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Abstract

In repeated games with imperfect public monitoring, players can use
public signals to coordinate their behavior perfectly, and thus support co-
operative outcomes with the threat of punishments. But with even a small
amount of private monitoring, players’ private histories may lead them to
have sufficiently different views of the world that such coordination on pun-
ishments is no longer possible (we describe a simple strategy profile that is a
perfect public equilibrium of a repeated prisoner’s dilemma with imperfect
public monitoring, and yet is not an equilibrium for arbitrarily close games
with private monitoring). If a perfect public equilibrium has players’ behav-
ior conditioned only on finite histories, then it induces an equilibrium in all
close-by games with private monitoring. This implies a folk theorem for
repeated games with almost-public almost-perfect monitoring.
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tralian National University and Morris was visiting Northwestern University: we thank both
institutions for their hospitality. We thank an Associate Editor and two referees for helpful
comments. Mailath gratefully acknowledges financial support from NSF Grant #SBR-9810693
and Morris gratefully acknowledges financial support from the Alfred P. Sloan Foundation and
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Repeated Games with Almost-Public Monitoring

by George J. Mailath and Stephen Morris

1. Introduction

Perfect public equilibria of repeated games with imperfect public monitoring are
well-understood.! When public signals provide information about past actions,
punishments contingent on public signals provide dynamic incentives to choose
actions that are not static best responses (see Green and Porter [16] and Abreu,
Pearce, and Stacchetti [2]). Moreover, if the public signals satisfy an identifiability
condition, a folk theorem holds: if the discount rate is sufficiently close to one,
any individually rational payoff can be supported as the average payoff of an
equilibrium of the repeated game (Fudenberg, Levine, and Maskin [15]). Perfect
public equilibria of games with public monitoring have a recursive structure that
greatly simplifies their analysis (and plays a central role in Abreu, Pearce, and
Stacchetti [2] and Fudenberg, Levine, and Maskin [15]). In particular, any perfect
public equilibrium can be described by an action profile for the current period
and continuation values that are necessarily equilibrium values of the repeated
game. However, for this recursive structure to hold, all players must be able to
coordinate their behavior after any history (i.e., play an equilibrium after any
history). If the relevant histories are public, then this coordination is clearly
feasible.

Repeated games with private monitoring have proved less tractable. Since the
relevant histories are typically private, equilibria do not have a simple recursive
structure.?2 Consider the following apparently ideal setting for supporting non-
static Nash behavior. There exist “punishment” strategies with the property that
all players have a best response to punish if they know that others are punish-
ing; and private signals provide extremely accurate information about past play,
so that punishment strategies contingent on those signals provide the requisite
dynamic incentives to support action profiles that are not static Nash. Even in

LA strategy is public if it only depends on the public history, and a perfect public equilibrium
is a profile of public strategies that induces a Nash equilibrium after every public history. Recent
work (Kandori [18], Mailath, Matthews, and Sekiguchi [21], and Obara [25]) exploring private
strategy profiles in games with imperfect public monitoring suggests that there is more to learn
about games with public monitoring.

2 Amarante [4] provides a very large state space recursive characterization of the equilibrium
set of repeated games with private monitoring.
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these circumstances, there is no guarantee that non-static Nash behavior can be
supported in equilibrium. Even when one player is almost sure that another has
deviated and would want to punish if he believed that others were punishing, he
is not sure that others are almost sure that someone has deviated. With private
signals, unlike public signals, there is not common knowledge of the histories that
trigger punishments. If there is approximate common knowledge of the history of
play, it should be possible to support non-static Nash behavior with the type of
punishment strategies that we are familiar with from the perfect and imperfect
public monitoring cases. But in what sense must there be approximate common
knowledge of past play, and what kind of strategies will generate approximate
common knowledge of past play?

We approach these questions as follows: Fix a repeated game with imperfect
public monitoring and a strict pure strategy (perfect public) equilibrium of that
game. Consider first the simplest perturbation of the game to allow private
monitoring. Fix the set of signals in the public monitoring technology. Let
each player observe a (perhaps different) signal from that set under the private
monitoring technology. The private monitoring technology is said to be close
to the public monitoring technology if the probability that all players observe
the same signal, under the private technology, is close to the probability of that
signal under the public technology. In this case, we say that there is almost-public
monitoring. Now suppose players follow the original strategy profile, behaving as
if the private signals they observe were in fact public. When is this an equilibrium
of the perturbed game with private monitoring?

An important representation trick helps us answer this question. All perfect
public equilibria of a repeated game with public monitoring can be represented in
a recursive way by specifying a state space, a transition function mapping public
signals and states into new states, and decision rules for the players, specifying
behavior in each state (Abreu, Pearce, and Stacchetti [2]). We can use the same
state space, transition function and decision rules to summarize behavior in the
private monitoring game. Now each player will now have a private state, but
we can use the transition function and decision rules to define a Markov process
on vectors of private states. While this representation is sufficient for describing
behavior under the given strategies and is invaluable in our analysis, it is not suf-
ficient to check if the strategies are optimal. For this it is necessary to also know
how each player’s beliefs over the private states of other players evolve. A suffi-
cient condition for a strict strategy profile to remain an equilibrium with private
monitoring is that after every history each player assigns probability uniformly
close to one to other players being in the same private state (Lemma 3). Thus,
approximate common knowledge of histories throughout the game is sufficient
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for equilibria with public monitoring to be robust to private monitoring. But
for which strategy profiles will this approximate common knowledge condition be
satisfied, for nearby private monitoring? A necessary condition is that the public
strategy profile is connected: there is always a sequence of public signals that
leads to the same final state independent of the initial state. However, we show
by example that connectedness is not sufficient. One sufficient condition is that
strategies only depend on a finite history of play (Theorem 2).

These results concern the robustness to private monitoring of perfect public
equilibria of a fixed repeated game with imperfect public monitoring, with a
given discount rate. We consider these results, and the examples illustrating
them, to be the main results of the paper. The importance of finite histories is
particularly striking, given that many of the standard strategies studied, while
simple, do depend on infinite histories (e.g., trigger strategies). Our results convey
a negative message for the recursive approach to analyzing repeated games with
imperfect public monitoring. This approach is powerful precisely because it allows
for the characterization of feasible equilibrium payoffs without undertaking the
difficult task of exhibiting the strategy profiles supporting those payoffs. Our
results suggest that if one is concerned about the robustness of perfect public
equilibria to even the most benign form of private monitoring, fine details of
those strategy profiles matter.

Our main results hold for a fixed discount rate. How close the private monitor-
ing technology must be to the public monitoring technology depends, in general,
on the discount rate. However, we also provide results that hold uniformly over
discount rates sufficiently close to one. A connected finite public strategy pro-
file is said to be patiently strict if it is a uniformly strict public equilibrium for
all discount rates sufficiently close to one. In this case, approximate common
knowledge of histories is enough to show that there exists € > 0, such that for
all discount rates sufficiently close to one, the strategy profile is an equilibrium
of the private monitoring game, if the private monitoring technology is e-close
to the public monitoring technology (Theorem 3). This result is used to prove
a pure-action folk theorem for repeated games with almost-public, almost-perfect
monitoring (Theorem 5). Public monitoring is said to be almost perfect if the set
of signals is the set of action profiles and, with probability close to one, the signal
is the true action profile. There is almost-public almost-perfect monitoring if the
private-monitoring technology is close to some almost-perfect public-monitoring
technology. The folk theorem in this case follows from our earlier results, since
it is possible to prove almost perfect monitoring folk theorems by constructing
patiently strict finite history strategy profiles.

Thus far, our analysis has focused on a simple way of perturbing the public
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monitoring technology where we held fixed the set of signals. We briefly also
analyze private monitoring technologies with arbitrary signal sets. This analysis
builds on the insights developed in the two period example of Section 2 and brings
out more formally the role of approximate common knowledge assumptions.

There is now a growing and important literature looking at the role of mixed
strategies in repeated games with private monitoring. Sekiguchi [28] showed that
it is possible to achieve efficiency in a version of the repeated prisoner’s dilemma,
even if the private monitoring technology is independent, as long as it is suf-
ficiently accurate; this result and technique have been significantly generalized
(Bhaskar [8], Ely and Valiméki [13], Piccione [27], and Sekiguchi [29]). We discuss
Sekiguchi’s [28] construction (that is based on the grim trigger strategy profile) in
Section 5 after the grim trigger example (Example 5). This literature has focused
on the case of almost-perfect monitoring, but does not, as we do, require that
signals be almost public. The technique of Ely and Valiméki [13] parallels ours in
that they look at fully mixed strategy equilibria of a repeated game with public
monitoring and characterize when they continue to be equilibria in a related class
of private monitoring.?

An important negative result is proved by Compte [10], who considers trigger-
strategy equilibria of the infinitely-repeated prisoner’s dilemma. A trigger-strategy
equilibrium has the property that if, in equilibrium, a player defects, he then de-
fects thereafter with probability one. Compte shows that, for some class of full-
support independent-signal private-monitoring technologies and discount rates
close to one, the average expected payoff is close to the payoff from defection.?

We consider only the case of full support private monitoring with no commu-
nication. Thus, we exclude private monitoring environments where a subset of
players perfectly observe the behavior of some player (Ben-Porath and Kahneman
[6] and Ahn [3]); and we exclude the possibility of using cheap talk among the
players to generate common belief of histories (Compte [11], Kandori and Mat-
sushima [19], and Aoyagi [5]). In both approaches, the coordination problem that
is the focus of our analysis can be solved, although of course new and interesting
incentive problems arise. We also always analyze equilibria (not e-equilibria) and
assume strictly positive discounting. If players are allowed to take sub-optimal ac-
tions at some small set of histories, either because we are examining e-equilibria of
a discounted game or equilibria of a game with no discounting, then it is possible

30n mixed strategies in repeated games with private monitoring, see also Kandori [17] and
Bhaskar and van Damme [9].

“Matsushima [23] also shows an anti-folk theorem. In particular, suppose that signals are
independent and that players are restricted to pure strategies which depend on payoff-irrelevant
histories only if that payoff-irrelevant history is correlated with other players’ future play. These
restrictions are enough to prevent coordination.
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D C
D 0,0 r+1,—x
C|—-z,z+1 1,1

Figure 1: A Prisoner’s Dilemma

to prove stronger results (Fudenberg and Levine [14] and Lehrer [20]).

The paper is organized as follows. Section 2 discusses a two-period example
that develops intuition for the results that follow, as well as providing one setting
where it is possible to fully characterize pure strategy equilibria using approximate
common knowledge properties of the private monitoring technology. Section 3
introduces repeated games with public monitoring and the same-signal-set class
of nearby private monitoring technologies that we focus on. Sections 4 and 5
contain our main results on approximating arbitrary strict public equilibria, and
examples illustrating the results. Section 6 presents the high discounting version
of our finite history result and Section 7 applies this result to derive a folk theorem
for repeated games with almost perfect monitoring. Section 8 extends these
results to more general private monitoring technologies.

2. A Two Stage Example

We start by analyzing a two stage game. This example serves to introduce the
issues of approximate common knowledge of past play, as well as illustrating
two crucial assumptions. Section 2.2 shows that coordination is possible even
if monitoring is not almost public, once we allow for mixed strategies;® thus
the restriction to pure strategies is a substantive one. Our main positive results
concern strict pure strategy profiles of infinitely repeated finite-action stage games
with private monitoring. Section 2.3 describes an example which indicates the
necessity of the finite action assumption. Although we are interested in analyzing
repeated games, it is useful to start with a case where the game varies across
periods. We could illustrate the same points in a more complicated twice repeated
game.

Two players are involved in a two stage game. In the first period, they play
the prisoner’s dilemma in Figure 1, where x > 0. In the second period, they play
the coordination game in Figure 2, where a > 3 > 0. There is no discounting.

This analysis builds on Bhaskar and van Damme [9].
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G|aal 0,0
B 10,0 |88

Figure 2: A Coordination Game

2.1. Pure Strategy Equilibria

Consider first the case with perfect monitoring. It is possible to support (C,C)
in the first period with pure strategies only if &« — 3 > x. In this case, there is a
pure strategy equilibrium where each player chooses C' in the first period, G in
the second period if both chose C in the first period, and B in the second period
if either player chose D in the first period.

Now consider the case with imperfect public monitoring. Let p (y|a) be the
probability that public signal y € Y is observed if action profile a is chosen;
assume that p (| a) has full support for each a and is symmetric (i.e., p(-|CD) =
p(:| DC)). In any pure strategy equilibrium, either GG or BB must be played
following each signal. Thus we are interested in symmetric strategy profiles of the
form: each player chooses C' in the first period, chooses G if the public signal w
is an element of Y¢ and chooses B if a signal y € YB =Y \YG. Such a strategy
profile is an equilibrium if and only if

a[p (Y[ CO) = p (Y[ DO + 8o (Y| CC) = p (Y| DO)] =
(a=B)[p(YE|CC)—p(YC|DC)] > = (1)

Thus there exists a pure strategy equilibrium with first period cooperation if and
only if there exists Y¢ C Y such that (1) holds. The equilibrium is strict if the
inequality in (1) is strict.

Finally, consider the case with private monitoring. The simplest case of private
monitoring (and the focus of Sections 3-7) is a private perturbation of the public
monitoring technology (Y, p), in which each player privately observes a signal
from the space Y, and for each action profile a, there is a probability distribution
7 (-la) on Y2, We say that 7 is e-close to p if |7 (yyla) — p(yla)| < € for all a
and y. Consider the profile that specifies for player i, C in the first period, and
after y € YC, play G, and after y € YB, play B. Suppose moreover that (1)
holds strictly. Consider first the incentives in the second period, after observing
y € Y&, For e small, player i assigns a probability larger than (3 /(a4 3) to
the other player also having observed the same y (in fact, it is enough for the
other player to have observed some signal in the set Y'&), and so player i finds
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it optimal to play G. A similar argument applies for y € Y B. The last incentive
constraint to check is for the first period. Cooperating yields an expected payoff

1+ ar (Y9 xY?|CC) 4+ (YE xYB|CC)
while deviating yields the payoff
z+1+ar (Y9 xYY DC)+pr (YP xYP| DO),
and so deviating is not profitable if

alr(Y9xYC|CC)—n (Y9 xYY| DO)| +8[r(YExYE|CC) -7 (VP xYB|DO)] > a.
(2)

But since (1) holds strictly, for € small, the above inequality is satisfied.

We now consider more general private monitoring technologies (the case of
Section 8). Player i observes a signal w; from a finite set €2; concerning the first
period action profile; write 7 ((w1,w2) |a) for the positive probability that signals
(w1,ws) are observed when first period actions are a € {C, D}?; again assume that
7 (-] @) has full support for each a and is symmetric (i.e., m ((wj,w;)|(a;,a;)) =
7 (wi,w;) (@i, 7).

When the players play according to a Nash equilibrium of this two stage game
with private monitoring, the second stage can be viewed as a game of incomplete
information, with player ¢ having T; = {C, D} x €; as his type space. Moreover,
there is a joint distribution over this type space induced by first period behavior
and 7.

In order to characterize the critical properties of 7, we introduce belief op-
erators (Monderer and Samet [24]). For any E C §; X g, say that i p-believes
E at w = (wi,ws2) if 7(E |w;) > p. The belief operator for player i identifies the
signals at which i p-believes F, i.e.,

BP(E;a) = {w € O x Qg : m(E|w;, a) > p}.

The event E is p-evident (given a) if E C BY(FE;a) for i = 1,2. Note that if £
is p-evident, then (since belief operators are monotonic, in the sense that £/ C E
implies BY (E';a) C B} (E;a)) E C B (E;a) C B (B}(E;a); a), i.e., i also assigns
a probability of at least p to j assigning probability of at least p to E.

Lemma 1. There exists a pure strategy equilibrium with cooperation in the first
period if and only if each §); can be partitioned into sets {QlG, QF} such that

1. QF x QF is E%—evident (given CC),
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2. QP x OB is +5g-evident (given CC), and

3. am (QF xQF|CC) — 7 (9F x QF| DC)]
+3[m (QF x QF|CC) — 7 (QF x Q8| DC)] > =

This follows almost immediately from the definition of equilibrium. Suppose
there is a pure strategy equilibrium (51, 52) with

: G
= Cond R o) = | 5 il C b
Properties [1] and [2] in the Lemma follow from the requirement that second
period strategies constitute a (Bayesian) Nash equilibrium of the second period
game following C'C (this is a degenerate incomplete information game). Property
[3] of the lemma is the counterpart of (2) and ensures that it is optimal to play
C in the first period.

The Lemma provides an exact characterization of cooperative pure strategy
equilibria. The characterization places restrictions on all conditional probabilities.
However, if we just require a sufficient condition for cooperative pure strategy
equilibrium, we can allow for a set of signals that we do not allocate to one action
or another.

Corollary 1. There exists a pure strategy equilibrium with cooperation in the
first period if each €; can be partitioned into sets {QZG, Qv OB } such that;

1. QF x QS is E_%—evident (given CC)
2. OB x QB is +3g-evident (given CC), and
3 ar (06 x 05| 0C) —ar (05 00F) « (25 U) | pC)
+67 (0 @B’ ) = pr (P UY) x (27 UDY) \ DC) = a.
To see why, suppose the condition of the corollary is satisfied. Carry out the

following iterative procedure. Let Q8 (0) = QF and let QB (t+1) = QB (1) U

{wi € fl? S <ﬁ’19 (t) x SA)QB (t)’ wi,CC> > ﬁ} Observe that (AZF (t) is an in-

creasing sequence of sets. Let QF = Y (AZF (t) and let QF be the complement

of QZB. By construction, {QZG, Qf } partition €2;, QlG X Qg is E_%—evident (given
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CC) and OF x QF is sig-evident (given CC). Also, observe that QG C QF and
ﬁlB C QF imply that

a[m (Qf x QF| CC) —x (9F x QF| DO)] + 8 [r (QFf x Qf|CC) — = (QFf x QF| DC)]
> am <S~)1G X ﬁg‘CC) —aw((ﬁ?Uﬁ?) X (QQGUQQMDC)
+6r (OF x @29‘00) —pr (AP UOY) x (ﬁg’uﬁgf)‘pc) > 7.

So the premises of Lemma 1 are satisfied.
Our results on general private monitoring technologies in Section 8 build on
the sufficient condition of the Corollary.

2.2. Mixed Strategy Equilibria

The pure strategy restriction is key to the above analysis. The role of mixed
strategies in this context has been explored by Bhaskar and van Damme [9].
They consider a once repeated game with private monitoring. Our two stage
game is essentially a stripped down version of their repeated game. They note
that cooperation (i.e., an efficient but dominated action) is impossible in pure
strategy equilibria with independent signals, but that cooperation is possible with
correlated signals. Our Lemma 1 provides an exact description of how great the
deviation from independence must be to allow cooperation.

Bhaskar and van Damme go on to show that mixed strategies allow cooper-
ation in the first period, even with independent signals.® We now illustrate this
point in our example. In doing so, we describe how mixed strategies generate
the requisite approximate common knowledge even when the private monitoring
technology generates no correlation and thus no approximate common knowledge
of the signals.

Consider an independent monitoring technology, with €; = {¢,d}, in which
each player observes his opponent’s action correctly with independent probability
1 — ¢, and incorrectly with probability e. We denote the signal of the opponent’s

5The probability of cooperation is bounded away from one as the noise goes to zero. But
the additional use of public sunspots allows cooperation with probability approaching one using
mixed strategies, as the noise goes to zero.
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Ce cd De Dd
Ce| p(1—¢e) pe(l—e) |p(-pe-—e)| pl—pe
Cd| pPe(l—¢) pre? p(l—p)(1—e) |p(l—pe(l—e)
De|p(-—pe—e) | pA-p)(A-¢e) (1—p)*e )
Dd| p(-pe* |p(l-pe(l—e | A-pcl-g | A-p’1-2e"

Figure 3: The distribution over T x T, generated by mixing with probability «
on C.

Ce Cd Dc Dd

Cel(-e?]e(l—¢e)] 0] o0
Cd|le(l—e¢) g° 00
Dc 0 0 0] o
Dd 0 0 0] o0

Figure 4: The distribution if a = 1.

action by a lower case letter. Thus,

(1—5)2, if wg = as and wy = aq,
e(l—¢), ifw; =ayand wy # ay,
e(1—e¢), ifw # ag and we = ay,

g2, if w1 # as and wo # ag.

T ((w1,w2) | (a1, a2)) =

Suppose that each player cooperates in the first period with probability p and
defects with probability 1—u. The induced distribution over the type space T} xT5
is given in Figure 3. Setting u = 1 gives the pure strategy outcome of first period
cooperation, with an induced distribution over types given in Figure 4, which is
not consistent with punishment strategies in the second period (by the argument
of Lemma 1). In particular, the event {(Cc,Cc)} is (1 — €)-evident, while the
event {(Cd,Cd)} is only e-evident. The difficulty, of course, is that specifying
B after a realization of ¢ (as would be required by condition [2]) removes any
incentive to choose C in the first stage. From the induced probability distribution
on the type space T1 x To we also see that for u = 1, the types are independent.

On the other hand, mixed strategies generate correlated types. As e — 0
(holding i constant), the distribution over types tends to the distribution given
in Figure 5. In other words, for any p < 1, {Cc} x {Cc} and {Cd, Dc, Dd} x
{Cd, D¢, Dd} are both p-evident sets for e small. Thus, for small ¢ and mixed
first period strategies, there is no problem coordinating punishments in the second
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Cc Cd Dc Dd
Ce | u? 0 0 0
Cd| 0 0 p(l— p) 0
Dc| 0 | p(l—p) 0 0
Dd| 0 0 0 (1—p)*

Figure 5: The distribution if ¢ = 0.

period.
It is straightforward to construct symmetric mixed strategy equilibria using
the above insight. Consider the following mixed strategies:

171 K, if a; = C,
Ui[“i]:{1—u if al = D
? 7 9y

and
1, ifa? =G and a} = C and w; =,

if a% = B and either ail =D orw;,=d,
0, otherwise.

Second period optimality requires that the event {Cc} x {Cc} be QL;B—evident
while the event {Cd, Dc, Dd} x {Cd, D¢, Dd} is aLﬁB Thus is equivalent to re-
quiring

pl-e? B
p(l—e)+ 1l —-pe  a+p
pt+(1-—p(d-e _ _a
pe+(l—p)(l—e) ~a+p
pl-e+(1-mwe _a
p(l—e)+(1—-pe ~a+tpf

(1-9+(1-w(=5)  a
pe+(l-—p)(l—g) ~a+f
These inequalities will all hold as ¢ — 0 as long as x is bounded away from 1.

For the mixed strategy to be optimal in the first period, we must have the payoff
to cooperating,

)

; (3)

p{l+(1—-e a+e- B +1—-—p{-z+1-¢) B}



Almost-public monitoring 12

equal to the payoff from defecting,

p{l+z+1—-e)- B+ 1 —-p){s}.

Thus we must have

_(e) = r+el
=Hn S (1—e)?(a—pB) 4228

Ase —0,pu(e) — g Thus if o« — 8 > x, there will be an equilibrium with first
period cooperation, for sufficiently small e.

As a final comment on mixed strategies, note that an earlier period with
private monitoring may allow the mixed strategy equilibrium to be purified.

2.3. An Anti-Folk Example

The pure strategy results in our two stage example relied on the discrete action
space. Within the class of pure strategy equilibria, non-strict pure strategy equi-
libria only arise as non-generic cases. But strictness combined with the finite
action assumption implies uniform strictness, i.e., for some strictly positive ¢, the
payoff to an equilibrium action is ¢ larger than the payoff of any other action.
We use this property heavily in our repeated game arguments. We show here
how replacing the second stage game with a continuum action coordination game
destroys the possibility of first period cooperation under any private monitor-
ing technology. This is even though first period cooperation is possible under
imperfect public monitoring.

Let two individuals play the prisoner’s dilemma in Figure 1 (with > 0) in
the first period. But in the second period, they play the following convention
game. Player i chooses an action a; € [0, 1]. Payoff functions are

g1 (a17a2) =ax —7 (al - a2)2

and
g2 (a1,a2) =1 — a1 — v (a1 — a)*,

where v > 0. This is a special case of a class of games analyzed by Shin and
Williamson [30]. There is a continuum of Nash equilibria: since each player’s
best response is to copy his opponent’s action, (ai,as) is a Nash equilibrium if
and only if a1 = ao. Thus the sum of players’ payoffs is 1 in any equilibrium. But
player 1 prefers equilibria with high actions, while player 2 prefers equilibria with
low actions. Note that for small -, the symmetric efficient outcome has player 1



Almost-public monitoring 13

choosing action 0, player 2 choosing action 1, and both players obtaining a payoff
of 1 — 7.

With perfect monitoring, it is possible to support cooperation in the first
period exactly if % > x. In this case, there is a pure strategy equilibrium where
both players choose C' in the first period. If both chose C in the first period, then
both choose action % in the second period. If player 1 chose action C and player
2 chose action D, then they both choose action 1 in period 2. If player 2 chose
action C' and player 1 chose action D, then they both choose action 0 in period
2.

One can similarly support first period cooperation with imperfect public mon-
itoring. We will establish that first period cooperation is impossible with private
monitoring. We first analyze what happens when the convention game is played
once, but each player has access to some payoff irrelevant signal; specifically, each
player observes a payoff irrelevant signal w; € €2;, where each §2; is finite and
(w1,ws) is drawn according to some full support distribution 7 € A (21 x Qs).
For any z € [0, 1], this game has a constant equilibrium where each type of each
player chooses action z. Shin and Williamson [30] showed that there are no other
equilibria. The argument is elementary. Let @ be the largest action chosen by
any type in an equilibrium. This is a best response only if every type of the other
player chooses action @. Thus play contingent on (full support) payoff irrelevant
signals is inconsistent with equilibrium in this example. But this in turn implies
that players’ second period strategies in the two stage game with private moni-
toring are independent of their type, i.e., their first period action and observed
private signal. Thus each player must defect in the first period.

If a game has multiple Nash equilibria, the finite folk theorem of Benoit and
Krishna [7] shows that one may obtain any feasible and individually rational
payoff in perfect equilibrium if the game is repeated often enough. Analogous
imperfect public monitoring results also hold. However, it is a straightforward
corollary of our earlier arguments (and backward induction) that if the convention
game is repeated any finite number of times, with full support private monitoring,
any Nash equilibrium of the repeated game must consist of a sequence of static
Nash equilibria. A formal proof of this claim is presented in Mailath and Morris
[22, Section 3.

3. Games with Almost-Public Monitoring

In this section, we begin our investigation of the extent to which games with
public monitoring can be approximated by games with private monitoring. We
first describe the game with public monitoring. The finite action set for player
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i€{l....,N}is A;. The public signal is denoted y and is drawn from a finite set
Y. The probability that the signal y occurs when the action profilea € A =[], 4;
is chosen is denoted p(y|a). We assume p(yla) > 0 for all y € Y and all a € A.
We are thus restricting attention to full support public monitoring (this plays
an important role, see Lemma 2 below). Since y is the only signal a player
observes about opponents’ play, it is common to assume that player i’s payoff
after the realization (y,a) is given by u} (y,a;). Stage game payoffs are then
given by w; (a) =3 , u; (y,a:) p (y|a).” The infinitely repeated game with public
monitoring is the infinite repetition of this stage game in which at the end of the
period each player learns only the realized value of the signal y. Players do not
receive any other information about the behavior of the other players. All players
use the same discount factor, 9.

Following Abreu, Pearce, and Stacchetti [2] and Fudenberg, Levine, and
Maskin [15], we restrict attention to perfect public equilibria of the game with
public monitoring. A strategy for player ¢ is public if, in every period ¢, it only
depends on the public history A* € Y*~!, and not on i’s private history. Hence-
forth, by the term public profile, we will always mean a strategy profile for the
game with public monitoring that is itself public. A perfect public equilibrium is
a profile of public strategies that, after observing any public history hf, specifies
a Nash equilibrium for the repeated game. Under imperfect full-support public
monitoring, every public history arises with positive probability, and so every
Nash equilibrium in public strategies is a perfect public equilibrium. Henceforth,
equilibrium for the game with public monitoring means Nash equilibrium in pub-
lic strategies (or, equivalently, perfect public equilibrium).

Any pure public strategy profile can be described as an automaton as follows:
There is a set of states, W, an initial state, w' € W, a transition function
0:Y xW — W, and a collection of decision rules, d; : W — A;.8 In the first
period, player i chooses action a} = d; (wl). The vector of actions, a', then
generates a signal y' according to the distribution p (-|a1). In the second period,
player i chooses the action a? = d; (w2), where w? = o (yl, wl), and so on. Since
we can take W to be the set of all histories of the public signal, Ukzoyk , Wis at
most countably infinite. A public profile is finite if W is a finite set.

If the profile is an equilibrium, each state has a continuation value, de-
scribed by the mapping ¢ : W — R, so that the following is true (Abreu,

"While interpreting u; as the expected value of u} yields the most common interpretation of
the game, the analysis that follows does not require it.

8Since we are restricting attention to pure strategies, the restriction to public strategies is
without loss of generality: any pure strategy is realization equivalent to some pure public strategy
(see Abreu, Pearce, and Stacchetti [2]).
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Pearce, and Stacchetti [2]): Define a function g : A x W — W by g(a;w) =
(I =06)u(a) + 63, ¢ (o (y;w)) p(yla). Then, for all w € W, the action profile
(di(w),...,dn(w )) d (w) is a pure strategy equilibrium of the static game
with strategy spaces A; and payoffs g;(-; w) and, moreover, ¢ (w) = g (d (w),w).
Conversely, if (W,wl,a,d, d)) describes an equilibrium of the static game with
payoffs g (;w) for all w € W, then the induced pure strategy profile in the in-
finitely repeated game with public monitoring is an equilibrium.?

Here we consider private monitoring where the space of potential signals is
also Y'; Section 8 extends the analysis to a broader class of private signals. Each
player has action set A; (as in the public monitoring game) and the set of private
signals is Y. The underlying payoff structure is unchanged, being described by
w} (yi, a;). For example, if y is aggregate output in the original public monitoring
game, then y; is i’s perception of output (and i never learns the true output). In
a partnership game, y may be the division of an output (with output a stochastic
function of actions), and private monitoring means that player ¢ is not certain of
the final payment to the other partners.

The probability that the vector of private signals y = (y1,...,yn) € Y is
realized is denoted = (y|a). We say that the private monitoring distribution m
is e-close to the public monitoring distribution p if |7 (y,... ,yla) —p(yla)| < €
for all y and a. If 7 is e-close to p, then }_ 7 (y,... ,yla) > 1 —e[Y] for all
a, where |Y| is the cardinality of Y. We denote the vector (1,...,1) by 1

whose dimension will be obvious from context. Thus, 7 (y, ... ,y|a) is written as
7 (ylla). Let m; (y—;|a,y;) denote the implied conditional probability of y_; €
YN-1. Moreover, for w € W, wl denotes the vector (w,...,w). Note that for

all n > 0, there is an & > 0 such that if 7 is e-close to p for ¢ € (0,&), then

Sy 5 (s 03) 7 (¥10) = X2y, 05 (31 1) p (3ila)| <

An important implication of the assumption that the public monitoring is full
support is that when a player observes a private signal y, then (for ¢ small) that
player assigns high probability to all other players also observing the same signal,
irrespective of the actions taken:

Lemma 2. Fix n > 0. There exists € > 0 such that if ¢ € (0,€) and 7 is e-close
to p, then for all a € A,

i (ylla,y) >1—n

9We have introduced a distinction between W and the set of continuation payoffs for conve-
nience. Any pure strategy equilibrium payoff can be supported by an equilibrium where W C R!
and ¢ (w) = w (again, see Abreu, Pearce, and Stacchetti [2]).
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Proof. Fix the action profile a € A. The probability that player ¢ observes the
private signal y is >, 7 (y,y—;|a) and this probability is smaller than

(pyla)+e)+ > w(yy-ia)<p@la)+e+d>. > 7(yy-ila)

y-i#yl yeY y_i#yl

<p@la)+e+ (1= 7(ylla)

yey
<p(yla) +e(@+[Y]).

Thus, the probability that player ¢ assigns to the other players observing the same
signal y, m; (ylla,y), is at least as large as 7 (y1la) {p (yla) +e (1 +|Y )} *
(0 (yla) =) {p (yla) + & (1 +[Y[)}~". Thus, by choosing

np (yla)
€ < min ,
acA 2+ |Y|—=n(1+]Y])

we have 7; (y1|a,y) > 1 —n for all a.
|

Every public profile induces a private strategy profile (i.e., a profile for the
game with private monitoring) in the obvious way:

Definition 1. The public strategy profile described by the collection (VV, w!, o, d)

induces the private strategy profile s = (s1,...,sn) given by:
st = dz(wl),
2.1 1 _
s (ad,u1) = di (0 (yi,w')) = d;
and defining states recursively by th =0 (yf, wf), for hl = (all, yil; a?, yiz; . ;aﬁ L yf 1)

€ (AxY),

st (hf) =d; (wf) .

That is, we are considering the public strategy translated to the private con-
text. Note that these strategies ignore a player’s actions, depending only on the
realized signals. If W is finite, each player can be viewed as following a finite
state automaton. Hopefully without confusion, we will abuse notation and write
w! = o (hf;w') = o (hl), assuming that the initial state is taken as given. We
describe w! as player i’s private state in period ¢. It is important to note that

while all players are in the same private state in the first period, since the signals
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are private, after the first period, different players may be in different private
states. The private profile is the translation to the game with private monitoring
of the public profile of the game with public monitoring.

If player i believes that the other players are following a strategy that was
induced by a public profile, then a sufficient statistic for h! is player i’s private
state and i’s beliefs over the other players’ private states, i.e., (wf, ﬂﬁ), where
ﬁf €A (WN *1). In principle, W may be quite large. For example, if the public
strategy profile is nonstationary, it may be necessary to take W to be the set
of all histories of the public signal, Up>oY*. On the other hand, the strategy
profiles typically studied can be described with a significantly more parsimonious
collection of states, often finite. When W is finite, the need to only keep track of
each player’s private state and that player’s beliefs over the other players’ private
states is a tremendous simplification.

Example 1. Consider the prisoner’s dilemma with payoffs, u, given by:

Player 2
C D
Player 1 C | 2,2 | —1,3
D|3,-1] 0,0

The game with public monitoring has signals y € {g, g}, where

_ . b, jfaichi:LQ’
p{ylaraz} = { g, otherwise,

with p > q. The first profile we consider is described as follows: W = {w, w},
wl = w, dl ("D) = C: dl (w) = D7 and

o (yw) ={

w, if

This is an equilibrium of the game with public monitoring if1 > 6 > [3 (p — ¢)] .
A notable feature of this profile is that o has finite (in fact, one period) memory.
The actions of the players only depend upon the realization of the signal in the
previous period. Thus, if player 1 (say) observes y and assigns a probability
sufficiently close to 1 that player 2 had also observed ¥, then it seems reasonable
that player 1 will find it optimal to play C.
Consider now a private monitoring distribution w, where 7 (y1y2|CD) = 7 (y1y2| DC) =

7 (y1y2| DD) = 72 and 7 (y192|CC) = 7€, . Note that the private monitor-

Y1y2 Y1y2*
ing distribution is identical if at least one player chooses D. Suppose player 1
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observes the private signal §j and assigns a probability 3 to her opponent having
also observed 3. We can write the incentive constraint for player 1 to follow the
profile’s specification of C as follows:

]
+(1 -8 {1 -8 (-1)+8 |[rhV" + wgyvfﬂ D vyy D vyﬂ }
ﬁ{( )3+5[ DV b vt H
+(1-p) {5 [W%Vf/y + W%‘/l =+ ngVl— + 7ryD_yV1—} } ,

where V*¥? is the continuation to player 1 under the profile when player 1 is in
state (has just observed) y1 and player 2 is in state y. This expression simplifies
to

88 { (v — nby) V7 + (25, — w0 ) VG, — 70 ) V¥ + (G, — =5, ) Vi)
>(1-6). (4)

The continuation values satisfy:

VI = (1= 6)2+ 8 {nG V7 + G2 + nGVE + n GV,
(

V= — (1= 8) + 8 {a BV + nb v+ DV 4 b VL,
Vlgg =(1-6)3+6 {W?—ijg + 7T—D V'ﬂE + WD—VEg + WinJ—y} , and
vy yy Yy vy
Vi =6 {rB VI + b v+ DV D VL,
Thus,
D C C D
- " (1-90) {2 +6 (77732 - 7Tgy> + 36 <7r£g - W£g>}
Vil-vi= 1— 6 (xC D ' (5)
— 8 (ngy — mip)
Suppose the prjvate monitoring distribution has the particularly simple form
ng =p(1—2e), 75 = q(1 —2¢), and W% = 7?% = Wﬁj = wgy = ¢.19 Then

(4) simplifies to

98 (p—a) (1 - 2¢) (W7 - V) = (1-9).

10This is the case analyzed in Mailath and Morris [22, Section 4.1].
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while (5) simplifies to

- 2(1— 6)
9y _ ¥y
[ B Y s R

so that the incentive constraint is satisfied if

_ 1
b(p—q)

Recall that the public profile is an equilibrium of the game with public moni-
toring if 3 > [6 (p — q)] ', and fix some § > [3 (p — q)]'. We claim that the same
upper bound on ¢ suffices for the private profile to be an equilibrium of the game
with private monitoring for any 6 > 4. For the incentive constraint describing
behavior after §, it suffices to have the inequality (6) hold for § = §, which can be
guaranteed by ( close to 1 and € close to 0. A similar calculation for the incentive
constraint describing behavior after y yields the inequality

(1+28) (1 —2¢) > (6)

6(p—q)(1—-25)(3-28) <1,

which can be guaranteed by appropriate bounds on $ and e, independent of .
Finally, Lemma 2 guarantees that 3 can be made uniformly close to 1 by choosing
e small (independent of history).

Example 1 has the strong property that bound on the private monitoring can
be chosen independent of §. We return to this point in Section 6.

4. Approximating Arbitrary Strict Public Equilibria - The Fixed
Discount Factor Case

We now formalize the idea that if players are always sufficiently confident that
the other players are in the same private state as themselves, then the private
profile induced by a strict public equilibrium is an equilibrium. In this section
and the next, we focus on the case of fixed discount factors. More specifically,
we ask: If a public profile is a strict equilibrium for some discount factor 8, then,
for close by private monitoring distributions, is the same profile an equilibrium
in the game with private monitoring for the same discount factor 67

Denote by V;(h!) player i’s expected average discounted payoff under the
private strategy profile after observing the private history hf. Let §; (|hl) €
A (WN *1) denote i’s posterior over the other players’ private states after ob-
serving the private history hf. We denote the vector of private states by w =
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(wi,...,wy), and w_; has the obvious interpretation. We also write d (w) =
(di (w1),...,dn (wy)). Finally, 8; (o (ht) 1|hl) is the posterior probability that
player ¢ assigns to all the other players being in the same private state as player
i after the private history hf, i.e., in the private state o (hf).

Lemma 3. Fix 6 and a public profile. For all v > 0, there exists n > 0 and
e > 0, such that if the posterior beliefs induced by the private profile sat-
isfy 3; (o (k%) 1|ht) > 1 —n for all hf, and if 7 is e-close to p, then for all hf,

(it) - 6. (o (i) < v

Proof. Consider first the case where the stage game payoff is independent of 7
and given by u; (a).

Under the strategy profile s, the vector of actions chosen in each period is
only a function of the vector of private states. Fix a private history for player
i, hi, and let w! = o (h!). Note that since V; is in the convex hull of stage
game payoffs, ]Vl (hf)] < B = max;, |u; (a)| for all h. Since V; and ¢; are the
equilibrium continuation values in the games with private and public monitoring,
respectively, we have

Vi (k) = 32 { 0= 0y ) s wv-0)

w_;

+6> Y Vi(hhdi (wh) yi) m (yiy—aldi (w]) ,d—s (W) p B; (w—i|hf)

Yi y_;cYyN-1

and

¢ (wh) = (1— 8w +6Z¢Z (i3 wf)) p (yild (wy)) -

Vi (1) — 65 (wf)] <

Then, since 8 (wf1|hf) >1-—n,

(1-n 52 Dov) D 7w (weyild (w)) — ¢ (o(ysw)) p (vild (wf))| +2nB

y_i€YN-1

Z!V i) — & (o(yiswh) | p (vild () + 29 B



Almost-public monitoring 21

> T yild (wi)) = p (vild (wi))

y_i€YN-1

—n) Z Vi (hi; di (wf) ,yi)| %
Yi

gé(l—n)Z\Vi(hﬁ;di(wf)’yi)—¢z( (wi; i) | p (vild (w;)) +2nB

+8(L=m)BY_|m (yilld (w)) —p (wild (w)) + > 7 (vi,y—ild (wi))
Yi y-i#yil

<6(L—n) > |Vi (Bsdi (wh) ,yi) — &5 (o(wiswh)) | p (wild (w})) +20B

Yi

+6(1—n) Z{e+ > w(yyild (w ))}

Yi —i#yil

<8 =n) Y |Vi (b di (wh) i) = 5 (o(ysswh)) | p (yild (wh)) +20B +6 (1 —n) Be2|Y].

Taking the supremum on both sides with respect to private histories gives

s;lﬁp ‘Vz (hf) - ¢z (U (hi))‘ < 5(1 — 77) iLf Vi (iﬁ) - ¢Z (0’ (hf))’ + 2B (77_|_ (1 _ 77) Se ’Y’)

Rearranging,

t . 2B (n+ (1 —n)ée|Y))
S;thp}V(h) o))l = —T—sa—)

and, for fixed ¢, the right hand side can be made arbitrarily small by choosing n
and ¢ small.

Now consider u; (a) = >, uf (yi,a;) 7 (yla). Since |3 o u; (yi,a;) 7 (yla) —

>y Ui (Yis aq) p(yi|a)‘ can be made arbitrarily small by choosing ¢ small, the
above argument applies, mutatis mutandis. |
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Given this lemma, the next result is almost immediate. It is worth empha-
sizing again that the induced profile in the game with private monitoring is an
equilibrium (for sufficiently small ¢) for the same discount factor; in contrast to
Example 1, the bound on ¢ depends on ¢, and this bound becomes tighter as
06— 1.

Theorem 1. Suppose the public profile is a strict equilibrium of the game with
public monitoring for some § and that it has a finite state automaton description.
For all k > 0, there exists 7 and € such that if the posterior beliefs induced by the
private profile satisty [3; (a (hf) 1]h§) > 1 —n for all ht, and if 7 is e-close to p,
then the private profile is an equilibrium of the game with private monitoring for
the same 6, and the expected payoff in that equilibrium is within k of the public
equilibrium payoff.

Proof. Let (VV, wl,a,d) be the automaton description of the public profile.
The one-stage deviation principle applies, so it is enough to show that for all
ht, no player has an incentive in period ¢ to choose an action different from

a; = d; <a <ﬁf>> Fix a history iﬁ Let wl =0 <ﬁf) Since the public monitoring

equilibrium is strict, there exists 6 such that, for all a; # a; = d; (wf),
o; (wf) —0>(1-0)u (a,, i + 62@ Y w (y|ai,d_i (wf)) .
(7)
Using Lemma 3, by choosing n and £ sufficiently small, we have for all a; # a;,

V(i)=Y {(1 ~ 8) i (@i, ds (W)

w_g

+6> D> Vilhisdi(o (b)) u ™) 7 (oo y-ildi (o (k) di (W) ¢ Bi (wilhi)

Yi y_,€yN-1

Since A; and W are finite, 8 can be chosen independent of ﬁf, and so we are done.
|

A similar result holds for strict public profiles that have an infinite state
automaton description, as long as the incentive constraints are “uniformly strict,”
i.e., @ in (7) can be chosen independently of the state w!.
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Thus, the key question is the behavior of j3; (0 (hf) llhf). In particular, can
B; (o (ht) 1|hl) be made arbitrarily close to 1 uniformly in hf, by choosing e
sufficiently small? It is straightforward to show that for any integer T' and 1 > 0,
there is an & such that for any private monitoring distribution that is e-close to
the public monitoring distribution, with € € (0, &), the beliefs for player i satisfy
B; (o (k) 1|hl) > 1—nfor t <T. The difficulty is in extending this to arbitrarily
large T'. As T becomes large, the bound on € becomes tighter.

There is one important case where 3; (o (hf) 1|h!) can be made arbitrarily
close to 1 uniformly in h!, and that is when the public strategy profile only
requires finite memory of the public signals.

Definition 2. A public profile has finite memory (of public signals) if there is an
integer L such that W can be taken to be the set (Y U {x})*, and o (v, (y", ... 2 yh)) =
(v,y",...,y?) for ally € Y. The initial state is w* = (x,... ,*).

We have introduced the “dummy” signal * to account for the first L periods.
This allows for finite memory profiles in which behavior in the first L periods is
different from that when L periods have elapsed. An example of a profile that
does not have finite memory is the grim trigger profile in the infinitely repeated
prisoner’s dilemma. In this profile, player i plays C in the first period, and con-
tinues to play C as long as 7 is observed, and plays D forever if ever y is observed.
While it is true that this profile only requires one-period memory if that memory
includes both last period signal and action, if only signals can be remembered,
then the entire history of signals is required: the strategy requires player i to
play C after (7,7,--- ,¥), and to play D after (y,%,---,%). Moreover, this de-
pendence on arbitrarily long histories of signals implies that in some situations,
even though the public trigger profile is an equilibrium, the private trigger profile
is not an equilibrium in close-by games (Example 5). On the other hand, other
significant strategies from the literature on repeated games with imperfect public
monitoring do have finite memory: the two-phase, “stick and carrot,” strategies
of Abreu [1] have finite memory and are optimal punishments, within the class
of symmetric strategies, in a repeated Cournot game.

Theorem 2. Given a finite memory public profile, for all n > 0, there exists
e > 0 such that if 7 is e-close to p, the posterior beliefs induced by the private
profile satisfy 3; (o (k%) 1|ht) > 1 —n for all ht.

Proof. Denote by L the length of the memory of the public profile. Each player’s
private state is determined by the last L observations of his/her private signal.
Suppose t + 1 > L and denote player ¢’s last L observations by w = (y;,... ,yF)
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(this is just player i’s private state wf“). In period 7, t+1— L <7 < t, player
i chooses action a] = d; (w]), where w] is player i’s private state in period T,
given the private state wa_L and the sequence of private observations yl-l, e yf ,
where ¢ = 7 — (t — L). Note that the index ¢ runs from 1 to L. For notational
simplicity, we write af for aﬁ_LH . We need to show that by making ¢ sufficiently
small, the probability that player ¢ assigns to all the other players observing the
same sequence of private signals in the last L periods can be made arbitrarily
close to 1. Let alF) € AL denote a sequence of L action profiles, where a’ ;€A

is arbitrary. Then,
L

Pr {w = wl]a(L)} = H?T (yfl]cf)

=1

and
L
Pr{wi:w!a(L)} = Z Hﬁ(ye—i,yf]o/),
(v, yk,)ey(N-DL L=1

Since these probabilities are conditional on the actions taken in the last L periods,
they do not depend upon player i’s private state in period ¢t + 1 — L. Then for
any 1 > 0, there exists & > 0 such that for all a/®) € AL and ¢ € (0,2),

e (=t ) - P =01
Pr {wi = w|a(L)}
HZL:I ™ (yfl]a‘f)
Z(yii,... yh)eyW-nL HZLZI 7 (y—i» yf|ae)
>1-n.

[For ¢ = 0, Pr {w_i =wl|lw; = w,a(L)} = 1. Moreover, the denominator is

bounded away from zero, for all ¢ > 0 and all al®) € AL and so continuity

implies the result. The details are almost identical to the proof of Lemma 2.]
Let A € A (AL) denote the beliefs for player ¢ over the last L actions taken

by the other players after observing the private signals w. Then,

= =) = = ;= w,a) (L)
Pr{w_; = wl|w; = w} a(L)zE:ALPr{W wl|lw; =w,a })\(a >

> (1—n) Z A(a(L)> =1-n.

a(L) e AL
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Figure 6: A profile supporting some cooperation when p and g are both close to
1.

5. Examples
To illustrate the general problem, we analyze a series of examples in some depth.

Example 2. (Prisoner’s Dilemma again.) Consider the environment described
in Example 1. For 3p > 2+ q and 6 > 1/(3p—q— 1), the profile described
as follows is a public perfect equilibrium: W = {w,w}, w' = w, d; (w) = C,
d; (w) = D, and

w, ifw=w andy =7y,
orw=w and y =y,
w, ifw=wandy=y,
orw=w and y = j.

o (yw) =

The idea of the profile is that behavior starts at C'C, and continues there as long
as the “good” signal i is observed, and then switches to DD after the “bad”
signal y. In order to generate sufficient punishment, the expected duration in the
punishment state w cannot be too short, and so play only leaves DD after the less
likely signal y is realized. The profile is illustrated in Figure 6. This profile (unlike
the previous_one) does not require q < 2/3, although it does require p > 2/3.
This profile cannot be approximated in some close-by games with private mon-
itoring. Consider the private monitoring technology m obtained by the compound
randomization in which in the first stage a value of y is determined according to
p, and then in the second stage, that value is reported to player ¢ with probability
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(1 —¢) and the other value with probability ¢; conditional on the realization of
the first stage, the second stage randomizations are independent across players.

Suppose that the associated private profile is an equilibrium. The profile
induces a Markov chain on the state space W? = {ww, ww, ww, ww}, with tran-
sition matrix:

p(l—e)’+(1—p)e? (1-q)(1—e)*+qe?

e(l—e) e(l-e)

1-p)(1—¢e)’+p? ql—e)’+(1—q)e? e(l-¢) e(l—e)
e(l-e) e(l-e) q(1-— 6)2+(1—Q) 2 (1—Q)( —e) +
e(l—¢) e(l—¢) 1-—q)(1—e)’+g? qg(l-e)+(1—g¢

This Markov chain has a unique invariant distribution o, where
(1-q@)(1-e)?+¢+e(l—¢)
2((p+q) e24+2—-p-— q)(1—5)2+25(1—5)>
(1-p)(1—e)+p+e(l—e)
2((p+Q)E2 2—p-— q)(1—5)2+26(1—€)>7

and

1
a5 == 1 = Pr (ww) = oj.

.
=
&
E
I

For ¢ small, this distribution is close to o, where

o__(d-a9d o _(A-p)
"T202-p—q’ 7 202-p—q)

Consider now the question of what beliefs a player should have over the opponents’
private state after a very long history. Observe first that the probability that 1
assigns to 2 being in state w, conditional on 1 being in state w, is close to (for e
small)

1
and a3 = af = =

a 4

I 2(1—q) _2(1-9q)
Priwlo} = s v e —p—0  1-p=3¢

while the probability that 1 assigns to 2 being state in w, conditional on 1 being
in state w, is close to
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Then, for € small,
Pr{w|w} < Pr{wlw}.

Since this probability is the (asymptotic) expected value of the player’s beliefs,
where expectations are taken over the private histories, there are two histories hl
and iﬁ such that w = o (ht) and w = o <ﬂf) and Pr {u_) ﬁf} < Pri{w }hf }. But
if C is optimal after hf, then it must be optimal after h%, and so the profile is not
an equilibrium of the game with private monitoring.

In this example, once there is disagreement in private states, the public profile
maintains disagreement. Moreover, when there is private monitoring, disagree-
ment arises almost surely, and so players must place substantial probability on
disagreement. Thus, a necessary condition for beliefs to be asymptotically well
behaved is that the public profile at least sometimes moves a vector of private
states in disagreement into agreement. The following property of connectedness
also plays a critical role in obtaining on ¢ that are uniform in 6, for ¢ close to 1.

Definition 3. A public profile is connected if, for all w,w’ € W, there exists m
and y',...,y™ and w € W such that

o (ym,a (ymfl,... , O (yl,w))) =w=0 (ym,a (ymfl,... ,o (yl,w’))).

While stated for any two states, connectedness implies that any disagreement
over all the players is removed after some sequence of public signals, and so, is
removed eventually with probability one.

Lemma 4. For any connected finite public profile, there is a finite sequence of
signals y', ... ,y™ and a state w such that

U(y",a(ynfl,... ,a(yl,w))) =, Yw e W.

Proof. We prove this for |IW| = 3, the extension to an arbitrary finite number of
states is straightforward. Fix w', w?, and w3. Let y',... ,y™ be a sequence that

satisfies o (y™,0 (y™1,... ;o (yhw'))) = o (y™ o (y™ ... o (¥h,w?))) =

w. Since the profile is connected, there is a sequence of signals y™ 1!, ... ,ym“"l

such that o(y™ ™, o(y™t™ 1, ... o (y" 1 w))) = o(y™t™ o(ymtm™ =l o (y™ 1, w'))),
where w' = o (y™,0 (y™ ... ,0 (y*,w?))). The desired sequence of signals is

then yt,... ymt™.
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The profile in Example 2 is not connected. However, connectedness is not
sufficient, as the following example illustrates. Connectedness only ensures that
any disagreement in private states is eliminated eventually, with probability one.
On the other hand, it may take a long time before all players simultaneously
observe the sequence of signals that leads to agreement. Moreover, before this
“agreement” sequence is observed, each player will be updating her beliefs over
the private states of her opponents. Even if initial beliefs place small probability
on disagreement (over private states), the updates eventually may place large
probability on disagreement. Since monitoring is almost public, a player’s updat-
ing of her beliefs over the private states of her opponents given the observation
of a public signal y (determined by the public monitoring distribution p) is close
to her update after observing the private signal y (determined by the private
monitoring distribution 7). Thus, in the next example, we examine the updating
of a player with nondegenerate beliefs over the private states of her opponent in
the game with public monitoring.

Example 3. This profile is a modification of Example 2 which is connected:

W = {w,w, w}, w' = w, d; (w) = C, d; (0) = d; (w) = D, and

(w, ifw=wandy=7,
orw=uw and y =y,

w, ifw=wandy=y,
orw=w and y =y,

w, ifw=wandy=7,
orw=w and y = 7.

It is illustrated in Figure 7. This profile is an equilibrium if 3p > 1+3q—q¢? (which
is implied by 3p > 2+ q and 3 (p — q) > 1) and ¢ is sufficiently close to 1. Note
that the sequence y, y always leads to the state w. However, this is not sufficient
for this profile to be an equilibrium of the game with private monitoring.

Before considering the game with private monitoring, consider the game with
public monitoring when a player does not assign probability one to the other
player being in the same private state (as would occur under private monitoring).
More specifically, suppose player 1’s is initially in private state wi = w and has
beliefs 8 = (1 —n*, 0, n') on (w,w,w). Now consider the impact on player i’s
beliefs of the sequence yyyyyy---. The first observation of y causes player 1’s
private state to change to w. In addition, player 1 will update her beliefs over
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Figure 7: The sequence y, y always leads to the state w.

the private state of player 2 according to:

Pr{wj = wlwi =w} =1-n*=Pr{wj = dly, w; = w0}
= Pr{wy = 0|y, wi = @} + Pr {w; = @y, w) = v}
Pr {w% = w,g|w% = w} + Pr {w% = d},y|w% = w}

(1-p)(1-n")
I=p@=n)+QA-qn'
which is strictly smaller than 1 —n', since ¢ < p. Thus, after observing Ys n? >n!

and so player 1 assigns a lower probability to the other player being in the same
private state. The next two observations, of § and y, do not result in any updating
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signal 1’s private state Beliefs over (w, @, w)

w (1 - 7717 07 771)
Y

w (7727 1- 7)27 O)
Y

w (7727 O? 1- 772)
Y

w (1 - 7727 7727 O)
Y

w (1 - 7747 07 774)

Figure 8: The transitions on beliefs induced by a sequence of public signals.

of the posterior. The only changes in beliefs reflect the transition function on
private states (see Figure 8). After the second y, player 1 now observes § and
again nontrivial updating can occur:

Pr{wy = wlwy =w} =1—n*=Pr{wj = 0|y, w; = w0}
_Pr{ylwg’:ﬁ),w%:w}Pr wy =w} B p(1—1n?)
- Pr{glw} = w} (L —n?) +

which is strictly larger than 1 — n?, since q¢ < p. The issue then is whether n' is
larger or smaller than n*. In order for player 1 to assign a probability close to one
that player 2 is in private state w when 1 is in private state w after an arbitrarily
long history of the form yyyyyy---, it is necessary and sufficient that for n' in
a neighborhood of 0, n* < n'. Since when n' = 0, n* = 0, it is thus enough to
investigate when dn®*/ dn1’n1:0 < 1. Now,

dn* gt dp? g (1—q

— = X
g d? T dntla, o (1-p)

and so d774/d771‘n120 < 1lifand only if (1 —q) <p(l—p) (ie, p<1l—gq). In
fact, if p > 1 — q, after a sufficiently long history of the form yyyyyg-- -, player
1 assigns a probability very close to 0 that player 2 is also in_pﬂvate state w
when 1 is. Note that while the condition ¢ < p < 1 — q requires q¢ < 1/2, it is
not inconsistent with existence of equilibrium for large 0, since the condition on
p and q is 3p > 1+ 3q — ¢?, which can be satisfied by small q. In fact, there are
values of p and q for which the profile in Example 1 is not an equilibrium, and
this profile is (since Example 1 requires 3p > 1 + 3q).
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The intuition for the condition q (1 —¢q) < p(1 —p) is as follows. Note first
that on this history, nontrivial updating can only occur when player 1 is in private
state w (since in the other private states, player 1 is choosing D, and so the
distribution of the public signal is independent of the behavior of player 2). On the
subsequence where player 1 is in private state w, half the observations are of the
public signal §j while the other half are of the signal y. Finally, Pr {QQICD, CD} =
q(1—q) and Pr {QQICC, CC} =p(l—p),soq(l—¢q) <p(l—p)is equivalent
to Pr{yy|CD} < Pr{yy|CC}.

If player 1 starts with beliefs that assign positive probability to player 2 being
in each of the three private states, after the sequence of public signals yyy 7,
player 1 assigns zero probability to player 2 being in the state w, and so con-
sidering beliefs (1 —n*, 0, n') is without loss of generality. Moreover, if player
1’s beliefs after the history ygyyyy--- are well behaved (in the sense that the
probability assigned to agregmejlt does not move away from neighborhoods of 1),
then they are well behaved after all histories. This is for three reasons: First,
any history that contains two consecutive y leads to immediate agreement on w.
Second, other histories contain Consecutjve_gj signals. And, third, signals are only
informative about the private state of the other player when player 1 is in private
state w, in which case observing { raises the posterior that player 2 is also in
private state .

Consider now games with private monitoring. For ¢ sufficiently small, the
private profile will be an equilibrium if and only if p < 1 — q (the bound on &
depends on p and q): Again, the critical private histories we need to consider are
of the form yyyyyy---. Let 5° (771) = 3° (u‘;]yﬂgy) (771) denote the posterior
probability assigned by player 1 to player 2 being in private state w after observing
the private history yyy y and with prior probability (1 — 1,0, 771). We have seen
that ifp < 1—gq, then §° (771) > 1—n', so that lim;_,« (ﬁo)t (771) = 1. By choosing
e small, we can make sup, |5° (n*) — 8° (n')| as small as we like. In particular,
for any 7 > 0, there is an &€ > 0 such that for all € € (0,€), 5° (n') > 1 —n* for
all n' € (7,1 —7). But this implies lim;_. (3°)" (') > 1 -7 for all n* > 7.

Example 4. The assumed signaling structure of the previous example simplified
calculations, since some signals were uninformative. In this example, we show
that the phenomenon displayed in that example did not require uninformative
signals. Consider the same strategy profile as in the previous example, but with
a different signaling distribution. In particular, suppose

p, ifayas = CC,
p{ylaras} =< ¢q, ifajaz =CD or DC,
r, ifajas = DD,



Almost-public monitoring 32

with p > q > r. The public profile described in the previous example remains an
equilibrium with this new p, as long as r is close to q. The important difference is
that the signal in every private state is potentially informative. This implies that
even if p < 1 — q, the private profile is not an equilibrium. To see this, consider
the public monitoring game after the history yyyyy ---. After such a history,
player 1 is in private state w. Suppose that in 1_t>er1'od 1 player 1 assigned positive
probability to player 2 starting in private state w. If player 2 started in private
state w, then after the sequence yy 4§47y ---, player 2 will be in private state w,
and since q¢ > r, player 1’s posterior that player 2 is in state w converges to 1 as
the number of consecutive observations of § goes to infinity.

Suppose now that p > r > q (an admittedly unusual, but generic, configura-
tion). Observe first that after very long histories of the formyyyyy - - -, player 1
is in private state w and assigns very high probability that pl_ayer 2 is in the same
private state (Pr{y|DD} > Pr{y|DC}). The critical history turns out again to
be those of the form yyyyyy---. The probability of observing the sequence
yyyy when both players start in private state w is (1 — p)r (1 —r) p, while the
probability of observing the same sequence when 1 starts in state w, while 2 starts
in state w, is (1 — q) ¢ (1 — q) q. Thus, a sufficient condition for the private profile
to be an equilibrium for € small is that p > r > 1 —q.

These examples illustrate the difficulty that arises in checking whether a given
public equilibrium induces a private equilibrium: there may be some histories that
yield beliefs that assign substantial probability to players being in different private
states. Sometimes, it is possible to show that such histories occur with very low
probability: this is true in Examples 3 and 4 and can be shown to be true for all
connected and finite public profiles.!! Unfortunately, this is not enough to have
an equilibrium under private monitoring, and there is no simple way to adjust
such strategy profiles to make them equilibria.

We conclude this section with a brief discussion of grim trigger. We include
this example because of the central role grim trigger has played in the earlier
literature, in particular, Sekiguchi [28] and Compte [10]. After the example, we
discuss the result of Sekiguchi [28].

Example 5. Consider again the environment described in Example 1. For 3p >
14 2q and 6 > 1/ (3p — 2q), the profile described as follows is a public perfect

"Under some additional technical conditions (that are satisfied if p is almost uniform), the
following is true: For all £ > 0 and ¢, there exists € > 0 such that if 7 is e-close to p, then the
unconditional probability that any player assigns a probability of less 1 — £ to all the players
being in the same private state as herself is less than &.
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equilibrium: W = {w, w}, w! = w, d; (w) = C, d; (w) = D, and

o (yw) ={

In this profile, behavior starts at CC, and continues there as long as the “good”
signal §j is observed, and then switches to DD permanently after the “bad” signal
y. As 6 — 1, the average payoff in this profile converges to 0, since the expected
waiting time till a bad signal is finite and independent of 6. In order for the payoff
in this profile to be close to 2 as 6 — 1, we need to take p — 1.

This trigger profile is an equilibrium of the first game with private monitoring
described in Example 1.'2 Intuitively, if this profile is not an equilibrium, it
is because, after a very long sequence of j-- -4, player i is no longer sufficiently
confident that the opponent is still in private state w. But, note that since player i
has been in state w throughout this sequence, and so has always been choosing C,
continually observing y is confirming evidence that player j is also in w. Thus, a
similar argument to that in Example 3 shows that i’s posterior that j is in private
state w cannot get too low. The other case is more direct, since once a player is
in private state w, that player chooses D thereafter and the private signals are
uninformative about the play of the opponent.

If instead we had the private monitoring of Example 4 with q¢ > r, then after
a sufficiently long history y - - - §, a player must assign probability close to 1 that
the opponent is in private state w and so the trigger profile is not an equilibrium.

w, ifw=w andy =7y,
w, ifw=wandy=y,orw=uw.

We now compare this result with the impressive result of Sekiguchi [28].
Sekiguchi [28] showed that, for some repeated prisoner’s dilemmas, there exists
a nearly efficient sequential equilibrium, when private monitoring is arbitrarily
accurate and players are patient. There are three features we draw the reader’s
attention to. First, Sekiguchi’s result makes few assumptions on the nature of
the private monitoring (it includes both independent and correlated, though not
almost-public, signals'®). Second, his equilibrium is in mixed strategies, while
ours is in pure. Finally, while his equilibrium builds on grim trigger, the final
equilibrium is not grim trigger.

Crudely summarizing Sekiguchi’s argument, he begins by considering a strat-
egy profile that randomizes between always defection, and grim trigger. This
profile is an equilibrium (given a payoff restriction) for moderate discount fac-
tors and sufficiently accurate private monitoring. Crudely, there are two things

12This is the case analyzed in Mailath and Morris [22, Section 4.2].

131t is crucial in Sekiguchi [28] that (in his notation) Pr{dc|DC} be close to 1, see footnote
15. This implies that Pr{y2 = dla1 = D,y1 = ¢} is also close to 1, which cannot occur if the
private signals are almost public.
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to worry about. First, if a player has been cooperating for a long time and
has always received a cooperative signal, will the player continue to cooperate?
The answer here is yes, given sufficiently accurate private monitoring (this is the
analog to considering histories of the form - - -y in Example 5).

Second, will a player defect as soon as a defect signal is received? This is
where the randomization and upper bound on the discount factor comes in. For
illustrative purposes, suppose the players are playing the pure strategy profile
of grim trigger. After the initial period, if player ¢ observes the defect signal,
then the highest order probability events are that player j did not defect but
i received an erroneous signal (in which case j is still cooperative), and that
player j in the previous period had received an erroneous signal (in which case
j now defects forever). These two events have equal probability, and if players
are not too patient (so that they are not willing to experiment), player i will
defect. If players are patient, then even a large probability that the opponent is
already defecting may not be enough to ensure that the player defects: One more
observation before the player commits himself may be quite valuable. Of course,
in the initial period player j is not responding to any signal, so in order for player
1 to assign positive probability to the signal reflecting j’s behavior, j must defect
in the initial period with positive probability.'4 Our assumption that monitoring
is almost public implies that these latter considerations are irrelevant. As soon as
a player receives a defect signal, he assigns very high probability to his opponents
having received the same signal, and so will defect. This is why we do not need
randomization, nor an upper bound on the discount factor.'®

Sekiguchi then removes the upper bound on the discount factor by observing
(following Ellison [12]) that the repeated game can be divided into N distinct
games, with the kth game played in period k + tN, where ¢ € N. This gives

1n other words, grim trigger is not a Nash equilibrium because players have an incentive to
ignore defect signals when first received (players believe their opponents are still cooperating
and do not want to initiate the defect phase) and so players have no incentive to cooperate in
the initial period.

Of course, the players must be indifferent between cooperation and defection in the initial
period, and this determines the randomization probability. Moreover, as long as the discount
is close to the value at which a player is indifferent between cooperation and defection against
grim trigger in a game with perfect monitoring, then for sufficiently accurate monitoring, this
randomization probability assigns small weight to initial defection.

5There is one last subtlety that is worth mentioning, and this concerns the incentives of a
player to defect, when the player is already in the defect private state and the player observes
a cooperative signal (suggesting that in fact the opponent is not in the defect private state). In
Sekiguchi [28], the player still finds it optimal to defect in the future, because he believes that
his choice of defect this period triggers a transition to the defect private state by his opponent
with high probability (another implication of almost perfect monitoring). This is where it is
important that the signaling is not almost public (see footnote 13).
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an effective discount rate of 8" on each game. Of course, the resulting strategy
profile does not look like grim trigger.

6. The Case of Arbitrarily Patient Players

In this section, we obtain bounds on e that are uniform in 6, for § close to 1.
We first rewrite the incentive constraints of the public monitoring game so that,
at least for connected finite public profiles (see Definition 3), they make sense
when evaluated at 6 = 1. A public profile is a strict equilibrium if, for all ¢ € N,
w € W, and all a; # d; (w),

¢i (w) > (1= 6) ui (d—i (w) , a; +6Z¢z p(yld—i(w),ai),

where

¢; (w) = (1 = 6) u; +6Z¢z yiw)) p (yld (w)).

For simplicity, write 4; (w) for w; (d (w)), and u; (w, a;) for u; (d—; (w) ,a;). For a
fixed state w € W, the mapping ¢ induces a partition on Y:

yo (W) ={y €Y 10 (y;w) =w'}.

The incentive constraints at w can be written more transparently, focusing on
the transitions between states, as

¢ (w) > (1= 6) i (w,a:) + 8 ¢y (W) Our (d—i (w) , ) , (8)

where 0, (a) is the probability of transiting from state w to state w' under the
action profile a, i.e.,

)

ZyEyw(w’) p (y|a) , ity (w ( /) 7& 0
= 0.

o 0= iy ()

Substituting for ¢; (w)in (8) and rearranging yields (writing Oy fOr Oy (d (w))
and eww’ (al) for wa/ (dfl (w) ,ai)),

6 61 () (Buwr = s (@) > (1= 8) (@ (w,a5) = s ().~ (9)
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For any w € W, (9) is equivalent to

6 3 (65 (0) = 61 (@) (Dunr — O (@) > (1= 6) (s (w, 1) = @i (w)) . (10)

w! #£w

If the profile is finite and connected, the Markov chain on W implied by the
profile is ergodic, and so has a unique stationary distribution. As a consequence,
lims_,1 ¢; (w) is independent of w € W, and so simply taking 6 — 1 in (10) yields
0 > 0. On the other hand, if we can divide by (1 — ) and take limits as 6 — 1,
we have a version of the incentive constraint that is independent of §. The next
lemma assures us that this actually makes sense (the proofs of the Lemmas in
this section are in the Appendix).

Lemma 5. Suppose the public profile is finite and connected. For any two states
w, w e W,

Ayad; = %Lﬁi (¢ (w) — ¢; (w)) / (1 =)
exists and Is finite.

So, if a connected finite public profile is a strict equilibrium for discount factors
arbitrarily close to 1, we have

Z Aw’ﬂngi X (éww’ - éww’ (az)> > ﬁ”t (wa ai) - ﬁ”t (w) .
w!#£w

Strengthening the weak inequality to a strict one gives a condition that implies
(10) for 6 large.

Definition 4. A connected finite public profile is patiently strict if for all players
i, states w € W, and actions a; # d; (w),

> Buradi X (B = b (a3)) > @ (w,a5) = ity (w) (11)
w! Z£w
where w is any state.

The particular choice of w in (11) is irrelevant: if (11) holds for one w such
that 0,5 € (0,1), then it holds for all such w. The next lemma is obvious.

Lemma 6. For any patiently-strict connected finite public profile, there exists
6 < 1 such that, for all § € (§,1), the public profile is a strict public equilibrium
of the game with public monitoring.
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The remainder of this section proves the following theorem. It is worth re-
membering that every finite memory public profile is both a connected finite
public profile and, by Theorem 2, induces posterior beliefs that assign uniformly
large probability to agreement in private states.

Theorem 3. Suppose a connected finite public profile is patiently strict. There
exist 6 < 1, 7 > 0, and € > 0 such that, if the posterior beliefs induced by the
private profile satisfy (; (o (ht) 1|nt) > 1 —n for all h, m is e-close to p, and
6 € (8,1), then the private profile is an equilibrium of the game with private
monitoring.

The finite public profile induces in the game with private monitoring a finite
state Markov chain (Z,Q™), where Z = W¥ and, for w = (wy,... ,wy) and

w'= (wl,... ,wy),

if Y, (w}) = 0 for some i.

ces i / ;
G (@) = { T (15) T () 710 T () ol

The value to player i at the vector of private states w is
P7 (w) = (1= 6)u )+ 521/)“ o (y;wi), ... o (yn;wn))(yld(w))
=1 =b)ui(d +5ZW ') Gow (d (W)
=(1- )+6 Z T (W) T

where @; (W) = u; (d(w)) and ¢% ., = ¢F ./ (d(W)).
Analogous to Lemma 5, we have the following:

Lemma 7. Suppose the public profile is finite and connected.
1. For any two vectors of private states w, w € W,
AT = lim (47 (w) = 7 (%)) / (1-6)
exists and is finite;

2. Aww?] has an upper bound independent of w; and
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3. for any two states w, w € W, and any ¢ > 0, there exists € > 0 such that,
for all m e-close to p, |Ay1,51¢; — Awad;| < C.

This lemma implies that an inequality similar to (11) holds.

Lemma 8. If a connected finite public profile is patiently strict, then for ¢ small,
and 7 e-close to p,

Z Aw’,wlw? X (Cﬂ;l,w’ - (ﬂrul,w’ (a’l)) > az (wa ai) - ﬁ’l (w) ) (12)
w/Z£wl

where w is any state.

Now, the value player ¢ assigns to being in state w, when she has beliefs 3;
over the private states of her opponents, is

Vi (w; B;) = Zzp”ww Bi (W_;),
and her incentive constraint in private state w is given by, for all a; # d; (w),

w 6 >Z{ 1_ ul W—Zaal +5Z’¢)W Ejgzw W/ (a’l)}ﬂz(w—l)

If 3, assigns probability close to 1 to the vector w1, this inequality is implied by
YT (wl) > (1 — &) @ (wl, a;) + 5Zw ") @y (a2) - (13)

Substituting for z/ﬂr (wl) yields
5ZW (@1,w = Goa,w (@i)) > (1= 6) (@ (w1, a;) — G (wl))

= (1-106) (t; (w,a;) — 1; (w)).
For any state w € W, (13) is equivalent to

6 Y (W (W) =7 (@1)) (Gam — urw (a1) > (1= 8) (@i (w, a5) — i (w)).

w'#£wl

Dividing by (1 — ¢) and taking limits then yields (12). Thus, (12) implies that,
if player i assigns a probability close to 1 to all her opponents being in the same
private state as herself, the incentive constraint for 7 at that private state holds,
and so (since there are only a finite number of incentive constraints) the theorem
is proved.
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7. An Application to Folk Theorems

A natural question is whether some form of the folk theorem holds for games with
almost-public monitoring. As a corollary of our earlier results, we find that, if
the monitoring is also sufficiently accurate, then a pure action version of the folk
theorem holds in general.

Fix a pure action profile a € A that is individually rational in the stage game
g: A — RN, In repeated games with perfect monitoring, players observe the
action profile of all previous periods. The folk theorem asserts that, under a
dimensionality condition, there is a discount factor &' such that for each § >
&', there is a subgame perfect equilibrium of the repeated game with perfect
monitoring in which a is played in every period. Since this equilibrium can
be chosen to have finite memory (see, for example, the profile in Osborne and
Rubinstein [26, Proposition 151.1]), we immediately have the following result:

Fix a discount factor § > &' such that, for every history ht € A, the contin-
uation value to any player from following the profile is strictly larger than that
from deviating in period ¢ and then following the profile thereafter. Say that a
public monitoring technology (Y, p) is n-perfect if Y = A and p(ala) > 1 —n.
There then exists ’ > 0 such that if (Y, p) is n/-perfect, then the profile is a strict
public equilibrium of the game with public monitoring (the arguments are almost
the same as the proofs of Lemma 3 and Theorem 1). Since the public profile
has finite memory, we then have (from Theorems 1 and 2) a bound on ¢ (that
depends on p and §) so that if the private monitoring technology is e-close to p,
the public profile induces an equilibrium in the game with private monitoring and
the equilibrium payoffs are close to g (a).

This is a weak result in the sense that, first, n depends on the discount factor
and 7 — 0 as § — 1, and second, even if n) was independent of §, ¢ — 0 as § — 1.16
The remainder of this section is concerned with obtaining bounds on 7 and ¢ that
are independent of §. Since it is crucial that when a player observes the private
signal y, she assigns a sufficiently high probability to her opponents all having
observed the same signal, the bound on ¢ must depend on p (see Lemma 2).

In order to apply the techniques of Section 6, we first modify the profile used
for the perfect monitoring folk theorem so that in n-perfect public monitoring
games, it is patiently strict.'” Let g, denote player i’s pure strategy minmax

16Sekiguchi [29] proved such a result for efficient outcomes in the repeated prisoner’s dilemma.
"While the profile from Osborne and Rubinstein [26, Proposition 151.1] in n-perfect games of
public monitoring is finite and connected, the Markov chain on W is not ergodic for games with
perfect monitoring. Since the Markov chain is ergodic for games with public monitoring, the
incentive properties of the profile (in terms of strict patience) may differ between perfect and
public monitoring. Property 4 in Theorem 4 implies that, even when the monitoring is perfect,
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payoft, gi_i the action profile that minmaxes player 4, and gﬁ a myopic best re-
sponse for i to a’ ; (so that 9, = Gi (a)). An action profile a is strictly individually
rational if g; (a) > g,. We use the version of the folk theorem given in Osborne
and Rubinstein [26, Proposition 151.1]. We do not know if a similar result holds
for the mixed action version, with unobservable mixing. The proofs of Theorem
4 and its corollary are in the Appendix.

Definition 5. The action a* € A satisfies the perfect folk theorem condition if it
is strictly individually rational, and there exists N strictly individually rational
action profiles, {a (i) : i € N}, such that for all i € N, g; (a*) > g;i(a(i)) and
9i(a (7)) > gi(a(i)) for all j # .

Theorem 4. (Perfect Monitoring) Suppose a* satisfies the perfect folk theorem
condition. Then there exists L < oo and § < 1, such that for all § € (8,1), there is
a subgame perfect equilibrium of the §-discounted infinitely repeated game with
perfect monitoring such that

1. on the equilibrium path, a* is played in every period;

2. for every history ht € At, the continuation value from following the profile
is strictly larger than that from deviating in period t and then following the
profile thereafter;

3. behavior in period t only depends on the action profiles of the last min { L, t}
periods; and

4. after any history h* € A!, under the profile, play returns to a* in every
period after L periods.

Moreover, the equilibrium strategy profile can be chosen independent of § €
(8, 1).

If the public monitoring technology has as signal space Y = A, then any profile
of the repeated game with perfect monitoring also describes a public profile of the
repeated game with public monitoring. As a corollary to Theorem 4, we have:

Corollary 2. (Imperfect Public Monitoring) Fix a stage game g : A — RV,
Suppose a* satisfies the perfect folk theorem condition. Let s denote the subgame
perfect equilibrium profile described in Theorem 4. There exists 6 < 1 and n > 0
such that if the public monitoring technology is n-perfect, then for any 6 € (¢, 1),
the profile s is a public equilibrium of the §-repeated game with public monitoring.
Moreover, the profile is strictly patient.

the Markov chain on W is ergodic.
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This corollary, with Theorems 2 and 3, yields:

Theorem 5. (Private Monitoring) Fix a stage game g : A — RV. Suppose a*
satisfies the perfect folk theorem condition. For all v > 0, there exists § < 1 and
1 > 0 such that for all n-perfect public monitoring technologies (Y, p), there exists
€ > 0 such that for all private monitoring distributions, w, e-close to p, for all
o€ (5', 1), there is an equilibrium of the repeated game with private monitoring
whose equilibrium payoff is within v of g (a*).

8. Expanding the Set of Private Signals

In this section, we allow for a broader set of signals. The game with public
monitoring is as described in Section 3. In a game with private monitoring in this
section, each player i observes a signal w; € §2; (write w and ) for the vector of
signals and set of signal profiles). As before, 7 (w|a) is the probability of signal
profile w given action profile a. Write 7 (w_;| (a,w;)) for the implied conditional
probability.

Definition 6. The private monitoring technology (), m) is e-close to the public
monitoring technology (Y, p) if there exist functions f; : Q; — Y U {0} such that
the following two properties hold:

1. foreacha € Aandy €Y,
[m({w: fi(wi) =y for each i}|a) — p(y|a)| <e,
and

2. foreachaec€ A, yeY, and w; € fi_l (),

T ({w—i: fj (wj) =y for each j # i}|(a,w;)) > 1 —e.

Note that some private signals may not be associated with any public signals:
It is possible that there is a signal w; satisfying f; (w;) = 0; this signal then may
contain no information about the signals observed by the other players. It is
worth noting that for the case €2; = Y, the first condition implies the second
(Lemma 2), and coincides with the notion of closeness used in Section 3.

The condition of e-closeness can be restated as follows. Recall that an event
is p-evident if, whenever it is true, everyone believes it with probability at least
p. We say that (2, 7) is e-close to (Y, p) if for each public signal y, there is a set
of private signal profiles, f~! (y), such that f=1 (y) is (1 — ¢)-evident (contingent
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on any action profile) and the probability of f~! (y) is within ¢ of the probability
of the public signal y (contingent on any action profile).

An obvious way to proceed to the case of general private signals is to apply the
argument from the previous section to the case of close monitoring technologies.
As we discuss below, approximating arbitrary public equilibria is difficult, because
the public state in period ¢ is determined, in principle, by the entire history h.
Approximating finite memory public profiles is significantly simpler.

Fix a strict public equilibrium with finite memory, (W, wl,a,d). Since the
profile has memory L, for some L, recall that we can take W = (Y U {*})L, w! =
(*#,...,%),and o (y, (yL, e ,y2,y1)) = (y,yL, . ,yz). Fix a private monitoring
technology (€2, ) with associated signaling functions f; that is e-close to (Y, p) .
Following Monderer and Samet [24], we first consider a constrained game where
behavior after “exceptional signals” is arbitrarily fixed. Define the set of “excep-
tional” private histories, Hf = {hl : w] € f71(0), some 7 satisfying t — L < 7 <t — 1}.
This is the set of private histories for which in any of the last L periods, a private
signal w] satisfying f; (w]) = 0 is observed. We fix arbitrarily player i’s action
after any private history hl € Hf. For any private history that is not exceptional,
each of the last L observations of the private signal can be associated with a
public signal by the function f;. Denote by w; (hﬁ) the private state so obtained.
That is,

wi (b)) = (fi (@) 0o i (w071)),

for all hf ¢ HE. We are then left with a game in which in period ¢ > 2 player
1 only chooses an action after a signal wf_l yields a private history not in H.
We claim that for e sufficiently small, the profile (51,...,8y) is an equilibrium
of this constrained game, where §; is the strategy for player i:

00 =L Y nt g e
dl(wl(hl)), 1ft>1andhi¢Hi.

But this follows from arguments almost identical to that in the proof of Theorem
2: since a player’s behavior depends only on the last L signals, for small ¢,
after observing a history hl ¢ Hf, player i assigns a high probability to player j
observing a signal that leads to the same private state. The crucial point is that
for € small, the specification of behavior after signals w; satisfying f; (w;) = 0
is irrelevant for behavior at signals w; satisfying f; (w;) € Y. It remains to
specify optimal behavior after signals w; satisfying f; (w;) = (0. So, consider a
new constrained game where player ¢ is required to follow §; where possible. This
constrained game has an equilibrium, and so by construction, we thus have an
equilibrium of the unconstrained game. We have thus proved:
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Theorem 6. Suppose a finite memory public profile is a strict equilibrium. For
all k > 0, there exists & such that, if (2, ) is e-close to (Y, p) for € € (0,2), then
the induced private profile is an equilibrium of the game with private monitoring
technology (2, ), and the expected payoff in that equilibrium is within k of the
public equilibrium payoff.

We could similarly extend our earlier results on patiently strict connected
finite public profiles (Theorem 3) and on the almost public almost perfect folk
theorem (Theorem 5) to this more general notion of nearby private monitoring
technologies.

We now describe an example that suggests that even under a significant
strengthening of e-closeness, general positive results will be difficult to obtain.
Say that (2, 7) is strongly e-close to (Y, p) if (2, 7) is e-close to (Y, p) and the
signaling functions map into Y. That is, every private signal can be associated
with some public signal.

Example 6. We return to the public monitoring technology and profile of Ex-
ample 3. The private monitoring technology is described as follows: The signal
spaces are O = {y,7,7"} and Qp = {y,y}. With probability &', there is a
uniform draw from Q x Qso, and with probability 1 — &', there is draw from the
joint distributions

cc Y ]
g 1 _ p/ _ p// 0
y 0 y
y// 0 p//
and
ayaz Yy y
g 1 _ q/ _ q/I O
g/ O q/
g// 0 q//

for ajay # CC. The private monitoring technology is clearly strongly e-close to
the public monitoring technology (Y, p) of Example 1 for some e, with p = p’ +p”
and ¢ = ¢'+q" (with the obvious signaling functions f1 (') = f1 (§') = f2(§) = ¥
and f1 (y) = f2 (y) =y). Moreover, £ can be made arbitrarily small by making €'
small. We now argue that by choosing the probabilities appropriately, the private
profile implied by the signaling functions is not an equilibrium. Consider first the
private monitoring technology (Y2, %), where player 1 cannot distinguish between
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iy and i". As we saw Example 3, the private profile will be an equilibrium in
that case for € small, as long as p < 1 —q. A conjecture is that this is a sufficient
condition when the private monitoring technology is in fact (2, 7). The problem,
of course, is that the information content of §j in the private monitoring tech-
nology (2, ) may be quite different from ¥ in the private monitoring technology
(Y2, 7). For example, consider the impact of the sequence yy' y ¥’ on player 1’s
beliefs over player 2’s private state. As in Example 3, the critical issue is whether
Pr{yy'|CC} is larger or smaller than Pr{yy'|CC}. Since we are considering
e small, it is enough to compare these when ¢ = 0. Player 1 will eventually
assign large probability to player 2 being in private state w when 1 is in private
state w if p' (1 —p' —p") < ¢ (1 —¢ —¢"). For example, if p =1/12, p" =1/2,
¢ =q"=1/8, we have p =p' +p" = 7/12 and q = 1/4. Thus, under the private
monitoring technology (Y?2,#), for sufficiently small ¢, the three state private
profile will be an equilibrium. On the other hand, with the private monitoring
technology (2, ), the private profile is not an equilibrium.

A. Proofs for Section 6. The Case of Arbitrarily Patient Players

We need the following standard result (see, for example, Stokey and Lucas [31,

Theorem 11.4]). If (Z, R) is a finite-state Markov chain with state space Z and
(n)

transition matrix R, R™ is the matrix of n-step transition probabilities and Tij

is the j-th element of R™. For a vector z € R¢, define ||z|, = > |zl

(n) (n)
J ij
and n(" = > 77§-n). Suppose that there exists ¢ such that ) > 0. Then, (Z, R)
has a unique stationary distribution p* and, for all p € A (Z),

. g2<1—n<@>k.

Lemma A. Suppose (Z,R) is a finite state Markov chain. Let n;’ = min; r

Hkae — g

Proof of Lemma 5. Let © denote the matrix of transition probabilities on
W induced by the public profile (W is a finite set by assumption). The ww'-th
element is 0, (d(w)) = O If 4; € RV and #; € RY are the vectors of stage
payoffs and continuation values for player i associated with the states, then
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Solving for ¢, yields
¢i=(1-06)(Iw —80) " @

=(1-20) 3 (60)" 1y,
t=0

where Iy is the |W|-dimensional identity matrix. Let e, denote the w-th unit
vector (i.e., the vector with 1 in the w-th coordinate and 0 elsewhere). Then,

¢i (w) = ¢; (@) = (1= 6) Y (ew 60)" it = (1 -6 Z&t (cw®' — ea®) i

t=0 t=0

Because the public profile is connected, for any two distributions on W, o and o/,
Ha@t —ao @tH — 0 at an exponential rate (Lemmas 4 and A). This implies that
>oico (ewO! — epO") 1, is absolutely convergent, and so (¢; (w) — ¢; (w)) / (1 — 6)
has a finite limit as 6 — 1.

|

Proof of Lemma 7. The proof of the first assertion is identical to that of
Lemma 5.

Since the public profile is finite and connected, for the purposes of applying
Lemma A, we can take £ = n, independent of 7, where (yl, - ,y”) is the finite
sequence of signals from Lemma 4. Moreover, there exists € > 0 such that for all
7 e-close to p,

N ONGE. ™ —
Zm“llnqu, > 5 X ergn&ww, =7
w/ w’

This gives a bound on the rate at which « (Q“)t converges to o™, the stationary
distribution of (Z,Q™), independent of m and a € A (Z). This then implies the
second assertion.

Now,

o0

Auwsd; = (ew®" — ez®') i

t=0

and

o)

Awl,wl"/);r = Z (ewl (Qw)t — €yl (Qw)t) U;

t=0
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Fix ¢ > 0. There exists T such that

T
Z (ew®' — ea®") &l — Ay < (/3
t=0
and, for all 7 e-close to p,
T
> (ewr (@) = eqn (QM)") s — Awa,a1f| < /3.
t=0

Order the states in (Z, Q™) so that the first |I¥/| states are the states in which
all players’ private states are in agreement. Then, we can write the transition
matrix as

QTr — l: QTlrl Q71r2 :l
@y @3 |’
and so [Iy : 0] 4; = @;. As 7 approaches p, QT — 0, QT, — 0, and QF, — 0.
Now,
(@] = (@) +Qn0e5
and
Q]| = QRO + Q105

and, in general,

(@), = (@) + QR [(@)'],

1

and
[(Qw)t]m =Qf [(er)t—l} . +OT, [(Qﬂ)t_l}

22

Thus, for all ¢, [(Q™)'],, — ©' and [(Q™)'],, — 0, as m approaches p. Hence,
there exists ¢/ > 0 such that for all ¢ < T, if 7 is &’-close to p,

T T
D (ew®’ — ea®) il — > (w1 (QT) — eqa (Q)") i
=0

t=0 t

< (/3.
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So, for ¢” = min {e, &'}, if 7 is €”-close to p,

| Awwt; — Aw1,w1¥5 | < C.

Proof of Lemma 8. Let

1 - - . .
(= 5 Z Aywd; X <9ww — Oww (ai)> — (G (w, a;) — 4; (w))
WHW
Since the public profile is patiently strict, ¢ > 0.
The left hand side of (12) is

Z A’LUI,U_JQ/};T X (dgzl,wl - (ﬂ;l,wl (al)) + Z AW',’LT)IQ/}ZF X (qgl,w’ - qul,w' (al))
WHAD w'Z£wl,
weW

and, by Lemma 7, there exists ¢’ > 0 such that for 7 ”-close to p,

> Aw a1 t] X (T — Tya e (a3)| < C/2.
w/Z£wl,
weWw

Moreover, again by Lemma 7, by choosing € small, for 7 e-close to p,

Z Awu_;qsi X (éww - éww (az)> - Z Awl,ﬁ)l'@b? X (qgl,wl - qz;l,wl (az)) < C/Qa
WHW WHD

and so
Z Aw o197 X (@1.w — Gawr (@) > Z Au1,w107 X (1.1 — Gat o (@) — /2
w/ w1 wF#D
> Z Awu’zﬁbi X (éww - éww (al)> _C
WHW

> U (w,ai) — Uy (U)) ,

which is the desired inequality (12).
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B. Proofs for Section 7. An Application to Folk Theorems

Proof of Theorem 4. While the profile specified in the proof of Proposition
151.1 of Osborne and Rubinstein [26] satisfies the first three properties, it does
not satisfy the requirement that play eventually return to a*. The following mod-
ification does. We first describe the profile presented in Osborne and Rubinstein
[26]. The profile has three types of phases, C'(0) , C(j), and P(j). Player i chooses
af in phase C(0), a; (j) in phase C(j), and a! in phase P(j). Play starts in phase
C(0), and remains there unless there is a unilateral deviation, by player j, say.
After such a deviation, the profile switches to phase P(j) for L* periods, after
which play switches to C(j), and remains there. If there is a unilateral deviation
in P(j) or C(j) by player k, say, the profile switches to P(k) for L* periods, and
then to C (k), and remains there. Now modify the profile so that once the profile
switches to C(j), it stays in C(j) for L** periods, for an L** to be determined,
after which it reverts to C(0).

For notational simplicity, set a (0) = a*. First choose L* large enough so that,
for all j € N U {0} (where M = max; |g; (a)]),'8

M = gi(a(j)) < L* (g: (a") -
Second, choose L** sufficiently large so that, for all 4,

M —g; () + L* (gi — min {g; (a*), gi (@j)}> < L™ (gi(a(5)) — gi(a(i))).
(B.2)

) . (B.1)

I

Each player has a strict incentive to follow the prescribed path when in phase
C (j) if, for all £ € {1,...,L**} (where £ is the number of periods remaining in
phase C (j)),"

L*+1 L*+L**+1 V4 L*4+L**+1
M+Y 67+ Y 8 eia(@) <D 8 g+ > 6 gi(an).
k=2 k=L*+2 k=1 k=0¢+1

(B.3)
Evaluating this inequality at 6 = 1 and rearranging yields
M = gi(a(3) < (€=1) (g (a (i) = g: (@ (@) + L* (9 (a") — g,)
+ (L™ = (€ =1)) (gi (a*) = gi (a (i),

80sborne and Rubinstein [26, Proposition 151.1] fix L* large enough so that M — g; (a (j)) <
L* <gi (a(4)) — gi), rather than as in (B.1), because in their profile, after a deviation play never

returns to a”*.
191f § = 0, then the value of ¢ is irrelevant.
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which is implied by (B.1), since g; (a (j)) > gi (a (7)) and g; (a*) > g¢; (a (¢)). Thus,
there exists 6’ such that for § € (¢§',1), and any ¢ € {1,...,L**}, (B.3) holds.

Each player has a strict incentive to follow the prescribed path when in phase
P (j)if, for all £ € {1,...,L*} (where £ is now the number of periods remaining
in phase P (j)),

L*+1 +L**+1
M+ Z s+ g, + Z ¥ 1gi (a (i) (B.4)
k=L*+2
Z-"-L** L*+L**+1
< Z 5k_1 a] Z sk— 1 : Z 5k_1g¢ (CL*) .
k=1 k={+1 k=0+L**+1

Evaluating this inequality at § = 1 and rearranging yields

M —gi (@) + L*g, = ((=1) gi (&) = (L" + 1= 0) gi (a*) < L™ (gi (a (j)) — gi (a(0))),

which is implied by (B.2). Thus, there exists §” such that for § € (5”, 1), and
any ¢ € {1,...,L*}, (B.4) holds.

The proof is completed by setting L = L* + L** and § = max {5’, 5”}. By
construction, all one-shot deviations are strictly suboptimal (the incentive con-
straints (B.3) and (B.4) hold strictly).

|

Proof of Corollary. Let (W, w?, o, d) be a finite state automaton description
of the strategy profile from Theorem 4. Let v; : W — R describe player i’s
continuation values under this profile. Observe that, for all w € W, v; (w) —
gi (a*) as 6 — 1. Not surprisingly,

v; = (1 =6)gi + 6Dy,

where §; € RV is given by §; (w) = g; (d (w)) and D is the transition matrix with
ww'-th element given by

Do, 1, ifw =o0(d(w);w),
ww' =0, otherwise.

We can view D as a degenerate stochastic matrix for the Markov chain (W, D).
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By construction, this Markov chain is ergodic. Now,

vi (w) —vi (W) = (1=8) )¢ (ewD —ewD") g
t=0
L

= (1-6)> 8" (ewD" — ey D') s,

t=0

and so
Aw’wvi = %1_)11% (’Ui (w') — Ui (’(D)) / (1 — (S)

is well-defined and finite. Moreover, (B.1) and (B.2) imply that the profile is
patiently strict: for all players i and states w € W, for all a; # d; (w),

Z Aw’u_;vi X (wa’ - wa’ (az)) > 7:’/1 (U),(J,i) - az (U)) y
w'#w
where w is any state, and

(1, it =0 (d (w),aiw),
Dy (a;) = { 0, otherwise.

The proof of Lemma 8 can then be used to show that the public profile in the
n-perfect game of public monitoring is patiently strict for n small.
|
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