum at 6y and the class { A(6, x, t) :
0 €O,z e X,teY}isaDonsker class of sets, see Corollaries 1 and 2 for applications.

Theorem 9 If M has a unique and well-separated minimum at 6y and the class
{A0,z,t) : 0 € ©,x € X,t € YV} is a Donsker class of sets, 6* —p 0y in P,-
probability.
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Proof The Donsker property entails that both supy [(M,, — M)(0)| —.s. 0 and
supg |(M;; — My,)(0)| — 0 for almost all samples zi,...,z,, see e.g. Giné and Zinn
(1990). Consequently by the triangle inequality,

sup |(M;y — M)(0)| < sup |(M,;; — M,,)(6)| +sup |(M,, — M)(0)| — 0 in P, probability.
0 0 0

This entails the consistency of the bootstrap estimator by the same reasoning as in
the proof of Theorem 6. |

Theorem 10 In addition to the conditions (A1),...,(A4) of Theorem 8, suppose that
0* — 6y in P, probability, that \/n(D}, — Dyg)(s,t) is stochastically equicontinuous
at 6y. Then the distribution of \/ﬁ(é* — é) consistently estimates the distribution of

V(6 —6o).

Proof The proof closely follows the arguments of the result for M-estimators ob-
tained by Arcones and Giné (1990). Observe that by similar arguments given in the
proof of Theorem 8,

My () — My (n)
= [(M;; — My)(0) — (M, — My, )(n)] + [(My — M)(0) — (My, — M)(n)] + [M(6) — M(n)]
= 2(0 - n)TM[( ;;90 - Dn@o) + (Dn90 - D90)}
+ 36— 60)" V(6 80) ~ 51— 60)" V(1 — bo)
+ 0p(116 = bol[* + |In — Goll* + 116 — bol[ +n 2| — Gol| + 1),
where V' = pAA’. Let

Ay, = 2uA(Dpg, — Dy, ) and A, = 2uA (D), Dio,)

nfo

and let 6 = § and 5 = 0y — (A, + A%). Observe that 7 € © for n sufficiently large,
as 0 is an interior point of ©. To simplify matters more, we transform 6 — V~1/29
and A — V-1/2A% and A, — V-Y2A,,, but we will suppress this in our notation
(equivalently we assume without loss of generality that V' = I'). Hence
My (60) = My (n) = (8 =) (A5 + Ay) + 5116 — 63| — 5lIn — 63
+ 0p(110 = 31 + lln = Gol|* + 110 — bol| +n 2 |ln — Gol| +n")

So that

= —(0" — 00)" (A}, + An) + 5l[An + AGIP + 3116° — 65]] — 31145 + ARl +

+ 0p(|16° = b0l + 112 + A3I1* +n 216" = 6ol| + 0 || A, + ARl 40 )
= 116" — 60 — (A + An)||* + 0p(]|0" — 63]| +n~Y2]|0* — 6o]| +nY).

0 > M;(0%) — My(6o — (A, + A2))
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whence
n)|6* — 60 — (A}, + An) > — 0

in P,- probability. By the preceding theorem
0 — 6y = A, +op(n~1/?),

so that combination yields that §* — 8 = A* + op(n~/2). The term A% has the
same limiting distribution as A,, by the bootstrap theorem for the mean in R¢. This
concludes the proof. |

The required stochastic equicontinuity of \/n(D}, — Dyg) can be verified by the
following lemma.

Lemma 3 Under the same conditions as Lemma 2, \/n(D}, — Dyg)(s,t) converges
weakly to a tight Gaussian process.

Proof This is a direct consequence of the Donsker property of the class { A(0, x,y)| 0 €
O,z € X,y € Y} and the bootstrap result for empirical processes due to Giné and
Zinn (1990), which states that the empirical process can be bootstrapped if the class
of functions which index the process is P-Donsker. Actually, they showed that this
is a necessary and sufficient condition. |

Estimation of the Variance

So far, we have not addressed the important issue of estimating the variance of 6. We
will show that the delete —d jackknife provides a consistent estimate for any linear
combination 6. Before stating the result, we introduce some notation. Let Hd s be
the estimate based on the data set X;,7 € s, where s is a subset of {1,2,...,n} with
size n — d. Let S be the collection of all possible subsets of {1,2,...,n} of size n —d,
and let N = (7)) be its cardinality. The delete —d jackknife, denoted by J?,, is

defined as
Jo,= dN Z(C ds_NZCQdS>

sES

It is shown in Shao and Tu (1995, Theorem 2.10, page 52), that the stochastic
expansion (cf. (12))

do=d0y—2v! /c’A Dy, dpe+ 0p(1//n)

and the uniform integrability of ||/nc (8 — 6g)||? imply the consistency of J2 4> bro-
vided the tuning parameter d satisfies

d/n > € for some € >0 and n —d — oo.

Hence it remains to establish uniform integrability of |/nc (8 — 6)|2.
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Lemma 4 Under the same conditions as Theorem 8, |\/nc (6 — 00)|? is uniformly
integrable.

Proof Let MS(60) = M, (0) — M(8) be the centered process, and £ > 0 will denote a
generic positive numerical constant. We first bound the tail probabilities as follows:

P{||vn(0 —0o)|| > 6} <P sup My (00) — My () > 0
1000 >5n=1/2

IP’{ sup My (6o) — My(6) — [M(0) — M(6o)] > 0}
10—00]>6n=1/2

oo -9
C C K:j
< — > 2 = .

g 1/2<10-00]|<(j+ L 1/2 =

The last inequality follows as [A3] implies the existence of positive, finite constants
c1,co such that
01H9 — 90”2 S ]\/[(9) — ]Vf(eo) S CQH9 — 90“2.

We continue by examining the difference M¢(0g) — MS(6). Observe that

M¢(6o) — ME(O) = pD2y, — u(Dzg — Dj)
= pDZy, — 1t(Dnp — Dp)? — 2p1Dg(Dypg — Dy)

= —p1[(Dng — Dg) — Dygy)* — 21Dy [(Drg — Dg) — Dig, ]
— 21Dy(Dyg — Dy)

Now [A4] and the continuous mapping theorem yield that uniformly in € over a
vicinity of 6,
|u[v/1(Dug — Dy) = v/nDng,)*| = 0p(1)
and
21(v/n Doy ) - (v/n[(Dno — Do) — Dugy))| = 0p(1).

Also, it is seen that uniformly in a small neighborhood of 6
|1nDg(Dyy — Dp)| = [11Dg(Dngy + [(Dro — Do) — Dugo])|
< |1#Do[(Dro — Do) — Drol| + |1£Do Drg, |
= \/“Dg\/u[(Dne — Dg) — Dngo]? + [11(0 = 00)' A - Drg, |

+ 14]16 = 0]\ Ro Dy
— ([0 — ol [n /) + (6 — 60)' ADsgy| + (10 — Bolln~/2).

where we used that uD3 = (8 — 60)'V (0 — 6p) + o(||6 — 0o||*). Hence each P; can be
written as

-2
P =P sup ME(00) — Mg(6) > “-
Jn=1/2<[|0—00[|<(j+1)n—1/2 n
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-2
P { sup 20(0 — 00)' A - Dy, + Rn(6) > %}

g 2<]0—00||<(5+1)n /2

72
<P sup 20(0 — 00)' A - Dygy > L
n—1/2<||0—00]|< (j+1)n—1/2 2n
72
+P sup 2R, (0) > -
n—1/2<||0—80||< (j+1)n—1/2 2n

The second term on the right can be made arbitrarily small (say less than 277) as

sup  Rn(0) = op(1).

000 <jn~1/2

The dominating term is the first one, and we obtain via Markov’s inequality that

-9
P sup (0 — 60)' A - Dpgy > Kl
10—00]|<(j+1)n—1/2 n

_ E SUp gy <(j41m-1/2 [1(0 — 00) Ay/n Dy g, [V
= (rj2n-172)M
rA2)1/2 2)1/2
- Esup)g_go(j<(j1)n-1/2 | ({0 = 00) AY?) " (p{/n D gy }?) )
= (kj2n L/2)M
1/2 1/2|M
B supjg_g, < nab |10 = O0lll (AR (ud/iDra,})"”|
= (kj2n—1/2)M
= o(j7M) for any M > 1.
Consequently, ijéPj < k6 M for all M > 0. and

M

Ell/i(® — 60)|* = / PR — 6ol > 2} de
0
< C/ 2 M gr < o
0

for Kk > 1,M" > k — 1. In particular, E|/nd (0 — 00)>t® < oo, implying that
v/nd (0 — 6p) is uniformly square integrable. [ |

A consistent estimate of the covariance matrix of 6 can be derived from the
variance estimators of ¢’6 for a finite number of ¢’s.

6 Consistency and Asymptotic Normality of Manski’s
Estimator

Minimizing a slightly different criterion

M, () = / Diy(x, g(x,y,0))dPo(z,y),
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over § € O results in the estimate originally proposed by Manski. There is only
a slight difference with the preceeding class of estimators, and we need some slight
adaptations of our proofs.

Theorem 11 Suppose that
3(0) = [ Diasgl..0)dP(ay)

has a well separated minimum at 0 = 0. Furthermore, assume that

sup |Dpg(x,t) — Dyg(x,t)| 250.
0,x,t

Then 6 = arg mingecg Mn(é)) —u..s 0.
Proof It suffices to show that

sup | My, (6) — M(6)| 2 0.
0e©

For this matter, write

Mn((g) - M(e) = / D?L@(xag(xuyae)) - Dg(w,g(w,y,e)) dPn(way)
+ / D3(z, g, ,0)) d(Pn — P)(z,y)
- / D2y(2) — D2(2) dP(2) + / D3(z)d(P, — P)(2).

The first term on the right is bounded by sup|D,g — Dy|, where the supremum is
taken over x € X',0 € © and ¢t € Y. Hence it is of order ©(1) with probability one by
assumption.

The second term tends to zero almost surely because

{Dj(z,¢): 6 € O}

is a P-Glivenko—Cantelli class. The latter is a consequence from the fact that Hy and
Gy are bounded monotone functions, so that H = {Hp : 0 € ©} and G = {Gy : 0 € O}
are Glivenko-Cantelli classes. Since any cdf. in R¥ can be written as a limit of
Sy aidigy, for t; € R¥ and 7, |a;] < 1, Theorem 2.6.9, p. 142 in Van der Vaart
and Wellner (1996), and the entropy bound for {[0,#] : t € R¥} yield that indeed
G and H are Glivenko—Cantelli classes, whence the composition {D3 : § € O} is
Glivenko—Cantelli as well. |

Set
A=A0,z,t) ={z=(z1,22) € Z:g(2,0) <t,z1 < x}.

The required uniform convergence follows if A = {A(f,z,t)} is a Donsker class, as
indexed by 6, x, and t. See Corollary 1 and 2 for applications.
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Theorem 12 Suppose that
(C1) g lies in the interior of ©;
(CQ} 5 —P 907

(C3) There exists a positive definite matriz V such that M(G) = (0—00)TV(0—6y)+
o(||0 — o||) for 6 — 6y,

(C4) There exists a A € Ly(P) such that Dg(-) = (0—00)TA(-)+|0—00|R(0, -) where
PR?*(0,-) — 0 as 6 — 0o,

(C5) \/ﬁ(ﬁng — 159)(2) — \/ﬁ(ﬁngo — IN)(;O)(Z) = o0p(1) for all 8 —p Oy, uniformly in
z € Z,

(C6) {R2:6 € O} is a P-Glivenko-Cantelli class.
Then i
V(0 = 60) = —2/mV ! / A(Dy g, — Dy, )dP + 0p(1),
and in particular, 0 is asymptotically normal.

Proof Notice that

M, (6) = / D2,dP, = / D2,dP + ‘/'(15,%9 — D})d(P, — P) + / Dd(P, — P).

Recalling the proof of the asymptotic normality of the “u-estimator” 9, we need to
show that the difference M,,(0) — M,,(0y) is basically a quadratic function in 6 — 6
plus a negligible remainder term of order 0 p(n~1/2||6 — 8[| + |0 — Oo||* +n1). The
difference is equal to

M (6) — Mq(80) = / (D7 — Dig,JdP + / (D7 = D§)] = (D3, = D )d(P — P)
+ /[f)g — D} |d(P, — P) = I+ IT +III.
Since [ is of the same form as for the preceeding case, it suffices to show that IT +

111 = Op(n*1/2H9 —6ol| + 10 — (‘)OH2 —}—n*l).
First we consider

IIT = / D3d(P, — P)
_ /[(9 — 00)"A + |0 — 00| o] d(P,, — P)
= op([16 = 6o|*)

where we invoke that

o= eo)T/AATd(Pn — P)(6 —60) = op(||8 — 6o|?)
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as A € Ly(P) and

16— 6o / R3d(P, — P) = 0p(]18 — 60|,

by assumption C6. The second term can dealt with as follows

[ (D2 - Dija(p. - P

= /[(ﬁng — Dy)? 4 2Dy(Dyp — Dy))d(Py, — P)

- ‘/‘(ﬁng  Dp)?d(P — P) +2(6 — 60)" / A(Dys — Dy) d(Fy — P)
+ 210 — 8y / Ro(Dyg — Dg)d(Pp — P)

— [1Dus, = DagJ? (P = P) + 0p(n™ 26 = o] + 0,

using C4, C5 and C6. n
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