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Abstract

This paper develops consistent model and moment selection criteria for
GMM estimation. The criteria select the correct model specification and all
correct moment conditions asymptotically. The selection criteria resemble the
widely used likelihood-based selection criteria BIC, HQIC, and AIC. (The latter
is not consistent.) The GMM selection criteria are based on the J statistic
for testing over-identifying restrictions. Bonus terms reward the use of fewer
parameters for a given number of moment conditions and the use of more
moment conditions for a given number of parameters.

The paper applies the model and moment selection criteria to dynamic
panel data models with unobserved individual effects. The paper shows how
to apply the selection criteria to select the lag length for lagged dependent
variables, to detect the number and locations of structural breaks, to determine
the exogeneity of regressors, and/or to determine the existence of correlation
between some regressors and the individual effect.

To illustrate the finite sample performance of the selection criteria and their
impact on parameter estimation, the paper reports the results of a Monte Carlo
experiment on a dynamic panel data model.

Keywords: Akaike information criterion, Bayesian information criterion, con-
sistent selection procedure, generalized method of moments estimator, instru-
mental variables estimator, model selection, moment selection, panel data model,
test of over-identifying restrictions.
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1. Introduction

Many econometric models are specified through moment conditions rather than
complete distributional assumptions. Examples are dynamic panel data models with
unobserved individual effects and macroeconomic models with rational expectations.
Such models are usually estimated using generalized method of moments (GMM),
see Hansen (1982). For consistency and asymptotic normality, this method relies on
the correct specification of the model and, given the model, on the specification of
correct moment conditions. To date, no procedures are available in the literature that
consider the problem of selecting the correct model and correct moment conditions
in a GMM context.

In this paper, we introduce consistent model and moment selection criteria (MMSC)
that are able to select the correct model and moments for GMM estimation with prob-
ability that goes to one as the sample size goes to infinity. Our results apply to both
nested and non-nested models. Our results extend those of Andrews (1999), who
considers the problem of selection of correct moments given the correct model. Our
results extend the model selection literature, which considers model selection based
on the likelihood under full distributional assumptions, to GMM contexts. Our re-
sults provide a model selection alternative to the non-nested tests for GMM models
considered in Smith (1992).

In the paper, we apply the MMSC to dynamic panel data models. We show that
the MMSC can be used to consistently select from a number of different specifica-
tions of the model and moment conditions. The MMSC can be applied to questions
of lag length, existence of structural breaks, exogeneity of regressors, and correlation
between regressors and an unobserved individual effect. Of course, in any one appli-
cation, one would not want to try to use the data to answer all of these questions
simultaneously. To do so would result in very poor finite sample behavior. Neverthe-
less, for theoretical purposes, we set up a general model that incorporates all these
questions and allows us to provide one set of results that simultaneously covers the
many restricted sub-models of interest.

We explore the finite sample properties of the MMSC and their impact on para-
meter estimation via a Monte Carlo experiment based on a restricted version of the
general dynamic panel data model. In this model, the true lag length of the lagged
dependent variables is unknown. Furthermore, it is not known whether a regressor is
predetermined or strictly exogenous with respect to the time-varying error component
or whether the regressor is correlated with the unobserved individual effect.

The MMSC that we consider resemble the widely used BIC, AIC, and HQIC
model selection criteria. (See Hannan and Quinn (1979) for the latter.) The MMSC
are based on the J test statistic for testing over-identifying restrictions. They include
bonus terms that reward the use of more moment conditions for a given number of
parameters and the use of less parameters for a given number of moment conditions.
The J statistic is an analogue of (minus) the log-likelihood function and the bonus



terms are analogues of (minus) the term that penalizes the use of more parameters
in a standard model selection criterion.

For illustration, we define the MMSC-BIC here. Setting different elements of 6
equal to zero yields different models. For example, in a model with lagged dependent
variables, setting different lag coefficients to zero yields models with different numbers
of lags. As a second example, suppose one has two competing non-nested models with
two corresponding parameter vectors and two sets of GMM estimating equations.
Then, the two parameter vectors can be stacked to yield a single parameter 6. Setting
the second parameter vector equal to zero yields the first model and vice versa.

Next, let (b, ¢) denote a pair of model and moment selection vectors. That is, b is a
vector that selects some parameters from the vector 6, but not necessarily all of them.
And c selects some moment conditions, but not necessarily all of them. Let |b| and ||
denote the numbers of parameters and moment conditions, respectively, selected by
(b,c). Let J,,(b,c) denote the J test statistic for testing over-identifying restrictions,
constructed using the parameters selected by b and the moment conditions selected
by c. Let BC be the parameter space for the model and moment selection vectors
(b, c). Let n denote the sample size. Then, the MMSC-BIC criterion selects the pair
of vectors (b, ¢) in BC that minimizes

Jn(b,¢) — (|| — |b]) Inn. (1.1)

We show that this criterion is the proper analogue of the BIC model selection criterion
in the sense that it makes the same asymptotic trade-off between the “model fit” and
the “number of parameters.”

The GMM-based model and moment selection criteria introduced here are ap-
plicable when the model is specified by moment conditions rather than complete
distributional assumptions. They are also useful when the model is specified by
complete distributional assumptions but estimated by GMM, because a closed-form
solution for the likelihood function is not available. For example, in the stochastic
volatility model estimated by GMM (e.g., see Anderson (1994)), it may be desir-
able to select the lag length in the conditional variance equation. This can be done
straightforwardly using an MMSC.

We now discuss the general dynamic panel data model considered in the paper.
The model does not assume specific distributions for the errors in the model. Instead,
following many papers in the recent literature, the model is specified by a sequence
of assumptions on the means and covariances of the random variables that enter the
model. These assumptions imply a sequence of moment conditions that may be used
for GMM estimation of the parameters.

The general dynamic panel data model that we consider nests as special cases the
models in Hausman and Taylor (1981), Anderson and Hsiao (1982), Bhargava and
Sargan (1983), Breusch, Mizon, and Schmidt (1989), Arellano and Bover (1995), and
Ahn and Schmidt (1995). In addition, the model shares a common feature with those
in Chamberlain (1984) and Holtz-Eakin, Newey, and Rosen (1988) in the sense that
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coefficients can vary over time. The model also incorporates some novel features by
allowing for (i) potentially unknown lag length for the lagged dependent variables,
(i) possible structural breaks in the parameters at unknown times, (iii) regressors
whose predetermined /strictly exogenous status is unknown, and (iv) regressors whose
correlation with the individual effect is not known to be zero or nonzero.

To evaluate the finite sample properties of the MMSC, we conduct a Monte Carlo
experiment on a dynamic panel data model that is a restricted version of the general
model. The consistent MMSC are shown to have good performance in selecting the
correct parameter vector and correct moment conditions. Conducting model and
moment selection has an impact on parameter estimation. The post-selection GMM
estimators can have much lower biases, standard errors, and root mean squared-errors
and more accurate rejection rates than a standard GMM estimator without model
and moment selection. We find that the MMSC-BIC criterion is the best MMSC in
all cases considered except that with the smallest sample size.

We now review the literature related to this paper. In addition to Andrews (1999),
the closest literature to the model and moment selection results of this paper is that
concerning likelihood-based model selection criteria. The AIC criterion was intro-
duced by Akaike (1969). The BIC criterion was introduced by Schwarz (1978), Rissa-
nen (1978), and Akaike (1977). The HQIC criterion was introduced by Hannan and
Quinn (1979). The PIC criterion was introduced by Phillips and Ploberger (1996).
Consistency, strong consistency, or lack thereof of these procedures are established
by Shibata (1976), Hannan (1980, 1982), and Hannan and Deistler (1988), as well as
some of the references above. The use of model selection procedures in general non-
linear models has been considered by Kohn (1983), Nishii (1988), and Sin and White
(1996). The effect of model selection on post-model selection inference is considered
by Pétscher (1991), Potscher and Novak (1994), and Kabaila (1995) among others.
For the literature on regressor selection, see Amemiya (1980), Potscher (1989), and
references therein.

Other literature related to this paper includes Kolaczyk (1995), who considers an
analogue of the AIC model selection criterion in an empirical likelihood context, and
Pesaran and Smith (1994), who consider an R?—type criterion that can be used for
model selection in linear regression models estimated by instrumental variables.

In addition, the results of this paper are related to the test of Eichenbaum, Hansen,
and Singleton (1988) of whether a given subset of moment conditions is correct or
not. They propose a likelihood-ratio like test based on the GMM criterion function.
The results of this paper also are related to the literature on non-nested tests in GMM
contexts, see Smith (1992).

Gallant and Tauchen (1996) address the issue of selecting a small number of
efficient moments from a large pool of correct moments. This is a different problem
from that addressed here. Gallant, Hsieh, and Tauchen (1997) consider using t-ratios
for individual moment conditions as diagnostics for moment failure.

Our results for dynamic panel data models follow a long line of research in econo-



metrics. Early contributions including Mundlak (1961), Balestra and Nerlove (1966),
and Maddala (1971). More recently, static panel data models with unobserved in-
dividual effects that may be correlated with some of the explanatory variables are
studied in Hausman and Taylor (1981), Amemiya and MaCurdy (1986), Breusch, Mi-
zon, and Schmidt (1989), and Keane and Runkle (1992). Dynamic panel data models
with unobserved individual effects are studied in Anderson and Hsiao (1982), Bhar-
gava and Sargan (1983), Chamberlain (1984), Holtz-Eakin, Newey, and Rosen (1988),
Arellano and Bond (1991), Ahn and Schmidt (1995), Blundell and Bond (1995), and
Arellano and Bover (1995). The latter paper provides a nice summary of many of the
models that have been considered in the literature.

The rest of the paper is organized as follows: Section 2 introduces the general
model and moment selection problem, defines the “correct” model and moment se-
lection vectors, introduces a class of model and moment selection criteria, provides
conditions for consistency of these criteria in a general GMM context, and demon-
strates that they are the proper analogues of the BIC, AIC, and HQIC likelihood-
based model selection criteria. Section 3 shows that the MMSC considered here are
the proper analogues of the AIC, BIC, and HQIC model selection criteria. Section 4
specifies a general dynamic model for panel data and compares it to models in the
literature. Section 4 also provides an array of different restrictions on the general
panel data model, specifies the moment conditions implied by these restrictions, and
applies the model and moment selection criteria of Section 2 to this model. Section
5 evaluates the finite sample performance of the model and moment selection crite-
ria via Monte Carlo simulation. In this section, a restricted version of the general
dynamic panel data model of Section 4 is used. Section 6 concludes. An Appendix
contains proofs.

2. Consistent Model and Moment Selection
for GMM Estimation

2.1. The Model and Moment Selection Problem

We have an infinite sequence of random variables 71, ..., Z,,... drawn from an
unknown probability distribution P° (the data generating process) that is assumed
to belong to a class P of probability distributions. The class P allows for the cases
where the random variables are iid, inid, stationary and ergodic, weakly dependent
and non-identically distributed, etc. Let E° denote expectation under P°.

We have a random vector of moment conditions

Gou(0):© — R (2.1)

and a random 7 X r weight matrix W,,, both of which depend on {Z; : i < n}. The
parameter space O is a subset of RP. Typically, the moment conditions are of the
form G, (0) = 3" m(Z;,0).
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We assume that G,,(f) converges in probability as n — oo to a function G°(6)
Vo € ©, VP? € P. (A formal statement of assumptions is provided below.) Usually,
this holds by a weak law of large numbers (LLN) and G%(0) is the expectation of
Gy (0) or its limit as n — oo. The superscript “0” on G°(f), and on various other
quantities introduced below, denotes dependence on P°.

In the standard GMM framework (which is not adopted here), one assumes that
the entire parameter vector 6 is to be estimated and that all » moment conditions
are correct. By the latter, we mean that for some #" € O, one has G°(6°) = 0. To
achieve identification, one assumes that 6° is the unique solution to these equations.
The parameter 6° is then called the “true” value of 6. In this case, the standard GMM
estimator 6,, of ° is defined to minimize

Gn(0)W,,G,,(0) over 6 € ©. (2.2)

The GMM estimator 6, is consistent for #° under minimal (and well-known) addi-
tional assumptions.

Here, we consider the case where the parameter vector f may incorporate several
models. By setting different elements of  equal to zero, one obtains different models.
Two examples of this are given in the Introduction. As a third example, consider a
model that may have structural breaks in the parameters (perhaps at some unknown
time(s)). The vector 6 can include the pre-break values of the parameter plus post-
break deviations from the pre-break values. Different sets of post-break deviations
can denote changes at different times. If the post-break deviations are set equal to
zero, then one obtains the model with no structural breaks.

We consider the case where not all of the moment conditions in G, () are neces-
sarily correct. That is, it may be the case that there is no vector §° € © for which
G°(6°) = 0. This situation can arise for a variety of reasons. It clearly arises in the
example of selecting between two non-nested GMM models mentioned in the Intro-
duction. In this case, G, (f) consists of the moment conditions for the two models
stacked one on top of the other. In this case, one expects a priori that one set of
moment conditions or the other is correct, but not both. Of course, this example
extends to the case of more than two non-nested models.

In addition, one may have some incorrect moment conditions when G, () consists
of moment conditions for a single model or nested models, but there is a hierarchy
of restrictions on the model(s). In such cases, some moment conditions may hold,
whereas others may not. For example, some moment conditions might hold if cer-
tain variables are predetermined and an additional set may hold if, in addition, the
variables are strictly exogenous.

By allowing for incorrect moment conditions, as in Andrews (1999), we provide a
method of dealing with the common problem in empirical applications that the .J test
of over-identifying restrictions rejects the null hypothesis that all moment conditions
are correct.



Below we show that under certain assumptions it is possible to consistently esti-
mate the “correct” model and the “correct” moment conditions given suitable defi-
nitions of “correct.” This allows one to construct a GMM estimator that relies only
on the correct model and moment conditions asymptotically, provided there are some
over-identifying restrictions on the correct model.

2.2. Definition of the Correct Model and Moment
Selection Vectors

Let (b,c) € RP x R" denote a pair of model and moment selection vectors. By
definition, b and ¢ are each vectors of zeros and ones. If the j-th element of b is a
one, then the j-th element of the parameter vector 6 is a parameter to be estimated.
If the j-th element is a zero, then the j-th element of 6 is set equal to zero and is
not estimated. If the j-th element of ¢ is a one, then the j-th moment condition is
included in the GMM criterion function, whereas if the j-th element is a zero, it is
not included. Let

S = {(bc) eRPXR :bj=00r1V1<j<p, ¢=00r1VlI<k<r,
where b = (by,...,b,)'and ¢ = (c1, ..., ¢,)'}. (2.3)

Let [b| denote the number of parameters to be estimated given b, i.e., [b] = >"_, b;.
Let |c| denote the number of moments selected by ¢, i.e., || = > _; .

Consider any p-vector 6, any r-vector v, and any (b,c) € S with ¢ # 0. Let 0
denote the p-vector that results from setting all elements of 6 equal to zero whose
coordinates equal coordinates of elements of b that are zeros (i.e., O is the element
by element (Hadamard) product of § and b). Let v. denote the |c|-vector that results
from deleting all elements of v whose coordinates equal coordinates of elements of ¢
that are zeros. Thus, G, () is the |c|-vector of moment conditions that are specified
by ¢. In sum, the subscript [b] sets some elements of a vector equal to zero, whereas
the subscript ¢ deletes some elements. For ¢ = 0, let v. = 0 (€ R).

We now define the “correct” model selection vector v° and the “correct” moment
selection vector ¢V. Let c°(0) be the r vector of zeros and ones whose j-th element
is one if the j-th element of G°(0) equals zero and is zero otherwise. Thus, ¢'(6)
indicates which moments equal zero asymptotically when evaluated at the parameter
vector §. Define

20 ={(b,c) € S:c=c"(0) for some § € O with § = O, }. (2.4)

As defined, Z° is the set of pairs of model and moment selection vectors (b,c) in S
that select only moment conditions that equal zero asymptotically for some 6 € ©
with 6 = 6. (The notation “Z°” is meant to remind one of “zero under P°”.) Define

MZY ={(bc) € Z°: |¢| — |b] > |c*| — |b*] Y(b*,c") € Z°}. (2.5)

6



As defined, M 2" is the set of selection vectors in Z° that maximize the number of

over-identifying restrictions out of the model and moment selection vectors in Z°.

(The notation “MZ"" denotes “maximal over-identifying restrictions under P°.”)
For given P° € P, we consider the following assumption:

Assumption IDbc. M2Z° contains a single element (1°, c%).

When Assumption IDbc holds, we call b° the “correct” model selection vector and ¢’
the “correct” moment selection vector. The correct selection vectors (b2, °) have the
property that they uniquely select the maximal number of over-identifying restrictions
out of all possible models and moment conditions. Depending upon P°, Assumption
IDbc may or may not hold. Below we analyze the properties of model and moment
selection procedures both when this identification assumption holds and when it fails
to hold.

When the maximum number of over-identifying restrictions is zero for any model
and any set of moment conditions, i.e., |¢|—[b| < 0 for (b, ¢) € MZ°, then Assumption
IDbe typically does not hold. The reason is that whenever there are as many or more
parameters |b| as moment conditions |c| there is usually some |b|-vector 0 € © that
solves the |c| moment conditions G () = 0. Hence, Z° typically contains multiple

elements with |¢| = |b|. In consequence, Assumption IDbec typically requires one or
more over-identifying restrictions for it to hold. That is, it requires |¢| > |b] for
(b,c) € M2Z°.

For the model corresponding to the model selection vector b, let O (C ©) denote
the parameter space. By definition, Oy, is the subset of vectors in © that have zeros
for elements that correspond to the zeros in b.

For distributions P° for which Assumption IDbc holds, we consider the following
condition:

Assumption ID§. There is a unique vector 6° € O such that G% (") = 0.

When Assumption ID# holds, we call 8" the “true” value of 6. The true value 6° has
the property that it sets the moment conditions selected by ¢ to be zero and is the
unique parameter vector in Opo; that does so.

Note that the standard GMM situation considered in the literature corresponds
to the case where MZ? = {(1,,1,)} and Assumption 1D is imposed, where 1, and
1, denote p- and r-vectors of ones. In this case, Assumption IDbc holds.

To obtain consistent estimators of (%, ") when Assumption IDbc holds, it turns
out that one does not need Assumption ID to hold. To obtain consistent estimators
of both (b°,¢°) and 6°, however, one needs both Assumptions IDbc and ID@ to hold.

Next, we discuss Assumptions IDbc and ID6 in the context of linear IV estimation.
Consider the iid linear regression model Y; = X/0*+U, fori = 1, ..., n under P°, where
E'U; = 0 and E°||X;|| < co. We consider the IVs Z; € R", where A° = E°Z; X!
€ R and p° = E°ZU; € R'. The moment conditions in this case are G, (0)
=25 (Y — X!0)Z; and the corresponding limit function is G°(6) = E°(Y; — X!0) Z;
=p® — A%(0 —0").



Let b*(€ RP) denote the selection vector that selects all of the elements of 8" that
are not equal to zero. That is, the j—th element of b* is one if the corresponding
element of #* is non-zero and is zero otherwise. Let ¢*(€ R") denote the selection
vector that selects all of the IVs that are not correlated with the error U;. Thus,
the j—th element of c¢* is one if the corresponding element of p° is zero and is zero
otherwise. We assume that there are more good IVs than parameters in the correct
model, i.e., [¢*| > [b*|. In this context, the correct selection vector of regressors that
enter the model is b*, the selection vector of correct IVs is ¢*, and the parameter of
interest is 0}.).

Of interest is the question: When do Assumptions IDbc and IDf hold with 4° = b*,
® = c*, and §° = 07 Tt is easy to see that (b*,c*) € Z°. Let A). denote the matrix
A® with the columns corresponding to zeros in b deleted and the rows corresponding
to zeros in ¢ deleted. Then, Assumption IDbc holds with (0°, %) = (b*, ¢*) if and only
if p2 is not in the column space of AY. for any (b, c) # (b*, c*) with |¢|— [b] > |¢*| — |b*],
where p) # 0 € R, A € RI‘* and |c| > |b]. Only very special A° and p° matrices
violate this condition. If the former condition holds, then Assumption ID# holds with
0° = 0 if and only if A.. is full column rank b*. (This is true because G% (0}
=AY, .(0p — 0;.), where 0, € R” and 0;. € RI"l)

We now return to the general case. If Assumption IDbe fails to hold for some P?,
then it is still possible to define a “correct” vector (°,°) in some cases. For given
P° € P, we consider the following assumption:

Assumption IDbc2. MZ° contains a single element (b°,c°) for which |V°| =
min{|b| : (b,c) € MZ"}.

That is, if it exists, we can define (1%, ¢") to be the unique selection vector that provides
the smallest parameterization of the model out of all selection vectors that maximize
the number of over-identifying restrictions. Depending upon the circumstances, this
may or may not be a suitable way of defining (0°, ¢°). Below, we focus on the definition
of (1%, %) given in Assumption IDbc, but we indicate results that apply when (b°, ¢V)
is defined more generally by Assumption IDbc2.

2.3. The J-test Statistic

All of the model and moment selection procedures considered below are based on
the J test statistic used for testing over-identifying restrictions, see Hansen (1982).
We define this statistic here. The J test statistic based on the model selected by b
and the moment conditions selected by c is defined to be

Jn(b, C) =n inf Gm(ﬁ[b})’Wn(b, C)Gnc(g[b]). (2.6)
O €Oy

Here, W, (b, ¢c) is the |c¢| x |c| weight matrix employed with the moment conditions
Gre(fp) and the model selected by b. For example, W,,(b, c) might be defined such



that it is an asymptotically optimal weight matrix when the moment conditions se-
lected by ¢ are correct.? By definition, when ¢ = 0, W, (b,c) = 0 (€ R).

The GMM estimator based on the model selected by b and the moment conditions
selected by ¢ is defined to be any vector 6,(b,c) € Oy, for which

o~ o~

Gne(On (b, €)) Wi (b, ¢)Gne(0n(b, ) = aé%f[,,] Gne(0) Wi (b, ¢) Ge(6). (2.7)

Thus, the J, (b, c) test statistic also can be written as

Jn(5,¢) = NGre(0 (b, ) Wi (b, ) Gre (0 (b, €)). (2.8)

2.4. The Parameter Space for the Model and Moment
Selection Vectors

We consider estimation of (°, ") via an estimator that we denote generically by
(E, ¢). The parameter space for (E, ¢) is denoted by BC C S. We always specify the
parameter space BC such that it includes some (b, ¢) € S with ¢ = 0. This guarantees
that the parameter space always includes at least one pair (b, c) of selection vectors
that does not select any incorrect moments (since it does not select any moments at
all). Note that the lack of any correct moments indicates model misspecification.

The parameter space BC should be a very much smaller set than S. Otherwise,
the finite sample behavior of (b, ¢) will be poor and computation will be difficult. The
parameter space BC should exploit the information that many parameters are known
not to be zero and that many moment conditions are known to be correct. It should
also exploit the nested or hierarchical structure that often exists with parameters
(e.g., with lagged variables) and with moment conditions (e.g., when blocks of moment
conditions are either correct or incorrect block by block rather than moment condition
by moment condition, see Andrews (1999)).

2.5. Definition of Consistency

All limits considered here and below are limits “as n — 00.”

“convergence in probability as n — o0o”. Let “wp — 1”7 abbreviate
that goes to one as n — 00.” R
We say that a moment selection estimator (b,¢) € BC is consistent if

Let “—,” denote
“with probability

(b,2) = (t°,°) wp — 1 under P°, VP € P that satisfy Assumption IDbe. (2.9)
Because BC is finite, (b,¢) = (b°,°) wp — 1 is equivalent to the standard (weak)
consistency condition that (b,¢) —, (8°, c°).

We note that the above definition of consistency is stronger if Assumption IDbe
is replaced by Assumption IDbc2 in (2.9).



2.6. Performance When Assumption IDb0c Fails

Below we analyze the behavior of the model and moment selection procedures
introduced below in the case where Assumption IDbc does not hold. For this purpose,
we make the following definitions. Define

BCz" = BC N 2°. (2.10)

As defined, BCZ" is the set of selection vectors in the parameter space BC that
select only models and moment conditions that equal zero asymptotically for some
parameter vector. Define

MBCZ® = {(b,c) € BCZ" : |c| — |b] > |c*| — |[b*| ¥(b*,¢") € BCZ"}.  (2.11)

As defined, MBCZ" is the set of selection vectors in BCZ° that maximize the number
of over-identifying restrictions out of selection vectors in BQZO. We show below that
for many moment selection procedures discussed below (b,¢) € MBCZ® wp — 1
whether or not Assumption IDbc holds. That is, for these procedures, with probability
that goes to one as n — oo, (b,¢) lies in the set of selection vectors that mazimize the
number of over-identifying restrictions out of all selection vectors in the parameter
space BC that select only moments that equal zero asymptotically for some parameter

vector.

2.7. Basic Assumption

We now state the basic assumption under which the results below hold. This
assumption holds quite generally.

Assumption 1. (a) G,(0) = G°(0) +O,(n"'/?) under P’ V0 € © C RP for some
R™valued function G°(-) on ©, VP € P.
(b) Wy (b,¢) —, WO(b,c) under Py for some positive definite matriz W°(b,c) ¥(b,¢) €
BC,VP, € P.
(c) infoeo, Gne(0) Wi (b, ¢)Gne(0) —, infoeo, G2(0)WO(b, c)G2(0) = G2(0")
WO (b, c)G2(0%) under P° for some 0 € Oy, that may depend on ¢ and P°,¥(b,c) € BC,
VP e P.

Assumption 1(a) typically holds by a central limit theorem (CLT) with G°(#) equal
to the expectation of G, () or its limit as n — oo, because G, (0) is often a sample
average. Assumption 1(b) is a standard condition used to obtain consistency of GMM
estimators. It is satisfied by all reasonable choices of weight matrices W/, (b, c).

Assumption 1(c) is implied by Assumption 1(b) and the following: G, () —,
G°(0) uniformly over § € © under PY for G°(-) as in Assumption 1(a), G°(0) is
continuous on O, and O C RP is compact for all b such that (b,c) € BC for some
¢, VP° € P. The first two of these three conditions can be verified using a generic
uniform convergence result, such as a uniform weak LLN, e.g., see Andrews (1992).
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Alternatively, when the moment conditions are linear in 6, Assumption 1(c) typically
holds under almost the same conditions as Assumption 1(a), because the “infima over
0 € Op)” can be calculated explicitly. In the linear case, the parameter spaces Oy
can be unbounded.

For illustrative purposes, we provide a sufficient condition for Assumption 1 for
the case of stationary data. This condition is not very restrictive. (The proof of
sufficiency is given in Andrews (1999).) Let ||B|| denote the Euclidean norm of a
vector or matrix, i.e., ||B|| = (tr B'B)/2.

Assumption STAT. (a) {Z; : i = ...,0,1,..} is a doubly infinite stationary and
ergodic sequence under P°, VP° € P.

(b) Gn(8) = + 37, m(Z;,0) and m(z,0) is continuous in 6 on © for all z in the
support of Z;.

(c) E°||m(Zi,0)|]” < oo and Y222, (E°||E°(m(Z:, 0)|Fi DNHY?2 <00 V0 €O, VP €
P, where F; denotes the o-field generated by (..., Z;_1, Z;).

(d) Either (i) ©p C RP is compact for all b such that (b,c) € BC for some ¢ and
E°supyeg [|m(Z:,0)|] < 0o VP? € P or (ii) m(z,0) = my(z) +ma(2)0 VO € O, where
mi(z) € R" and mo(z) € R™P, and Op) = {9 ®b: 0 € RP} for all b such that
(b,c) € BC for some ¢, where “®” denotes element by element product.

(e) Assumption 1(b) holds.

Note that the leading example where the moment conditions are linear in ¢ and
Assumption STAT(d) part (ii) holds is the linear IV estimator of the linear model
Y, = X0 + U; with IV vector Z € R". In this case, the moment conditions are
Gu(0) = L0 (Vi — Xi0)Z; = my(Z) + ma(Z:)0, where my(Z,) = YiZ;, € R,
my(Z;) = —Z: X! € R™?, and Z; = (Y;, X!, Z",) .

2.8. Model and Moment Selection Criteria

Here we introduce a class of model and moment selection criteria (MMSC) that
are analogous to the well-known model selection criteria used for choosing between
competing models. They extend the moment selection criteria of Andrews (1999) to
allow for simultaneous model and moment selection.

The MMSC estimator, (byyrsc, Cararse), is the value that minimizes

MMSCy(b,c) = Ju(b,c) — h(]e| — b))k (2.12)

over BC.
The function A(-) and the constants {k,, : n > 1} in the definition of M M SC,,(b, c)
are specified by the researcher. They are assumed to satisfy:

Assumption MMSC. (a) h(-) is strictly increasing.
(b) Kk, — 00 and k,, = o(n).
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Given Assumption MMSC, h(|c| — [b])&,, is a “bonus term” that rewards selection
vectors (b, ¢) that utilize more over-identifying restrictions. This term is necessary to
offset the increase in J,(b, ¢) that typically occurs when over-identifying restrictions
are added even if they are correct over-identifying restrictions. Assumption MMSC(b)
implies that the bonus given for more over-identifying restrictions increases without
bound as the sample size n increases.

It is always possible to specify MMSC for which Assumption MMSC holds, because
the researcher chooses h(-) and {x,, : n > 1}.

Now we introduce three examples of MMSC. These are analogues of the BIC, AIC,
and HQIC criteria developed for model selection. We refer to them as the MMSC—
BIC, MMSC-AIC, and MMSC-HQIC criteria. In each case, they take h(z) = z. They
are defined by

MMSC — BIC: &, =Inn and MMSCgic (b, ¢) = J,(b,¢) — (|| — |b]) Inn,
MMSC — AIC: &k, =2 and MMSCyicn(b,c) = Jn(b,c) —2(Jc| — |b]),
MMSC — HQIC: &, = QInlnn for some ) > 2 and
MM SCuqicn(b, c) = Jy(b,¢) — Q(|c| — [b]) Inlnn. (2.13)

The MMSC-BIC and MMSC-HQIC procedures satisfy Assumption MMSC. The
MMSC-AIC procedure does not satisfy Assumption MMSC(b) because k,, = 2 - oc.
Thus, the MMSC-AIC procedure is not consistent. For brevity, we do not prove this
here. The proof is similar to the proof of the lack of consistency of the AIC model
selection procedure, see Shibata (1976) and Hannan (1980, 1982). The MMSC-
AIC procedure has positive probability even asymptotically of selecting too few over-
identifying restrictions.

Consistency of (byyrsc, Carmsc) is established in the following theorem.

Theorem 1. Suppose Assumptions 1 and MMSC hold. Then,

(a) (b]\/[MSC,/C\Mj\[SC) e MBCZY wp — 1,VP0 eP,

(b) for all P° € P for which Assumption IDbc holds, (bararsc,Camsc) = (80, c%)
wp — 1 4ff (1°,c°) € BC, and

(c) (/Z;MMSC,EMMSC) is consistent iff for all P° € P for which Assumption IDbc holds,
we have (V°, %) € BC.

Comments. 1. Part (a) is a robust result that specifies the asymptotic behavior of
(/l;MMSC,EMMSC) for all P® € P, not just for P° for which Assumption IDbc holds.
Note that if MBCZO N MZO 7§ @, then (Z]\[]\,[SC,/C\]\/[]\[SC) S MZO wp — 1, VP e P.
The result of part (a) is analogous to results concerning the behavior of extremum
estimators when the standard identification condition fails.

2. Theorem 1 is analogous to Theorem 1 of Andrews (1999). Theorem 1(b) is
similar to Theorem 3 of Hannan (1980) for (weak) consistency of model selection

criteria for lag selection in ARMA models.
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3. Over-rejection of the J test in finite samples (see the July 1996 issue of the
Journal of Business and Economic Statistics) affects the MMSC only if the amount
of over-rejection differs for different selection vectors (b, ¢).

4. The proof of Theorem 1 is given in the Appendix of Proofs.

5. Suppose that consistency is defined with Assumption IDbc replaced by As-
sumption IDbc2. Then, a consistent MMSC can be obtained by adding a penalty
term hy(|b])Kay, to the definition of MM SC,,(b,c) in (2.12), where hy(-) is a strictly
increasing function, kq, — 00, and kg, = 0(ky).

3. The Analogy Between BIC/AIC/HQIC and
MMSC-BIC/MMSC-AIC/MMSC-HQIC

In this section, we show that MMSC-BIC, MMSC-AIC, and MMSC-HQIC are
the proper moment selection analogues of the BIC, AIC, and HQIC model selection
criteria.

Consider a log likelihood function ¢,(vy) that may depend on some or all parame-
ters in v € R?. Different models are obtained by setting different elements of v equal
to zero. The maximum likelihood (ML) estimators of v for different models are just
the estimators that maximize the log likelihood function subject to different restric-
tions on which elements of v are equal to zero. Let 7,, denote the ML estimator of
for model m, where m = 1, ..., M indexes the models considered. Let ¢,, denote the
number of elements of v that are set equal to zero in model m. Let M = {1,..., M}
denote the set of models.

The model selection criteria that we consider are of the following form. One
chooses the model m € M that maximizes

10,(m) = £,(G) — 5(d ~ g (3.1)

Note that d — g, equals the number of parameters in model m. The following choices
of k,, yield the BIC, AIC, and HQIC criteria: k,, = Inn for BIC, k,, = 2 for AIC, and
kn = @QInlnn for HQIC, where ) > 2.

We consider the asymptotic behavior of 1C,,(m) for models that are correct, but
not necessarily parsimonious. We aim to elucidate the trade-off that the IC,(m)
criterion makes between the value of the likelihood for correct models and the penalty
that it imposes for redundant parameters. Our MMSC are designed to provide the
same trade-off.

We suppose the likelihood function is regular in the sense that it has a quadratic
approximation around the true parameter value v°. We suppose m is a correct, but
not necessarily parsimonious, model. Then, under standard regularity conditions, we

have " -
Ca(Fm) = =T (m) + Sy, where J,(m) % x? (3.2)
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and S, is a random variable that does not depend on m. See the Appendix of Proofs
for the regularity conditions. B

Using (3.1) and (3.2), we can write IC,,(m) = —(J(m) — @mkn)/2 +Sp — dky /2.
Note that S,,—dk,, /2 is a shift random variable that does not depend on m and, hence,
has no effect on the outcome of the selection procedure. Thus, maximizing IC,,(m)
over models m that are correct, but not necessarily parsimonious, is equivalent to
minimizing

Jn (M) — GmEn, (3.3)

where jn(m) is asymptotically Xﬁm and ¢, is the number of redundant parameters
that model m sets equal to zero.

We now turn to the MMSC introduced above and show that they are of the
same form as the model selection criteria in (3.3). We do this by showing that
the choice between different vectors of moment conditions can be reinterpreted as
the choice between parameter vectors with different numbers of parameters. This
reinterpretation is related to the work of Back and Brown (1993), who address a
quite different problem.

The idea of the reinterpretation is as follows. Consider a pair of model and moment
selection vectors (b, c). The GMM criterion function for (b, c), viz., Gne(0) Wa(b, c)
Ghne(Oy)), deletes the moment conditions in Gy (6p)) that correspond to coordinates j
for which ¢; = 0. Alternatively, suppose we retain all moment conditions, but add an
unknown mean parameter p; to each moment condition Gy;(f)) for which ¢; = 0.
That is, the j-th moment condition is taken to be Gy;(0)) — p; for all j with ¢; = 0.
Then, we treat the parameter vector to be estimated to be the vector that includes
the [b| nonzero elements in ¢ and the mean parameters p; for j =1,...,7 — |c].

We show below that the minimized value of the GMM criterion function is the
same whether one deletes moments or one augments the criterion function with cor-
responding mean parameters, provided the weight matrices are defined in an asymp-
totically optimal fashion. Thus, the values of J,(b,c) for different (b,c) equal the
values of a single function that is minimized over parameter vectors with different
numbers of parameters. The latter is analogous to the minimization of the likelihood
function over parameter vectors with different numbers of parameters, which is the
basis of the BIC, AIC, and HQIC model selection criteria discussed above.

We now state more precisely the result described in the previous paragraph. For
all (b,c) € Z° with |c| > |b], define

B =n _inf (Gul0) g, ) WalGul0) — g, o). (3:4)

9€®[b]CRP, ,UGRT
Note that the number of parameters with selection vectors (b, ¢) is |b| + 1 — ||, where
|b| is the number of parameters selected by b and r — |¢| is the number of excluded
moment conditions.

Now, let d = p+r and v = (¢, /) € R%. With the selection vectors (b, c), the
number of parameters in -y that are set equal to zero in (3.4) is q(b,¢) = p—|b| +|c| .
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Thus, different selection vectors (b, ¢) correspond to the setting of different parameters
in v equal to zero, just as different models correspond to the setting of different
parameters equal to zero in the log likelihood function in (3.1) or (3.2).

Suppose the weight matrices W, (b, ¢) of the GMM criterion function are defined as
follows. Let V,,(b) be an estimator of V' = lim,, o, Var(y/nG,(6°)). For b > b° (element
by element), suppose V,,(b) —, V. Let V,,(b,¢) denote the |c¢| X |¢| matrix obtained
by deleting the rows and columns of V,(b) that correspond to zero elements of c.
Suppose W, (b,¢) = V71 (b, ¢) + 0,(1). Asymptotically optimal weight matrices are of
this form. The o0,(1) term allows W, (b, ¢) to be constructed with different estimators
of fy for different moment selection vectors c, given b. For ¢ = 0, take W,(b,c) = 0.

Given this definition of W, (b, ¢), it can be proved in the exactly same manner as
in Andrews (1999) that

Jn(b; ¢) = J5 (b, ¢) + 0,(1) o X|2¢|_\b| (3.5)

for all (b, c¢) with b > b° and ¢ < ¢°. Hence, the model and moment selection criterion
MMSC, (b, c) of (2.12) with h(z) = = becomes

MMSC,(b,c) = J;(b,c) — (|c| = [b])kn + 0p(1), (3.6)

where J;;(b, ) is asymptotically x7, , for all (b,c) with b >t and ¢ < .

Let A ~ x2 be a random variable that is independent of .J, (b, c) and J; (b, c) for
all (b, ¢). Then, minimizing (3.6) over (b, c) is equivalent to minimizing

Ju(b,¢) + A= (p+ |c| = |bl)kn + 0p(1)
= [Jr(b,c) + Al — q(b,¢)kn, + 0,(1) (3.7)

where J¥(b,c) + A —4 Xg(b,c) and ¢(b, ¢) is the number of redundant parameters in ~y
that the selection vectors (b, ¢) set equal to zero.

The trade-off between the magnitude of the minimized criterion function and the

number of parameters is the same in (3.7) asin (3.3). In this sense, the BIC/AIC/HQIC
and MMSC-BIC/MMSC-AIC/MMSC-HQIC procedures are analogous.

4. An Application to Dynamic Panel Data Models
4.1. A General Dynamic Model for Panel Data

Consider a dynamic panel data model

Yit = Wiis + Ui,
g =1, +vg, Vt=1,...., T and i =1,..., N. (4.1)

Here y;; and w;; are observed variables, v;; is an unobserved idiosyncratic error, 7,
is an unobserved individual effect, and ¢; are unknown parameters to be estimated.
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The distributions of 1, and v;; are not specified, but assumptions on their means and
correlations with other variables are given below. All of the random variables in the
model are assumed to be independent across individuals <.

The regressor vector w;; includes L lags of the dependent random variable, i.e.,
Yit—1, - Yit—r, where L > 0. The true lag length Ly (< L) may be unknown. The
initial observations {¥i0, ¥i—1,.-.,%i1-1 :%=1,2,..., N} are assumed to be observed.

The regressor vector w; also includes other variables that may be strictly ex-
ogenous, predetermined, or endogenous. These other variables are contained in two
observed vectors z; and f; of time varying and time invariant variables respectively.
The vectors z; and f; may also contain variables that do not enter the regression
function. Such variables can be employed as instrumental variables.

The time varying variables z; (and, hence, the time varying regressors in w;)
may consist of five types of variables. The type of a variable depends on whether the
variable is strictly exogenous, predetermined, or endogenous with respect to v; and
whether the variable is uncorrelated or correlated with the individual effect 7,. We
partition z; as

Zit = (Thigs Toger Phits Poits Your) - (4.2)

Here, the variables (', x5, )" are strictly exogenous with respect to v;;. The vari-
ables (p!,;, Ph;) are predetermined with respect to v;. The variables yy;; are endoge-
nous with respect to v;;. The variables (z);,, p};) are uncorrelated with the individual
effect n,. The variables (xh;;, Dby, Yh;) are correlated with the individual effect 7),.
The econometrician may not know the type of some variables in z; (and, hence, of
some regressors in w).

The time invariant variables f; (and, hence, the time invariant regressors in w;)
are strictly exogenous with respect to v; and of two types. The type of a variable
depends on whether the variable is uncorrelated or correlated with the individual
effect n,. We partition f; as

fi= (f{zﬂ féz)/ (4‘3)
Here, the variables fi; are uncorrelated with the individual effect n, and the variables
fai are correlated with n),. The econometrician may not know whether certain variables
in f; are uncorrelated or correlated with n,.

If z; and f; do not contain any variables other than those that enter the vector
of regressors w;;, then the general model (4.1) can be written as

L
Yit = Z QmtYit—m T thﬂt + f;% + Ui,

m=1
ug =mn;, +vg Vt=1,...,Tandi=1,...,N, (4.4)

where Wiy = (Yit—1, s Yit—r, 24, f1) and 8, = (aut, ..., cur, B4, 7;)". (Note that this
model includes intercept parameters provided f; contains a constant.)

In the general model (4.1), the parameter ¢; can vary with t. For example, this
allows one to consider a model with structural breaks at known or unknown times.
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If a structural break occurs, the parameter takes different values before and after the
break point. To conform with the set-up of Section 2, we parameterize the model in
terms of the parameter values for the first period, denoted 8, and the corresponding
deviations from these values, denoted 6 for t =2, ..., T

by =0+ 6, (4.5)

In the most general case, (4.5) allows () (and é;) to take different values for each
t and the parameter vector 6 is defined to be

0 = (8,8, s 6())'- (4.6)

Usually in practice, however, one will use a restricted version of (4.5), which leads to
a “restricted model” rather the fully general model (4.1).

Examples of restricted models are: (i) No structural breaks occur over the sample
period, i.e., 6 = 0Vt =2,...,T. In this case, the parameter vector 6 simplifies to

0 =6. (4.7)
(ii) H structural breaks occur at times 1 < 79 < 79 < ... < 7y < T. Then,
Sy = 6® Yt with 7, <t < 74y1, k=1,..., H, (4.8)
where 7,1 =T + 1. In this case, the parameter vector # simplifies to
0= (8,60, .. Wy, (4.9)

(iii) H or fewer structural breaks occur at unknown times. For each combination
of a number of structural breaks and times of the breaks that is to be considered,
one specifies vectors of “deviation” parameters as in (4.8). Then, the first period
parameter 6 and all of the deviation parameters are stacked into a single vector 6.
By appropriately selecting different subsets of the deviation parameters, one obtains
models with different numbers and times of structural change.

(iv) Partial structural breaks occur. In this case, structural breaks occur at known
or unknown times, but only a subset of the parameters 6, change. For brevity, we do
not provide the details.

It is worth mentioning that structural breaks in the individual effect also could
be introduced in the general model by allowing 7, to have different coefficients for
different time periods, as in Chamberlain (1984) and Holtz-Eakin, Newey, and Rosen
(1988). We do not do so here, because this would lead to different moment conditions
than those considered in most dynamic panel data models considered in the literature.

To this point, we have kept a high level of generality in model (4.1) by incorporat-
ing many features that arise in different empirical studies. For example, allowing for
an unknown lag length is especially important for purely dynamic panel data models
that do not have any other regressors. Whether elements of w;; are predetermined or
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strictly exogenous with respect to v;; is especially important in models with rational
expectations. Whether variables in (2, f/)" are correlated with the individual effect
or not separates the “correlated random effects” model from the standard “random
effects” model and is important for many applications. Allowing for structural breaks
in the parameters provides a way to model nonstationarity in dynamic panel data
models that is an alternative to panel data unit root models. It is useful in many
applications.

On the other hand, we do not expect that in any particular empirical study, all
of these features will be present or important simultaneously. The purpose of the
generality of model (4.1) is to have a single theoretical framework that covers a wide

variety of more restrictive sub-models that are of interest in different applications.

4.2. Comparison with Panel Data Models in the Literature

Here we show that the general model (4.1) nests many models in the literature
and shares common features with some others.

Model (4.1) becomes the standard static “random effects” model, if there are no
lagged dependent variables in the model , i.e., L = 0, all of the regressors w;; are
strictly exogenous with respect to v;;, none of the regressors w;; are correlated with
n;, and the parameters are constant over time.

The following static correlated random effects model is considered by Hausman
and Taylor (1981) and Breusch, Mizon, and Schmidt (1989):

Yir = 2B+ [y + war,
ug =mn;,+vg Vt=1,...,Tandi=1,...,N. (4.10)

This model does not contain any lagged values of y;;. In our notation, the regressor
vector wy; equals (2, f/). The regressors z; and f; are assumed to be strictly exoge-
nous with respect to v; and a subset of z;; and f; are correlated with the individual
effect n;,. That is, in our notation, z; = x; = (29, b)), and f; = (f1;, f5;)'- This
model also is one of four models considered in Amemiya and MaCurdy (1986). All
of the authors above consider estimation of this model by instrumental variables.

Anderson and Hsiao (1982) and Bhargava and Sargan (1983) consider maximum
likelihood estimation of a dynamic panel data model

Yie = Q1¥ii—1 + 23+ fiy 4 i,
ug =mn;,+vyg Vt=1,...,Tandi=1,...,N. (4.11)

They also consider simpler versions of this model. Here, both z; and f; are assumed
to be strictly exogenous with respect to v; and uncorrelated with 7,. In our notation,
Wit = (Yit—1, 2y, f1)s 2t = 14, and f; = fi;. The lag length of the lagged dependent
variables is known to be one. These authors assume normal distributions for 7, and
v;. Because the number of time series observations 7' is small for typical panels, the
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assumption used by these authors concerning the initial observation plays a crucial
role in interpreting the model and obtaining a consistent estimator. These authors
also discuss the case where v;; is serially correlated. We do not consider this case in
the present paper.

Ahn and Schmidt (1995) consider GMM estimation of several dynamic and static
panel data models. The most general model they consider is

Yit = qliz1 + 2,0 + fiy + i,
ug =mn; +vg Vt=1,..,Tandi=1,...,N. (4.12)

This model contains only one lagged value of y;;. The regressors z;; and f; are assumed
to be strictly exogenous with respect to v;; and a subset of z; and f; may be correlated
with the individual effect n;. That is, in our notation, w;; = (yi—1, 2y, f1)s 2i = Ti =
(@10, 7o) and fi = (f1,, f2;)'-

Arellano and Bover (1995) consider a model that nests models (4.10)-(4.12). It
allows the regressor vector w;; and z; to contain strictly exogenous, predetermined,
and endogenous variables with respect to v;. That is, as in our model (4.1), z; =
(@305 Thigs Privs Dhirs Yhi)' - Our model (4.1) nests that of Arellano and Bover (1995) and
models (4.10)-(4.12) in that it allows for time varying parameters.

Holtz-Eakin, Newey, and Rosen (1988) consider a bivariate vector autoregression
(VAR) of (yit, yix) with panel data. In our notation, each equation of their VAR takes
the form

Lo
Yit = Z At Yit—m + Zz{tﬂt + v + Ui,
m=1
ug = \n; +vg Vt=1,...,Tandi=1,...,N. (4.13)

In this model, the true lag length L, of the lagged y;; variables is assumed to be
known. The time varying regressors z; contain only lagged values of the second
endogenous variable y;; and, thus, contain only variables that are predetermined with
respect to v;; and are correlated with n,. That is, in our notation, z; = ps;. Also, in
their model, the only time-invariant strictly exogenous variable is a constant. Thus,
in our notation, f; = 1. These aspects of (4.13) are less general than corresponding
parts of our model (4.1).

On the other hand, (4.13) allows for a time varying coefficient A, on the individual
effect. Model (4.13) is more general than (4.1) in this respect. Such generality comes
at the expense of identification, however, because at best only the ratios A\;/A; 1 may
be identified. Holtz-Eakin, Newey, and Rosen (1988) do not provide identification
results for their most general model (4.13), nor do they consider estimation of it, but
they do provide tests for whether a more restrictive model with constant coefficients
is sufficiently general.
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4.3. Moment Conditions in Dynamic Panel Data Models

It is well known that the simple OLS estimator of (4.1) is inconsistent because
the lagged dependent variables y; ;—1,¥i¢—2, ..., Yi+—r, and (possibly unknown) subsets
of other regressors are correlated with the unobserved individual effect n,. In conse-
quence, we consider GMM estimation of model (4.1).

The moment conditions that are employed by a GMM estimator are implied by
assumptions that are imposed on the dynamic panel data model. Below, we state
various assumptions and corresponding moment conditions that can be used with
model (4.1). We state the assumptions sequentially such that they impose increas-
ingly restrictive assumptions on the model. The use of different combinations of the
assumptions yields different models. We do not require that all of the assumptions
are imposed.

We note that the use of additional correct moment conditions can substantially
improve the efficiency of an estimator in some cases; e.g., see Blundell and Bond
(1995). Furthermore, the identification of some parameters and the consistency of an
estimator may rely on some moment conditions being correct and being employed by
the estimator. On the other hand, the use of incorrect moment conditions typically
leads to inconsistency of an estimator.

In what follows, we use the notation z; = (2, Thy, Piics Paies Y2it)'s fi = (fias fo:),
i = (2, 25,), and pi = (pl, Pyy)’- Each assumption applies for all i =1, ..., N.

Assumption P1. (a) En, =0, Evy =0, Bvyn, =0Vt =1,2,...,T.
(b) Evisvy =0Vs, t =1,2,...,T with s # ¢.

(c) Bvygyio = ... = BEvyyin =0Vt =1,2,....T.

(d) Bvi(2}y, oy 2l 1,25, Py, f1) =0Vt =1,2,...,T.

Assumption P2. Evy (., ,...,7;p) =0Vt =1,2,....T — 1.

Assumption P3. En;(x);, Pl f1;) =0Vt =1,2,..T.

Assumption P4. En; (@, Phir, Yoir)' = Eni(@hi 41, Poig—1, Yaie—1) V=2, T.
Assumption P5. Var(vy) = o? for some 0? >0Vt =1,2,...,T.
Assumption P6. Enyi, = Enyq, Vi=1-1L,...,0.

Assumptions P1(a)—(c) impose the familiar error-components structure and are
referred to as “standard assumptions” by Ahn and Schmidt (1995) for dynamic panel
data models with only lagged dependent variables as regressors. Assumption P1(a)
requires that the error u; (= vy + ;) has mean zero and v is uncorrelated with
the individual effect n,. Assumption P1(b) requires that v; is serially uncorrelated.
Assumption P1(c) requires that v, is uncorrelated with the initial observations. As-
sumption P1(d) requires that all lags of z; are uncorrelated with v;; and that all
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variables in z; except the endogenous variables y,; are at least predetermined with
respect to v;; (i.e., their current period correlation with vy is also zero). Assump-
tions P1(a)—(d) are the minimum restrictions imposed on model (4.1). They may not
identify ~,, the coefficients on the time invariant regressors f;.

Assumption P2 specifies that some of the variables in z;; are strictly exogenous
with respect to v, rather than just predetermined.

Assumptions P3 and P4 concern the correlation between the regressors in (z.,, f!)’
and the individual effect n,. Assumption P3 specifies that some variables in z; and
fi are uncorrelated with the individual effect 7,. This assumption can be used to
identify 7,. Assumption P4 specifies that the variables in z;; that are correlated with
7, have constant correlation across time with 7,. This type of restriction is considered
by Bhargava and Sargan (1983) and Breusch, Mizon, and Schmidt (1989).

Assumption P5 concerns the second moments of the error terms. It assumes that
the variance of v is constant over time for each individual. (The variance may vary
across individuals.) In the literature, Assumption P5 (plus the assumption that the
variance of v;; is constant across individuals) is used to obtain a feasible GLS estimator
for the random effects model and a 3SLS estimator for the correlated random effects
model, because it implies a known structure for the variance-covariance matrix of the
errors, which is needed for the GLS transformation. For a GMM estimator, the role
of Assumption P5 is to provide additional moment conditions.

Assumption P6 is a “stationarity” assumption on the initial conditions y; 11, ..., Yio-
It requires that the initial conditions have same correlation with the individual effect
as the dependent variable at time ¢ = 1 has. The failure of this assumption indicates
that y;1_p, ..., ¥io are not drawn from the same process that generates y;;. Assumption
P6 also is used by Arellano and Bover (1995), Blundell and Bond (1995), and Ahn
and Schmidt (1995). Blundell and Bond (1995) study the usefulness of Assumption
P6 via a Monte Carlo study of a simple dynamic panel data model with no regressors
except a single lagged dependent variable. They show this assumption, if correct, can
substantially improve the asymptotic efficiency of a GMM estimator when «;, the
coefficient on the lagged dependent variable, is close to unity.

We now specify the moment conditions that are implied by Assumptions P1-
P6. Let A denote the first difference operator applied to the variable immediately
following A . Thus, A u;ziy = (Wi — Uig—1)Zit-

Assumption P1 implies the following moment conditions:

Fuy;=0Vvt=1,..,T,
ENug(Yir -y iz o) =0Vt =2,...,T,
E A uit(2iy, oy Zig 0y Ty 1, Dig 155 i) = 0VE=2,...,T,
Fuy ANuy_1=0vVE=3,....T.
Let d., dy, d;, and d, denote the dimensions z;, f;, z;1, and p;; respectively. The num-

bers of moment conditions in (4.14)—-(4.17) are T, L(T— 1)+ (T —2)(T'—1)/2, d.(T —
(T —2)/2+ (ds+ d,)(T — 1) + dy(T — 1), and T — 2 respectively.®
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To construct a GMM estimator based on the moment conditions above (and those
below), one replaces u;; by the difference between y;; and the regression function eval-
uated at the parameter vector 6 (or ). Doing so, one can see that the moment con-
ditions in (4.14)—(4.16) yield estimating equations that are linear in the parameters,
whereas those generated by (4.17) are nonlinear in the parameters.

Assumption P2 implies the following moment conditions:

E A ug(zly,....cp) =0Vt =2,...,T. (4.18)

The number of moment conditions in (4.18) is d,7(T — 1) /2.
Assumption P3, combined with Assumption P1(d), implies the following moment
conditions:

Elwzyy =0vVt=1,...,T,
EQL )Yupy =0¥t=1,...,T — 1, and
Eluifii =0, (4.19)

where u; = (u;1, ..., u;r)’, 17 denotes a T-vector of ones, and lrﬁrl denotes a T-vector
whose first ¢ elements are zeros and whose elements indexed from ¢+1 to 1" equal ones.
These moment conditions, if correct, can be used to identify v,. Let d,,, dp,, and dy,
denote the dimensions of xy;, p1s, and fi;, respectively, that are uncorrelated with
the individual effect. The number of moment conditions in (4.19) is d,, T +d,,, (T'—1)
+df 1.
Assumption P4, combined with Assumption P1(d), implies the following moment
conditions:
Eug (A hyy A Doy A yoy) =0VE=2,...,T. (4.20)

Let d,,, dp,, and d,, denote the dimensions of x;, pa2it, and yo;. The number of
moment conditions in (4.20) is (dy, + d,p, + dy,)(T — 1).
Assumption P5 leads to the following 7" — 1 moment conditions:

Suppose one wishes to maximize the number of moment conditions that generate
estimating equations that are linear in the parameters. Then, Ahn and Schmidt
(1995) show that, when the homoskedasticity Assumption P5 holds, the moment
conditions in (4.14)—(4.17) can be expressed equivalently as those in (4.14)—(4.16)
plus

E(yiytfg A Ui t—1 — Yit—1 A uz’t) =0Vt= 3, ceey T. (422)

Assumption P6 implies that
Ey)Yu Ayiy =0Vt =2—1L,....1. (4.23)

Assumption P6 yields L moment conditions.
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4.4. Model and Moment Selection in Dynamic
Panel Data Models

We now show how to apply the MMSC of Section 2 to model (4.1) using the
moment conditions of the previous subsection.

For a given restricted version of model (4.1), let 6 denote the parameter vector
that includes all parameters that enter the restricted model, as in (4.7) or (4.9). Let
p denote the dimension of 6. The largest 6 can be is as in (4.6), which corresponds
to the general case where the parameter vector takes different values at each time
period. The set of possibly correct moment conditions for a given restricted version
of model (4.1) is a specified subset of (4.14)—-(4.23). Let r denote the total number of
these moment conditions. Then, a pair of model and moment selection vectors (b, ¢)
consists of a p x 1 vector b and an r x 1 vector ¢, both containing zeros and ones. Zeros
in b indicate that the model does not depend on the corresponding parameters in 0
and zeros in c¢ indicate that the corresponding moment conditions are not employed
when estimating the parameters in 0.

The parameter space BC for (b,c) should incorporate a considerable amount of
information in order to eliminate many combinations of b and c. First, for a given
restricted model, most variables in the model will be known to enter the model.
Hence, BC will only contain b vectors with ones corresponding to the coefficients on
these variables. Second, for most variables, the type of the variable will be known
or partly known, be it predetermined, strictly exogenous, correlated with 7;, and/or
uncorrelated with 7n,. Hence, BC will only contain ¢ vectors with ones corresponding
to the appropriate moment conditions.

Third, the moment conditions in (4.14)—(4.23) typically are included or not in-
cluded for all relevant time periods, such as t = 1,...,T, rather than time period
by time period. The parameter space BC is defined accordingly. Fourth, moment
conditions in (4.17) and (4.22) are not included at the same time and those in (4.22)
are included only if those in (4.20) are included.

Lastly, any other information about the correct parameter and moment vectors
also should be used. Such information helps to reduce the parameter space and ease
the selection problem.

For any (b,c) € BC, we evaluate the moment conditions selected by ¢ at the
parameters selected by b. Specifically, we substitute the following expression in each
of the selected moment conditions in place of wu :

Yit — wgt(é -+ 6(t)), (424)
where §(1) = 0 and each parameter in (&', &), ..., 8(7))" is set equal to zero if it is not
included in @ or if the corresponding element in b is zero.

The weight matrix W, (b, ¢) for the GMM criterion function can be taken to equal
V. 1(b,c), where V,,(b,c) is defined in footnote 2 with 6,(b,c) equal to the GMM

estimator of # obtained by using the moment conditions selected by ¢, the parameter
space O for 0, and the weight matrix equal to the identity matrix.
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Selection of the parameter vector and the moment conditions, including lag length,
detection of structural breaks, exogeneity of regressors, etc., is conducted simultane-
ously. Given a model and moment selection estimator (b,¢), the parameters 0[,;]

selected by b are estimated using the moment conditions selected by é.

It remains to verify Assumption 1 of Section 2 for the dynamic panel data models
considered in this section. This can be done for the case of observations that are
identically distributed or non-identically distributed across individuals 2. For brevity,
we just give sufficient conditions for the identically distributed case. Note that inde-
pendence across individuals i has already been assumed. Assumption 1(a) holds for
iid observations by the central limit theorem with G°(#) equal to the expectation of
G, (0) provided E||G,(0)||> < oo V8 € ©. All of the moments conditions in (4.14)—
(4.23) just involve (at most) products of the underlying variables. In consequence, a
sufficient condition for this moment condition is

EN(Yir—rs - Yirrs Ty [1)'|[* < 0. (4.25)

The convergence part of Assumption 1(b) holds by a weak law of large numbers
using the preceding moment conditions provided 6,,(b, ¢) converges in probability to
some parameter 6°(b, c) for each (b,c) € BC.* The matrix WO(b, c) equals V(b c)?
in this case, where

VO(b,¢) = E (me(Zi,0°(b, ¢)) — Eme(Z:,6°(b, ¢)))
(me(Zi, 0°(b, ¢)) — Eme(Z:,6°(b, ¢)))". (4.26)
The positive definiteness part of Assumption 1(b) holds if VY(b, ¢) is positive definite
for all (b,¢c) € BC.

The convergence part of Assumption 1(c) holds using a Vapnik-Cervonenkis-type
uniform weak law of large numbers for iid random variables under the moment con-
ditions above using the linear or quadratic structure of the moment conditions, e.g.,
see Pollard (1984, Thm. 11.24, Lem. 11.25, Lem. 11.27). The equality in Assumption

1(c) holds provided Oy is compact or Oy, is of the form Oy = {§©b: § € RP} for all
b such that (b, c) € BC for some ¢, where “®” denotes element by element product.

5. Monte Carlo Experiment

In this section, we conduct a Monte Carlo experiment to evaluate the performance
of the MMSC. We consider MMSC-AIC, MMSC-BIC, and MMSC-HQIC. We set
@ = 2.1 in MMSC-HQIC.

The model we use is a restricted version of the general model in (4.1).

5.1. The Correct Model

We consider a dynamic panel data model with lagged dependent variables and
a covariate as regressors. We assume that the econometrician does not know the
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true lag length. We also assume that the econometrician does not know whether the
covariate is correlated with the individual effect or whether the covariate is strictly
exogenous with respect to the time-varying error component.

In particular, the correct model is

Yit = Qo + a1¥ip 1+ BTy + wi,
ug =n; +vg Vt=1,...,Tand i =1,..., N, (5.1)

where 7; ~ N(0,02), vy ~ N(0,0%), and Envy;, = 0 for all t. The true lag length is
one, i.e., Ly = 1. The covariate x;; is predetermined, but not strictly exogenous with
respect to the time-varying error v;. It is correlated with the individual effect n, for
all ¢.
We take
(Tity ooy Ty My Vids oo, Vi) ~ N(0,%), where

2
ol owly 040

Y= ol o (o . (5.2)
O'xv]:v OT O'%IT

Here, I denotes a T'x T identity matrix, 1, denotes a T x 1 vector of ones, 0, denotes
a T x 1 vector of zeros, I' is a T" x T" matrix whose jk-th element is one when k = j—1
for j = 2,...,T and zero otherwise, 0., = Fxyn; # 0, and 05, = Fxyvy1 # 0. As
specified, (i) x; is uncorrelated with z;, for ¢t # s and has a constant variance o2,
(ii) vy is serially uncorrelated and uncorrelated with 1, and both error components
have constant variances of o2 and af], respectively, and (iii) z; is correlated with the
individual effect and is predetermined (because Fzyv;s =0 for s =t +1,...,T), but
not strictly exogenous (because Fx; vy 1 = 04 # 0 and Fzyv;s =0 for s £t —1).
The L initial observations are specified by

Yis = Qo+ a1Yis 1+ BTis +1; + Vi, s=2—L,..., 0,

BOwn + 07
i1 = _ . i1 L), 5.3
Yin—L H+U%(1—Oé1)(¢772+v71 L) ( )

where vi1 1, vis ~ N(0,07), 7, ~ N(0,07), ¢ = 1, and k = ao/(1 — 7). The para-
meter ¢ controls the correlation between the initial observations and the individual
effect n;. The choice ¢ = 1 implies that the “stationarity” assumption, i.e., Assump-
tion P6, holds. The parameter x controls the mean levels of the initial observations.
It does not affect whether the “stationarity” assumption holds or not. It is chosen so
the means of the observations are stationary.

In specifying the correct model, we use parameter values that have the following
features: (i) there is a noticeable difference in efficiency between the GMM estimator
that uses the correct model and all correct moment conditions and the GMM estima-
tor that uses the least parsimonious model and only those moment conditions that are
known to be correct and (ii) there are noticeable biases in the GMM estimators that
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are based on models that exclude some parameters whose true values are non-zero
and/or use incorrect moment conditions. For parameter values with these features,
there are gains to be exploited by a gopod MMSC and losses to be incurred by a poor
MMSC. The following parameter values exhibit the desired features:

(a0, 1, B) = (.8,.85,.5) and (04, Oy, 02, 02, 02) = (—.2,.5,1,1,1). (5.4)

n?

We want to examine how the MMSCs’ finite sample performances change across
both N and T'. In consequence, we conduct experiments with five different sample
size configurations: (T, N) = (3,250), (3,500), (3,1000), (6,250), and (6,500). We
employ 1,000 simulation repetitions for each sample.

To evaluate the robustness of our results to models that exhibit a high degree of
persistence, we also report results from one experiment with a; = .95. We consider
the sample size configuration (7', N) = (3,500). The full parameter vectors in this
case are:

(a0, a1, B3) = (.8,.95,.5) and (04, Ouw, 02, 02, 02) = (—.2,.5,.2,.2,5). (5.5)

n v

This case has received attention in the literature. Ahn and Schmidt (1995) and
Blundell and Bond (1995) have shown that when o is close to one, moment conditions
based on the first differences of y;; may not be very informative, whereas moment
conditions based on the “stationarity” assumption can be very informative.

5.2. The Parameter Space for Model and Moment Selection
Vectors

We assume that the econometrician does not know the correct model. Instead,
he considers GMM estimation of the following model

Yit = Qo+ Q1Y 1+ QaYig—2 + BTi + Uy,
ug =mn;,+vg Vt=1,...,Tandi=1,..,N. (5.6)

The econometrician selects a lag length of 0, 1, or 2. For possible moment conditions,
he considers the following four groups of assumptions:

Assumption G1. (a) En, =0, Evy =0, Evgn, =0Vt =1,2,...,T.
(b) Evivy =0Vs, t =1,2,...,T with s # ¢.

(c) Bvygyio = Evgy; 1 =0Vt =1,2,..,T.

(d) Var(vy) = o? for some 02 >0Vt =1,2,...,T.

(e) Bvg(xi,...,xy) =0Vt =1,2,...,T.

Assumption G2. Evy(ziiiq1,...,20) =0Vt =1,2,...,T — 1.

Assumption G3. Enz;, =0Vt=1,2,..,T.
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Assumption G4. Enya = Enyio = Enyi 1.

Assumption G1 imposes the standard error-component structure, constant vari-
ance for vy, and predeterminedness for x;. Assumption G2 further imposes strict
exogeneity for x;. Assumption G3 assumes x;; is uncorrelated with 7,. Assumption
(G4 is the “stationarity assumption”.

Under the correct model, Assumptions G1 and G4 hold, but Assumptions G2 and
G3 do not hold. We assume that the econometrician only knows that Assumption
G1 holds. The econometrician determines the validity of Assumptions G2, G3, and
G4 by using an MMSC. For computational reasons in the Monte Carlo experiments,
we only consider linear moment conditions. These conditions are the following:

Moment Conditions 1. (a) E(u;, ..., u;r) = 0.
(b) E(yi,l—L; ---yyi,t—Q)Auit =0Vt= 2, ,T
(€) E(yi—1Duy — yuDAuiy1) = 0VE=2,...,T — 1.
(d) E(xﬂ, ceny xz’,tfl)Auz't =0Vt= 2, ,T

Moment Conditions 2. E(z,...,x;)Auy =0Vt =2,...,T.
Moment Conditions 3. FE(uy + ... +wr)zy =0Vt =1,...,T.
Moment Conditions 4. E(up+ ...+ wr) Ay, =0Vt =2—-L, .., 1

Moment Conditions j are implied by Assumptions G1 and Gj for j =1, ..., 4.
For the above model and moment selection problem, the largest parameter vector
that the econometrician considers is

0 = (040,041,042,5)/- (5-7)

We assume the econometrician always includes an intercept in the model, selects 0, 1,
or 2 lags, and selects to include or exclude the covariate x;;. This yields six selection
vectors b. The largest collection of moment conditions the econometrician considers
includes all of the Moment Conditions 1-4. We assume that the econometrician knows
that Moment Conditions 1 are correct and selects either all or none of the moment
conditions in each group of Moment Conditions 2-4. This yields eight selection vectors
c. Thus, the parameter space BC contains forty-eight (b,c) pairs. Each pair is a
combination of one of the following six model selection vectors and eight moment
selection vectors:

111111 11111111
001111 01001101
000011 ™ | oo01010011 (5-8)
010101 00010111

The correct model selection vector is b° = (1, 1,0, 1)" and the correct moment selection
vector is ¢ = (1,0,0,1)’, which selects the Moment Conditions 1 and 4.
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5.3. Measures of Performance

We report two sets of results that measure the performances of MMSC. First, for
each MMSC, we calculate the probabilities that the MMSC

1. selects (8°, c);

2. selects “Other Consistent (b,c),” i.e., (b,c) € BC such that b > 8, ¢ < ¥, and
(b.c) # (19,%; and

3. selects “Inconsistent (b, c),” i.e., (b,c) € BC such that b < b° or ¢ > °.

In the first case, the correct model and all correct moment conditions are selected
and consistent parameter estimators are obtained. This is the ideal situation. In the
second case, although (b°, c°) is not selected, the model and moment conditions se-
lected lead to consistent GMM estimators. In the third case, the model and moment
conditions selected lead to GMM parameter estimators that are inconsistent. An
MMSC with a high probability of selecting (b°, c°), coupled with a low probability of
selecting “Inconsistent (b, ¢),” leads to an efficient GMM estimator. An MMSC with
a moderate to high probability of selecting “Inconsistent (b, ¢)” leads to a GMM esti-
mator with poor finite sample properties due to the biases resulting from employing
too parsimonious a model and/or incorrect moment conditions.

Second, we report the biases, standard errors, and root mean-squared errors
(RMSESs) of the post-selection GMM estimators for each MMSC. We also report
the rejection rates of the 5% t-tests based on the post-selection GMM estimators.
(When a parameter is excluded from the selected model, its estimated value is set
equal to zero when computing the t-statistic.) Each ¢-test tests the null hypothesis
that a parameter equals a value that is the true value and, hence, the null is true.
The critical values for the t tests are the 5% critical values from a standard normal
distribution.

In order to assess the performance of the post-selection GMM estimators, we also
report biases, standard errors, etc. for four benchmark GMM estimators that are not
post-selection estimators. The first such estimator is the GMM estimator based on the
correct model and moment selection vector (b°, ¢?). This estimator is infeasible, but is
used as a benchmark for good performance. The second estimator is the GMM estima-
tor based on the least restrictive specification: (b, ¢r) = (1,,(1,0,0,0)"). The third
estimator is the GMM estimator based on (b, ¢) = (1,,1,), i.e., the whole parameter
vector and all of the moment conditions. The fourth estimator is the GMM estimator
based on the most restrictive specification: (b, cmr) = ((1,0,0,0)’,1,). The second
through fourth estimators are feasible estimators. Given the correct model, the sec-
ond leads to consistent GMM estimators and the econometrician knows this (given
the assumptions). The third and fourth estimator do not lead to consistent GMM
estimators, although the econometrician does not know this given the assumptions.
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We refer to the post-selection estimators of § based on MMSC-AIC, MMSC-BIC,
and MMSC—HQIC, as GMM(bAjc, CAIC), GMM(ijc, CBIC), and GMM(bHQjc, CHQ[C)
respectively. We refer to the four benchmark GMM estimators as GMM(b%, c°),
GMM(by,., ¢ir), GMM(1,, 1,), and GMM(by,, Cnyr)-

5.4. Monte Carlo Results

Now we present the Monte Carlo results for the selection probabilities and post-
selection estimators and tests. The results for the post-selection estimators and tests
ultimately are of greatest interest. But, the results for the selection probabilities help
explain the pattern of results obtained for the post-selection estimators and tests.

5.4.1. Selection Probabilities

Table 1 reports the selection probabilities for MMSC-AIC, MMSC-BIC, and
MMSC- HQIC for six different sample size/parameter combinations. The first three
combinations in Part A of the Table are for oy = .85 and (7', N) equal to (3,250),
(3,500), and (3,1000). The effect of increasing N is quite dramatic. For MMSC-
BIC, the probability of selecting (0%, V) increases from .482 to .852 to .990; while the
probability of selecting “Inconsistent (b, c)” declines from .487 to .116 to .000. For
MMSC-HQIC, the corresponding changes are from .663 to .855 to .918 and from .214
to .028 to .000 respectively. MMSC-HQIC outperforms MMSC-BIC by a noticeable
margin for N = 250 and by a small margin for N = 500. It is outperformed by
MMSC-BIC by a moderate margin for N = 1, 000.

The selection probabilities of MMSC-AIC are much less sensitive to the sample
size N than are those of the other two MMSC. As the sample size N increases from
250 to 500 to 1000, the probability of selecting (b°, ) by MMSC-AIC changes from
.607 to .664 to .658 and the probability of selecting “Inconsistent (b, ¢)” decreases from
.065 to .003 to .000. The fact that the probability of selecting (b°, c°) does not increase
toward one as N increases reflects the inconsistency of the MMSC-AIC procedure.
For the smallest sample size, MMSC-AIC is the best of the three procedures. But,
for larger samples sizes, it does not perform as well as the other two MMSC.

Next, we consider the cases where (7', N) equals (6,250) and (6,500). The effect
of the increase in sample size N is quite similar to the case where T" = 3. There
is a dramatic improvement for MMSC-BIC and MMSC-HQIC, but only a modest
improvement for MMSC-AIC.

The effect of fixing NV at 250 or 500 and increasing T' from 3 to 6 is quite similar
to that of fixing T and increasing N. Specifically, the performances of MMSC-BIC
and MMSC-HQIC improve dramatically, while that of MMSC-AIC changes relatively
little.

The effect on the selection probabilities of increasing a; from .85 to .95 can
be seen by comparing the results of Part B of Table 1 with those of Part A for
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(T',N) = (3,500). We find that MMSC-BIC improves somewhat, while MMSC-AIC
and MMSC-HQIC deteriorate somewhat.

Overall, we find that MMSC-AIC works best for the smallest sample size (T, N) =
(3,250), whereas MMSC-BIC and MMSC-HQIC work best for all other sample sizes.
MMSC-BIC performs very well for the largest sample sizes.

5.4.2. Post-selection Estimation and Testing

Tables 2-4 report biases, standard errors, etc. for the seven GMM estimators
discussed above for the cases where a; = .85 and (7', N) equals (3,250), (3,500), and
(3,1000) respectively. In each Table, results for the four benchmark GMM estimators
are listed on the left-hand side and those for the three post-selection GMM estimators
are listed on the right-hand side.

In Tables 2-4, the benchmark estimators exhibit the following patterns. GMM(b",
®) sets the standard for good performance. The consistent and feasible estimator
GMM(by,-, ¢;) has somewhat larger biases and much larger standard deviations and
RMSEs than GMM(8°, ¢°) for ag, a1, and as. For example, for ag and oy, its RMSEs
are two to four times those of GMM(#°,c?). For 3, its biases, standard deviations,
and RMSEs are only marginally larger than those of GMM(b",c"). Thus, there is
considerable scope for the post-selection estimators to outperform GMM(b,., ;) in
terms of RMSE for aq, a1, and as, but not for 3. The rejection rates of the 5% tests
for GMM(by,., ¢-) are noticeably higher than those for GMM(?°, ¢°) (and greater than
5%) when N = 250, but not for N = 500 or 1000.

The two inconsistent estimators GMM(1,,1,) and GMM(b,,, ¢m) perform very
poorly. They have very large biases, standard errors, and RMSEs. Their rejection
rates exceed the nominal 5% rate by a very large margin. These results indicate
that the cost of using the wrong model and/or moment conditions in the cases under
consideration can be huge. There is ample room for the post-selection estimators to
outperform GMM(1,,1,) and GMM(by,, ¢mr), but also the possibility that they will
perform very poorly.

The results given in Table 2 indicate that for N = 250 the post-selection estimators
are roughly comparable in RMSE and rejection rate performance to GMM(by,., ¢;y.).
Thus, they perform noticeably worse than GMM(?°, c°), but very much better than
GMM(1,,1,) and GMM(b,,,, ¢prr). Given the rather small sample size, at least for
panel data, these results are encouraging. Comparisons across the post-selection esti-
mators exhibit mixed results for both RMSE and rejection rates. For 3, GMM(bjc,
carc) is the best and GMM(bgc, cprc) is the worst. For oy and aq, GMM(bygic,
cuqic) is the best and GMM(bg ¢, cpic) is the worst. For an, GMM(bg ¢, cpic) is
the best.

The results of Table 3 for N = 500 show that the post-selection estimators are
much better than GMM(b;,., ¢;-) in terms of RMSE, although they are still worse
than GMM(b°, ). They are somewhat worse than GMM(b°, ) and GMM(by., ¢;y-)

30



in terms of rejection rates. The post-selection estimators are very much better than
GMM(1,,1,) and GMM(by,,r-, ¢rr) in terms of both RMSE and rejection rates. The
ranking of the three post-selection estimators for RMSE and rejection rates is as fol-
lows. GMM(bgc, cpre) and GMM(bugic, cugic) are comparable and are the best
and GMM(ba;c, carc) is the worst. The RMSE performance of GMM(bg; ¢, cpic) is
much better than that of GMM(b ¢, care) and is not too far from that of GMM(2°, %).
These results reflect the selection probability results of Table 1. In sum, the results of
Table 3 indicate that for a sample size of (T, N) = (3,500) post-selection estimators
can outperform any of the feasible benchmark estimators with respect to RMSE.

Table 4 presents results for (7, N) = (3,1000). In this case, the performance
of GMM(bgsc,cprc) is almost equivalent to that of GMM(b?, V) in terms of both
RMSEs and rejection rates. Thus, GMM(bg;c, cpre) outperforms GMM(b,., ¢;-) by
a noticeable margin and totally dominates GMM(1,, 1,) and GMM (b, ¢ ). Its ex-
cellent performance could be anticipated from the results of Table 1, because it selects
the correct model and moment conditions with very high probability. GMM(bggic,
cugrc) and GMM(bare, carc) also perform better than GMM(by,, ¢;-), but neither
is as good as GMM(bgsc,cprc) or GMM(BY, ?). As in Table 3, the ordering of
the three post-selection estimators in Table 4 is clear: GMM(bgc, cpre) is first,
GMM(byqic, cugic) is second, and GMM(basc, carc) is third.

For brevity, we do not present post-selection estimation results for the sample
size (T, N) = (6,250). The results for this case are similar to those of Table 3 for
(T, N) = (3,500), which has the same total number of observations.

Table 5 presents results for sample size (7, N) = (6,500). The results for this
case are quite similar to those of Table 4 for (7, N) = (3,1000), which has the
same total number of observations. In Table 5, GMM(bg;¢, cpic) is the best post-
selection estimator and its performance is almost as good as that of GMM(b°, ¢") in
terms of RMSE and rejection rates. GMM(byorc, cugre) and GMM(bare, carc) also
perform very well. Both perform better than GMM(b;,, ¢;), but neither is as good as
GMM(bgic, cpic).

Lastly, in Table 6 we report results for the second set of parameter values and
sample size (T, N) = (3,500). In this case, a; is close to one, so the dependent
variable y;; is highly persistent and the “stationarity assumption” Assumption G4 is
very informative. In consequence, GMM(b;,., ¢;,-), which does not exploit Assumption
G4, is much less efficient than GMM(b°,?). Tts RMSEs are from seven to twenty
times as large as those of GMM(8, c°).

In Table 6, all three post-selection estimators outperform GMM(b;,., ¢;,-) in terms of
both RMSE and rejection rates, but all are outperformed by GMM(?°, ) in terms of
RMSE. The best post-selection estimator is GMM(bg¢, ¢pre) in terms of RMSE and
rejection rates. Next best is GMM(bugrc, cugrc). The RMSEs of GMM(bgc, cgrc)
are roughly half the size of those of GMM(ba;c, carc). In addition, GMM(bg;c, ¢ic)
performs very well in terms of rejection rates with rates of .050, .055, and .064 for
g, a1, and 3.
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In summary, the results of Tables 2-6 indicate that the MMSC are effective in
delivering improved estimator performance over the feasible alternative benchmark
estimators provided the sample size (T, N) is greater than (3, 250). The improvement
of the consistent MMSC as the sample size increases is quite evident. With a sample
size of (T, N) = (3,1000), the GMM(bg;c, cprc) estimator performs as well as the
infeasible estimator that relies on knowing the correct model and moment conditions.
The choice of the best MMSC is unclear for the smallest sample size (T, N) = (3,250),
but for all larger sample sizes it is clearly seen to be GMM(bg;c, cprc)-

6. Conclusions

This paper extends the standard GMM framework to the case where there is
imperfect knowledge about the correct model and moment conditions. We derive a
class of model and moment selection criteria (MMSC) that consistently select the
correct model and all of the correct moment conditions, but no others. The MMSC
are based on a trade-off between the magnitude of the J statistic and the numbers
of parameters and moment conditions employed. The trade-off is analogous to that
made by model selection criteria in likelihood scenarios.

The paper applies the MMSC to GMM estimation of dynamic panel data models.
In such models, different GMM estimators are based on different sets of assumptions
concerning the covariances between different components of the model, such as error
components, regressors, and initial conditions. The MMSC can be used to help
determine which of the covariance restrictions are correct. The MMSC also can be
used to help specify the model. For example, it can be used to select the lag length,
detect structural breaks in the parameters, or determine which regressors to include.

Lastly, we conduct a Monte Carlo experiment to evaluate the finite sample perfor-
mance of the MMSC. We consider a dynamic panel data problem. We compute the
probabilities that several MMSC select the correct model and moment conditions, as
well as various combinations of incorrect model and moment conditions. We analyze
the performance of post-selection GMM estimators in terms of their biases, standard
deviations, root mean-squared errors, and t-test rejection rates. The MMSC-BIC
procedure is found to work quite well in a variety of contexts.
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7. Appendix of Proofs

7.1. Proof of Theorem 1

The proof is quite similar to that of Theorem 1 of Andrews (1999). First, we
establish Theorem 1(a). For any (b, c) € BC with (b,c) ¢ BCZ°, we have

Jn(b,c)/n s , inf GY () WO (b, c)G2(0}) > 0 under P°, (7.1)
[b] =~ [b]

where the convergence holds by Assumption 1(c) and the inequality holds because
(i) G%(Op) # 0 VO € Opy by the supposition that (b,c) ¢ BCZ° and (ii) WO(b,c)
is positive definite by Assumption 1(b). Equation (7.1) and Assumption MMSC(b)
yield: For any (b,c) € BC with (b,c) ¢ BCZ",

MMSC,(b,c)/n = J,(b,c)/n— h(|c| —|b|)kn/n
2 , inf G2 (01) WO (b,c)G2(0))) > 0 under P°. (7.2)
€O
For any (b, c) € BCZ", we have
Ju(b,¢) = O,(1) under P°, (7.3)

using Assumptions 1(a) and (c) and the fact that G2(y) = 0 for some 8 € Op.
Equation (7.3) and Assumption MMSC(b) yield: For any (b, c) € BCZ",

MMSC,,(b,c)/n = O,(1) — h(le| — |b])kn/n = O,(1) under P°. (7.4)

Equations (7.2) and (7.4) imply that (/b\MMsc,/C\MMSC) € BCZY wp — 1.
Now, suppose (b, 1), (by, ca) € BCZ°, (b1, c1) ¢ MBCZ°, and (by, cy) € MBCZP.
Then, |c1]| — |b1] < |e2| — |b2| and by Assumption MMSC

(h(fer] = [ba]) = Allea| = [b2]))sin — —o0. (7.5)

Equations (7.3) and (7.5) imply that MMSC, (b1, c1) > MMSC,, (b, c2) wp — 1.
Thus, (/b\M]\JSC;/C\]MMSC) € MBCZ° wp — 1, as stated in Theorem 1(a).

Now, Assumption IDbc and (8%, c°) € BC imply that MBCZ° = {(1°, °)}. Hence,
coupled with Theorem 1(a), the former conditions imply that (/b\MMsc, Crmse) =
(8%, c°) wp — 1. In addition, (b°, %) € BC is necessary for (EMA,[SC,EMMSC) = (1%, ).
Hence, Theorem 1(b) holds.

Theorem 1(c) follows from Theorem 1(b). [

33



7.2. Proofs of Results of Section 3

Here we show that (3.2) and (3.5) hold under suitable conditions.

We establish (3.5) under Assumption 1 by first showing that .J,(b,c) = J}(b,c)
for all (b,¢) € Z° with |c| > |b] when the 0,(1) term appended to the definition of
Ve 18 zero. The proof of this is exactly the same as in Andrews (1999, Appendix of
Proofs).

Now, (3.5) with the 0,(1) term present follows from (3.5) without the o,(1) term
provided \/ﬁGnc(/G\[b] (€)) = Op(1), because the o0,(1) term adds at most an o0,(1) term
to J, (b, ¢) in this case. The previous condition holds under Assumption 1V(b,c) € Z°.

Next, we show that (3.2) holds under the following standard ML regularity con-
ditions. Let m denote a correct, but not necessarily parsimonious, model. We par-
tition v, 7%, and 7,, as v = (o/,8), 7° = (a,8Y), and 7,, = (a’,,0'),where
a,a’,q,, € 9 and 3, 3" € R%. The assumption that m is a correct model im-
plies that 3° = 0. The ML estimator 7,, for model m sets 3 = 0 and maximizes
lo(a) = £,((c/,0)) over a parameter space A C R™ 9. We assume the likelihood
function is sufficiently regular that the following conditions hold: (i) m is a correct
model and 7,, —, 7%, (ii) o’ is an interior point of A, (iii) £,(7) is twice continu-
ously differentiable at 4* with probability one, (iv) (8/07)n(7°) /v/n —a N(0,Z),
where Z is a positive definite r X r matrix, (v) for some function Z(vy) and some
£ >0, 8up ¢ g0 | —(07/0707)ln(y) — Z(7)|| = 0p(1), Z() is continuous at 4°, and
Z(7°) = Z, where B(7°,¢) is a ball in R" of radius ¢ centered at 7.

Given these regularity conditions, the proof is exactly the same as in Andrews
(1999).

34



8. Footnotes

!Correspondence to: Biao Lu, Department of Finance, University of Michigan
Business School, Ann Arbor, MI48109 or biaolu@umich.edu. The first version of this
paper was done when the second author was studying at Department of Economics,
Yale University. We thank two referees, Peter Phillips, Chris Sims, and seminar
participants at Yale University and SUNY at Stony Brook for very helpful comments
and suggestions. The first author gratefully acknowledges the research support of the
National Science Foundation via grant numbers SBR-9410675 and SBR-9730277.

In this case, W, (b, c) is the inverse of an estimator, V,,(b,¢c), of the asymptotic
covariance matrix, V(c), of the moment conditions \/nGy.(6°). We recommend that
V. (b, ¢) be defined using the same general formula for each pair of selection vectors
(b, ¢) (to minimize the differences across vectors (b, c)) and with the sample average
of the moment conditions subtracted off. For example, in an iid case with G, (0)
= 15 m(Z;,0) and V(c) = Var(m.(Z;,6")), we recommend defining V,,(b, c) as

follows:

n

Valb, ) = = 3 (mel 22, 8a(b,¢)) = ne(Bu(b,0)))

(mc(Zi,én(b, €)) — Tine(0n (b, c)))',

where m,.(0) = %2?21 me(Z;,0) and én(b, ¢) is some estimator of #°. In the case
of temporal dependence, sample averages can be subtracted off from a heteroskedas-
ticity and autocorrelation consistent covariance matrix estimator in an analogous
fashion. Subtracting off the sample averages is particularly important when some of
the moment conditions are not correct.

3We note that an equivalent set of moment conditions to (4.14)(4.17) are (4.14)-
(4.16) plus Fuyr A uyg g =0Vt =3,...,T.

4For example, the latter holds if
Q.(6°(b,¢)) < inf Q.(0) for all ¢ > 0, where
96@[17], ||(97(90(b70)||>€
Qu(8) = E (mo(Zs,0)) — Emu(Z:,0)) (me(Zs,6) — Eme(Z:,8)) .

In turn, sufficient conditions for this are that Q.(¢) is uniquely minimized over 6 € Oy,
by 6°(b,c) and Oy, is compact.
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Table 1. Selection Probabilities

A.0,=.85".

Sample Size: T=3, N=250 MMSC-AIC MMSC-BIC MMSC—HQIC2
(°, c? .607 482 .663
Other Consistent (b, c)* 328 031 123
Inconsistent (b, ¢)* .065 487 214
Sample Size: T=3, N=500 MMSC-AIC MMSC-BIC MMSC-HQIC
(°, c? .664 .852 .855
Other Consistent (b, c) .333 .032 117
Inconsistent (b, c) .003 116 .028
Sample Size: T=3, N=1000 MMSC-AIC MMSC-BIC MMSC-HQIC
(°, c? .658 .990 918
Other Consistent (b, c) .342 .010 .082
Inconsistent (b, c) .000 .000 .000
Sample size: T=6, N=250 MMSC-AIC MMSC-BIC MMSC-HQIC
(°, c? 536 637 661
Other Consistent (b, c) .458 115 .283
Inconsistent (b, c) .006 .248 .056
Sample size: T=6, N=500 MMSC-AIC MMSC-BIC MMSC-HQIC
(°, c? 622 .928 .850
Other Consistent (b, c) .378 .063 .150
Inconsistent (b, c) .000 .009 .000

B. a; = .95".

Sample size: T=3,N=500 | MMSC-AIC | MMSC-BIC | MMSC-HQIC
(°, c? 566 918 831
Other Consistent (b, c) 428 .033 .156
Inconsistent (b, c) .006 .049 .013

! The true parameter values in Part A of the Table are (0, 05, 05, B)
= (.8, .85, 0, .5) and (Gy, Ouys O 0,5, G,0) = (-2, .5, 1, 1, 1).

2Q =2.1in MMSC-HQIC.

% "Other Consistent (b, ¢)" refers to model and moment selection vectors

other than (b°, c°) that yield GMM estimators that are consistent.
* "Inconsistent (b, c)" refers to model and moment selection vectors that

yield GMM estimators that are inconsistent.

® The true parameter values in Part B of the Table are (0, a4, a5, B)
= (.8, .95, 0, .5) and (Oy, Oy Ty’ G2, G,0) = (-2, .5, .2, .2, 5).




Table 2. Biases, Standard Deviations, and RMSEs of GMM Estimators
and Rejection Rates of 5% Tests: T=3, N =250, a, = 8512

| Bias | SD | RMSE |Rej. Rate’]| Bias | SD | RMSE [Rej Rate®

GMM(bO,CO)4 GMM(byc,Caic)

(o) .042 .236 .239 .062 .086 522 .529 .084

o, -.008 .041 .042 .083 -.022 112 114 .159

a, - - - - .007 048 048 .070

[3 -.008 .065 .065 .060 -.012 .072 .073 .075
GMM(by,cy) GMM(bgc,Cgic)

(o) .187 .505 .539 .088 .099 .568 577 .099

o, -.062 124 .139 .138 -.016 JA12 113 .138

a, .028 .062 .068 .098 -.002 .033 .034 .037

B | -009 | .066 | .067 058 ~048 1090 102 296
GMM(1,,1,) GMM(bygic,Crorc)’

(o) 471 .385 .608 .637 .064 421 426 .089

o, -.153 .154 217 .655 -.014 .091 .092 147

a, | 068 | 105 | .125 506 002 039 039 056

[3 -.193 .078 .208 .907 -.022 .080 .083 .153
GMM(bmermr)

(o) 4.566 .584 4.604 1.000

a, | -850 : 850 }

a, .000 - .000 -

B | -500 : 500 :

! "The true parameter values are (0, a3, 0, B) = (.8, .85, 0, .5) and (0, Oy, Oy» 0,2, 0,°)
=(-2,.51,1,1).

% The results are based on 1,000 Monte Carlo repetitions.

* The rejection rate is the fraction of times the 5% t-test based on the given GMM estimator
rejects the null hypothesis that the given parameter equals the true value.

* The GMM estimators are defined as in Section 5.4.3:
GMM(b°,c°) - the GMM estimator based on the correct model and moment selection vectors;
GMM(b,,c,) - the GMM estimator based on the least restrictive specification, where
b,=(1,1,1,1) and ¢, = (1,0,0,0);
GMM(1,,1,) - the GMM estimator based on all of the parameters and moment conditions;
GMM(b,,,Crr) - the GMM estimator based on the most restrictive specification, where
b= (1,0,0,0) and c,,, = (1,1,1,1);
GMM(bac,Caic) GMM(bgc,Cgic), and GMM(bygic,Craic) - the GMM estimators based on
MMSC-AIC, MMSC-BIC, and MMSC-HQIC respectively.

® Q=2.1in MMSC-HQIC.



Table 3. Biases, Standard Deviations, and RMSEs of GMM Estimators
and Rejection Rates of 5% Tests: T =3, N =500, a; = .85t

| Bias | SD | RMSE [Rej.Rate]l Bias | SD | RMSE |Rej. Rate

GMM(bO,CO) GMM(bpc,Carc)

(o} .027 152 155 .057 .025 241 242 .077

a, -.006 026 026 .060 -.006 .063 .063 123

a, - - - - .001 .033 .033 .063

B -.005 045 046 .065 -.005 046 046 .059
GMM(by,cy) GMM(bg,c,Cgic)

ag .068 329 336 .053 .029 172 174 .078

o, -.024 .082 .085 .070 -.005 .038 .038 103

a, 011 044 045 .065 -.001 017 017 023

B -.005 047 047 056 -.013 055 057 141
GMM(1,,1,) GMM(bygic;Chaic)

0o 469 263 538 838 021 190 101 .076

a, -.141 106 176 749 -.004 .050 .050 111

a, .054 071 .089 494 -.001 027 027 .055

B -.201 .056 208 991 -.007 047 048 073
GMM(bmr’Cmr)

oy 4.519 381 4.535 1.000

o, -.850 - 850 -

a, .000 - .000 -

B -.500 - .500 -

! Footnotes 1-5 of Table 2 are apply to this table as well.




Table 4. Biases, Standard Deviations, and RMSEs of GMM Estimators
and Rejection Rates of 5% Tests: T =3, N =1000, a; = .85t

| Bias | SD | RMSE [Rej.Rate]l Bias | SD | RMSE |Rej. Rate

GMM(bO,CO) GMM(bpc,Carc)

0o 015 103 104 .055 012 172 173 .083

a, -.003 018 018 .070 -.003 043 044 124

a, - - - - .000 023 023 .048

B -.004 031 032 .068 -.004 032 032 .064
GMM(by,cy) GMM(bg,c,Cgic)

ag 042 232 236 .053 015 105 106 .058

o, -.012 .058 .059 .064 -.003 021 022 077

a, .004 .030 .031 .050 .000 .008 .008 .008

B -.004 .033 .033 057 -.004 031 031 067
GMM(1,,1,) GMM(bygic;Chaic)

0o 497 178 528 981 012 124 125 067

a, -.149 071 165 889 -.002 031 .031 102

a, 057 048 075 588 -.001 015 015 .033

B -.200 .038 203 999 -.004 031 031 .066
GMM(bmr’Cmr)

oy 4,537 283 4.546 1.000

o, -.850 - 850 -

a, .000 - .000 -

B -.500 - .500 -

! Footnotes 1-5 of Table 2 apply to this table as well.




Table 5. Biases, Standard Deviations, and RMSEs of GMM Estimators
and Rejection Rates of 5% Tests: T =6, N =500, a; = .85t

| Bias | SD | RMSE [Rej.Rate]l Bias | SD | RMSE |Rej. Rate

GMM(bO,CO) GMM(bpc,Carc)

0o 034 121 126 .099 049 137 146 113

a, -.007 019 .020 118 -.012 031 .033 178

a, - - - - .003 017 018 .068

B -.010 026 028 .096 -.008 027 028 .094
GMM(by,cy) GMM(bg,c,Cgic)

ag 101 159 188 130 .035 123 128 .097

o, -.034 043 055 222 -.008 023 024 132

a, 015 027 .031 173 .001 .010 .010 024

B -.007 029 029 .090 -.009 027 028 102
GMM(1,,1,) GMM(bygic;Chaic)

0o 206 214 297 578 .038 128 134 102

a, -.108 074 131 834 -.009 026 027 147

a, .070 .054 .088 761 .001 013 013 .039

B -172 .064 183 976 -.009 027 028 .096
GMM(bmr’Cmr)

oy 4,537 482 4.562 1.000

o, -.850 - 850 -

a, .000 - .000 -

B -.500 - .500 -

! Footnotes 1-5 of Table 2 apply to this table as well.




Table 6. Biases, Standard Deviations, and RMSEs of GMM Estimators
and Rejection Rates of 5% t-Tests: T =3, N =500, a; = 95172

| Bias | SD | RMSE [Rej.Rate]l Bias | SD | RMSE |Rej. Rate

GMM(bO,CO) GMM(bpc,Carc)

0o 057 189 197 .039 692 1.862 1.987 140

a, -.004 012 012 .035 -.040 108 115 141

a, - - - - -.003 015 016 .064

B -.003 .010 .010 .056 -.020 .052 .056 138
GMM(by,cy) GMM(bg,c,Cgic)

ag 1.670 2.162 2.732 184 136 1.047 1.056 .050

o, -.094 124 156 182 -.009 .062 062 .055

a, -.010 .020 022 .068 .000 .007 .007 021

B -.046 .060 075 188 -.005 .030 .031 064
GMM(1,,1,) GMM(bygic;Chaic)

0o 286 526 599 525 295 1.326 1.359 .078

a, -.052 .030 .060 832 -.018 .078 .079 .081

a, .034 019 .039 679 -.001 011 011 041

B -.045 012 047 995 -.009 .038 .039 .086
GMM(bmr’Cmr)

oy 15.211 427 15.217 | 1.000

o, -.950 - 950 -

a, .000 - .000 -

B -.500 - 500 -

! "The true parameter values are (0, a3, 0, B) = (.8, .95, 0, .5) and (0, Oy, Oy» 0,2, O)°)
= (-2, 5, .2, 2, .5).
2 Footnotes 2-5 of Table 2 apply to this table as well.




