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Abstract

We consider a general mechanism design setting where each agent
can acquire (covert) information before participating in the mechanism.
The central question is whether a mechanism exists which provides the
efficient incentives for information acquisition ex-ante and implements
the efficient allocation conditional on the private information ex-post.

It is shown that in every private value environment the Vickrey-
Groves-Clark mechanism guarantees both ex-ante as well as ex-post
efficiency. In contrast, with common values, ex-ante and ex-post effi-
clency cannot be reconciled in general. Sufficient conditions in terms
of sub- and supermodularity are provided when (all) ex-post efficient

mechanisms lead to private under- or over-acquisition of information.
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1 Introduction

1.1 Motivation

In most of the literature on mechanism design, the model assumes that a
number of economic agents possess a piece of information that is relevant for
the efficient allocation of resources. The task of the mechanism designer is to
find a game form that induces the agents to reveal their private information.
An efficient mechanism is one where the final allocation is efficient given all
the private information available in the economy.

In this paper, we take this analysis one step further. We assume that
before participating in the mechanism each agent can covertly obtain addi-
tional private information at a cost. After the information has been acquired,
the mechanism is executed. Hence the primitive notion in our model is an
information gathering technology rather than a fixed informational type for
each player. It is clear that the properties of the mechanism to be played in
the second stage affect the players’ incentives to acquire information in the
ex ante stage.

The main results in this paper characterize information acquisition in ex
post efficient mechanisms. Efficiency of a mechanism in this paper is under-
stood in the same sense as in the original contributions by Vickrey, Clarke
and Groves. In particular, we do not impose balanced budget or individual
rationality constraints on the mechanism designer. In the independent pri-
vate values case, we show that the Vickrey-Clarke-Groves (henceforth VCG)
mechanism induces efficient information acquisition at the ex ante stage.

The common values case is much less straightforward to analyze. In light
of the recent results by Dasgupta & Maskin (1998) and Jehiel & Moldovanu
(1998), it is in general impossible to find mechanisms that would result in ex
post efficient allocation. Adding an ex ante stage of information acquisition
does not alleviate this problem. The two basic requirements for incentive
compatibility of the efficient allocation rule are that the signals to the agents
be single dimensional and that the allocation rule be monotonic in the sig-
nals. Even when these two conditions are met, we show that the efficient

mechanisms do not result in ex ante efficient information acquisition. We



use ex post equilibrium as our solution concept. An attractive feature of this
concept for problems with endogenously determined information is that the
mechanisms do not depend on the distributions of the signals. By the rev-
enue equivalence theorem, any allocation rule that can be supported in an
ex post equilibrium results in the same expected payoffs to all of the players
as the VCG mechanism. But the defining characteristic of the VCG mecha-
nism is that an agent’s payoff changes only when the allocation changes due
to his announcement of the signal. As a result, the payoffs cannot reflect
the direct informational effects on other agents, and hence the private and
social incentives will differ in general.

We also investigate the direction in which the incentives to acquire in-
formation are distorted. We restrict our attention to the case where the
efficient allocation rule can be implemented in an ex post equilibrium and
derive new necessary and sufficient conditions for the ex post implementabil-
ity. It turns out that under our sufficient conditions for implementability,
the information acquisition problem also satisfies the conditions for the ap-
propriate multi-agent generalization of a monotone environment as defined
in Karlin & Rubin (1956) and Lehmann (1988). As a result, we can expand
the scope of our theory beyond signal structures that satisfy Blackwell’s or-
der of informativeness to the much larger class of signals ordered according
to their effectiveness as defined in Lehmann (1988). We show that in set-
tings with conflicting interests on the state of the world conditional on the
allocation rule, any ex post efficient mechanism results in excessive infor-
mation acquisition. With common interests conditional on the allocation,
there is too little investment in information at the ex ante stage.

The paper is organized as follows. The model is laid out in the next
section. Section 3 presents the case of a single unit auction as an example
of the general theory. The analysis of the independent private values case is
given in section 4. Results on efficient ex post implementation are presented
in section 5. Section 6 deals with ex ante efficiency in the common values
case and section 7 concludes.



1.2 Literature

This paper is related to two strands of literature in mechanism design. It
extends the ideas of efficient mechanism design pioneered by Vickrey (1961),
Clarke (1971), and Groves (1973) in an environment with fixed private in-
formation to an environment with information acquisition.

Our results on ex-post efficient mechanisms in common values environ-
ments complement recent work by Dasgupta & Maskin (1998) and Jehiel
& Moldovanu (1998). Dasgupta & Maskin (1998) suggest a generalization
of the VCG mechanism to obtain an efficient allocation in the context of
multi-unit auctions with common values. Jehiel & Moldovanu (1998) ana-
lyze the efficient design in a linear setting with multidimensional signals and
interdependent allocations. We give necessary conditions as well as weaker
sufficient conditions for the efficient design in a general nonlinear environ-
ment. The results here are valid for general allocation problems and not
only for single or multi-unit auctions.

The existing literature on information acquisition in mechanism design
is restricted almost entirely to the study of auctions. For the private value
model Hausch & Li (1991) find that first and second price auction give the
same incentives to acquire information in a symmetric environment. Tan
(1992) considers a procurement model where firms invest in R&D expendi-
ture prior to the bidding stage. The R&D investment leads to a stochastic
cost-reduction which is private information to the bidder. In the symmetric
equilibrium with decreasing returns to scale, he observes again that revenue
equivalence holds between first and second price auction. Stegeman (1996)
shows that the second price auction induces efficient information acquisition
in the single unit independent private values case. Matthews (1977), (1984)
consider endogenous information acquisition in a pure common values auc-
tion and analyze the convergence of the value of the winning bid converges
to the true value of the object when the number of bidders increases. Hausch
& Li (1993) consider a common values model with endogenous entry and
information acquisition. Persico (1999) compares the equilibrium incentives
of the bidders to acquire information in a first and second price auctions

within a general model of affiliated values.



2 Model

2.1 Payoffs

Consider a setting with I agents, indexed by i € Z = {1, ..., I}. The agents
have to make a collective choice x from a compact set X of possible alterna-
tives. Uncertainty is represented by a set €2 of possible states of the world.
An element w € € is a vector w = (w;,w_;) = (w1, .., w4, ..,wr), with:

I
weN= x .
=1

and it is assumed that each €; is a finite set. The prior distribution ¢ (w) is
common knowledge among the players. The marginal distribution over w;
is denoted by ¢ (w;) and we assume that the prior distribution g (w) satisfies

independence across ¢, or:
qw) =[Jaws).
i

(There is some abuse of notation in using the same symbol g for probability
distributions over different spaces, but this will lead to no confusion.) We
assume that agent i’s preferences depend on the choice x, the state of the

world w, and a transfer payment t; in a quasilinear manner:
u; (z,w) — t;.

We also assume that w; is continuous for all ¢. The mechanism designer is
denoted with a subscript 0, and her utility is assumed to take the following

form:

I
Zti + ug (z) .
=1
/

The model is said to be a private value model if for all w,w’ :
wi =w; =y (2,w) = u; (z,0) (1)

In contrast, if condition (1) is violated, then the model displays common

values.



2.2 Signals and Posteriors

Agent 7 can acquire additional information by receiving a noisy signal about
the true state of the world. Let S; be a compact set of possible signal
realizations that agent ¢ may observe. Agent i acquires information by
choosing a distribution from a family of joint distributions over the space
S; X Qe

{FY (8i,w0i) }o,en, (2)

parametrized by a; € A;. We refer to F* (s;,w;) as the signal and s; as
the signal realization. For brevity, we may sometimes drop realization and
simply refer to s; as signal as well. Each A; is assumed to be a compact
interval in R. We endow A (S; x €;) with the topology of weak convergence
and assume that F% (s;,w;) is continuous in «; in that topology. This
ensures that the marginal distributions on S; are continuous in «; as well.

Agent i acquires information by choosing «;. Each fixed «; corresponds
to a statistical experiment, and observing a signal realization s; € S; leads
agent ¢ to update her prior belief on w; according to Bayes’ rule. The
resulting posterior belief, p; (w;|s;) summarizes the information contained
in the signal realization s;. Considered as a family of distributions on €2;
parametrized by s;, we assume that p; (w;|s;) is continuous in s; in the
weak topology on €2;.' The cost of information acquisition is captured in a
cost function ¢; (o;) and ¢; (+) is assumed to be continuous in «; for all i.

Let F®i (s; |w;) denote the distribution on signals conditional on state of
the world w;. Posterior beliefs are connected to the prior on €2; through the
law of iterated expectation for all a;:

1(@)= Y [ p(ils) dP (s ) g ().
weQ; /S

In many instances, it will be convenient to represent an experiment di-

rectly by a joint distribution over w; and p; The signal s; is then simply

equal to the posterior belief, or s; = p;.

!The continuity and compactness assumptions made above are sufficient to guarantee
that the choice set of each agent is compact and that the objective function is continuous

in the choice variable.



2.3 Efficiency

The ex-ante efficient allocation requires each individual agent ¢ to acquire
the efficient amount of information and the allocation x to be optimal condi-
tional on the posterior beliefs of all agents. Since the model has quasilinear
utilities, Pareto efficiency is equivalent to surplus maximization.? The social
utility is defined by

The ex-post efficient allocation z (p) 2 x (p(w)) maximizes the expected

social surplus conditional on the posterior belief p (w):

w(z,p) £ u(r,w)p(w). (3)
we
Given the assumptions made in the previous subsection, it is clear that a
maximizer exists for all p.

Denote the expected social value with posterior belief p (w) by u (x (p) , p)-
Similarly, denote by p_; (w) the information held by all agents but 4, with
p—i(w) = (p(w1),.eyq(wi),...,p(wr)), and let z_; (p—;) be the allocation
that maximizes the expected social value of all agents excluding i:

v (p-i) € argmax 3 i (z,w) p-i (), (4)
weN
with
u_; (r,w) = Zuj (z,w). (5)
J#i
In this context, notice that in the private value environment, x_,; (p) =

x—; (p—i) as x—; (p—;) is independent of ¢ (w;). Let F* (p) be the distribution
induced on posteriors by the vector of experiments, where a = (ay, ..., )

*Recall that the mechanism designer collects all the payments and receives utility from

them.



and let c(a) = >, ¢i(a;). An ex-ante efficient allocation is a vector of

experiments, o, and an ex-post efficient allocation x (p) such that a* solves

max /u (2 (p) ,p) dF* (p) — c(a). (6)

acA |

Observe that since we have used the posterior probabilities as arguments in
the choice rule, the optimal allocation x (p) does not depend on «a. Again,
given the continuity and compactness assumptions made in the previous

subsection, a solution is guaranteed to exist.

3 Information acquisition in an auction

In this section, we present an example of a single unit auction with two
bidders. It is meant to introduce the basic arguments for the private and
common values results and to indicate how to extend the logic of the ar-
guments to any number of agents and allocations. A similar example is
discussed in Maskin (1992) with a signal space but without an underlying
state space.

We begin with a private values model. The set of allocations is the set of
possible assignments of the object to bidders, or x; = {i} and i € {1,2}. The
value of the object for bidder ¢ is w; (2;,w) = w; (w) = 2w; and u; (z;,w) =0
for i # j. The signal of agent 7 is simply his posterior belief p; = Pr (w; = 1)
and his expected utility is u; (p) = 2p;. The direct VCG mechanism in this
setting is the second price auction where bidder ¢ pays the reported valuation
of bidder j conditional on obtaining the object. Ex post efficiency dictates
that ¢ should get the object if u; (p) > u; (p), which occurs whenever p; > p;.
It follows that the equilibrium utility of bidder 4, conditional on obtaining
the object, is u; (p) —w; (p) which is also equal to his marginal contribution:
u(p) —u_; (p—i). For an arbitrary fixed realization p; = p, the valuations
by ¢ and j are depicted in Fig. la. The marginal contribution of bidder
i, denoted by MC; (p) has the same slope as u; (p) for p; > p; = p and is
displayed in Fig. 1b.

[INSERT FIGURE 1 HERE]



Consider next information acquisition within this auction. Within a
binary state structure a signal is more informative if the posteriors are more
concentrated around 0 and 1. Around p, a local increase in informativeness
can be represented as a randomization (with equal probability) over p — e
and p + ¢ for some € > 0. The convexity of the marginal contribution (see
Fig. 1b), implies that information has positive value. More importantly, the
private marginal value of signal p; coincides with the social marginal value.
As a result each agent will acquire the socially efficient level of information.
The logic of this argument extends to all private value problems as the utility
u_; (x,p) of all agents but 7 is constant in p;.

To extend the example to a common values environment, redefine u; (w) =
2w; + wj. The expected valuation is then u; (p) = 2p; + p; and under an
efficient allocation ¢ gets the object when p; > p;. For a given p; = p,
the utilities are displayed as functions of p; in Fig. 2a. The valuation of
bidder j now varies with p;, even though it is less responsive to p; than
the valuation of 7. The valuations therefore satisfy a familiar single-crossing
condition. However, as the valuation of bidder j varies with p;, the original
VCG mechanism does not induce truth telling anymore. For if we were to

apply the mechanism, the equilibrium utility of agent ¢ would be

u; (p) —uj (p),

but for any p; > p, bidder ¢ could lower his report to p; — ¢, still get the
object, but receive

ui (p) — u; (pi — €,p)
which would increase his utility. The above argument remains valid until
p; = P, where a lower report would induce an undesirable change in the
allocation. Thus by asking bidder ¢ to pay u; (p,p), incentive compatibility
is preserved. The equilibrium utility of agent i is then u; (p) — u; (p,p) or
u (p) —uj (p,p). This differs from the marginal contribution u (p) —u; (pj, ¢i)
insofar as the utility of agent j is evaluated at the pivotal point p, rather
than the prior probability. For this reason, we shall refer to u (p) — u; (p,p)
as the pivotal contribution of agent i, or PC; (p). The discrepancy between

marginal and pivotal contribution is depicted in Fig. 2b.



[INSERT FIGURE 2 HERE]

The divergence has immediate implications for the decision of bidder
¢ to acquire information. As before, more information can be represented
locally as a randomization over posteriors around p. The contrast between
pivotal and marginal contribution suggests that in equilibrium bidder ¢ will
have excessive incentives to acquire information relative to the socially op-
timal level. More formally, we observe that PC; (p) > MC; (p) whenever
Ou; (p) /Op; > 0. In words, whenever good news for agent i is also good
news for agent j, we observe too much information acquisition by bidder <.
Stated in these terms, the result may sound counterintuitive. To see why it
must be true, note that in equilibrium, the object is assigned to the bidder
with the higher valuation. Incentive compatibility requires bidder ¢ to pay
less than the true value of the object for bidder j. Thus the equilibrium
utility of agent ¢ overestimates the contribution of bidder ¢, as the valuation
of bidder j is also increasing in p;.

With a single unit auction and two bidders, the analysis can be made
exclusively in terms of the valuation of the object. This raises the question
whether similarly intuitive conditions for the nature of the inefficiency can
be given for arbitrary sets of agents and allocations. The single crossing
condition at p, necessary for truth telling, implies that the efficient assign-
ment can change only once, and in particular from j to ¢ as p; is increased.
More generally, for a given p_;, the set of efficient allocations must permit
a monotone ordering as a function of p;. Truth telling by bidder 7 requires
(locally) that

ou; (p)
Op;

ou; (x4, p) _ Ou; (z5,p)
Opi Opi

>0 >0

or supermodularity of w; (x,p) in (x,p;) under the ordering x; > x;. The
condition for under- or overacquisition of information by bidder ¢, was re-
lated to the responsiveness of u; (p) to p;. Restating the conditions with the
allocations we have

du; (p)
Opi

Ou;j (x4, p) _ duj (z;,p) <0

>0
o Op; Op; -

10



or more generally for n allocations and I agents, with xx11 > x :

Ou_; (Tg41,p)  Ou_; (wg,p) <0

opi Op; -
Thus an almost necessary condition for efficient implementation is that
u; (x,p) be supermodular in (z,p;). If u_;(z,p) is also supermodular in
(x,pi), then we expect less than efficient, and if u_; (z,p) is submodular
in (x,p;), then we expect more than efficient acquisition of information. In
words, if the utility differential between x1 and xy responds to an increase
in p; in the same direction for ¢ and —i, agent ¢ will acquire insufficient infor-
mation, but if the differentials respond in opposite directions then ¢ acquires
too much information. With congruence in the marginal utilities, agent ¢ has
less than socially efficient incentives to make his case, whereas divergence
in the marginal utilities leads him to gather more than socially optimal
evidence.

Finally notice that in the private value environment,

8U_i ($k+1,p) . 8“—2' (wlmp)
Op; Op;

=0, Vk,Vp.

4 Private Values

This section considers information acquisition in the context of indepen-
dent private values. For this environment Vickrey (1961), Clarke (1971)
and Groves (1973) showed in increasing generality that the ex-post efficient

allocation can be implemented in a direct revelation mechanism.

Definition 1 A direct revelation mechanism is defined as pair (x,t), where

x is an outcome function x: S — X and t:S — R! is a transfer scheme.

The implementation requires only dominant strategies if the transfer
function has the following form for all ¢ € Z:

ti (p) = hi (p—i) = Y _uj (x (p),p)) (7)
i#i

11



where h; (p—;) is an arbitrary function of p_;. A special form of the function

hi (p—i) gives the pivotal mechanism:
hi (p—i) =Y _uj (v (p—i) ,pj) -
J#i
The transfer function ¢; (p) can then be written, using the notation intro-
duced in (5) as:

ti(p) =u_i(x_i(p—i),pi) —ui(x(p),p)- (8)

The pivotal mechanism thus requires a positive transfer from agent ¢ when-
ever the announcement of his posterior belief changes the allocation relative
to what would be ex-post efficient if ¢ were not present. In consequence, the
net utility of every agent ¢ in the pivotal mechanism is given by:

u(z(p),p) — ui(z—i (p-i) ,P—i) ,

which is the contribution of agent i to the social surplus of the agents 7\:.

Definition 2 The marginal contribution of agent i is defined as:
MC; (p) 2 u(x(p),p) —u—i(x_i(pi),pi)

We refer to the mechanism which implements the efficient allocation
through the transfer function described in (8) as the Vickrey-Clark-Groves
(VCG) mechanism. The marginal contribution property suggest that the
private and social returns to information acquisition should be equalized in

a VCG mechanism.

Definition 3 A wvector of experiments, «, is a local social optimum if for

every t and a_;, a; maximizes
[ @) ) dF =) ) = claa).

Notice that local refers here to the property that « solves the maxi-
mization problem for each agent separately, but not necessarily the joint
maximization problem when the experimentation levels of all agents are

changed simultaneously.

12



Theorem 1 (Private Values) With independent private values, every lo-

cal social optimum can be achieved by the VCG.

Proof. See appendix. m

An immediate consequence of Theorem 1 is

Corollary 1 The ex-ante efficient allocation can be implemented by the
VCG mechanism.

Proof. See appendix. =

The VCG mechanism may not strongly implement the ex-ante efficient
allocation, but any ex-ante allocation which is a local maximum in the in-
formation acquisition stage.® It follows that the VCG mechanism uniquely
implements the ex-ante efficient allocation if there is a unique local and
hence global optimum in the information acquisition stage.

The efficiency result can also be generalized to environments where each
agent can invest ex ante in technologies that increase their private payoffs.
Again, it is the marginal contribution characterization of the VCG mecha-
nism which permits ex-ante efficiency. The efficiency result derived for the
VCG mechanism can in fact be extended to any ex-post efficient mechanism
by the revenue equivalence theorem. Recall that for every ex-post efficient
mechanism with associated transfers ¢’ (p), there exists a set of constants
{ki};c such that, Vi, Vp, we have

E [t (p) Ipi] = Bt (p) Ipi] + ki

where t; (p) is the transfer associated with VCG mechanism. Since the
constant k; is independent of p;, the incentives of each agent to acquire

information are not distorted by t. (p).

Corollary 2 The ex-ante efficient allocation can be implemented by every

ex-post efficient mechanism.

3Tan (1992) makes a similar observation in the context of ex-ante R&D investments in

procurement auctions.
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In the current model, information is acquired by all agents simultane-
ously. However, it is well known in statistical decision theory that a se-
quential decision procedure may dominate any simultaneous procedure as
it economizes on the cost of information acquisition. This observation is
valid in the current model as well. In the following we therefore sketch a
mechanism that implements the efficient sequential procedure.*

Suppose for simplicity that each agent has access to finitely many costly
statistical experiments and there is no discounting. The efficient path of
information acquisition with perfect observability of the signals can then be
solved as a finite time dynamic programming problem. The solution has the
property that at most one agent engages in an experiment at any node. The
nodes that are not followed by any further information acquisition steps
are called terminal nodes. At each terminal node, the efficient allocation
conditional on the information along the sample path is selected. This gives
an assignment of payoffs to all participants at all terminal nodes.

Consider next the case where the mechanism designer must elicit the in-
formation acquired by the agents in an incentive compatible manner. Clearly,
this calls for a mechanism that makes each agent accountable for the future
information costs incurred by other agents depending on the announced
signal. We claim that the following game form results in optimal experi-
mentation and allocation rule. The mechanism designer asks the agents to
perform the experiments and report the outcomes from the experiments in
the socially optimal sequence under the assumption of truthful revelation.
If any other information (e.g. results from experiments that were not sup-
posed to be performed) is reported in any stage, sufficiently large negative
transfers are imposed. At every terminal node, the allocation and transfer
payments are decided according to the modified VCG mechanism described
below.

Consider the incentives of an agent at a penultimate node. If all other
agents reported their signals truthfully and the allocations and transfers are
determined by the VCG mechanism, then at every penultimate node, the

' A formal argument would require a substantial amount of extra notation and is there-

fore omitted.

14



agent to move will choose optimally and report truthfully. The decision at
the penultimate node is a special case of the situation in Theorem 1 where
the signals of all but one agent are degenerate. Hence by Corollary 1, the
efficient information acquisition is implemented by this mechanism.

Using a backwards induction argument, we replace the penultimate de-
cision nodes with the payoff vectors (net of the cost of the experiment)
resulting from the optimal actions conditional on the outcome in the exper-
iment, and hence transform each penultimate node into a terminal node.
This gives rise to a new set of penultimate nodes, and the previous step in
the analysis may be repeated until the initial node is reached. By repeat-
ing these steps, we effectively include the social costs of the experiments in
the final payoffs. Intuitively, by replacing the penultimate nodes with the
continuation values, the relevant payoffs become the social values net of the
costs of information and as a result, the experimentation costs of agents
moving later are internalized by those making the earlier reports. A final
and important consequence of the recursive procedure is that the sequential
mechanism implements the efficient allocation strongly as every agent acts
at every node as if she were maximizing the social value function.

The essential property which allows us to prove ex-ante efficiency with
independent private values is the restriction that only agent ¢ can (effi-
ciently) invest in information about his own utility associated with various
allocations. The logical next step is therefore to ask whether efficiency can
be maintained in environments where the information of agent ¢ is relevant
to the utility calculus of agent j. We pursue this question in the context
of the independent common value model investigated recently by Dasgupta
& Maskin (1998) and Jehiel & Moldovanu (1998). Before we analyze the
information acquisition per se, we give a complete characterization of the
ex-post efficient allocation and associated equilibrium utilities for each agent

in the following section.

15



5 Common Values: Ex Post Efficiency

This section relies essentially on recent work by Maskin (1992) and Das-
gupta & Maskin (1998) in which a generalization of the VCG mechanism to
an environment with common values is suggested. More precisely, they show
that under certain conditions, a mechanism which shares the main features
with the VCG mechanism implements the efficient allocation. The common
features in our approach and theirs are: (¢) the implementation is indepen-
dent of the distribution of the signals, (i¢) conditional on the allocation, the
transfer payment of agent ¢ is independent of the report of agent ¢, and (%)
the transfer payment of agent ¢ varies with the reports of all other agents
and can be interpreted as an “externality payment”. The efficiency result
is obtained by imposing two conditions on the signal each agent receives:
() the signal is one-dimensional and (i7) it satisfies a Spence-Mirrlees sort-
ing condition.” We adapt their model to our environment with uncertainty
about the true state in Subsection 5.1, where we present necessary and suf-
ficient conditions for efficient implementation with a direct revelation mech-
anism. Similar results are briefly stated for a continuous allocation space in
Subsection 5.2. These results allow us to show that the modified mechanism
changes the VCG mechanism for private values in the following aspect. Fach
agent does not receive his marginal contribution anymore, but rather what
we call his pivotal contribution. The pivotal contribution differs from the
marginal contribution in a systematic manner and we use this relationship
subsequently to show why and how ex-ante efficiency necessarily fails to hold

with common values.

5.1 Finite Allocation Space

We start by considering a set of finitely many allocations: X = {29 21, ... 2V},

The expected utility of agent ¢ of an arbitrary allocation x™ with signal s is

"Dasgupta & Maskin (1998) actually achieve implementation through an indirect mech-
anism in which the bidders report their valuations contingent on the reports by the other
bidders, but not directly their signals. Jehiel & Moldovanu (1998) present sufficient con-

ditions in a linear model with a direct revelation mechanism.
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given by:

u; (2", s) = Zuz (2", w)p(wls),

we

or, after using independence:

w; (2", 8) = Z u; (2", w) Hp(wi |si) -

we i€l
The posterior belief p (w; |s;) is an element of the simplex generated by the
state space €2;. The posterior belief is thus a multi-dimensional object, and
its dimension is the cardinality of €2; minus 1. If we take the signal realization
to be directly the posterior belief, then the signal is multidimensional and by
the results of Jehiel & Moldovanu (1998), an efficient ex-post implementation
does not exist in general. We therefore restrict our attention to an arbitrary
class of one-dimensional signals S; = [s;,5;] C R with the result that the
associated posterior beliefs p (w;|s;) form a one-dimensional manifold in
A (£2;). In this section the allocation problem is analyzed exclusively at the
ex-post stage. The utilities are therefore written as functions of (x, s) rather
than (z,w) and we assume u; (z, s) to be continuously differentiable in s for
all 4.

Next we present necessary and sufficient conditions for efficient imple-
mentation in an ex-post equilibrium. An ex-post equilibrium of a mechanism
is a set of strategies, such that the strategy of each agent remains a best
response if the types of all remaining players were common knowledge. By
the revelation principle, we can restrict ourselves to direct mechanisms and

truth telling strategies.

Definition 4 A direct revelation mechanism (x,t) permits implementation

i an ex-post equilibrium if Vi,Vs € S :
wi (2 (8),8) —t; (8) > u; (v (5,84),8) —t; (85,8 4), Vs; € 5.
An ex-post equilibrium, while not requiring dominant strategies, remains

a Bayesian equilibrium for any prior distribution over types. We shall refer
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to implementation in ex-post equilibrium also as distribution-free implemen-
tation.

For the rest of this section, we fix the realization of the signals s_; for
all agents but 7. As s_; is held constant, the dependence on s_; is omitted
at times for notational ease. Let the set Si* be defined as a subset of §; for

which 2™ is an efficient allocation:
St ={s; € Silu(a",si,5-4) >u(x™,si,5_;), VTp # Tm.}

The sets {SP}_ can be taken to form a partition of S; without loss of

generality.
Definition 5 The collection {Sf}gzo satisfies set convexity if for every n :
siy8 € SP=As; + (1= N\)s; € S, VA€ [0,1].

If set convexity is satisfied, then there exists an optimal policy x (s) such
that every ™ is employed on a convex set 5] and nowhere else. After possi-

bly relabeling the indices, we have the following ordering for the allocation

space X:
¥ <l <<, (9)
such that for all s; € SF and s, € S, k # [,
8 < 8 = =z (s, S_i) < (s;, 5_2-) =z (10)

We endow the space X with the order defined by (9)-(10) and S; with the
natural order on the real line. It follows that for every two adjacent sets,
Si"_l and S, the intersection of their closures, S”f—l and S?, respectively,

is given by a single point s, called a change point:
SN &y = {st).

Define also



Every change point s has the property that at s = s™:

0
882'

Consider next the truth telling condition for agent %, which is given by

[u(a",s) —u (x"_l, s)] > 0.

u; (x(8),s) —ti(s) > u; (x(8i,8-4),(8i,5-4)) — t; (Si,8-4i), V8; € S;.

As the socially efficient allocation is constant on the set S}, it follows that
the transfer payment of agent ¢ has to be constant on S}* as well. Denote it

by t!. The above inequality can then be written equivalently as:
w; (27,85, 5-4) —t > w; (2™, 85,5-4) — %, Vs; € S, Vn,m.

Proposition 1 A necessary condition for ex-post implementation is that
forYi,Vs_;,¥n:

% [u; (2™, s) — u; (m”_l, s)] >0, at s =5 (11)

Proof. See appendix. m

The inequality (11) is a familiar local sorting condition and it implies that
the incentive compatible transfers (for all efficient allocations), are uniquely

determined (up to a common constant) by:
t— =y (2", ") — (w"_l, s™)
or equivalently,
-t =u (w"‘l, s") —u_; (2", s7). (12)

The mechanism which implements the efficient allocation with the transfers
determined by (12) is referred to as the generalized VCG mechanism. For
definiteness, we initialize t? by:

t7 & i (v (5-4) 5-4) — u—s (0, 50) , (13)

where s is defined as the lowest signal along the 7" dimension, or:

502 (s175.4)
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and s_; represents the private information of all agents but ¢ together with
the ex-ante public information ¢ (w;). As the transfer payments t? for every
allocation x,, are necessarily determined at the change points, it follows that
(generically) every set S]* can have at most one change point as otherwise

t?* would be overdetermined. This is exactly what set convexity guarantees.

Proposition 2 A generically necessary condition for ex-post implementa-

tion is set convexity Vi,Vs_;.

Proof. See appendix. m

The generalized VCG mechanism suggests the following notion of pivotal
contribution in contrast to the marginal contribution defined earlier. For a
given s, let x(s) = 2", and define s"1 £ 5.5 The equilibrium utility of
agent ¢ can now be equivalently expressed as the pivotal contribution of

agent ¢ as follows.

Definition 6 The pivotal contribution of agent i is defined as:

PC; (s) 2 u(x(s),s) — z”: <u_i (xk, skﬂ) —U_; (xk, sk)) —u— (x—; (s=i)
k=
O (14)

Definition (6) emphasizes the relationship to the marginal contribution.
With private values, the signal s; may be pivotal for many allocations, but
it is irrelevant to the value attached to any allocation for agents other than

1, OT

U_; (mk,sk"‘l) —U_; (wk,sk> =0, Vk.
After noticing that with private values

Ui (X (8=i) ,8-i) = u—i (i (5),5),

it follows that pivotal and marginal contribution coincide for the private

value environment. With common values, agent ¢ does not receive his

%Recall that we are keeping s_; constant throughout the discussion.
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marginal contribution as incentive compatibility requires that agent ¢ com-
pensates the remaining agents for any losses incurred locally by moving
from change point s* to s**!. From 14, we see that the difference be-
tween the private and social value of information is captured in the term
Yo (u_i (mk, sk+1) —U_4 (wk, sk)) . In the next section, we compare the
social and private returns from additional information on €2; depending on
whether u_; (z, s) is super- or submodular in (x,s;) .

Next we strengthen the local sorting condition to obtain sufficient condi-
tions for ex-post implementation. An obvious necessary as well as sufficient
condition is that the equilibrium utility w; (2™, s) — t? be single-crossing in

Y12

(2™, s;).7 Using the characterization of ¢ as given above, the single-crossing

condition can be directly written in terms of the utility functions. For every

2™ 1 and 27, the difference

u; (2", s) — uy (m”fl, s) +u_; (2", s") —u_, (m”fl, s”)

has to be single-crossing in s;, where we observe that the last two terms are
constants at s = s”. Thus the local sorting condition, which is a necessary
condition, is also sufficient if we strengthen it to a single-crossing condition
with the crossing to occur at s = s™.

The next proposition modifies the necessary condition in a different di-

rection, namely by extending the local to a global sorting condition.

Proposition 3 If set convezity is satisfied and for all i,s_; and n:

9 7 n—1
55 [ui (27, 8) —u; (271, s)] >0, (15)

then an ex-post implementation exists.
Proof. See appendix. m

Thus if the utility of every agent 4 displays supermodularity in (2", s;)

and set convexity is satisfied, then an ex-post implementation exists. A

TA function f : X x § — R satisfies the single crossing property if for ' > =z, f (z',s) —
f (z,s), regarded as a function of s crosses zero only once and only from below. A function
f: X xS — Ris supermodular if for ' > =z, f (z’,s) — f (z, s) is monotone nondecreasing

in s.
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sufficient condition for set convexity is that the social value w(z",s) be

™ s;). We wish to emphasize again that the particular

single-crossing in (x
order imposed on the allocation space X may depend on i and s_;, and all
that is required is that for every s_;, an order on X can be constructed such
that the conditions above for necessity and sufficiency can be met.

It may be noted that set convexity and supermodularity are strictly
weaker than the conditions suggested by Dasgupta & Maskin (1998) in the

context of a multi-unit auction:

ou; (/,s) _ Ou; (z,5) ,
652- - 881‘ ’ (Z)

or if agent 7 prefers 2/ to x, then an increase in s; makes his preference even

u; (2',8) > u; (x,5) =

stronger;

ou(2',s) _ Ou(z,s) g
882' > 382' ’ (”)

which states that a marginal increase in the signal s; has a greater marginal

Us (m',s) > u; (T,8) ANu (x',s) =u(x,s) =

effect on the allocation 2/ than on x, where 2’ is preferred to x by 4, and

finally:
U; (m', s) > u; (x,8) = 3s) s.th. u (x', (s;,s_i)) >u (m, (s;-,s_i)) )

or if 2/ is preferred to = by 4, then there is an s, sufficiently high such
that 2’ is also socially preferred to x. Notice in particular that (i) requires
that for every s_;, for individual 7 all strict rankings among allocations are

independent of his own signal s;.
Corollary 3 Conditions (i)-(iii) imply set convexity and supermodularity.

Proof. See appendix. m

In the linear (in the signals) version of the model which is investigated
by Jehiel & Moldovanu (1998) with:

I
u; (2") = Zuij (™) 54,
j=1
it follows that necessary and sufficient conditions coincide.
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Corollary 4 A necessary and sufficient condition for efficient implementa-

tion in the linear model is
I I
Jj=1 Jj=1

Proof. See appendix. m

For completeness, it may be noted that the generalized VCG is essentially
the unique mechanism which implements the efficient outcome in an ex-post

equilibrium.

Proposition 4 A mechanism (x,t) implements the efficient allocation only
if t; (s) satisfies (12) for all i and s.

Proof. See appendix. m

As the local sorting condition is a necessary condition for ex-post imple-
mentation, one might conjecture that Bayesian rather than ex-post imple-
mentation might allow for a much wider class of problems to be successfully
implemented. In particular, Bayesian implementation might overcome the
local failure of the sorting condition provided that the distribution over the
signals s_; is sufficiently diverse. The following robustness result for an
arbitrary set of utility functions {u; (x,s)},.; shows that if ex-post imple-
mentation fails, then it is not possible to find Bayesian implementations for

all distributions of signals.

Proposition 5 The utility functions {u; (x,s)},.; permit Bayesian imple-
mentation for all distributions Fj(s;) if and only if {u; (x,s)},cq permit

ex-post implementation for all s.
Proof. See appendix. m

5.2 Continuum of Allocations

The sorting and convexity conditions naturally extend to the case of a con-
tinuum of allocations. Let X C R be a compact interval of the real line.

As before, fix the realization of the signal s_;, and suppose that z (s) is a
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measurable function of s;. Set convexity is defined as before. Supposing set
convexity, we can impose a complete order, denoted by =, on the allocation
space X such that the order on X mirrors the order of the signal space by

requiring that for all s;, s} :
i < 8y = x(s5,5-;) 32 (s}, 5-5) . (16)

For the following we endow X with the complete order defined by (16) and
suppose further that u; (s, x) is twice continuously differentiable with respect
to s and «x in the order defined above.

Proposition 6 Necessary conditions for ex-post implementation are given
by:
1. set convezity is satisfied Vi,Vs_;;

2. local sorting condition:

u; (z(s),s)

> ) .
05,00 = 0, Vz,Vs

Proof. See appendix. m

As in the discrete case, the set convexity conditions is generically neces-
sary. If the local sorting condition is extended to a global condition, then

we obtain sufficient conditions for implementation.

Proposition 7 Sufficient conditions for ex-post implementation are given

by:
1. set convezxity, Vi,Vs_;

2. global sorting condition:

u; (x,s)

05,00 = 0, Vi,Vs,Vx

Proof. See appendix. m
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Proposition 7 generalizes an earlier proposition by Jehiel & Moldovanu
(1998) from a linear to a nonlinear environment with one-dimensional sig-
nals. The transfer payment in the generalized VCG mechanism again per-

mits alternative representations as either:

£ () = /.si O ( (vi,5_3) , (v5,5_7)) Oz (v, 5_4)

dv; +t; (s;,5-:)

or
% Ou_g iy 5—i) , (Vi,5-3)) Ox (v4, 5
(o) = - [ 2t Dot ) B0 ) gy, (50 17

For definiteness t; (s;,s—;) is again defined as in (13) earlier.

6 Common Values: Ex-Ante Efficiency

The distinction between marginal and pivotal contribution already hints at
a general inefficiency result in the common value environment. In this sec-
tion, we analyze the consequences of ex-post efficient allocation rules for
the process of information acquisition. Such an investigation is naturally
constrained by the fact that the permissible signals have to induce ex-post
utilities which permit ex-post implementation. In other words, the class of
signals to be investigated have to satisfy the sorting and convexity condi-
tions derived earlier to permit an ex-post efficient implementation. As we
reformulate the problem in the state space, we have to ask what restrictions
on posterior beliefs p (w; |s;) and utility functions u; (x,w) are required in
order to satisfy the monotonicity and sorting conditions on w; (x,s) for all
(z,s). Fortunately, this problem can be adequately addressed in the con-
text of the monotone environment introduced by Karlin & Rubin (1956) for
single agent decision problems. The sufficient conditions given in Karlin &
Rubin (1956) for decision problems have a natural extension to the game
theoretic problem under consideration here. The restriction to a monotone
environment comes with an additional benefit with regard to the ordering of
information structures. Lehmann (1988) suggested necessary and sufficient

conditions to rank the informativeness of different signals for the monotone
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environment. Lehmann’s notion of effectiveness agrees with Blackwell’s no-
tion if two signals can be ranked according to Blackwell, but it provides a
much more complete ordering in monotone environments. The monotone
environment is introduced first in Subsection 6.1 and the informational inef-
ficiency is analyzed in Subsection 6.2. We conclude the section with a public

good example in Subsection 6.3.

6.1 Monotone Environment

The monotone environment is characterized by a monotone likelihood ratio
condition on posterior beliefs and a single crossing condition on payoff func-
tions. Recall that the posterior belief p (w; |s;) of agent 7 is indexed by s;.

The expected utility of ¢ from allocation = at signal s is given by
wi(z,8) =Y [ [p(wjlsj)wi(z,0). (18)
Q

For all ¢, for all s, > s; and w} > w;, the posterior density function is required

to satisfy the monotone likelihood ratio property:
p(wi]s)p(wilsi) —p (wilsi) p (wi]s;) > 0. (19)

As for the payoff functions, we require that for every i, the allocation
space X can be endowed with a complete order, denoted by -, such that
u; (z,w;,w—;) and u (z,w;,w_;) are supermodular in (x,w;) for all w_;. Ob-
serve that the ranking of the allocations is allowed to vary with ¢. The
following results are extensions of a result obtained by Karlin & Rubin

(1956).
Proposition 8
1. For every 1 :
sh>s = (32, S_i) Zx(si,5-4), Vs_i.

2. For every i, u; (x, S, 5—;) and u(x,s;,s—;) are supermodular in (x, s;)

for all s_;.
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Proof. See appendix. m

In the monotone environment as defined by Karlin & Rubin (1956), the
utility function is only assumed to be single crossing. That condition is re-
placed here with the stronger assumption of supermodularity. The strength-
ening in the assumption is necessary as we consider a multi-dimensional sig-
nal space. As we take the expectations over w_;, the single-crossing property
is not preserved, but supermodularity is. Consider next a family of signals:

{Fai (87:7("}7:)}0@6141' ’

where we drop for the remainder of this subsection the subscript ¢ as we
consider a decision problem in a one-dimensional signal space S;. (Alter-
natively, suppose that s_; is given and fixed.) Lehmann (1988) introduced
the notion of effectiveness for statistical decision problems in the monotone
environment. Let X be a family of allocation problems with respect to w
and allocations z € X. A signal F® is said to be more effective than a
signal F'* with respect to a family of allocation problems X concerning w,
if for any problem in X, and any allocation rule x for this problem based on

F<, there exists an allocation rule 2/ based on F® such that
Eo [u(2,w)] > Bq [u(z,w)].

Lehmann (1988) provides a necessary and sufficient condition for F®' to
be more effective than F'* in monotone decision problems. If all signals
F® € {F* (5,w)},e 4 » satisfy the monotone likelihood ratio, then a necessary
and sufficient condition for F* to be more effective than F in the class of

monotone decision problems is that the function
! ! -1
T (s |w) = (F (o @) (F(s | w))
is a nondecreasing function of w for each s.

6.2 Inefficiency

The structure of the inefficiency in the information acquisition depends ulti-

mately on the differences in the return from information acquisition between
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the individual and the social utility function. The explicit characterization
of the transfer function in the case of the generalized VCG mechanism fa-
cilitates such a comparison in the incentives.

For transparency, we state the result first for the single unit auction case
in a symmetric environment. In this case an element x in the allocation
set X simply represents the assignment of the object to a particular agent.
The utility of agent ¢ is then trivially zero for u; (x,w) for all @ # {i}. It
is therefore sufficient to concentrate on the utility of agent ¢ conditional on

obtaining the object, and let
u; (W) £ u; (z,w), for z = {i}.

The following theorem then extends the example of a single unit auction
presented in Section 3 to an arbitrary number of bidders and arbitrary state

space.

Theorem 2 (Inefficiency in Auctions)

Every ex-post efficient single-unit auction
1. leads to too much information acquisition if for all j,
u; (Wi, w—;)
s mondecreasing in w;.
2. leads to too little information acquisition if for all j,
uj (Wi, w—4)
18 MONINCTeasing in w;j.

Proof. See appendix. m

The inefficiency in the information acquisition is again to be understood
relative to the equilibrium information structure a_;, selected by all agents
but i. As we mentioned earlier, a similar resulted is stated in Maskin (1992)
with a signal space but without an underlying state space.
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This inefficiency results may be compared with results obtained in Per-
sico (1999), where it is shown that the first price auction leads to more
information acquisition then the second price auction. His model is one
with affiliated signals, and therefore outside our independent common val-
ues setting. It should also be pointed out that Persico obtained a ranking of
the marginal incentives to acquire information whereas we obtain a global
result. The difference is due to the fact that in Persico (1999), under the two
auctions, the best allocation policies from the point of view of an individ-
ual agent may be different. In the context of efficient implementation, the
mechanism designer is implementing the efficient policy and hence the allo-
cation policy is identical for agent ¢ and the social planner who maximizes
the social utility.

A similar result applies to general allocation problems. The ex-post effi-
cient mechanism provides insufficient incentives to acquire information when
agent ¢ and the complement set Z\i have complementary interest (in their
marginal utilities), and excessive incentives when ¢ and Z\i have conflicting

incentives regarding the allocative decision .

Theorem 3 (Inefficiency in Mechanisms)

Every ex-post efficient mechanism

1. leads to too little information acquisition if Vi,Vw_;, u_; (z,w;,w—_;) is

supermodular in (x,w;).

2. leads to too much information acquisition if Vi,Vw_;, u_; (v,w;,w_;)

is submodular in (x,w;).

Proof. See appendix. =

The proof of the theorem compares the private and social values of in-
formation on £2;. In order to make this comparison, the difference between
social and private values is transformed into a comparison of expected pay-
offs of all other agents but ¢. By verifying that the transformed problem
satisfies the conditions of Theorem 5.1 in Lehmann (1988), we reach our

conclusion.
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The equilibrium utility function of agent ¢ under allocation x is given by
wi (T, 84,5 4) — ti (Si,8-4) -

For a fixed s_;, the transfer to be paid by agent ¢ depends only on the
allocation but not on his (reported) signal. It follows therefore that the
equilibrium utility function of agent ¢ shares the single-crossing and super-
modularity property with the utility function before the introduction of the
transfers. The difference in the social value and private value for two signal

structures, o and ¢/, is given by:

Ey [u(x,s)] —Eq [u(zx,s)] § Eo [ui (,8) —t; (s)] — Bq [w; (z,8) — ti (s)] .

Let o/ be more effective than «. Equivalently this inequality can be ex-

pressed as:
Eo [u—;i (z,5) + t; (s)] = Baq [u—; (x,s) +t; (s)]

But as ¢; (s) is constant in s; conditional on the allocation, the supermod-
ularity property of the term (u_; (z,s) +t;(s)) remains unaffected after
dropping the transfer payments ¢; (s). Thus we need to sign the following
inequality

Eo [u_; (z,5)] = Bq [u_; (x,s)].

>

In the single unit auction the direction of this inequality can be decided on
the basis of the properties stated in Theorem 2. In the case of a general
mechanism problem, it is then sufficient to evaluate the supermodularity

property of the aggregate utility of all players but <.

6.3 Provision of a Public Good

The general results obtained previously are illustrated in this section by a
simple problem of providing a public good. Consider the following location

problem for a common resource, say an airport, between agent ¢ and agent
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j. The utilities of the location conditional on the true state of the world w

is given by:

u; (x,w) = — |x — ;] (azw; + a;;w;)
and

uj (2,0) = =[x = 1| (a0 + aj5w;) -

The utility of agent ¢ is determined by the distance between his location [; €
[—1, 1] and the location of the common resource « € [—1,1]. The binary state
variable w; = {0,1} may represent the uncertain demand for the common
resource by agent 7 and the strength of the preferences are represented by a;;.
It is assumed that each agent values the resource positively, or a; > 0, but
that additional demand by agent j may have either positive or negative value
from the point of view of agent ¢, or a;; § 0. In the context of the airport
example a;; > 0 could represent positive spillovers due to higher traffic
density and a;; < 0 could represent negative spillovers due to increased
noise exposure. With a binary state structure, the signal can be taken to be
the posterior belief p; = Pr (w; = 1). The expected value for agent 7 is then
given by:

u; (v,w) = — | — li] (aup; + aijp;)

For concreteness assume that the agents are located at opposite ends of the
interval, and I; = —1 and /; = 1 and that the least expensive location is
the center of the interval. The social cost of locating the resource closer to
i or j is represented by c¢(x) = %xQ. Thus, from a private point of view,
each agent prefers the common resource to be as close as possible to his own
location if and only if the private expected value of the resource is positive,
or (azp; + aijp;) > 0.

The necessary and sufficient conditions for ex-post implementation are
verified to be a;; > aj; and symmetrically a;; > a;;. The ordering of the
locations from the point of view of agent i is the reverse of the natural order
of x and for agent j it is the natural order of x. The utility of agent j is

supermodular in (—z,w;) if aj; <0, and submodular in (—x,w;) if aj; > 0.
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The socially efficient policy is to locate the resource at
z(p) = (aji — i) pi + (aj5 — aij) p;

provided that x (p) € [~1,1].% The generalized VCG mechanism is imple-
mented by the transfer functions:

81582-_;19) = (aupi — aijpj) (@i — ag;)
as derived in (17) and symmetrically for j.
Finally, consider the decision of each agent to acquire information before
the location decision. To this end, suppose that agent ¢ can choose from
the following class of densities and their associated distribution functions of

possible posterior realizations on the interval [0, 1]:

[ (pi) = { i ?Spi <

a;+03;—Bp 53<pi<l
Note the obvious restriction 3; = 4 (1 — ;) and «; € [0,2] for f* () to be
a density function. The density functions in this class are (inversely) tent-
shaped, include the uniform density (for a; = 1), and for 0 < o; < o < 2,
the distribution function associated with o/ is more effective than the one
associated with «;. For simplicity, let the cost of information acquisition
be quadratic in «; : ¢; () = %a?. The unique equilibrium in information
choices is then given by

1
Q; = 2 dii (aii — aji)
and
1
aj = 195 (aj; — aij)
which should be compared with the efficient level of information acquisition:
of = L
Y48

8For simplicity, we shall neglect the possibility of corner solutions throughout, which is

(aii — a'i)2
J

without loss of generality after assuming that a;; —aj; < 1 and aj; —as;; < 1. Note however

that corner solutions would modify only the calculus but not the qualitative results.
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and

o 1

2
i = g (i — aig)”

It follows directly that agent ¢ acquires more than efficient information if
SgN G5 = SEN 44,

i.e. when the marginal preferences of agent ¢ and j are conflicting. In

contrast, agent ¢ acquires less than the efficient amount of information if:
Sgn a;; 7 sgn aji,

i.e. when both utility functions are supermodular in (—z,p;). The actual
equilibrium choice of information structures are displayed for sub- and su-

permodular preferences in Fig. 3.

[INSERT FIGURE 3 HERE]

7 Conclusion

This paper considers the efficiency of information acquisition in a mechanism
design context. In the private values world, any mechanism which imple-
ments the efficient allocation, also leads to an efficient level of information
acquisition by the agents ex-ante. The efficiency results with private values
also extend to a setting where the information is acquired sequentially before
a final social allocation is implemented.

In the common values model, the impossibility to obtain both ex-ante as
well as ex-post efficiency with common values opens the question of which
(second-best) mechanism optimally balances between efficient incentives for
ex-ante information acquisition and efficient ex-post implementation. The
common value model we investigated here is one where the components w;
of the state of the world w = (w1, ...,wy) are distributed independently.
As in mechanism design theory with a fixed information structure, a very
different picture emerges with correlated signals. The technique suggested
by Cremer and McLean (1985, 1988 ) for full surplus extraction could be

33



easily adapted to our environment to induce efficient information acquisition
if we were concerned with Bayesian implementation. The major difference
in the construction of the incentive constraints would be that the expected
value of the participation fee conditional on truthful revelation should not
be zero but rather reflect the marginal social value of the signal. This
would then lead each agent to select the efficient information structure.
In consequence, the designer could guarantee the implementation of the
efficient information and allocation structure, but would have to cede some
of the surplus to induce the adoption of the efficient information structure by
the agents. If we insist on ex post implementation, however, mechanisms of
the Cremer and McLean type may not work and similar inefficiency results
to the ones derived in this paper are likely to emerge.

Finally, this paper considered information acquisition with a fixed num-
ber of agents. It may be of interest to investigate the limiting model as the
number of agents gets large. Intuitively, one might expect that the prob-
lem of each individual agent might be closer to the private value model. If
the responsiveness of the marginal utility of all other agents to the signal
of agent ¢ declines, then the sub- or supermodularity of u_; (z,s) in (x,s;)
may vanish and yield efficiency in the limit.
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8 Appendix

This appendix collects the proofs to the propositions and theorems in the
main body of the text.

Proof of Theorem 1. A necessary and sufficient condition for a local
social optimum for an ex-ante efficient allocation is that for all ¢, for any

given set of signals a_;, a; solves

/ u (@ (p) ,p) dF@ (p) — (o, o) (20)

By definition of the private value model, the optimal solution of the model

when excluding agent ¢ is independent of «y;, or:

/ui (@5 (p—q) ,p—q) dF =) (p_;) = /Uz (x i (pi),pi)dF*" (p_y).

Hence the solution to (20) is equivalent to the solution of

Ju(z(p),p) dF@e=1) (p) — ¢; (o)

max
a;

— Ju_i(zi(pi),p) dF*~ (py),

and by the definition of the VCG mechanism (see (8)), the last program can

be rewritten as

masx / / s (2 () ) — s (p)] AF @29 (p) — ¢ (ax)

(&7

which is precisely the objective function of agent ¢ when deciding on his

investment in information.l

Proof of Proposition 1. Suppose not, then there exist some ¢ > 0 s.th.

U; (m”fl, s"— 5) —u; (2", 8" —e) <y (m”fl, s"+ 5) —u,; (2", 8" +e).

(21)
But at the same time we require implementation, or

U (x"_l, s — 5) — t?il > (2, 5" —e) =t
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and
U; (ac”’l, s+ 6) — t?‘l <y (2", 8" 4 e) =t

which jointly imply that

n—1

U (x st — 5) —u; (2", 8" —¢e) >y (x"_l,s" —l—s) —u; (2", 8" +¢)
which leads immediately to a contradiction with (21).H

Proof of Proposition 2. Suppose set convexity fails to hold. Then there
exists at least one set SI* such that for s;,s; € S} and for some A € (0,1),
Asi+ (1 — \) s, € S with m # n. By Proposition 1, the differences ¢} — ¢
are uniquely determined by the change points. It follows that if a set S}* is
not convex, then there are more equations (as defined by the incentive com-
patibility conditions at the change points) than variables, t}'’s, and generi-
cally, in the payoffs of u; (z,s), the system of equations has no solution.ll

Proof of Proposition 3. By Proposition 1, the transfers are uniquely
determined up to a common constant. Consider any adjacent sets Sffl and

Sk
Vs; € ST w; (a7, 8) — (x”fl, s) <t — ¢t
and
Vs € S u; (2", 8) —u; (x"_l,s) >t L

Now consider any arbitrary pair Sf and S;"* ordered so that zy < x,. We

want to show that:

Vg < o, Vs € SF 1wy (xk,s) — oy (2™, 8) > — T (22)
as well as

VT = Tk, Vs € S u —u2< )Zt?l—tf,

Consider (22). We can expand the difference on the rhs to

m—1
u; <xk, s) —u; (2", s5) > th— ¢t (23)
=k

36



Consider the uppermost element of the sum:

e (z

and for all s < ¢™,
g <y (2™ s) —w (2™, s)
or
u; (2™, s) =t < wy (mm_l, s) — 1 (24)

by (15). Replacing the lhs in (24) by the rhs, the inequality (23) becomes a
priori harder to satisfy. After this operation, (23) becomes

m—2

Uu; (mk, 5) — Uy (mmfl, 5) > Z ti- — té“,

=k

and by repeatedly using the argument in (24), (23) is eventually reduced to
U; (xk, s) — Uy <xk+1,s) > tf — tf“,
which is satisfied by (15), when the transfers are as in (21).H

Proof of Corollary 3. Suppose there is a ranking of allocations xg < x1 <
... < zy from the point of individual ¢. Take any point at which the efficient
allocation is either k and [. If it is a change point from k to [ as s; increases,
denote the point by s®! otherwise by s**. Then if [ is preferred to k by i, it
follows by condition (77) that

622- u(as) —u(at,s) ] >0,

and hence it is a point s®! and by (i) it follows that

2 o ehe) - ()] =0,

as well, which leads to the conclusion that the ordering of the intervals

socially is equivalent to the ordering of the marginal returns by ¢. It remains

to show that convexity is implied as well. Suppose that s,s’ € S¥ and for
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some A € (0,1), As+(1 — \) s’ € SL. Then there must be at least two points,

say s® and s°° s.th.
U (wl,s") =u (wk, s")

and

n (ml, soo) =u (wk, SOO> ,

but this violates condition (¢7), and hence we obtain a contradiction.ll

Proof of Corollary 4. Observe first that with the linear model, the local
condition (11) and the global condition (15) coincide. Similarly set convexity

requires in the linear model the inequality:

I I
PACIED T
= f=

which concludes the proof.ll

Proof of Proposition 4.The proof technique is similar to Theorem 3.2.
in Green & Laffont (1979), where the uniqueness of the VCG mechanism is

shown for the private value model. For any given s_;, we can write

n
ti(si,5-:) = Z (u_l- (mkil, sk) — U (mk,sk» + hi (si,5-3) (25)
k=1

for an arbitrary function h; (si,s—;). We want to show that if ¢; (s) im-
plements the efficient allocation in an ex-post equilibrium for every s, then
hi (si,s—;) must in fact be independent of s;. Suppose not, than there exist
s; and s} such that h; (s;,5-;) # h; (s},s_;). By extension, define s and s’
to be s = (s;,5-;) and s’ = (s},5_;), respectively. Consider first the case
that x (s) = x(s'). If (x,t) is implemented in ex-post equilibrium, then by
Definition (4) we have

u; (z(s),s) —ti(s) > u; (x (s') ,s) —t (s')
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as well as

w; (x(8'),8) —t; (s") > w; (x(s),s") —t: ().

Since z (s) = z(s'), the above two inequalities imply that ¢; (s) = ¢; ('),
and so from (25), we have that h; (s) = h; (s’), a contradiction.

Consider next that z (s) # x (s'), and assume without loss of generality
that x (s) = 2"~ ! and z (s') = 2™. By the argument in the previous step, we
may assume that h; (s) and h; (s’) are constant in s; and s} on the intervals

SZ-"_l and S7, respectively. But Proposition 1 implies that the equality
ti (8") —ti (8) = u_i (Tn_1,8n) — U_i (Tn, 5n)
holds, which implies again that h; (s) = h; (), a contradiction.l

Proof of Proposition 5. The ‘if’ part of the proposition is immediate as
ex-post implementation by definition is independent of F'; (s_;) and hence
if it is feasible, it is feasible for every F_; (s—;).

For the ‘only if’ part, let F_; (s—;) be given by a distribution which puts
probability 1 on s_; and probability zero on all other realizations s’ , € S_;.
The implementation problem then reduces to a single agent implementation
problem for which dominant and Bayesian implementation conditions are

equivalent, and so are, a fortiori, ex-post and Bayesian conditions.ll

Proof of Proposition 6. The necessary conditions with a continuum of
allocations can be obtained directly by considering the conditions of the dis-
crete allocation model in the limit as the set of discrete allocation converges
to the set of a continuum of allocations. The details are omitted. W

Proof of Proposition 7. The sufficient conditions with a continuum of
allocations can be obtained directly by considering the conditions of the dis-
crete allocation model in the limit as the set of discrete allocation converges
to the set of a continuum of allocations. The details are omitted. B

Proof of Proposition 8. By assumption, u (x,w;,w_;) is supermodular

in (z,w;) for every w_;. The supermodularity property is preserved under
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expectations:

u (T, wi, s—;) E u (T, wi,w_; ||pj (wj|s;)

JF#i

and a fortiori u (x,w;, s—;) satisfies the single crossing property in (z,w;).
By Lemma 1 of Karlin & Rubin (1956), it follows that w (x,s;, s_;) satis-
fies the single crossing property in (x,s;). A similar argument applies to
w; (x,w;, $—;). Furthermore, by Theorem 1 of Karlin & Rubin (1956), it fol-
lows that an optimal strategy which is monotone in s; exists. This proves
the first part of the theorem.

If u (z,w;, s—;) is supermodular in (z,w;) for every s_;, then u (x, s;,5_;)
defined as

u(m Si, S z Zu €T,Wi, S —z)pz (wz‘sz)

is also supermodular in (x,s;) by Theorem 3.10.1 in Topkis (1998) since

pi (8;,w;) satisfies the monotone likelihood ratio.ll

Proof of Theorem 2. This theorem is a special case of Theorem 3 after
introducing the following ranking for the allocations. With a single unit
auction, the set of allocations is simply the assignment of the object to a
particular bidder. For every ¢, partition the set of allocation X into x; and
x_; and order the assignments such that x; > x_;. (The order among the

remaining bidders is irrelevant.) By definition of the single object auction
w; (r—;,w) = 0.

Moreover denote the only nontrivial (in terms of utility) assignment for
player ¢ by

u; (W) 2 u; (z,w) .

To verify the supermodularity property, it is therefore sufficient to examine
the behavior of

U (Ti,w) — u; (T_5,w)
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as a function of w;. Similarly for u_; (z,w). The result is now a direct

consequence of Theorem 3.1

Proof of Theorem 3. The proof is written for a continuum of allocations,
but all arguments go through with the obvious notational modification for
a finite set of allocations. The net utility of agent ¢ under the generalized
VCG mechanism is given by

v; (z,5,8) 2 u; (v,8) — t; (5), (26)

where s = (s;,5_4) is true signal and § = (S;,s_;) the reported signal. For
a fixed s_;, we can rewrite the transfer ¢; (s) to be determined directly by
x rather than 5. This is without loss of generality as we recall that t; (5) is
constant in § conditional on x. The net utility of agent ¢ can now be written

directly as
vi (2,8) 2w (z,8) —t; (). (27)

The transfer ¢; (z) for a continuum of allocations is then given by analogy
with (17) as

() =— [ 2B ), (28)

where s (z) defines s; such that for s = (s;,s_;), z is the optimal allocation.
It follows directly from (27) that v; (x,s) is supermodular in (z,s;) if and
only if u; (z, s) is supermodular in (z, s;), which in turn is guaranteed by the
supermodularity of u; (r,w) in (z,w;), as shown in Proposition 8. By the
same token, supermodularity of (z,s;) is preserved after taking the expec-
tation with respect to the signal F®-i of the remaining agents for u; (z, s)

and v; (z, s)
u; (2,85, 04) = Ba_, [u; (@, 55, 5_)]

and

(1>

v (2, 85,03) = Eq_, (v (x, si,5-4)]
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The expected value of the signal structure F'“ under the optimal allocation
policy, which by the ex-post efficiency of the VCG mechanism is identically
to z (s) for u(-) and v; (-), is denoted by:

vi (@) = vy (@i, ;) 2 Bg, [v; (2 (s) , 85, 0)] (29)
and likewise for the social utility function:
u (o) = u(ai,azq) = B, [u(2(s), 8,03 (30)

Next we show that the incremental returns from a less to a more effective
distribution, say « and ' respectively, are larger for the social objective
function than for agent ¢ if u_; (z,w) is supermodular in (z,w;). In other

words we want to show that
u () —u(a) > v () —v; (@) (31)

when o/ is more effective than a; and o ; = a_;. To this end, observe that

the inequality (31) can be written as
u_; (o) +t; (o) > u_i () +t; () (32)

where the utilities u_; (-) and ¢; (-) are evaluated for every signal s at z (s).
The inequality is then established if we can show that the function u_; (x, s)+
ti (x) is (¢) supermodular in (x,s;) and (i7) achieves a global maximum at
s = s(x) for all s. The first property is guaranteed by the same argument
as before if u_; (z,s) is supermodular in (z,s;). The second property is
established now. As

U4 (iL‘, 3) +1; (w) =u (iL‘, 3) — Y (.7),8) )
it follows that
u_i (,8) +; ()

has a stationary point at x for all s = s (x), since by (27):

Qu_;(x,s) Ol (x) _ Ou_i(x,s) Ou(w,s(x))
Ox or Ox Ox

=0
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Notice next that locally at s = s (x), the function is concave as the second

derivative with respect to x is given by

0*u_;(x,8)  O*u_i(x,s(x))  0*u_;(x,s(x))ds(z)

0z? 02 0x0s dx

as the first two terms cancel at s = s (x), and

0%u_; (x,s(x)) ds ()
0xds; dx

>0

by the supermodularity of u_; (x,s) and w (x, s) in (x, s;). Thus if the local
maximum would also be the global maximum, we would have u_; (z,s) +
ti (z) to be a supermodular objective function, with an optimal policy =
x (s) for all s, and hence by Theorem 5.1 of Lehmann (1988) o’ would have
a higher than a, which in turn would establish (32) and (31). However our
standing assumptions don’t allow us to conclude that the local maximum is
also a global maximum. This final obstacle can be removed by modifying the
objective function u_; (x, s) 4+ t; (x) through the addition of a new function

g (x,s) with:
G (x,8) Zu_;(x,s) +t;(x) +g(z,5)

such that the following properties are satisfied:

g(x(s),s) =0, at all x = x (s); (a)
G (z,s) is supermodular in (x,s;); (b)

and
G(x(s),s) > G (z,s), Vs,x. (c)

If a function g (x, s) exists such that G (z, s) satisfies the properties (a)—(c),
then it follows that, using the notation introduced in (29) and (30), that

G () > G ()
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and since (b) holds, we can conclude that
U_; (a') 4+t (a') >u_; (a) +t; (a)

even though the function u_; (x,s) + t; (z) is evaluated at x (s) for every s,
which may not be a global maximum for u_; (x,s) + t; (z). We therefore
conclude by constructing a function g (x,s) which achieves (a) — (¢). For

every s, define b (s) to be:

and define g (z, s) to be
gz, s) 2u(x,s) —u ;(r,s) —t; (x) —b(s). (33)

It is now easy to verify that G (x, s) shares the supermodularity properties
of u(z,s), has a global maximum at x = =z (s) for every s, and indeed
g(x(s),s) = 0, which concludes the proof. The corresponding result for

submodularity can be obtained by simply reversing the inequalities.ll
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