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Abstract

We apply bootstrap methodology to unit root tests for dependent panels
with N cross-sectional units and T time series observations. More specifi-
cally, we let each panel be driven by a general linear process which may be
different across cross-sectional units, and approximate it by a finite order
autoregressive integrated process of order increasing with T. As we allow
the dependency among the innovations generating the individual panels, we
construct our unit root tests from the estimation of the system of the en-
tire N panels. The limit distributions of the tests are derived by passing
T to infinity, with N fixed. We then apply the bootstrap method to the
approximated autoregressions to obtain the critical values for the panel unit
root tests, and establish the asymptotic validity of such bootstrap panel unit
root tests under general conditions. The proposed bootstrap tests are indeed
quite general covering a wide class of panel models. They in particular allow
for very general dynamic structures which may vary across individual units,
and more importantly for the presence of arbitrary cross-sectional depen-
dency. The finite sample performance of the bootstrap tests is examined via
simulations, and compared to that of the t-bar statistics by Im, Pesaran and
Shin (1997), which is one of the commonly used unit root tests for panel
data. We find that our bootstrap panel unit root tests perform well relative
to the t-bar statistics, especially when N is small.
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1. Introduction

Recently, nonstationary panels have drawn much attention in both theoretical and empir-
ical research, as a number of panel data sets covering relatively long time periods have
become available. Various statistics for testing the unit roots and cointegration for panel
models have been proposed, and frequently used for testing growth convergence theories,
purchasing power parity hypothesis and for estimating long-run relationships among many
macroeconomic and international financial series including exchange rates and spot and
future interest rates. Such panel data based tests appeared attractive to many empirical
researchers, since they offer alternatives to the tests based only on individual time series
observations that are known to have low discriminatory power. A number of unit roots and
cointegration tests have been developed for panel models by many authors. See Levin and
Lin (1992,1993), Quah (1994), Im, Pesaran and Shin (1997) and Maddala and Wu (1996)
for some of the panel unit root tests, and Pedroni (1996,1997) and McCoskey and Kao
(1998) for the panel cointegration tests available in the current literature. Banerjee (1999)
gives a good survey on the recent developments in the econometric analysis of panel data
whose time series component is nonstationary.?

Since the work by Levin and Lin (1992), a number of unit root tests for panel data
have been proposed. Levin and Lin (1992,1993) consider unit root tests for homogeneous
panels, which are simply the usual t-statistics constructed from the pooled estimator with
some appropriate modifications. Such unit root tests for homogeneous panels can therefore
be represented as a simple sum taken over t =1,...,N and t=1,...,T. They show under
cross-sectional independency that the sequential limit of the standard ¢-statistics for testing
the unit root is the standard normal distribution.? For heterogeneous panels, the unit root
test can no longer be represented as a simple sum since the pooled estimator is inconsistent
for such heterogeneous panels as shown in Pesaran and Smith (1995). Consequently the
second stage N-asymptotics in the above sequential asymptotics does not work here. Im, Pe-
saran and Shin (1997) looks at the heterogeneous panels and proposes unit root tests which
are based on the average of the independent individual unit root tests, t-statistics and LM
statistics, computed from each individual panel. They show that their tests also converge
to the standard normal distribution upon taking sequential limits. Though they allow for
the heterogeneity, their limit theory is still based on the cross-sectional independecy, which
can be quite a restrictive assumption for most of the panel data we encounter.

The tests suggested by Levin and Lin (1993) and Im, Pesaran and Shin (1997) are
not valid in the presence of cross-correlations among the cross-sectional units. The limit

2Stationary panels have a much longer history and have been intensely investigated by many researchers.
The readers are referred to the books by Hsiao (1986), Matyas and Sevestre (1996) and Baltagi (1995) for
the literature on the econometric analysis of panel data.

3The sequential limit is taken by first passing T to infinity with N fixed and subsequently let N tend
to infinity. Regression limit theory for nonstationary panel data is developed rigorously by Phillips and
Moon (1999). They show that the limit of the double indexed processes may depend on the way N and
T tend to infinity. They formally develop the asymptotics of sequential limit, diagonal path limit (N and
T tend to infinity at a controlled rate of the type T" = T'(N)) and joint limits (/N and T tend to infinity
simultaneously without any restrictions imposed on the divergence rate). Their limit thoery, however,
assumes cross-sectional independence.



limit distributions of their tests are no longer valid and unknown when the independency
assumption is violated. Indeed, Maddala and Wu (1996) show through simulations that their
tests have substantial size distortions when used for cross-sectionally dependent panels. As
a way to deal with such inferential difficulty in panels with cross-correlations, they suggest
to bootstrap the panel unit root tests, such as those proposed by Levin and Lin (1993), Im,
Pesaran and Shin (1997) and Fisher (1933), for cross-sectinally dependent panels. They
show through simulations that the bootstrap version of such tests perform much better, but
do not provide the validity of using bootstrap methodology.

In this paper, we apply bootstrap methodology to unit root tests for cross-sectionally
dependent panels. More specifically, we let each panel be driven by a general linear process
which may be different across cross-sectional units, and approximate it by a finite order
autoregressive integrated process of order increasing with 7. As we allow the dependency
among the innovations generating the individual panels, we construct our unit root tests
from the estimation of the system of the entire N panels. The limit distributions of the tests
are derived by passing T to infinity, with N fixed. We then apply the bootstrap method to
the approximated autoregressions to obtain the critical values for the panel unit root tests
based on the original sample, and establish the asymptotic validity of such bootstrap panel
unit root tests under general conditions.

The rest of the paper is organized as follows. Section 2 introduces the panel unit root
tests for cross-sectionally dependent panels based on the original sample and derives the
limit theory for the sample tests. Section 3 applies the sieve bootstrap methodology to
the sample panel unit root tests considered in Section 2 and establishes asymptotic validity
of the sieve bootstrap unit root tests. Also discussed in Section 3 are the practical issues
arising from the implementation of the sieve bootstrap methodology. In Section 4, we
conduct simulations to investigate finite sample performance of the bootstrap unit root
tests. Section 5 concludes, and mathematical proofs are provided in an Appendix.

2. Unit Root Tests for Dependent Panels

We consider a panel model generated as the following first order autoregressive regression:
Ayit:aiyi,t,l—i—uit, t=1,...,N; t=1,...,T. (1)

As usual, the index ¢ denotes individual cross-sectional units, such as individuals, house-
holds, industries or countries, and the index ¢ denotes time periods. We are interested
in testing the unit root null hypothesis, a; = 0 for all y;; given as in (1), against the al-
ternative, o; < 0 for some y;, ¢ = 1,...,N. Thus, the null implies that all y;’s have
unit roots, and is rejected if any one of y;’s is stationary with «; < 0. The rejection of
the null therefore does not imply that the entire panel is stationary. The initial values
(Y10, - - - »Yn0) Of (Y11, ---,Yynt) do not affect our subsequent asymptotic analysis as long as
they are stochastically bounded, and therefore we set them at zero for expositional brevity.

It is assumed that the error term (u;) in the model (1) is given by a general linear
process specified as

Uit = T4 (L)Eit (2)



where L is the usual lag operator and
o
mi(z) = Zm7kzk
k=0

for ¢ = 1,...,N. Note that we let m; vary across ¢, thereby allowing heterogeneity in
individual serial correlation structures. We also allow for the cross-sectional dependency
through the cross-correlation of the innovations €;, ¢ = 1,..., N that generate the error
uy’s. To define the cross-sectional dependecy more explicitly, we define the time series
innovation (e¢)7_; by

&t — (€1t,...,€Nt)l (3)
and denote by |- | the Euclidean norm: for a vector = (;), |z|?> = 3, 22, and for a matrix
A= (aij), Al =35 agj. We assume the following:
Assumption A1l Let (g, F;) be a martingale difference sequence, with some filtration
(F¢), such that E(ee;|Fi—1) = X a.s., and Ele|” < oo for some r > 4.

Assumption A2 Let m;(z) # 0 for all |2z] <1, and > 72 |k|®|m; x| < oo for some s > 1,
foralli=1,...,N.

The conditions in Assumptions Al and A2 are routinely imposed on the linear processes
given by (2). It is well known that an invariance principle holds for a partial sum process
of () defined in (3) under Assumption Al. That is,

By

(7]
1
R &g —g B= . =BM(0,X% 4
e o= 0.5) @
N

as T — 00, where [z] denotes the maximum integer which does not exceed .
We may write (u;) as
wip = m;(1)es + (Wig—1 — Ust) (5)

where
x0 o
Ut = Z Tik€it—k> Tik = Z Tij
k=0 j=k+1

Under our condition in Assumption A2, we have > 72 |T; x| < oo [see Phillips and Solo
(1992)] and therefore (@;) is well defined both in a.s. and L" sense [see Brockwell and
Davis (1991, Proposition 3.1.1)].

Under the unit root hypothesis a1 =---=ay = 0, we may now write
Yie = mi( 1wy + (U0 — Usy) (6)
where w;; = 22:1 gk Consequently, (y;;) behaves asymptotically as the constant 7;(1)

multiple of (w;;). Note that (u;) is stochastically of smaller order of magnitude than (w),
and therefore will not contribute to our limit theory.



Under Assumptions Al and A2, we may write the linear process given in (2) as an
infinite order autoregressive (AR) process

ai(L)uir = €t
with
o0
ai(z)=1- Z amzk
k=1
and approximate (u;) by a finite order AR process
Ujp = Q1 Wi -1+ + Qp Ui t—p; + 5% (7)

with
x0
€5 = it + Z G kUG
k=pi+1
Under Assumptions Al and A2, we have for each ¢ =1,..., N

T

0. 0)
Elejf —cul <Elugl" | Y laigl | =op;™)
k=p;+1

Note that we have under Assumptions Al and A2

oo r/2
Eluy|" <c (Z 7r22k> Elei|” < o0
k=0

for some constant ¢, due to the Marcinkiewicz-Zygmund inequality [see, e.g., Stout (1974,
Theorem 3.3.6)]. The error in approximating (u;) by a finite order AR process thus becomes
small as p; gets large.

Using the AR approximation of (u;) given in (7), we write the model (1) as

DPi
Ayir = i i—1 + Z O Witk + 5
k=1

which, since Ay;; = uy under the null hypothesis, can be seen as an autoregression of Ay;
augmented by y; 1, viz.

Pi
Ay = alip—1+ Y ki + b (8)
k=1

Our unit root tests will be based on the above approximated autoregression.
For the order p; in the regression (8), we assume

Assumption A3 p; — co and p; = o(TY/?) as T — oo, for alli =1,...,N.



The AR order p; should, in particular, be increasing with 7.* We may choose p;’s using
the usual order selection criteria such as Schwartz information criterion (BIC) or Akaike
information criterion (AIC).?> The order selection can be based either on the regression (8)
with no restriction on «;’s, or on the approximated AR regression in (7) where a;’s are
restricted to be zero. This will not affect our subsequent limit theory.

2.1 Unit Root Tests for Heterogeneous Panels

The augmented autoregression (8) can be written in the following matrix form by taking
the individual units, with all their T" observations, one after the other, viz.

Ay Ye1 0 aq X 0 B et
L = D+ S E
Ayn 0 Yen /) \ oy 0 X¥N ) A\BY e
or more compactly
Ay =Y+ XpfBy +ep 9)
where we use the following notation
Yio iy Qi
vi=| ¢ |, xt=| | ad pr=
Yi,r—1 ! Qi p,

with 28 = (Ayis 1, DNYigp;), foralli=1,...,N.

We construct the tests for the null hypothesis of the unit roots in y; = (y1t,...,Ynt)’
generated by (1) and (2) based on the system GLS and OLS estimation of the augmented
AR (9). The feasible GLS estimator of « in (9) is given by

o opl
aGT_BGTAGT

where Agr and Bgr are defined below. For the test of the null « = 0, we consider the
following F-type test based on the feasible GLS estimator dqy:

FGT - dIGT(VaI(OA(GT))ildGT - AIC;TBg%AGT (10)
where
1y—1 1y—1 1 =1 1 et
Aor = Y{(E @ In)e - Y/E 01X, (XS 0 I)X,) X5 @Iy

~ ~ ~ -1 ~
Ber = Y/E'@L)Y,-Y/(E ' @1)X, (X;,(z—l ® IT)Xp) X\(E7 0 I)Y,

4Our regression (8) here may be viewed as the extension of the unit root regression considered in Said
and Dickey (1984) to the panel models. However, our assumption on the AR order p; is substantially weaker
than that used by Said and Dickey (1984), due to the result in Chang and Park (1999).

5As for the choice among the selection criteria, BIC might be preferred if (u;) is believed to be generated
by a finite autoregression, since it yields a consistent estimator for p;. See, e.g., An, Chen and Hannan
(1982). If not, AIC may be a better choice, since it leads to an asymptotically efficient choice for the optimal
order of some projected infinite order autoregressive process as shown by Shibata (1980). See Choi (1992)
for more discussions on the model selection issue for ARMA models.




and ¥ is a consistent estimator of the covariance matrix ¥. The limit distribution for the
test Fgr is easily drived from the asymptotic behaviors of Agr and Bgr, and is given in
Theorem 2.1 below.

On the other hand, the OLS estimator of a in (9) is given by

dor = BogAor
and use the following OLS-based F-type test for testing o =0
For = Gl (var(dor)) taor = Ay Mudr Aor (11)
where

Aor = Y/ep— n/Xp(XylaXp)AX]/ﬁp
Bor = YZYK - YE,XP(X;;)XP)_IX;I)YK
Mror = Y/(S® Ir)Ye = Y/ Xp(Xp Xp) " XS @ [1)Y; = Y{(S @ L) Xp(X,X,) T XY
+ Y Xp(XXp) XS @ ) Xp (X, X,) T XY

The OLS estimator & is less efficient that the GLS estimator &g in our context. The
OLS-based test Fir in (11) is thus expected to be less powerful than the GLS-based test
Fgr in (10). However, we observe in our simulations that Fy, often performs better than
Fer in finite samples, especially when N is large.

To construct a consistent estimator for the covariance matrix X, we may estimate the
regression

Uit = QL4 Ui g1 + A O Ui, A (12)

by single-equation OLS for ¢ = 1,..., N, with the unit root restriction ;=0 imposed. The
fitted residuals (£8}) are consistent for (g;), since & are consistent for ;5 for 1 < k < p;,
and the autoregressive coefficients (o) for k& > p,ﬁbecome negligible in the limit as long
as we let p; — oo. This is shown in Park (1999, Lemma 3.1). Of course, one may obtain
consistent fitted residuals by estimating the unrestricted regession (8). This again will not
affect our limit theory. From (%)), form the time series residual vectors

éf:(éqlgtlv"'véﬁig)/ (13)

for t =1,...,7. We then estimate % by

=

Nl =

T
> ey
t=1
Notice that

T T
1
E ,5555/ +op(1) = T E eicy +0p(1) = Eesep + 0p(1)
t=1

where the second equality follows from Lemma A1l (c) in Appendix. We use (X ® I) as an
estimator for the variance of the regression error in (9).



Let o;; and 0% denote, respectively, the (i,7)-elements of the covariance matrix ¥ and
its inverse ¥ ~1. The limit theories for the tests Fi; and F,, are given in

Theorem 2.1 Under Assumptions Al, A2 and A3, we have
(a) Fer —q QQGQEéQAG
(b) For —u QAOQJI}FOQAO

as T — oo, where

N ) 1 1
71'1(1)2()‘1]/0 B1dB; 7T1(1)/ B1dB;
Jj=1 0
Qag = : s Qap = :
=1 0 0
1 1
oy (1)? /0 B .. o"m(Dry(1) /0 BBy
QBG = .
1 1
o (1) (1) /0 ByBy ...  o"Viy(1)? /0 B2
and 1 1
0'1171'1(1)2/0 B% O'1N7T1(1)7TN(1)/0 BlBN
Quripo = :
! o [T 2
Remarks

(a) The limit distributions of the Fg; and Fy, are nonstandard and depend heavily on
the nuisance parameters that define the cross-sectional dependency and the heterogeneous
serial dependence. Therefore, it is impossible to base inference on the tests Fg, and Fg,.
In the next section, we propose bootstrap version of these tests to deal with the nuisance
parameter dependency problem and to overcome the inferential difficulty.

(b) The F-type tests Fur and Fr considered here are two-tailed tests which reject the null
a; = 0 for all ¢ when «; # 0 for some i. Hence, they reject the null of the unit roots not
only against the stationarity a; < 0 but also against the explosive cases with «; > 0 for
some ¢. This will have a negative effect on the powers of the tests.

The framework within which we may effectively deal with the problem in Remark (b)
above has been recently developed by Andrews (1999).6 To deal with the problem, we may

SHere we consider testing o; = 0 against a; < 0, and the parameter set is given by o; < 0 for each
cross-sectional unit ¢ = 1,..., N. The value of a; under the null hypothesis is therefore on the boundary of
the parameter set.



replace zeros for the members of &, and &, which have positive values. This can be easily
carried out by multiplying element by element the estimators dgr = (Ggr.1,- - -, Gar,n) and
Gdor = (Gor,- .., 0or n) respectively to the N-dimensional indicator functions 1{é&sr < 0}
and 1{&or < 0}. Denote by .x the element by element multiplication, and use this to modify
the estimators &g and &or as follows

&GT,ll{aGT,l < O}
Ggr x H{agr <0} = : (14)
dGT,Nl{&GT,N < O}
&OT,ll{&OT,l < O}
dor * H{aor <0} = :

&OT,Nl{&OT,N < O}
We now define new statistics, which we call K-statistics. From the modified GLS estimator
above, we define the GLS-based K-statistics Kgr as follows

Kor = (Ggr * H{agr <0}) (var(dgr)) ™t (Ggr # H{agr < 0})
= (Agr * H{bagr <0}V BZL (Agr * 1{dgr < 0}) (15)
and the OLS-based K-statistics Kor as
Kor = (Gor * 1H{aor < 0}) (var(dor)) ! (Gor * H{aor < 0})
= (Aor * Hbor <0} Mo, (Aor # 1{aor < 0}) (16)

The K-statistics constructed as above are essentially one-sided tests, since they effectively
elliminate the probability of rejecting the null against the explosive alternative. Therefore
they are expected to improve the power properties of the corresponding two-tailed F-type
tests for testing of the unit root null against the one-way stationary alternative.

The limit distributions of the K -statistics can be easily obtained in a manner similar to
that used to derive the limit theories for the F-type tests, and are given in

Corollary 2.1 Under Assumptions A1, A2 and A3, we have
(2) Kor —a (Qag * 1{Qp,Quaa < 0})Qpg(Qug * Q5 Qag < 03)
(b) Kor —a (Qap * 1{QpL Qap <0} Qo (Qap x H{Q5, Qa, < 0})
as T — oo, where
1 1
m(1)2/0 B . m(lmm/o BBy
Q5o = : ' '

1 1
WN(1)7T1(1)/0 ByBy ... WN(1)2/0 B2
and the terms Qa., @B, @4, and Qs are defined in Theroem 2.1.

As can be seen clearly from the above Corollary, the limit distributions of the K-tests are
also nonstandard and depend heavily on the nuisance parameters. In the next section, we
will also consider bootstrapping the K-type tests.



2.2 Unit Root Tests for Homogeneous Panels

For the test of the unit root, we are testing o; = 0 for all ¢. Therefore, we are essentially
looking at a homogeneous panel, as far as testing of the null hypothesis is concerned. If AR
coefficients «;’s in our original model (1) are homogeneous, i.e., a1 = --- = ay = «, then
the corresponding augmented AR in matrix form is given by

Ay = yea + Xpﬁp +ép (17)

which is the same as the augmented AR in matrix form for the original heterogeneous model
(9), except that here we have an (NT x 1)-vector y¢ = (Y;1,---,¥p )" in the place of the
(NT x N)-matrix Yy and the parameter « is now a scalar instead of an (N x 1)-vector.

It is natural to consider the t-statistics for testing the null hypothesis of the unit roots
in the homogeneous model (17), since the parameter « to be tested is now a scalar. Here we
do not allow for the heterogeneity of the AR coefficient, as in Levin and Lin (1992,1993).
Obviously, the unit root test based on the homogeneous panel (17) is valid, since the model
is correctly specified under the null hypothesis of the unit roots. The homogeneous panel,
however, may not provide appropriate modellings under the alternative hypothesis, and this
may have an adverse effect on the power of the tests. However, we may use the one-sided
t-type tests, if based on the homogeneous panels, which have a clear a clear advantage over
the two-tailed F-type tests constructed from the heterogeneous panels.

The OLS and GLS based t-statistics are constructed from the GLS and OLS estimators
of the scalar parameter « in the homogeneous augmented AR (17) and are given by

ter = a’GTbE:}“/Q and tor = CLOT]W,;JIT/2 (18)

where

Qgr = yé(ifl & IT)5p - yé(iil ® IT)Xp(X]'](f]A ® IT)Xp)ingla(iil ® IT)%

bor = Y(E @Iy -y (S ® IT)Xp(X]IJ(ifl ® IT)Xp)le;Ia(ifl ® Ir)ye

Qor = yéep - yéXp(XéXp)_lXéep

Mor = yi(E® Ir)ye — 2y, Xp(X, Xp) " X[ (2 @ Ir)ye
+ yZXp(X;/)Xp)_lX;I)(i & IT)Xp(Xgl)Xp)_lX]/gye
In the following theorem we present the limit theories for the tgr and Tor tests.

Theorem 2.2 Under Assumptions Al, A2 and A3, we have
(8) tar —d QaeQy”

-1/2
(b) tor —a QuoQuiy
as T — oo, where

N N ! N N s
QGG:ZZO‘U/O BidBj, QbG:ZZO‘U/O BZBJ

i=1j=1 i=1j=1

10



and

N 1 N N 1
Qap = Zm/o BidBi, Qumo = szfﬁjﬂﬂj/o BiB,;
i=1

i=1j=1

The limit processes Qar,, appearing in the limit distributions of {5, and to. are the
sums of the individual elements in the corresponding limit processes Qa., @B, @4, and
@iy, defined in Theorem 2.1, which constitute the statistics K4, and Ko developed for
the heterogenous panels.” The limit distributions of the t-statistics tor and tor are also
non-standard and suffer from nuisance parameter dependency, as in the cases with the F-
tests and K-statistics. Hence it is not possible to use these statistics for inference as they
stand. In the next section, we consider boostrapping the panel unit root tests proposed in
this section to resolve the nuisance prameter dependency problem and to provide a valid
basis for inference in nonstationary panels with cross-sectional dependency.

3. Bootstrap Unit Root Tests for Dependent Panels

In this section, we consider the sieve bootstraps for the various panel unit root tests, Fer,
For, Kgr, Kor, ter and to, considered in the previous section. In particular, we establish
the asymptotic validity of the bootstrapped tests by showing bootstrap consistency of the
tests. We use the conventional notation * to signify the bootstrap samples, and use P* and
E* to denote, respectively, the probability and expectation conditional upon the realization
of the original sample. While developing the asymptotic theories for the bootstrapped tests,
we also discuss various issues and problems arising in practical implementation of the sieve
bootstrap methodology in this section.

To construct the bootstrapped tests, we first generate the bootstrap samples for (¢},),
(ufy) and (yj;). For the generation of (¢};), we need to make sure that the dependence
structure among cross-sectional units, ¢ = 1,..., N, is preserved. To do so, we generate
the N-dimensional vector (e}) = (¢3,...,€%;)" by resampling from the centered residual
vectors (£7) defined in (13) from the regression (12). That is, obtain (g}) from the empirical

distribution of
1\
(-722)
t=1 t=1

The bootstrap samples (ef) constructed as such will, in particular, satisfy E*e} = 0 and
E*eje; =28

"Levin and Lin (1992,1993) considers ¢-statistics for homogeneous panels under cross-sectional indepen-
dency. Consequently, they can apply N-asymptotics after the limit as T" tends to infinity is taken, and derive
the limit distribution that is the standard normal. Their theory, however, does not extend to our statistics,
since we allow for dependency across cross-sectional units.

80f course, we may resample £};’s individually from the é5i’s for 4 = 1,...,N and t = 1,...,T. In
this case, preserving the original correlation structure among the cross-sectional units needs more care. We

basically need to pre-whiten é%7’s before resampling, and then re-color the resamples to recover the correlation

structure. More specifically, we first pre-whiten &7/’s by pre-multiplying ¥ 71/2 to & = (&8},... &)’ for
t =1,...,T. Next, generate €j,’s by resampling from the pre-whitened ¥;’s, and then re-color them by
pre-multiplying 3*/2 to e = (g},..., &)’ to restore the original dependence structure.

11



Next, we generate (u},) recursively from (e,) as

* _ ~Di % ~Di % *
Uiy = QU A g, e (19)

where (477, ...,a}7,) are the coefficient estimates from the fitted regression (12). Initializa-
tion of (};) is unimportant for our subsequent theoretical development, though it may play
an important role in finite samples.” The coefficient estimates (675, ..., a5, ) used in (19)
may be obtained from estimating (12) by the Yule-Walker method instead of the OLS. The
two methods are asymptotically equivalent. However, in small samples the Yule-Walker
method may be preferred to the OLS, since it always yields an invertible autoregression,
thereby ensuring the stationarity of the process (u};). See Brockwell and Davis (1991, Sec-
tions 8.1 and 8.2). However, the probability of having the noninvertibility problem in the
OLS estimation becomes negligible as the sample size increases.
Finally, obtain (y}) by taking partial sums of (u}), viz.

t
* % *
Yit = Yio T Z Ui,
k=1

with some initial initial value y,. Notice that the bootstrap samples (y},) are generated
with the unit root imposed. The samples generated according to the unrestricted regression
(1) will not necessarily have the unit root property, and this will make the subsequent
bootstrap procedure inconsistent as shown in Basawa et al (1991). The choice of the initial
value v, does not affect the asymptotics as long as it is stochastically bounded. Therefore,
we simply set it equal to zero for the subsequent analysis in this section.

We may obtain the Beveridge-Nelson representations for the bootstrapped series (u})
and (y};) similar to those for (u;) and (y;) given in (5) and (6) in the previous section. Let
&;(1) = 1= 3}L, &% Then it is indeed easy to get

pi NP /P
Uy = %52 + ];1 W(“ztw - u;‘k,tfchrl)
= Ti(1)e; + (ﬂ;'k,t—l — )

where 7;(1) = 1/a;(1) and @} = 7;(1) >0 ( ?Z:k a7 )uf, g.q, and therefore,

t
vie = D ui, = Fi(Lwy; + (@ — )
k=1

* i *
where wj; = > €f.

For the development of the limit theories for the bootstrapped test statistics, we assume

9We may use the first p;-values of (u;;) as the initial values of (u};). The bootstrap samples (u};) generated
as such may not be stationary processes. Alternatively, we may generate a larger number, say 1" + M, of
(uj;) and discard first M-values of (uj;). This will ensure that (uj;) become more stationary. In this case
the initialization becomes unimportant, and we may therefore simply choose zeros for the initial values.
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Assumption B1 Let () be a sequence of iid random variables such that Ee; = 0,
Eeie; = X and Elet|" < oo for some r > 4.

Assumption B2 Let 7;(2) # 0 for all |2| <1, and > 72 |k|*|m; x| < oo for some s > 1,
foralli=1,...,N.

Assumption B3a Let p; — oo and p; = o(T") with k < 1/2 as T — oo, for all i =
1 N.

2

Assumption B3b Let p; = ¢n” for some constant ¢ and 1/rs < k < 1/2, for all i =
1,....N.

The iid assumption in Assumption Bl, instead of the martingale difference condition in
Assumption Al, is made to make the usual bootstrap procedure meaningful. Assumption
B2 is identical to Assumption A2. In the place of Assumption A3 for the expansion rate
of AR order p;’s, we impose either Assumption B3a or B3b. Both Assumptions B3a and
B3b are stronger than Assumption A3. We will impose the condition in Assumption B3a
to prove the consistency of the bootstrap tests in the weak form, i.e., the convergence of
conditional bootstrap distributions in probability. To establish the strong consistency or
the a.s. convergence of conditional bootstrap distributions, we need a stronger condition in
Assumption B3b. Notice that we only require 0 < k < 1/2, for the Gaussian model with
r = oo or the finite order ARMA model with s = co. The condition is therefore not very
stringent.

Conventions

(a) Assumptions B1, B2 and B3a together will be refered to as Assumption (W), with ‘W’
standing for weak, and the set of Assumptions B1, B2 and B3b will be called as Assumption
(S), with ‘S’ for strong.

(b) We will use the symbol 05(1) to signify the bootstrap convergence in probability. For
a sequence of bootstrapped random variables Z, for instance, Z} = 0;;(1) a.s. and in P
imply respectively that

P*{|Z,] > 6} -0 as.orin P

for any ¢ > 0. Similarly, we will use the symbol Oy(1) to denote the bootstrap version of
the boundedness in probability. Needless to say, the definitions of 0} (1) and Oy (1) naturally
extend to o(c,) and Oy (cy) for some nonconstant numerical sequence (cp,).

We need following lemmas for the derivation of the limit distributions for the sieve
bootstrap panel unit root tests.

Lemma 3.1 Under Assumptions (W), we have

1 & . 1T
() =Dyl =mi(1) o Yo wiy age+op(1)
t=1 t=1

1 & L 1 &
(b) -2 S oy ayle 1 =m(1)7;(1) i D wi qwh, g 4 o5(1)
t=1 t=1

In the following lemma, we use an operator norm for matrices: if C' = (¢;;) is a matrix,
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then we let ||C|| = max, |Cz|/|x|.
Lemma 3.2 Let ;" = (Ayj, ,...,Ay;, ,,)- Then we have

o vl ara)

respectively, for all i=1,...,N
T

Z x;ktpl y] t—1
Z Tit

= Op(1) or O(1) as. under Assumptions (W) and (S),

E* O(TpZ/Q) a.s. under Assumption (W), for all 7,5 =1,...,N

(¢) E* o(T'/? 1/2) a.s. under Assumptions (W), for all 7,5 =1,...,N

3.1 Bootstrap Unit Root Tests for Heterogeneous Panels

To construct the bootstrapped tests, we consider the following bootstrap version of the
augmented autoregression (8) which was used to construct the sample test statistics

Di
Ayjy = Oéiy;'ﬂ,tfl + Z O‘i,kﬁy;’ﬁ,tfk + i (20)
k=1
and write this in matrix form
Ay =Y a+ X, 08, +¢&" (21)

where the variables are defined in the same manner as in the regression (9) with

* *pil *
Yio Ty i1
* . *Pi __ . L
Yeo; = : , X = : and & =
* *pi/ *
Yir—1 Lip &ir

fori=1,...,N.

We test for the unit root hypothesis & = 0 in (21), using the bootstrap versions of
F-type tests that are defined analogously as the sample F-type tests considered in the
previous section. The bootstrap F-tests are constructed from the bootstrap GLS and OLS
estimators of a in the bootstrap augmented AR regression (21). More explicitly, we define

the boostrap GLS-based F-test as
For = AZ/TBZEIAZT (22)
analogously as the sample GLS-based F-test F, given in (10), where
. . . -1 .
A, = YVE L) - ET L)X, (X;’(z—l ® IT)X;) XS @ I)et

~ ~ ~ -1 ~
By = Yoy —YE e l)X; (XS e l)X;) XS e L)Y,

14



The bootstrap OLS-based F-test is also defined analogously as the sample OLS-based F-test
Foy defined in (11), viz.
FST = A?J/TM;E%A?JT (23)

where

A*OT — Y*l * Y*/ *(X*/X ) 1X;’€;
Mo, = YI(EI)Y) =YX (X)X X (S @ In)Y
P (S I XXX XYy
+ YU X (X X)X (S @ In) X (X X)X Y

The bootstrap F-statistics Fg, and Fj, given in (22) and (23) involve the covariance
matrix estimator 3 defined below (13). The estimate ¥ is the population parameter for
the bootstrap samples (gf), corresponding to X for the original samples (g¢). We may of
course use the bootstrap estimate 3*, say, for the construction of the statistics Fj, and
E},. for each bootstrap iteration. The two versions of the bootstrap tests are asymptotically
equivalent at least for the first order asymptotics, and we use ¥ in the construction of the
bootsrap tests for convenience.!?
We now present the limit theory for the bootstrap F-type tests Fj, and F}, in

Theorem 3.1 We have as T — o0,

(a) Fér —ar Q;‘GQE;éQAG in P or a.s.

(b) F&r —ar Q{AOQE}FOQAO in P or a.s.

respectively under Assumption (W) or (S), where Qa,, @By, Q4. and Qs are defined

in Theorem 2.1.

The results in Part (a) and (b) above show that the bootstrap F-statistics Fj,. and F},
have the same limit distributions as the corresponding sample F-statistics Fgr and For

given in Theorem 2.1. This establishes the asymptotic validity of the boostrap tests F(,
and F3,.

The bootstrap K-statistics are constructed from the bootstrap samples in the analogous
manner in which the sample K-statistics are defined in (15) and (16).

K& = (A # H{aG, < 0}) Bey' (AGy + Hag, < 0})
K5y = (A #1{ah, <0} Miop (AS, # 1{ag, < 0}) (24)

and their limit theories are given in

Corollary 3.1 We have as T — oo,
(a) Kir —a (Qag * H{Qp.Qae <01 Qpk (Qag x1{Qp5.Qae <0}) in P oras.

19The bootstrap tests based on the bootstrap estimate PO may be better for higher order asymptotics, since
they more closely mimic the sample statistics than the bootstrap tests based on the population parameter 5.
The statistics considered in the paper are, however, non-pivotal and therefore the higher order asymptotics
are irrelevant here.
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(b) Ko —a (Qao * H{QppQuao < 01 Q. (Qup # H{Qp, Qap < 0}) in P or as.
respectively under Assumption (W) or (S), where Qa., @by, Qay: Qrrp, and Qp, are
defined in Theorem 2.1 and Corollary 2.1.

Corollary 3.1 shows that the bootstrap K-statistics K, and K}, have the same limiting
distributions as the corresponding sample K-statistics Kqr and Kgr given in Corollary 2.1,
thereby proving the asymptotic validity of the bootstrap K-statistics.

3.2 Bootstrap Unit Root Tests for Homogeneous Panels

The bootstrap t-statistics are also constructed in an analogous manner as we constructed the
sample t-statistics, tgr and tor, in Section 2.2. Thus, we consider the homogeneous panel
of the bootstrap samples, with o = -+ = ay = « imposed, and compute the t-statistics
from the corresponding augemented AR, which is written in matrix form as

Ay* :yZoz—I—X;ﬁp +e* (25)

The variables appearing in the above regression are defined in the same way as in the
augmented AR in matrix form for the bootstrap heterogeneous model (21), except that
here we have an (NT X 1)-vector y; = (y;',-..,y;'n) in the place of the (NT x N)-matrix
Y, and the parameter « is now a scalar instead of an (N x 1)-vector.

The bootstrapped GLS and OLS based t-statistics are based on the GLS and OLS

estimator of a in the homogeneous augmented AR (25), and are given by
thr = aleblr”? and €y = a MG (26)

where

Wr = YWETOL) Y ET o L)Xy (X ET e In) X)) T X (BT @ I

ber = 4 ET @Iy gl T 0 I X, (X (T 0 I Xy) T X (ST @ In)yp

W = e - X)X

Moy = yi'(E® Lyl — 290 X (X X0) 7' X (S © In)y;
+ oyl X (X X)X (S @ L) X (X X0 T Xy

The limit distributions of t},,. and t},, are given in
Theorem 3.2 We have as T — o0,
(a) th, —ar QGGQI;GUQ in P or a.s.

(b) t&r —ar QGOQ]_VII/OQ in P or a.s.
respectively under Assumption (W) or (S), where Qq,, Qb Quo and Qar,,, are defined in
Theorem 2.2.

The results in Theorem 3.2 show that the bootstrap ¢-statistics ¢}, and ¢}, have the limit
distributions that are equivalent to those of the sample t-statistics tgr and tor given in
Theorem 2.2, thereby establishing the asymptotically validity of the bootstrap t-statistics.
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4. Simulations

We conduct a set of simulations to investigate the finite sample performance of the bootstrap
panel unit root tests, F},, F},., K., K., t, and t},, proposed in the paper. For the
simulation, we consider the (y;) given by the model (1) with (u;) generated as either AR(1)
or MA(1) processes, viz.,

(A)  up= Pillit—1 + €4t
(B)  wit = eit + bici 11

The innovations e, = (€14,...,e5¢)" that generate u; = (uyy,...,uyt)" are drawn from an
N-dimensional multivariate normal distribution with mean zero and covariance matrix .11
The AR and MA coefficients, p;’s and 6;’s, used in the generation of the errors (u;) are
drawn randomly from the uniform distribution. More specifically, p; ~ Uniform|[0.2,0.4] and
0; ~ Uniform[—0.4,0.4] .12

The parameter values for the (N x N) covariance matrix ¥ = (0;;) are also randomly
drawn, but with particular attention. To ensure that ¥ is a symmetric positive definite
matrix and to avoid the near singularity problem, we generate ¥ via following steps:

(1) Generate an (N x N) matrix U from Uniform[0,1].

(2) Construct from U an orthogonal matrix H = U(U'U)~/2,

(3) Generate a set of N eigen values, A1,...,Ay. Let \y=r >0 and Ay =1 and draw
A2, ..., Ay_1 from Uniform|r,1].

(4) Form a diagonal matrix A with (A;,..., Ay) on the diagonal.

(5) Construct the covariance matrix ¥ as a spectral representation ¥ = HAH'.

The covariance matrix constructed this way will surely be symmetric and nonsingular with
eigenvalues taking values from r to 1. We set the maximum eigenvalue at 1 since the
scale does not matter. The ratio of the minimum eigenvalue to the maximum is therefore
determined by the same parameter . The covariance matrix becomes singular as r tends to
zero, and becomes spherical as r approaches to 1. For the simulations, we set r at r = 0.1.13

For the test of the unit root hypothesis, we set a;; =0 for all i=1,..., N, and investigate
the finite sample sizes in relation to the corresponding nominal test sizes. To examine the
rejection probabilities of the tests under the alternative of stationarity, we generate «;’s
randomly from Uniform[—0.8,0]. The model is thus heterogenous under the alternative.
The finite sample performance of the bootstrap tests are compared with that of the t-bar
statistics by Im, Pesaran and Shin (1997), which is based on the average of the individ-
ual t-statistics computed from the sample ADF regressions (8) with mean and variance

1 The simulation model for the case (B) is generated from an MA (1) process (i), which can be represented
as an infinite order AR process. Using the lag order p; selected by AIC, we approximate (u;;) by an AR(p;)
process as in (12). The approximated autoregression is then estimated by the Yule-Walker method.

12Maddala and Wu (1996) and Im, Pesaran and Shin (1997) also generate parameters for their simulation
models radomly from uniform distributions.

130ur bootstrap tests do not seem to depend on the the value of r, but the t-bar statistics does. Though
we do not report the details, we observe from a set of simulations that the t-bar tends to have higher rejection
probabilities when r is close to 0, and that it seems to have substantial size distortions even when ¥ is nearly
spherical with r = 0.99.
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modifications. More explicitly, the t-bar statistics is defined as

VN(ty = N SX, B(t)
VN var(n)

where ¢; is the t-statistics for testing a; =0 for the i-th sample ADF regression (8), and
ty = N7V t;. The values of the expectation and variance, E(t;) and var(t;), for each
individual ¢; depend on T and the lag order p;, and computed via simulations from inde-
pendent nomal samples. Table 2 in Im, Pesaran and Shin (1997) tabulates the values of
E(t;) and var(t;) for T= 5, 10,15, 20, 25, 30, 40, 50, 60,70, 100 and for p; =1,...,8.

The panels with the cross-sectional dimensions N= 5,20 and the time series dimensions
T = 50,100 are considered for the 1%, 5% and 10% size tests. Since we are using random
parameter values, we simulate 20 times and report the ranges of the finite sample perfor-
mances of the bootstrap tests. Each simulation run is carried out with 1,000 simulation
iterations, each of which uses bootstrap critical values computed from 500 bootstrap repeti-
tions. The simulation results for the ¢-bar statistics and our bootstrap tests Fi,., Fj5p., Kk,
K}t and t} . are reported in Tables A1-B2. Tables A1 and A2 reports, respectively, the
finite sample sizes and powers of the tests for Case A with AR errors, and Tables B1 and
B2 reports those for Case B with MA errors. For each statistics, we report the minimum,
mean, median and maximum of the rejection probabilities under the null and under the
alternative hypothesis.

As can be seen from Tables A1 and B1, the ¢t-bar test suffers from serious size distortions.
The direction of the size distortions is, however, not in one way. For the 1% tests, the ¢t-bar
statistics suffers from upward size distortions except for the MA case with N=>5, where the
t-bar is slightly downward biased. The degree of the upward distortions seems to be higher
for the AR case and increases as N gets large. For the 5% and 10% tests, the t-bar test
is mostly downward biased except for the 5% test with N=20, where the test is upward
biased.!* The downward distortion is more serious for the MA case with smaller N=5. On
the other hand, the finite sample sizes of the bootstrap tests are quite close to the nominal
test sizes for both AR and MA cases and for all N=15,20 and T=50,100.

The bootstrap tests are more powerful than the ¢-bar statistics for most cases with the
smaller N=5, as can be seen from Tables A2 and B2. Indeed, for the 5% and 10% tests all of
our bootstrap tests have higher rejection probabilities than the ¢-bar for both AR and MA
cases. For 1% tests, only the GLS based bootstrap tests Fy;, and K, perform better than
the t-bar. As the number of the cross-sectional units increases to N=20, the performance
of the t-bar statistics improves. With the smaller number of observations over time 7= 50,
it actually performs better than the bootstrap tests except the OLS based t-statistics t7,,.,
but the difference becomes negligible as T increases.

Among the bootstrap tests, the GLS based tests, F};,. and K, are more powerful than
the OLS based tests, Fj}, and K}, for the smaller N=25, but for the larger N=20, the
advantage from the GLS efficiency vanishes. This is perhaps due to the error involved in

t-bar =

4The downward size distortions of the ¢-bar statistics have been well noted in several simulation works.
Maddala and Wu (1996), for example, report that the ¢-bar statistics suffers from substantial downward size
distortions in the presence of cross-correlations among the cross-sectional units.
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estimating large dimensional covariance matrix. For t-type tests, the OLS based t-statistics
t% is indeed noticeably more powerful than its GLS couterpart ¢}, when the larger N=20
is used. They are also more powerful than the F-type tests and K-statistics in this case.
The advantage of the one-tail tests based on the homogeneous panels appears to be quite
important in finite samples.

The K-statistics was proposed as alternatives to the two-sided F-type tests to come up
with more powerful tests for the unit roots against the one-way alternative of the station-
arity. The simulation results in Tables A2 and B2, however, show that the improvement
the K-statistics make over the F-type tests are not noticeable. One possible reason is that
the finite sample distributions of the &g, and &g, upon which the modifications for the
K -statistics are made, are skew to the left so much that the modification does not have ac-
tual effect. Thus, one may correct for the biases in the distributions of dg, and &, before
applying the modifications in (14). This can be done by carrying out a nested bootstrap.
We do not pursue this in this paper due to the computation time, but will report in a future
work.

All bootstrap tests are more powerful for the case with the smaller N=>5 and the larger
T=100 than the cases with the larger N=20 and the smaller T=150. This is because our
bootstrap tests are T-asymptotic tests, which will work better for a large T. The t-bar test
is, however, noticeably more powerful for the cases with N=20 and 7= 50 than for the cases
with N=25 and 7= 100. This indicates that the t-bar test works much better for panels with
larger number of N, which is expected since the test is based on the average of individual
tests.

4. Conclusion

There has been much recent empirical and theoretical econometric work on models with
nonstationary panel data. In particular, much attention has been paid to the development
and implementation of the panel unit root tests which have been used frequently to test
for various covergence theories, such as growth covergence theories and purchasing power
parity hypothesis. A variety of tests have been proposed, including the tests proposed by
Levin and Lin (1993) and Im, Pesaran and Shin (1997) that appear to be most commonly
used. All the existing tests, however, assume the independence across cross-sectional units,
which is quite restrictive. Cross-sectional dependency seems indeed quite apparent for most
of interesting panel data.

In the paper, we investigate various unit root tests for panel models which explicitly
allow for the cross-correlation across cross-sectional units as well as heterogeneous serial
dependence. The limit theories for the panel unit root tests are derived by passing the
number of time series observations T to infinity with the number of cross-sectional units
N fixed. As expected the limit distributions of the tests are nonstandard and depend
heavily on the nuisance parameters, rendering the standard inferential procedure invalid.
To overcome the inferential difficulty of the panel unit root tests in the presence of cross-
sectional dependency, we propose to use the bootstrap method. Limit theories for the
bootstrap tests are developed, and in particular their asymptotic validity is established by
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proving the consistency of the boostrap tests. The simulations show that the bootstrap
panel unit root tests perform well in finite samples relative to the ¢-bar statistics by Im,

Pesaran and Shin (1997).
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5. Appendix: Mathematical Proofs

The following lemmas provide asymptotic results for the sample moments appearing in the
sample test statistics For, For, Kor, Kor, ter and tor defined in (10), (11), (15), (16) and
(18).

Lemma A1 Under Assumptions Al, A2 and A3, we have

1 Y . N
(a) ?Zy@t,le]ﬁ = szt 1€Jt+0p( ),foralli,j=1,...,N

t 1

1 1 « -
(b) -2 Z?JM 19501 = m(1)m;(1 T_ Z Wi qwj—1 +op(l), foralli,j=1,...,N
=1 t=1

© 7 Z = 1> el o)
t=1 t=1

Proof of Lemma Al

H»—l

Part (a) The stated results follow immediately if we apply the results in Lemma A1l (a)
of Chang and Park (1999) to each (¢, ) pair, for i,5 =1,...,N

Part (b) The stated result follows directly from Phillips and Solo (1992).
Part (c) Let

Then for each (i, j)-element of @, the following holds
1 o 1
Qri; = T 265382 -7 Z5it5jt

— J
— E 52t ]t+ § 5zt 5315

T
= op(p;°) +op(p;”°)
for all 4,7 = 1,..., N, due to Lemma Al (c) in Chang and Park (1999). Now the stated

result is immediate.

Lemma A2 Under Assumptions Al, A2 and A3, we have

(@ (% fofxff’)

=0p(1), forall p;andi=1,...,N

Vi1 (sz/ ), foralli,j=1,...,N
T
fo;gfj = 0, (T'/? 1/2)+0p(Tp/ %), foralli,j=1,...,N.
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Proof of Lemma A2 The stated result in Part (a) follows directly from the application
of the result in Lemma A2 (a) for each i« = 1,..., N, and those in Parts (b) and (c) are
easily obtained using the results in Lemma A2 (b) and (c) of Chang and Park (1999) for
each (i, 7) pair for ¢,j = 1,..., N, with some obvious modification with respect to the orders
p;’s of the AR approximations involved.

Proof of Theorem 2.1

Part (a) We begin by writing out explicitly the component sample moments appearing
in Agr and By defined below (11).

Y 0 Gl .. NI, Yo 0
YE o)y, = _ S
0 vy /) \G1I o I, 0 Yo
T T
gt Zy%t—l oy Zyl,t—lyN,t—l
t=1 t=1
T T
Nt ZyN,tflyl,tfl e g Zy?v,t_l
t=1 t=1
and
X 0 Gl o FWNIN\ [yen 0
XS eI)Y, = . : : :
0 XN ) N\, - W 0 Yon
T T
Ty i TN aliyn i
t=1 t=1
= (28)
T T
G RNy o Y R ynaa
t=1 t=1
where 6% denotes (i, j)-element of the inverse covariance matrix estimate 1. Similarly,
we have
T T
Gy alie e G Y alieRy
t=1 t=1

Xyla(iil ®Ir)ep =



j=1 t=1
= : (29)
N T
~Nj N
> 5" e
j=1 t=1
T T
~11 ~1
o Zyl,t—ﬁ% + - +0 NZyl,t—ﬁ%
=1 t=1
V(S ' eI = -
2 ( ® Ir)ep = :
T T
~N1 ~
G Y ywarel £ H Y ywaael
t=1 t=1

N T
~1j pj
> yiasy

j=1 =1

gl

N T
=1 t=

yN,tfléj;'g
j 1

J

We now examine the stochastic orders of the components included in Ag, and Bgy. Let
A(+) denote eigenvalues of a matrix. We have

Amin(E71 @ I) XX, < X (571 @ Ir) X,

Notice that )\min(i_l ®I;) = /\min(fl_l) and /\min(i_l) = I/Amax(fl). Then we have

~ -1
(X]g(z 1T® IT)Xp> < (D) (X;;Xp

>_ = Op(1) (30)

since /\max(fl) —p Amax(X) < 00, and

T —1
(G :
! - t=1
<ﬁ> _ ) _o,1) (1)
T ) T -1
0 (1 chimfz’)
Tt:l

due to Lemma A2 (a). Moreover it follows from Lemma A2 (b) and (28) that

N~

Xp(5t @ Ir)Ye = Op(Tp'?) (32)

where p = [0axX pi, and from Lemma A2 (c) and (29) that
<i<N
X]/o(i_l ® IT)5p = Op(Tl/Qpl/Q) + Op(Tﬁl/QB_S) (33)
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where p = 1mm pi, as defined earlier. Notice that p = p = O(T1/2) as T — oo under

Assumption 3.
It follows from (30), (32) and (33) that

~ ~ -1 ~
Y5 @ I,)X, (X];(Z_l ® IT)Xp) X\(E7 @ In)e,

IN

‘Yez ®ITX)

(X’ E'® )X, H )X’ (S ®IT)sp‘
= op(Tpp™°) + Op(T"/p)
which implies 5
Aor _Y/(X'®1Ir)
T T
due to Lemma Al (a), where

2 1 0p(1) = Qugy + 0p(1) (34)

N 1 T
> atm(1 —Zwl,t—1€jt
T :
Qacr = : + op(1)
N
DAL Zwm 165t
Moreover, we have from (30) and (32) that

Y{(E e L)X, (X5 @ )X )71X’(§~J’1 © Ip)Y;
)4 T)p P T)<\p T)I(

< ‘Ye/(iil‘X)IT)
= Op(Tﬁ)

(E e L)X H)X’E ® L)Y

which, together with Lemma A1l (b) and (27), gives
Bear Y}g(E ® Ir)Y,

T2 T2 + OP<1) = QBGT + 010(1) (35>
where
1 < J
5117r1(1)2ﬁ Zw%,t—l c FT ()TN (1) T2 Zw1 t—1Wn t—1
t=1 t=1
QBor = :
1 & 1 &
a-Nlﬂ-N(]-)ﬂ-l(l)F > wypawigr e 5NN7TN(1)QE Y whia

t=1 t=1

Using the asymptotic results in (34) and (35, we write
AGT ! BGT -1 AGT —1
For= (F) (7)) (5F) = Qaer @ Quor +ou()
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Then the limit distribution of Fg, follows immediately from the invariance principle given
in (4).

Part (b) We have from Lemma A2 (b) and (c) that

T
Z tylt 1 0
t=1
Xy, = = Op(1Tp"?) (36)
T
0 Zxﬁz YNt,t—1
t=1
T
> alieh
t=1
Xlep = : = Op(TY?5Y?) + 0, (TP ?p*) (37)
T
SRy ey,
t=1

These together with (31) give
YiX, () T X | < VX |[(X0X0) 7| [Xpe| = o0p(Tmp) + Op(T/2p)

which in turn gives
Aor  Y/ep

o1 Y% 1 0,(1) = Quagy +0p(1) (39)
due to Lemma Al (a), where
g i
T 2 Wi,t—1€1¢
Qaor =
1 T
1)? ZwN,t—15Nt
t=1
We have from (30) that
leo(i ®Ir)Xp < )‘max(i) (X;Xp) = Op(T) (39)

We also have from Lemma A2 (b) that

T T
011 lelj%yl,tfl coe 01N leﬁyw,tq
t=1 t=1
XS @ 1)V - ; ; ; —0,(Tp?)  (40)
T T
Gn1 Y W yre-1 o Tnn Y A yni-1
t=1 t=1
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where &;; denotes (4, j)-element of the covariance matrix estimate 3. Then we have
YIX, (X)X (5 @ L) Ye| = O, (Th)

and
‘Yé (X, Xp) X (5@ IT)Xp(XylaXp)inglnYE‘ = Op(TD)

which then give 5
Meor  Y[E® L)Y

ol T2 +0p(1) = Qnrpor +0p(1) (41)
due to Lemma Al (b), where
1 1 &
5117T1(1)2ﬁ Zwit—l T 5-1N7T1(1)7TN(1)F Zwl,t—lwzv,tq
= t=1
QMFOT =
1 T
Ty (1)m (1) =5 > wyiwip—g - onnTn (1 —2 Z 1

We now have from the results in (38) and (41) that

Aor\' [ Meor\ t (A _
For= (%) (F5%) (57) = Qaor @iy Qe + sl

from which the stated result follows immediately.

Proof of Corollary 2.1
Part(a) It follows from (34) and (35) that

. Bar\ "t (A _
Ter = <%> ( JG“T> - QBéTQAGT +op(1)

which implies

1 A _ Acr Qgr
_ <AGT #1{Thgr < 0}>

= (Qaer # 1{QpL, Quar <0}) +0p(1)

Due to the above result and (35), we may write the K¢, statistics given in (15) as

(%(AGT * Yéer < 0})>/ <%>_1 (%(AGT * Haer < 0})>

= (Quaor #1{Q5L, Qa0 <0}) @i, (Qaor #1{Q5L, Qagy <0}) +0p(1)

Ker
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Now the stated result follows immediately from (4).

Part (b) From (31) and (36), we have
Vi, (X,X,) XY = O,(Th)

which together with Lemma A1 (b) gives

B Y)Y,
7:32T = 1{2 + Op(l) = QBOT + Op(l)
where
1 & 1 &
(1) = Y wi, e m (D)D) > wie 1Wae1
== ™=
QBOT = :
1 & 5 1 & o
Tn(1)mi(1) = wa,t—lwl,t—l (1) —QZth,1
™= == v

It follows from (38) and the above result that

. Bor\ 7' (A _
Taor = (ﬁ) <%> = QB Qaor +0p(1)

and

%(AOT * Haor < 0}) = (QAOT x1 {QgéTQAOT < 0}) + op(1)

From this and the result in (41), we may express the statistics Kor given in (16) as

<% (AOT & Haor < 0}>>' (M;;T>1 <% (AOT x Haor < 0}))
= (Qaor 1 QEéTQAOT <0 /QJ;IIFOT Qaor *1 QEéTQAOT <0p)+ Op(l)
( {

which is required for the stated result.

KOT

Proof of Theorem 2.2 The limit theories for the GLS and OLS based t-statistics tgr
and tor defined in (18) can be derived in the similar manner as we did for the F-type tests
Fer and Fyp in the proof of Theorem 2.1. We just have to take into account that the lagged
level variables come in a (NT x 1)-vector yp instead of the (NT x N)-matrix Y;.

Part (a) Since

j=1 =1
X, 0Ly = : = Oy (1p"?)
N ) T
Dy e
7j=1 t=1



due to Lemma A2 (b), it follows from (30) and (33) that

’ -1 r -1 -1 a1 _ s 1/2-
(ST @ I)X, (XS @ In)X,) X7 @ Ir)ey| = 0p(Thp™) + Op(T2p)

and
= Op (Tﬁ)

Next, we write out the following sample moments appearing in agr and bgr, defined below

(18):

~ ~ -1 ~
i(E @ INX, (XS T 0 X,) X5 e Iy

N N T

(ST @Iy = > 5> Y1y
i=1j=1  t=1
N T

N
(T @I = ZZ(}iiji,tfﬁ?g

i=1j=1  t=1

Then from the above results and Lemma A1 (a) and (b), it follows that

agr yé(f]’1®IT)€p o ~ij L - Pj
tor _ B o 0) = S S e S i b op1) = Quar +op(1)
i=1 j=1 t=1
b 3/ iilé@]i@% N N i1 T
% = E(T—QT)—’—OP(l) = Zzﬁjﬁ D Wit 1Yie 1+ 0p(1) = Qugp +0p(1)
i=1j=1 t—1
where
Qucr = Zzﬁwm(l)izwi,pléﬁ
=1 j=1 t=1
N N B 1 T
Qbgr > 79mi(1)m;(1) = D wipawje

©
Il
—
.
Il
—

t=1
We may now write ¢, defined in (18) as follows

agr (ber

~1/2 i
tor =5 (F) = Quer il + 1)

and the limit theory for ts, is directly obtained from applying the invariance principle in
(4) to Qagy and Qpyy-

Part (b) Again, we first analyze the components ao, and Mo, defined below (18), that
constitute the OLS based t-statistics ¢, given in (18). Since

T

Z %‘]f%yl,tq

t=1
Xpye = : = 0y(1p'?)



N T
Z 132 yg,t 1

j=1 =1
XSy = = Op(1p"?)

N T
> Gx Z WL Y51
j=1 =1

by Lemma A2 (b), we have from (39) that

o~

YiX,(XX,) X = op(Thp )+ Ou(TV )
]YE (X)Xp)™ 1X{,(i®IT)Ye) = O,(Tp)
ViX, (X X,) X (8 @ L) X, (X, Xp) IXpYE| = O,(Th)

We now deduce from Lemma Al (a) and (b) that

a e N T v
zor _ Yecp + Op(l) = Z — Zyz',tfﬁf{ + Op(l) = QGOT + Op(l)
T T Pl A
M yo(E ® L)y s L
7 = A 2 W (1) = > D Giiz > Yia-1ia-1+ 0p(1) = Qaror +0p(1)
T T i=1j=1 "=
where

N 1 T
Qaor = Zﬁi(l)f Zwi,tflait
CQJV[tOT = Z Z (TZJTFZ 7T] TQ sz t—1Wj5¢—1

i=1j5=1

Then we have

a M, —1/2 1/2
tor =" (55) T = QuorQatl2 + 0ul)

from which the stated result follows immediately.
Proofs for the Bootstrap Asymptotics

Proof of Lemma 3.1 The stated results in parts (a)—(c) follow from Lemma 1 of Chang
and Park (199).

Proof of Lemma 3.2 See Proof of Lemma 2 in Chang and Park (1999).

Proof of Theorem 3.1
Part (a) From

(X;’(f];@ IT)X;S) B < A (D) (X;IX;) . 05(1) (42)




and the results in Lemma 2 (a)—(c), we have

~ ~ -1 ~
‘YZ"(El @ I)Xy (X E 0 L)Xy) XS e )"

= Oy(T%p)

< )y;'(i—l ® 1) X}

(& e IT)X;)_IH X3S @ L)t

This together with Lemma 1(b) implies that

A

in P or a.s. under Assumption (W)

£ =Y (ST @ L) +op(1) = Qay,, + 0p(1) (43)

1 - * %
1)~ Zwl,t—lejt
Ti5

N ) 1 T
Z M 7N (1) T Z w:r,tflsjt
j=1 t=1

Similarly, we have from (42), Lemma 2 (a) and (b) that

'Y*I(il ® I )X* (X*I(ifl ® I )X*)il X*/(ifl ® I )Y*
¢ T)“p P T)p P T) ¢

IN

= O,(Tp)

\y;’(i*l © 1) X,

and this along with Lemma 1 (a) gives

*
BGT
2

(e IT)X;)_IH XyE e L)y

=Y (S @I +05(1) = Qs + 05(1) (44)

in P or a.s. under Assumption (W) or (S), where

5117, 1 ¢
W72 2 wii-

@B, =

N (DA (1)

1'T

* *
T2 Z Wy t—1W1t—1
=1

1N~ ~ 1 &
UlNWI(l)WN(l)ﬁ Zwitflwfv,tfl
=1

"’NN"’

5 1
7TN _2

s

in P or a.s. under Assumption (W) or (S), analogously as before.
We now write the bootstrapped statistic £y, as

Fc*:T:(

Abr
T

) (

Bér
T2

)

Abr
T
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due to (43) and (44). It is shown in Park (1999) that
(1) —a.s mi(1) (45)

and, using the multivariate bootstrap invariance principle developed in Chang (2000), we
have

1 ! 1 ¢ !
T > wi el —ar / BdB' as. and 72 > wiwi ) = / BB’ as. (46)
t=1 0 t=1 0

under Assumption (W). Now, the limiting distribution of the F},. follows immediately.
Part (b) It follows from Parts (b) and (c) of Lemma 2 that
XJ¥7 = O3(TptY), Xyt = O3 (a7)

which together with (42) gives

Vi x| < e | () || = oyt )
Then we have from Lemma 1(a) that
Aoy _ Y "
Lor X 4 or1) = Qg +03(1) (18)
where
~ 1 = * *
771(1)5 Zwl,t—151t
t=1
@apy = :
~ 1 d * *
WN(l)? ZwN,tfleNt
t=1
Next, we deduce from (42) and Lemma 2(b) that
X ERIL)X; =0T, X)(EeL)Y; =05Tp?) (49)
and this together with (47) gives
VX (X)X (S @ 1Y/ | = 05(Th)
and
Y*/X* X*/X* 71X*I i I)X* X*IX* 71X*ly* = OF —
J4 p( P p) p( ®T) p( P p) p 1L | — p(Tp)
Then we have .
M, YYEIL)YF .
o= (1) = Quig, + (1) (50)
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due to Lemma 1(b), where

1T*2 o 1T

511%1(1)2? Zw17t71 e UlNWI(l)ﬁN(l)ﬁ Zwit—lwfv,t—l
t=1 =1
QJW;‘OT =
Gy (D (D gg > whaawiy s o Gwin (P Z Wi
=1

Finally, we have from the results in (49) and (50)

. A* " M* -1 A* .
mo= () () () = nit @, + it
and the stated result now follows immediately from (45) and (46).

Proof of Corollary 3.1 The proof is analogous to the proof of Corollary 2.1.
Part(a) It follows from (43) and (44) that

TaY, = <BET> (AZ‘T> Qg Qus, +03(1)

giving

(AZT s 1{a}, < O}) = <A; *#1{Ta;, < O}>
= (Quy, #1{Q5. Quz, <0}) +05(1)
From the above result and (44), we may write the K, statistics given in (24) as
(%(AZT #1{an, < o})>' <BT?;T>—1 (%(AZT #1{ar, < 0})>
= (Quz, #1{Q Qs <0)) @ut (Quey #1{@Q5E Quy, <0}) +03(1)

Now the stated result follows immediately from (45) and (46).
Part (b) It follows from (42) and (47) that

*
KGT

‘}/E*IX; (X;/X;)le;I}/é*

e

= O,(Tp)
which together with Lemma 3.1 (b) gives

B?)T _ Yé*l E*
T2 T2
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where

1 & . . 1 &
12 > wi e (DN (1) Yowh qwhe
T t=1 T t=1
Qpy, = : :
N - 1 T % * ~ 2 1 - *2
WN(l)Wl(l)ﬁ wa,t—lwl,t—l in(1) T2 Wy t—1
t=1 t=1

It follows from (48) and the above result that

. B* — A* .
rag = (%) (%) = @l @, + )

and

1 * Ak - *

= (42, < 1{as, <0}) = (Qus, # 1{Q5: Qas, <0}) +03(1)
From this and the result in (50), we may express the test K}, defined in (24) as

Koo = (A5t <0)) (Mgr) " (K45 01005, <))
= (@ 1 {@8}, Qupp <0}) Qi (Qui #1{Q1, Qe <0) + 051

which together with (45) and (46) gives the stated result.

Proof of Theorem 3.2 The limit distributions of the bootstrap GLS and OLS based
t-statistics, t},,. and t},., defined in (26) are derived analogously as we did for the sample
t-statistics tg, and top in the proof of Theorem 2.2.

Part (a) It follows from Parts (b) and (c) of Lemma 2 that
Xy (ST @ In)yp = 0p(1p?), XJ/(871 @ In)e* = O (Tp"/?)

which along with (42) gives

= ~ -1 .
yZ’(E_l ® IT)X; (X;’(E—l ® IT)X;)k) X;/(E_l ® IT)é;‘* _ O;(Tl/Qﬁ)

and

~ ~ -1 ~
v C e mX; (X C e n)Xy) XS e Iy

= O,(Tp)
Then we have due to the results in Parts (a) and (b) of Lemma 1 that

aty oyl (ET @ I)e

o= T+ op(1) = Qu, + (1)
b* y*l(i—l ® I )y*
o= o) = Qg+ o)
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where

e 1 X
Qe = 2 PR Y wie s
i=1j=1 t=1
N N B 1 T
Qo = D2 FVRF ()7 Y wie1w)e s
i=1j=1 t=1

: *
We may now write ¢, as

*
bGT

* b* —1/2 B
t*GT: (IGT ( GT) — QGET 1/2+O;(1)
and the limit theory for ¢, is directly obtained from (45) and (46).
Part (b) Since,
Xy = 0p(1p'?), XJ/(E @Iy = Oy(Tp'/?)

by Lemma A2 (b), we have from (49) that

)n*IX;(X;IX;)ilX;IE* O;(Tl/Qp)
YOG G Y| = o))
X5 X)X S e X (GG YE| = 0y(a)

We now deduce from Lemma 1 that

a* y*/g* . N
;T = eT +0p(1) = Qaz,,. +0p(1)
= St = Qg + ()

where
N 1 T
Qap = Zﬁi(l)?zw;tfle;kt
i=1 t=1
N N 1 T
D 9D ML A TR SR
i=1j=1 t=1

Then we have

aby (Mp,\ Y? 12
o= () = Qua@uil + 0

from which the stated result follows immediately from (45) and (46).
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Table Al: Finite Sample Sizes for AR Errors

1% tests 5% tests 10%  tests
N T tests min mean med max min  mean med max min mean med max
5 50 t-bar 0.011 0.016 0.015 0.023 0.022 0.030 0.030 0.039 0.032 0.040 0.040 0.048
F&p  0.001 0.009 0.009 0.014 0.035 0.047 0.048 0.061 0.084 0.098 0.098 0.114
F5p 0.007 0.012 0.012 0.016 0.038 0.053 0.052 0.064 0.080 0.107 0.111 0.121
K&p  0.001 0.009 0.009 0.014 0.034 0.047 0.047 0.059 0.084 0.098 0.097 0.114
K5 0.007 0.011 0.012 0.016 0.038 0.052 0.052 0.065 0.079 0.107 0.111 0.122
tor 0.005 0.009 0.009 0.015 0.035 0.049 0.049 0.067 0.085 0.103 0.102 0.120
tor 0.006 0.010 0.010 0.015 0.044 0.052 0.050 0.061 0.075 0.105 0.103 0.121
5 100 t¢-bar 0.009 0.013 0.014 0.016 0.018 0.025 0.026 0.028 0.023 0.034 0.034 0.041
F&p  0.0056 0.011  0.010 0.017 0.039 0.051 0.049 0.068 0.088 0.103 0.102 0.125
F5r 0006 0.011 0.011 0.018 0.041 0.052 0.051 0.062 0.085 0.103 0.105 0.119
K¢pr 0.005 0.011 0.011 0.018 0.039 0.051 0.049 0.068 0.088 0.103 0.102 0.126
Kopr  0.006 0.011 0.012 0.018 0.040 0.052 0.051 0.063 0.086 0.103 0.104 0.122
tor 0.004 0.009 0.008 0.021 0.038 0.049 0.050 0.064 0.082 0.106 0.107 0.126
tor 0.004 0.008 0.007 0.011 0.042 0.050 0.048 0.061 0.087 0.102 0.101 0.125
20 50 t-bar 0.032 0.050 0.049 0.072 0.043 0.063 0.063 0.081 0.054 0.072 0.074 0.089
F&p  0.004 0.006 0.005 0.009 0.025 0.036 0.037 0.043 0.068 0.083 0.085 0.096
F5r 0.005 0.011 0.010 0.017 0.041 0.055 0.055 0.068 0.090 0.112 0.116 0.125
K&p  0.003  0.006 0.005 0.009 0.025 0.037 0.037 0.042 0.068 0.083 0.085 0.096
K5 0.006 0.010 0.011 0.016 0.036 0.054 0.054 0.066 0.092 0.111 0.114 0.123
tor 0.003 0.006 0.006 0.010 0.024 0.040 0.040 0.050 0.073 0.090 0.092 0.103
tor 0.005 0.008 0.007 0.013 0.032 0.044 0.045 0.058 0.079 0.094 0.098 0.105
20 100 t-bar 0.029 0.039 0.039 0.049 0.040 0.052 0.052 0.066 0.045 0.060 0.061 0.073
F&pr 0.004  0.009 0.009 0.016 0.039 0.045 0.046 0.054 0.077 0.095 0.095 0.110
F5p 0.007 0.011 0.010 0.015 0.036 0.051 0.052 0.064 0.097 0.109 0.109 0.124
K¢, 0.004 0.009 0.009 0.016 0.036 0.045 0.045 0.053 0.074 0.094 0.095 0.111
K5p  0.006 0.011 0.010 0.015 0.039 0.051 0.052 0.062 0.094 0.107 0.107 0.123
tor 0.005 0.008 0.008 0.015 0.036 0.046 0.047 0.061 0.084 0.095 0.094 0.108
tor 0.005 0.009 0.009 0.017 0.035 0.046 0.045 0.063 0.073 0.095 0.095 0.126
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Table A2: Finite Sample Powers for AR Errors
1% tests 5% tests 10%  tests
N T tests min mean med max min mean med max min mean med max
5 50 t-bar 0.069 0.166 0.155 0.271 0.113 0.243 0.231 0.373 0.148 0.290 0.279 0.439
F&p 0.038  0.120 0.121  0.199 0.178 0.347 0.343 0.492 0.302 0.509 0.506 0.660
F5r 0037 0.081 0.075 0.128 0.140 0.258 0.247 0.354 0.249 0.407 0.399 0.532
K¢ 0.039 0.120 0.119 0.200 0.178 0.347 0.346 0.492 0.302 0.510 0.509 0.658
Koy 0.038 0.082 0.076 0.128 0.141 0.260 0.247 0.356 0.252 0.409 0.401 0.532
tor 0.033 0.104 0.100 0.257 0.138 0.307 0.304 0.551 0.227 0.456 0.453 0.721
tor 0.027  0.097  0.088 0.199 0.129 0.309 0.293 0.476 0.250 0.467 0.449 0.643
5 100 t¢-bar 0.208 0.598 0.631 0.902 0.302 0.691 0.730 0.948 0.361 0.738 0.785 0.965
F&p 0228 0.646 0.674 0.912 0.515 0.864 0.911 0.988 0.692 0.930 0.964 0.998
F5r 0117 0412 0.406 0.670 0.342 0.700 0.720 0.906 0.497 0.820 0.854 0.965
K&p 0228 0.647  0.675 0.910 0.519 0.865 0.913 0.987 0.695 0.930 0.964 0.998
Kop 0118 0414 0.407 0.672 0.342 0.702 0.720 0.909 0.500 0.822 0.855 0.967
ter 0.079 0.411 0.398 0.893 0.240 0.649 0.693 0.984 0.356 0.752 0.813 0.996
tor 0.069 0.403 0.376 0.746 0.265 0.690 0.712 0.941 0.430 0.807 0.831 0.977
20 50 t-bar 0.766 0.867 0.863 0.961 0.805 0.895 0.891 0.976 0.828 0.910 0.905 0.982
F&pr  0.268  0.363  0.347  0.527 0.555 0.656 0.644 0.811 0.706 0.793 0.790 0.908
F5r 0286 0.381 0.356 0.551 0.561 0.676 0.658 0.833 0.738 0.811 0.811 0.914
K& 0270 0.365 0.348 0.532 0.560 0.659 0.646 0.811 0.706 0.794 0.792 0.907
Koy 0291 0.388 0.364  0.562 0.571 0.684 0.664 0.839 0.743 0.818 0.819 0.919
tor 0.133 0.286 0.301 0.472 0.354 0.557 0.577 0.749 0.495 0.699 0.719 0.855
tor 0363 0.513  0.506 0.698 0.665 0.801 0.820 0.919 0.806 0.898 0.919 0.969
20 100 t¢-bar 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000
F&p 0978  0.994 0.997 1.000 0.996 0.999 1.000 1.000 0.999 1.000 1.000 1.000
F5r 0959 0.985 0.986 1.000 0.993 0.999 0.999 1.000 0.998 1.000 1.000 1.000
K&p 0978  0.994  0.997  1.000 0.996 0.999 1.000 1.000 0.999 1.000 1.000 1.000
Kop 0961  0.986 0.988 1.000 0.992 0.999 0.999 1.000 0.998 1.000 1.000 1.000
ter 0539 0.842 0.880 0.988 0.769 0.938 0.964 0.999 0.849 0.963 0.984 1.000
tor 0.828 0.943 0.964 0.999 0.946 0.987 0.994 1.000 0976 0.994 0.998 1.000
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Table B1: Finite Sample Sizes for M A Errors

1% tests 5% tests 10%  tests
N T tests min mean med max min mean med max min mean med max
5 50 t-bar 0.002 0.006 0.006 0.008 0.005 0.012 0.013 0.017 0.010 0.018 0.018 0.026
F&p 0.003 0.007 0.007 0.013 0.032 0.043 0.042 0.054 0.080 0.094 0.094 0.109
F5p 0.002 0.006 0.006 0.012 0.030 0.040 0.040 0.051 0.076 0.094 0.095 0.107
K¢ 0.003 0.007 0.007 0.014 0.035 0.044 0.042 0.055 0.080 0.095 0.096 0.113
K5pr  0.003 0.006 0.006 0.011 0.031 0.041 0.039 0.052 0.077 0.094 0.094 0.108
tor 0.005 0.009 0.009 0.014 0.040 0.053 0.053 0.063 0.089 0.109 0.107 0.127
tor 0.004 0.008 0.008 0.013 0.036 0.050 0.051 0.066 0.092 0.106 0.108 0.120
5 100 t¢-bar 0.003 0.007 0.006 0.011 0.009 0.015 0.014 0.021 0.013 0.020 0.019 0.032
F&p 0.003 0.009 0.009 0.017 0.043 0.052 0.051 0.063 0.081 0.105 0.105 0.124
F5r 0.004 0.009 0.008 0.018 0.036 0.044 0.047 0.053 0.078 0.098 0.094 0.117
K&p  0.003  0.009 0.009 0.017 0.044 0.052 0.052 0.064 0.080 0.105 0.106 0.121
K5p  0.005 0.009 0.008 0.018 0.037 0.045 0.046 0.054 0.078 0.098 0.095 0.117
tor 0.002 0.009 0.009 0.013 0.035 0.048 0.050 0.059 0.086 0.103 0.102 0.115
tor 0.006 0.009 0.009 0.015 0.038 0.048 0.045 0.064 0.074 0.102 0.102 0.118
20 50 t-bar 0.013 0.023 0.024 0.031 0.023 0.032 0.032 0.040 0.031 0.038 0.037 0.047
F&pr 0.003 0.008 0.007 0.014 0.024 0.041 0.041 0.056 0.070 0.090 0.089 0.109
F5p 0.003 0.008 0.009 0.013 0.033 0.046 0.047 0.055 0.091 0.103 0.103 0.113
K¢ 0.004 0.008 0.007 0.014 0.026 0.042 0.042 0.058 0.067 0.090 0.089 0.110
K5p  0.003 0.009 0.009 0.015 0.032 0.047 0.047 0.054 0.092 0.103 0.102 0.115
tor 0.003 0.008 0.008 0.013 0.037 0.050 0.051 0.060 0.094 0.114 0.115 0.133
tor 0.005 0.009 0.009 0.013 0.044 0.055 0.056 0.074 0.101 0.116 0.114 0.139
20 100 t¢-bar 0.018 0.026 0.026 0.038 0.031 0.035 0.035 0.048 0.036 0.042 0.042 0.052
F&p  0.0056 0.010 0.009 0.013 0.040 0.051 0.050 0.064 0.094 0.104 0.103 0.113
F5r 0.005 0.009 0.009 0.013 0.039 0.048 0.049 0.056 0.095 0.104 0.105 0.118
K&p  0.006 0.010 0.010 0.014 0.041 0.051 0.050 0.063 0.096 0.104 0.105 0.112
Kop  0.005 0.008 0.009 0.013 0.039 0.049 0.049 0.057 0.095 0.105 0.106 0.119
tor 0.005 0.010 0.010 0.018 0.049 0.057 0.056 0.070 0.099 0.115 0.117 0.132
tor 0.004 0.011 0.010 0.018 0.042 0.057 0.057 0.068 0.092 0.117 0.118 0.138
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Table B2: Finite Sample Powers for MA Errors

1% tests 5% tests 10%  tests
N T tests min mean med max min mean med max min mean med max
5 50 t-bar 0.030 0.075 0.063 0.152 0.062 0.134 0.117 0.258 0.084 0.172 0.153 0.318
F&p 0.036  0.112  0.100 0.210 0.159 0.334 0.324 0.509 0.309 0.496 0.502 0.673
F5pr 0029 0.062 0.052 0.129 0.126 0.238 0.230 0.374 0.254 0.396 0.395 0.565
K¢ 0.036 0.113 0.100 0.210 0.158 0.336 0.323 0.513 0.310 0.498 0.504 0.673
Ko 0.029 0.063 0.052 0.129 0.128 0.240 0.232 0.375 0.255 0.399 0.400 0.567
tor 0.042 0.091 0.070 0.216 0.157 0.287 0.255 0.559 0.268 0.432 0.400 0.701
tor 0.040 0.089 0.073 0.190 0.189 0.303 0.268 0.499 0.328 0.468 0.435 0.671
5 100 t¢-bar 0.120 0.406 0.338 0.763 0.212 0.516 0.456 0.853 0.268 0.579 0.533 0.896
F&p 0186 0.551 0.532 0.836 0.495 0.800 0.820 0.969 0.674 0.894 0909 0.993
F5r 0.081 0.333 0.281 0.649 0.280 0.628 0.601 0.907 0.451 0.769 0.774 0.956
K&p 0186 0.552  0.534  0.837 0.499 0.802 0.821 0.970 0.673 0.895 0.909 0.993
Kop 0.084 0335 0.283 0.650 0.283 0.630 0.602 0.908 0.454 0.771 0.776 0.957
tor 0.088 0.300 0.222 0.794 0.235 0.546 0.493 0.958 0.334 0.667 0.637 0.983
tor 0.119 0.321 0.224 0.723 0.359 0.607 0.532 0.939 0.538 0.742 0.681 0.978
20 50 t-bar 0.578 0.710 0.685 0.862 0.648 0.761 0.744 0.893 0.683 0.787 0.772 0.906
F&pr 0258 0.348 0.316  0.497 0.540 0.639 0.615 0.776 0.704 0.780 0.754 0.892
F5r 0230 0312 0.283 0.478 0.525 0.617 0.597 0.751 0.699 0.775 0.754 0.871
K& 0267 0354 0.322  0.504 0.541 0.645 0.621 0.781 0.711 0.785 0.758 0.896
Kor 0234 0323 0.294  0.491 0.545 0.630 0.611 0.770 0.709 0.786 0.764 0.884
tor 0.148 0.284 0.276 0.511 0.383 0.555 0.555 0.792 0.542 0.692 0.698 0.901
tor 0.378 0.516 0.518 0.665 0.712 0.809 0.825 0.902 0.840 0.905 0911 0.963
20 100 t-bar 0.980 0.998 0.999 1.000 0.989 0.999 1.000 1.000 0.991 0.999 1.000 1.000
F&p 0947 0.988 0.994 1.000 0.992 0.999 1.000 1.000 0.998 1.000 1.000 1.000
F5r 0835 0.947 0.962 0.991 0.964 0.992 0.995 1.000 0.983 0.997 0.999 1.000
K&pr 0949 0.988 0.994 1.000 0.992 0.999 1.000 1.000 0.998 1.000 1.000 1.000
Kop 0840 0.950 0.962 0.992 0.966 0.992 0.996 1.000 0.984 0.998 0.999 1.000
tor 0.556 0.786 0.765 0.983 0.749 0.913 0.915 0.998 0.835 0.950 0.954 1.000
tor 0.779 0.903 0.915 0.985 0.913 0.974 0.983 1.000 0.965 0.989 0.994 1.000
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