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Abstract

This paper considers testing problems where several of the standard
regularity conditions fail to hold. We consider the case where (i) pa-
rameter vectors in the null hypothesis may lie on the boundary of the
maintained hypothesis and (ii) there may be a nuisance parameter that
appears under the alternative hypothesis, but not under the null. The
paper establishes the asymptotic null and local alternative distributions
of quasi-likelihood ratio, rescaled quasi-likelihood ratio, Wald, and score
tests in this case. The results apply to tests based on a wide variety of
extremum estimators and apply to a wide variety of models.

Examples treated in the paper are: (1) tests of the null hypothesis
of no conditional heteroskedasticity in a GARCH(1, 1) regression model
and (2) tests of the null hypothesis that some random coefficients have
variances equal to zero in a random coefficients regression model with
(possibly) correlated random coefficients.
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ticity, extremum estimator, GARCH model, inequality restrictions, like-
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1. Introduction

In standard testing problems, parameter values in the null hypothesis are inte-
rior points of the maintained hypothesis. For example, the null, alternative, and
maintained hypotheses might be Hy : 8; = B4, H1 : 1 # B1s, and K : 3, € RP,
respectively, where K = Hp U H; and (3; is a subvector of the unknown parameter
0. In addition, in standard testing problems, all parameters are identified under the
null and alternative hypotheses.

There are many testing problems of interest where one or both of these features
are violated. For example, consider a test of the null hypothesis of no conditional
heteroskedasticity in the GARCH(1, 1) model of Bollerslev (1986). The GARCH
regression model is Y; = X{i + &;. The equation for the conditional variance, hy,
of the error & is by = §(1 — ) +0,e7; +mwhi—1 and hy = &, where (31, 7,0) are
the GARCH moving average (MA), autoregressive (AR), and intercept parameters
respectively. In this case, the null hypothesis is Hyp : 7 = 0. When 3; = 0, we have
h: = hy_1 = 6 and the GARCH AR parameter 7 disappears. Hence, 7 is unidentified
under the null hypothesis. Furthermore, the GARCH MA parameter 3; must be
non-negative to ensure that the variance is non-negative. Hence, the alternative and
maintained hypotheses are Hy : 3; > 0 and K : 3; > 0 respectively. Thus, the null
value of 3, is on the boundary of the maintained hypothesis K and the GARCH AR
parameter 7 is unidentified under the null hypothesis.

As a second example where these regularity conditions fail, consider a test of the
null hypothesis that b random coefficients have variances that equal zero in a model
with random coefficients. Let 3; denote the sum of the b random coefficient variances
that are specified to be zero under the null hypothesis. The null, alternative, and
maintained hypotheses are Hy : 3, = 0, H; : #; > 0, and K : 8; > 0 respectively.
Hence, under Hy, 3; is on the boundary of the maintained hypothesis. Suppose that
some or all of the b random coefficients whose variances are under test are allowed
to be correlated with each other under H;. Let w1 denote the vector containing
their correlation coefficients. Denote the b vector of random coefficient variances
that are under test by (3;m2. Here, w2 is a unit b vector in the non-negative orthant.
Let m = (7}, 7). Under the alternative hypothesis, 3; and 7 together specify the
variances and covariances of the random coefficients under test. Under the null
hypothesis, the parameter 7 is not identified.

In this paper, we provide general asymptotic results that cover testing problems
of the above sort. We specify a set of high level conditions under which the as-
ymptotic null distributions of quasi-likelihood ratio (QLR), rescaled quasi-likelihood
ratio (RQLR), Wald, and score tests are determined. We provide several sets of more
primitive sufficient conditions that imply the high level conditions. We verify the
latter conditions in the two examples described above (using a random coefficients
regression model in the second example). We show that the asymptotic distributions
of the test statistics under local alternatives can be established using the same set of
general results that are used under the null. The results given here utilize and extend
the estimation results of Andrews (1999) and Andrews (1997), which we refer to as
E1 and E2 respectively.



In the GARCH example, the asymptotic null distribution of the test statistics
is found to be nuisance parameter free (under appropriate assumptions). Asymp-
totic critical values are provided. In the random coefficient regression example, the
asymptotic null distribution of the test statistics is found to be nuisance parameter
dependent, but critical values and p-values can be simulated.

We now give a brief overview of the method used to obtain the asymptotic null
distributions of the test statistics. Let the estimator objective function be ¢1(0,7),
where (0, 7) are parameters that lie in the maintained hypothesis parameter space
O x IT and T denotes the sample size. The null hypothesis can be written as Hy : 0 €
Op, where Og is a subset of ©. The objective function could be a quasi-log likelihood,
least squares, generalized method of moments, or semiparametric objective function,
among others. The results allow for objective functions that are smooth or non-
smooth functions of the parameters (6, 7). The results allow for nonlinear models
with non-trending or deterministically trending data, as well as linear models with
non-trending, deterministically trending, and/or stochastically trending data. See
E1 and E2 for examples that exhibit these different features.

The basic idea is to (i) approximate 7 (6, 7) by a quadratic function of 6 whose
coefficients depend on 7; (ii) show that the approximation holds uniformly over 7 € II;
(iii) approximate the unrestricted and restricted parameter spaces, © and ©g, by
cones, as in Chernoff (1954) and E1; (iv) determine the asymptotic distributions of
the (suitably normalized) unrestricted and restricted estimators of 8 given 7 and of the
estimator objective function evaluated at these two estimators as stochastic processes
indexed by 7 € II; and (v) obtain the asymptotic null distributions of the test statistics
by writing them as continuous functions of the (normalized) estimators and/or the
objective function evaluated at these estimators and applying the continuous mapping
theorem.

The asymptotic distributions of the test statistics are given by the differences
between the suprema over m € II of two stochastic processes indexed by 7 that
are each a quadratic form in a random vector that minimizes a stochastic quadratic
function over a cone. For the Wald and score statistics and in some cases for the QLR
and RQLR statistics, the second quadratic form is degenerate and equals zero. The
asymptotic distributions may depend on (estimable) nuisance parameters. Critical
values can be obtained straightforwardly by simulation given consistent estimates of
any unknown nuisance parameters.

Some examples that are covered by the general results, but are not discussed
in this paper, include: tests of the null of parameter stability against the alterna-
tive of one-sided structural change; tests of white noise against serial correlation in
ARMA(1,1) models with positive autocorrelation; one-sided tests of the significance
of Box-Cox transformed regressors; one-sided tests of threshold effects in threshold
models, such as threshold autoregressive models; tests of the null that random coeffi-
cients variances are zero in nonlinear models, such as the conditional probit model of
Hausman and Wise (1978); tests that random coefficients variances are zero when the
random coefficients may be correlated across time, see Rosenberg (1973) and Watson
and Engle (1985); tests for the presence of conditional heteroskedasticity in models



other than the GARCH(1, 1) model, e.g., see Bollerslev, Engle, and Nelson (1994);
and tests in the examples in E1 and E2. The latter include tests of a unit root in a
Dickey-Fuller regression model with time trend and autoregressive root restricted to
be non-negative and less than or equal to one respectively; tests of a GARCH(1, ¢*)
model against a GARCH(1, ¢* + p1) model; tests of equality and/or inequality re-
strictions in a regression model with integrated regressors, median regression model,
or partially linear regression model; tests of zero variance of measurement errors
and/or random effects, in a multinomial response model estimated by the method of
simulated moments of McFadden (1989).

There are numerous antecedents in the literature to the approach taken here. For
example, the use of a quadratic approximation to the estimator objective function,
rather than the reliance on first order conditions, has been made by Chernoff (1954),
LeCam (1960), Jeganathan (1982), Pollard (1985), Pakes and Pollard (1989), Geyer
(1994), van der Vaart and Wellner (1996), and others. Our treatment of non-smooth
estimator objective functions is via stochastic equicontinuity or stochastic differentia-
bility conditions, as in Pollard (1985), Pakes and Pollard (1989), Andrews (1994a, b),
Geyer (1994), Newey and McFadden (1994), and van der Vaart and Wellner (1996).
Several papers in the literature consider tests when parameter vectors in the null
are on the boundary of the maintained hypothesis. These include Chernoff (1954),
Bartholomew (1959), Perlman (1969), Chant (1974), Shapiro (1985), Self and Liang
(1987), Gourieroux and Monfort (1989, Ch. 21), Andrews (1996, 1998), and King
and Wu (1997). See Barlow, Bartholomew, Bremner, and Brunk (1972) and Wu and
King (1994) for further references. Several papers consider tests when a nuisance
parameter appears under the alternative hypothesis, but not under the null. These
include Davies (1977, 1987), King and Shively (1993), Andrews and Ploberger (1994,
1995), and Hansen (1996), among others.

For a review of the testing results in the literature for the GARCH example,
see Bollerslev, Engle, and Nelson (1994). For the random coefficients example, see
Brooks and King (1994). The results in the literature do not cover the QLR, RQLR,
Wald, or score tests considered here.

To compare the results of this paper to papers in the literature, we note the main
features of the present paper. They are: (i) parameter vectors in the null may be on
the boundary of the maintained hypothesis, (ii) there may be a nuisance parameter
that appears under the alternative but not under the null, (iii) the boundary of the
maintained hypothesis may be curved and/or kinked, (iv) the estimator objective
function need not be defined in a full neighborhood of the true parameter (which is
necessary to cover random coefficient models), (v) the estimator objective function
may be smooth or non-smooth, (vi) the estimator objective function can be a quasi-
log likelihood, least squares, generalized method of moments, minimum distance, or
semiparametric objective function, among others, (vii) the data may contain deter-
ministic and/or stochastic trends in linear models, and (viii) rescaled quasi-likelihood
ratio tests are analyzed. None of the papers in the literature allow for more than two
of these features simultaneously and most allow for just one.

The present paper provides local power results, but does not establish the as-



ymptotic admissibility of the tests considered. It may be possible to do so under
suitable assumptions, perhaps using the methods of Andrews and Ploberger (1994)
and Andrews (1996). It also may be possible to introduce a class of tests that have
some weighted average power optimality properties, along the lines of Andrews and
Ploberger (1994) and Andrews (1998). These are topics for future research. We note
that, in cases where the restrictions on the parameter space arise from prior infor-
mation, tests that utilize this information, such as the tests considered here, have
a considerable power advantage over tests that do not. For example, see the power
comparisons in Andrews (1998, Table 2).

The remainder of this paper is organized as follows. Section 2 introduces the
GARCH and random coefficient examples. Section 3 determines the asymptotic be-
havior of the unrestricted extremum estimator when there is an unidentified nuisance
parameter. Section 4 applies these results to the two examples. Section 5 defines the
QLR and RQLR test statistics, determines their asymptotic null distributions, and
applies the results to the two examples. Sections 6 and 7 do likewise for the Wald and
score tests. Section 8 establishes the asymptotic distributions of the test statistics
under local alternatives. An Appendix contains proofs of results given in the paper.

All limits below are taken “as T" — 00.” Let opr(1), Opr(1), and or(1) denote
terms that are o,(1), Op(1), and o(1), respectively, uniformly over m € II. Thus,
Xrr = 0pr(1) means that sup, oy || X7x|| = 0p(1), where ||o|| denotes the Euclidean
norm. Let “wp — 1”7 abbreviate “with probability that goes to one as T" — 00.”
Let “for all v, — 0”7 abbreviate “for all sequences of positive scalar constants {y :
T > 1} for which v — 0.” Let Apin(A) and A\pax(A) denote the smallest and largest
eigenvalues, respectively, of a matrix A. Let OA denote the boundary and cl(A)
denote the closure of a set A. Let S(6,¢) denote an open sphere centered at 6 with
radius €. Let C(6,¢) denote an open cube centered at 6 with sides of length 2e. Let
:= denote “equals by definition.” Let ~ denote equality in distribution.

Let = denote weak convergence of a sequence of stochastic processes indexed by
7 € II for some space II. The definition of weak convergence of R’-valued functions
on II requires the specification of a metric d on the space &, of R"-valued functions
on II. We take d to be the uniform metric. The literature contains several definitions
of weak convergence. We use any of the definitions that is compatible with the use
of the uniform metric and for which the continuous mapping theorem holds. These
include the definitions employed by Pollard (1984, p. 65), Pollard(1990, p. 44), and
van der Vaart and Wellner (1996, p. 17). The continuous mapping theorems that
correspond to these definitions are given by Pollard (1984, p. 70), Pollard (1990, p.
46), and van der Vaart and Wellner (1996, Thm. 1.3.6, p. 20).

2. Examples

2.1. GARCH Example

In this example, we consider testing the null hypothesis of no conditional
heteroskedasticity in a GARCH(1,1) regression model. The null hypothesis is
Hy : B; = 0, where 3, is the GARCH-MA coefficient.



The observed random variables are {(Y;, Xy) : 1 <t < T}. The model used to
generate a quasi-likelihood function is the normal GARCH(1,1) model:

Y, = X0+ hi(0,m) %z for t =1,...,T,
Ri(0,7) == 6(1 — ) + Bre?_1(0) +whi_1(0,7) for t = 2,..., T,
(21) 6,5((9) = Y% - Xé% 0= (61767¢/),7

and {z;: t =1,...,T} are iid N(0,1) and are independent of {X; : t = 1,..., T}, where
Y, Xy € R" and hf(0,7),2,e(0),53,,0,7 € R. The initial condition hj(#,7) is an
arbitrary non-negative function of (0, m, Y1, X1) that satisfies supgce rerrhi(6,m) < 0o
a.s., where the parameter spaces © and II are defined below. For the QLR test
considered below, however, the initial condition must be such that hj(6y,7) = do.
The choice hi(0,7) = ¢ suffices. The true process generating the data does not
necessarily satisfy the model.

The parameter space © is a compact subset of R® that restricts the GARCH-
MA parameter, (3;, to be non-negative and bounds the conditional variance intercept
parameter, ¢, away from zero. The parameter space II is a compact subset of [0, 1]
that bounds 7 away from one.

O:={0ec R :0=(6,6,¢"),0< 3] <Py, 0<8 <6< 6y, and

@be < ¢ < wua where Blua 6@7 6u7 wb and ¢u7 are
some known finite constants or constant vectors}.
(2.2) IIC{m € [0,m,]: m, is a constant less than one}.

(The vector inequality involving 1 is an element by element inequality.) Note that
the parameter space need not restrict the GARCH parameters to be values that
generate a stationary process. Under the null hypothesis, however, the true process
is stationary.

We derive asymptotic results for the case where the null hypothesis is true. The
true parameter vector under the null hypothesis is 6y := (84, 60, ¥}) = (0, b0, g
€ R®. The true process generating {(Yz, X;) : 1 <t < T} is

Y, = Xjbo + e, €1 = 63/22,5,

{(2t,X3) : t =...,0,1,...} are stationary and ergodic,

E(z|Fi1) =0 as., B(z}|Fi_1) = 1 a.s., where F; = 0(2, 21, oo, Xe41, X5 -0,

Pzl =1) #1, B(£}|Fi_1) = k < 00 a.s. for some constant &,

EX,X] is positive definite, and E(1 + || X¢[|*)(21_; + || Xi—5||*) < 00 Vj > 1.
(2.3)

For example, the last moment condition holds if E||X;||® < co and Ez{ < co. The
regressor vector X; need not be strictly exogenous and the innovation z; need not
have distribution that is normal or symmetric about zero.

We assume that 6y € © and that each subvector of 6 satisfies the inequalities
imposed by © strictly except 3, which equals 0 and causes 6y to be on the boundary



of ©. (It is possible to show that the testing results given below are invariant to the
regression parameter ¢y being on a boundary, but for brevity we do not do so here.)

In contrast to the GARCH example of E2, the GARCH example considered here
is one in which the true process does not exhibit conditional heteroskedasticity. This
causes a nuisance parameter 7 to appear that is not identified, which complicates
the analysis. But, it allows us to consider tests for the existence of conditional
heteroskedasticity, which are of considerable interest.

2.2. Random Coefficient Example

The second example is a random coefficient regression model. This model was
first considered by Hildreth and Houck (1968). We are interested in testing the null
hypothesis that some, or perhaps all, of the random coefficient variances are zero.
We allow for the possibility that the random coefficients are correlated. For example,
this is a realistic feature when the random coefficients are taste parameters of an
individual that are randomly distributed across some population, because one would
expect the tastes of a given individual to be correlated. The random coefficient model
considered in E1 is less general than the one considered here, because it does not
allow for correlation between the random coefficients.

The model is

Y = by + Xiv + 55/2&
= 1y + X{1p + (65/2@} + Xéﬂl/Q(ﬁl, 61,m)n,), where
(2.4) Ve =Y+ 91/2(51; 01, )n;.

The vector 7, € R is the random coefficient vector. The observed variables are
{(Y;,X;) : t < T}. The regressors are X; := (X},, X2%,)', where X1; € R’ and
Xo: € R°. Without loss of generality, Xi; consists of the regressors whose random
coeflicients have zero variance under the null and Xo; consists of the remaining regres-
sors. The random variables 7, € R**¢ and ¢; € R are unobserved errors that satisfy
Fe; =0, Ee? =1, E(n,|X¢) = 0a.s., E(nn}|X¢) = Iyye a.s., and E(ne¢|X;) = 0 a.s.
The random variables {(Yz, X¢,e¢,7,) : t < T} are iid.
The (b + ¢)x(b + ¢) covariance matrix of the random coefficients is Q(3;, 61, 7).
It is of the form:
_ | Bifu(m) O

(2.5) Q(B,,061,m) == 0 Do) |

The parameter 3; € Rt equals the sum of the random coefficient variances whose
values are zero under the null hypothesis. Because we derive asymptotic results for
the case when the null hypothesis is true, the true value of 3, 31, is zero. The b x b
matrix (3, (7) is the covariance matrix of the random coefficients that are under
test. It depends on the vector m = (7}, 75)’ € R+, The vector 71 € R? contains all of
the correlation parameters between the random coefficients on X7 that are allowed
to be non-zero under Hj. Its dimension d lies between zero and b(b — 1)/2. The
vector 7o is a unit b vector in the non-negative orthant, i.e., a direction vector. The b
vector of random coefficient variances on Xy is ;7. We choose this parametrization



of the covariance matrix of the random coefficients, because it yields an estimator
objective function that is well-behaved—its (generalized) first and second derivatives
are continuous in 3; at $; = 0. Some other parametrizations do not do so.

For i,5 =1,...,b, the (i, j) element of () is

1/2_1/2
[Qu(m)];; = 7r21/ 7r2§ pij» Where
T1 = (71155 T14)

(26) T2 1= (7T217 "‘77T2b)/7

and p;; :=1if i = j, p;; := w1, for some ¢ < d if the correlation between the random
coefficients on the i-th and j-th elements of X7; is allowed to be non-zero under the
maintained hypothesis, and p;; := 0 if the correlation between the random coefficients
on the i-th and j-th elements of Xi; is zero under the maintained hypothesis.

The vector 67 € RY contains any random coefficient variances on elements of Xo;
plus any correlation parameters between random coefficients on elements of X5;. Note
that the coefficients on X need not be random. If none of them are, then Q2(61) =0
and the parameter 6; does not appear. The block diagonality of Q(3,, 62, 7) reflects
our assumption that the correlations between random coefficients on Xi; and those
on Xy are specified to be zero under the maintained hypothesis and, hence, are not
estimated.

The parameter &5 is the idiosyncratic error variance. The parameter 1), € R0+
is the deterministic part of the regression coefficients. The parameter ¥, € R is the
regression intercept. The vectors 0 := (3,687, 82,%),1,)" and 7 are the unknown
parameters to be estimated. The parameter space © of 8 is

0= {0 ER:0= (617 I17627¢I171/J2)/7 0 S 61 S 61u7
(2.7) 6j0 <05 < Oju and ¥y, <tp; <1py, for j =1,2}

for some known finite constants or vectors By, 0j¢, Oju, Vg, ¥y, for j = 1,2, where

the lower bound on each variance parameter in 6 is greater than or equal to zero

and the lower and upper bounds on each correlation parameter in 0o are between —1

and 1 respectively. The parameter space II of 7 is a compact subset of (—1,1)% x Z/Ib+ ,

where Z/I; denotes the part of the unit ball in R’ that is in the non-negative orthant.
The true parameter vector 6y is

(28) bo = (6/107 6,10,5207 @b,107 ¢20)/ = (07 6/107 620, ¢/107 wQO)/7

where none of the restrictions defining © are binding at 6y except 37 = 0.

To generate a quasi-likelihood function, we suppose that (e,7,)" ~ N(0, I1p1c),
but the true process need not satisfy this condition.

If the random coefficient model of interest specifies the random coefficients under
test to be uncorrelated, then the parameter 7w, disappears from the model. In this
case, an alternative parametrization can be employed, as in Andrews (1999). One
can define the vector of variances of the random coefficients on X4 to be 3, € (RT)?,
rather than [(;m2. In this case, the hypotheses of interest are Hyp : #; = 0 and



Hy : B, # 0 & (B; > 0. With this parametrization, no parameter 72 appears. This
parametrization has the feature that there is no parameter 7 that appears under the
alternative but not under the null. It still has the feature that the parameter 3, lies
on the boundary of the maintained hypothesis. This type of parametrization is not
appropriate if there is correlation between the random coefficients on X7, because
the (generalized) first and second derivatives of the quasi-log likelihood function are
not continuous at 3; = 0.

3. The Unrestricted Extremum Estimator

3.1. Notation and the Hypotheses of Interest

The data matrix for sample size T'is Y for T’ = 1,2, .... We consider an estimator
objective function ¢7 (60, ) that depends on Y7 and on the parameters 6 and w. The
parameter spaces for # and 7 are © and II, where © C R® and II is some space
(usually a subset of Euclidean space). Below we consider estimators and tests based
on {p(0,m). Although it is convenient to view ¢p(f,7) as a quasi-log likelihood
function, the results below do not require this. The function ¢7(6,7) could be any
objective function desired, such as a LS, GMM, minimum distance, or semiparametric
objective function.

We adopt the same basic notation as in E1 except that we allow the estimator
objective function to depend on a nuisance parameter 7 that is unidentified when the
true parameter is in the null hypothesis. Much of the discussion of the assumptions
and results given in E1 is applicable in this section too. For this reason, we keep the
discussion here as brief as possible.

The null, alternative, and maintained hypotheses that we consider are

(3.1) Hy:0€0g, mell; H :0 €0, rell;and K:0 € 0, mll;

respectively, where ©g C © C R® and ©; := ©/0¢. The null hypothesis is a point null
hypothesis of the form Hy : 3; = 3., where 3; is a sub-vector of 6 (see Assumption
9 in Section 5 below).

We consider the case where the null hypothesis exhibits the property that ¢7(6, )
does not depend on 7 when 6 is in the null hypothesis. In consequence, 7 is uniden-
tified under the null hypothesis. Actually, in some time series contexts of interest,
lp(0p, ) does depend on 7, due to the effect of initial conditions, but 7 is still as-
ymptotically unidentified. This has no effect on the Wald and score tests and our
results cover this case. It does, however, have an effect on the QLR test and the
QLR statistic has the appropriate asymptotic null distribution only if ¢7(6,7) does
not depend on 7 for 6 € Q.

The testing scenario considered here includes the standard case where no para-
meter m appears that is unidentified under the null. To cover such cases, one takes
the parameter space II of 7 to include a single point.

Let 6 denote the pseudo-true value of the parameter . We assume that 0y is in
the null hypothesis, i.e., 8y € ©g, because we are interested in the asymptotic null
distributions of various test statistics.



3.2. Definition of the Unrestricted Estimator and Consistency

We now define the unrestricted extremum estimator 8, of 6 for given m € 1. By
definition, 6, € © Vr € Il and

(3.2) U (0, m0) = sup £p(0, ) + 0pr (1) ¥ €11
0co
The opr(1) term is included in (3.2) (and in various definitions below) to indicate
that the supremum does not need to be obtained exactly.
We assume:

Assumption 1. 0, = 6 + opr(1).

Assumption 1 typically holds because ¢7(0,7) does not depend on 7 when 6 is in
the null hypothesis (at least up to an asymptotically negligible term). A sufficient
condition for Assumption 1 for models with non-trending data is the following.

Assumption 1*. (a) For some non-random function (0,7) : © x II — R,

SUPgeo rer | T 27 (0,7) — £(0, )] 2.

(b) For all € >0, SUPge /S (00 ¢),mell 0(0,m) < £(0y), where £(0y) := £(0y, ™) does not
depend on m and ©/S(0g,e) denotes all vectors 0 in © but not in S(bo,¢).

The sufficiency of Assumption 1* for Assumption 1 follows from Lemma A-1 of
Andrews (1993).

Note that here and below a superscript *, 2%, 3%, ... on an assumption denotes that
the assumption is sufficient (sometimes only in the presence of other assumptions)
for the un-superscripted assumption.

3.3. Quadratic Approximation of the Objective Function

The objective function is assumed to have a quadratic expansion in 6 about 6
for each 7 € II:

ET(Hv 7]-) = ZT(Q(); 7]-) + DZT(907 7-()/(0 - 90)
+ %(9 — 90)/D2£T(90,7T)(9 — 90) + RT(H,TF)
= g{r(@g,ﬂ') + %Zé—'ﬂ'jTﬂ'ZTﬂ' — %qT(BT(Q — 90),7‘() + RT(H,W), where

TIre = —BEIIDQZT(H(J,T()B;I, Lpp = jf;B;llDfT(HO’T()’ and
(33)  gr(\7) = (A — Zra) Trn(A— Zpn) for A € RE.

We allow ¢7(8g,7) to depend on 7 to allow for the possible effect of initial conditions.
Note that even when 7 (g, ) not depend on 7, the generalized derivatives Dl (6g, )
and D%(7(6y,7) of £7(0, ) usually depend on 7, because (6, ) usually depends
on 7 for # not in the null hypothesis but arbitrarily close to ;.

The terms in the quadratic expansion are assumed to satisfy:



Assumption 2. For all 0 < 7 < 00, SUPgce,|By(9—6,)||<y | BT (0,T)| = 0px(1) for
some nonrandom matrices By for which Apin(Br) — 00.

Assumption 3. (B;IIDZT((‘)O, o), Jre) = (Ge,Ts) (as processes indexed by 7 € II)
for some stochastic process {(Gr,Jx) : m € II} that has bounded continuous sample
paths with probability one and for which the s X s matrix Jr is symmetric Vo € 11
and satisfies 0 < infrem Amin(Tr) < SUPrerr Amax(JTrx) < 0o with probability one.

A useful sufficient condition for Assumption 2 is

Assumption 2*. For all vy — 0, SUWPgeey|9—g,||<y, [Br(0,7)|/(1 +[|Br(0 — 60)]])?
= 0pr(1).

We use the Taylor expansion for functions with left /right (¢/r) partial derivatives
developed in E1 to provide a sufficient condition for Assumption 2* that relies on
smoothness of ¢7(f,7) in #. This condition covers the two examples of this paper.
The Appendix provides an additional sufficient condition for Assumption 2* that does
not require smoothness of ¢7(0, ).

Assumption 2%*. (a) For each 7 € TI, the domain of {7(0,7) as a function of 0
includes a set ©F that satisfies (i) O — Oy equals the intersection of a union of
orthants and an open cube C(0,¢) for some ¢ > 0 and (ii) © N S(0p,e1) C OF for
some g1 > 0, where © is the parameter space.

(b) p(8,7) has continuous £/r partial derivatives with respect to 0 of order two on
Ot Vr €11, VT > 1 with probability one.

(c) For all v — 0, SuPgee|jo—oo||<yr || Br" ((92/0600 ) (8, 7)—(0%/0606")0r(60, 7))
xBpl|| = o0pr(1), where (0/00)r(60,7) and (0?/0000')er(0,w) denote the s vector
and s x s matriz of £/r partial derivatives of lr(6,m) with respect to 0 of orders one
and two respectively.

Assumption 2%* implies Assumption 2* with D¢y (0y, w) and D%07 (6o, ) of (3.3) given
by (0/00)0r (0o, ) and (0%/0006") y(6y, ) respectively. The proof is analogous to
that of Lemma 1 of E1.

If Assumption 2%* holds and — Bz (9%/8006") 01 (00, 7) B! = Jr + opr(1) for
some non-random matrix Jr, then Assumption 2* holds with Dlr(0g, ) of (3.3)
given by (0/00)l7(6p,7) and with D?(7(0g,7) of (3.3) given by either (9?/9006")
ET(Q(),T() or —B&«jﬁBT.

In quasi-log likelihood cases, Assumption 3 is implied by the weak convergence of
the normalized score process and Hessian indexed by 7 € II. This often holds by a
functional central limit theorem (CLT) and a uniform law of large numbers (LLN).
Thus, G, is often a mean zero Gaussian process. For examples of the verification of
Assumption 3, see Andrews and Ploberger (1994, 1995, 1996).

Assumption 3 allows the normalized information matrix J7, to be random even
in the limit as ' — oo (to cover models with stochastic trends). For models with no
stochastic trends, the following is sufficient for Assumption 3.

10



Assumption 3*. B;lIDET(QO,o) = (o (as processes indexed by w € II) for some
stochastic process {Gr : m € II} that has bounded continuous sample paths with
probability one. Jrr is non-random and does not depend on T. Jr (:= Jrx) is
symmetric ¥ € I, sup,cr Amax(Jx) < 00, and infrerp Amin (Tr) > 0.

To see the particular form the quadratic approximation of (3.3) takes for GMM
and minimum distance estimators, see Section 7 of E2. For an example of a semi-
parametric estimator, see Section 9 of E2.

3.4. Asymptotic Distributions of the Unrestricted Estimator
and the Objective Function

Before obtaining the asymptotic distribution of 57” we need to establish its rate
of convergence.

Assumption 4 . BT(g7r —0y) = Opr(1).
Sufficient conditions for Assumption 4 are given in the following lemma.
Lemma 1. Assumptions 1, 2%, and 3 imply Assumption 4.

The proof of Lemma 1 and other results below are given in the Appendix.

Next, we consider a local approximation to the parameter space © after it is
shifted and rescaled. The following Assumption 5 is exactly the same as in E1
and E2. Assumptions 5%, ..., 5** stated in E1 and E2 provide primitive sufficient
conditions for Assumption 5. For brevity, we only specify the simplest of these here.

Assumption 5. For some sequence of scalar constants {bp : T > 1} for which
by — 00 and by < cApin(Br) for some 0 < ¢ < oo, {Bp(© — 0y) /by : T > 1} is
locally approximated by a cone A.

See E1 or E2 for the definition of “locally approximated by a cone.”

The following sufficient condition for Assumption 5 covers the two examples of
this paper. We say that a set I' C R® is locally equal to a set A C R® if ' N C(0,¢)
=ANC(0,¢) for some € > 0.

Assumption 5*. (a) © — 0q is locally equal to a cone A C R®.
(b) By = brlI for some scalar constants {bp : T > 1} for which by — oo.

For each 7 € II, define the random variable XTW as follows: ;\\T7r € cl(A) and

(3.4) ar(Are,m) = inf gr(,7).

When the cone A of Assumption 5 is convex, )\T7r is uniquely defined and the normal-
ized estimator BT(9 —0p) is asymptotically equivalent to Az and has an asymptotic
distribution.

11



Assumption 6. A is convez.

__ The asymptotic distribution of BT@7r —0p) is given by that of Ar. By definition,
Ar € cl(A) and

q(XW,T() = /{ng q(A\,m) Vm €1I, where
€
(3.5) g\ 7) = (A= Zx) Tx(\ = Zz) and Z; := T Gy
Under Assumption 6, Xﬁ is uniquely defined.

Theorem 1. (a) Suppose Assumptions 2—6 hold. Then, BT(9 —0p) = Apr
(b) Suppose Assumptions 26 hold. Then, e = Ao and BT(9 —0p) = .
(c) Suppose Assumptions 2-5 hold. Then,
01 (B, @) — Lr(00,8) = 3(Z,TeZe — infrcp q(N, ) = X, TuNe and

~ ~ ~
SUP 11 (ET(eﬂ') W)—ET(H(), ﬂ')) —d % Supﬂ'GH(Z;rjﬂ'Zﬂ' _inf)\EA Q()‘a W)) = % SUPrern /\ﬂjﬂ)\ﬂ

Comment. Theorem 1(b) is used below to determine the asymptotic distribution
of a Wald test statistic. Theorem 1(c) is used below to determine the asymptotic
distribution of a QLR test statistic.

3.5. Asymptotic Distributions of Sub-vectors of the
Unrestricted Estimator

We now provide the asymptotic distribution of sub-vectors of BT(E — to) by

partitioning # as in E1 and E2 and by partitioning HW, 0o, Br, G, Tz, Zr, and A;
conformably with 6:

6 n Bﬂ' 6
0=<f;>= 5 ,%:(9:‘”): pl ,eo=<f;°>= b |
Y Y " 0 Yo

Bgr Bgst Bgyr
Br = [B*T B*M] = |Bsgr Bsr Bsyr| ,

By Byr Bysr Byst Byr

Gﬁﬂ' jﬁﬂ' jﬁ&ﬂ jﬁl/}ﬂ'
«Zwr j*1/)7r
Gﬂ' = =G T | Jdr = = T T | s
<G1/)7T> G:Zﬂ' j |:~71/)*7r \71/}71’ :| jﬁﬁ j6 j&/

jz/)ﬁﬂ' \71/1671' j’l/)ﬂ'
Z/Bﬂ N /)\‘ﬁﬂ'
(36)  Zp = <2“) — | Zss |, and A, = Gﬂ) — [ |.

Z P v >\1/)7r

where 0, € RPT4, 3 € RP, § € R, and 1) € R". We further partition [3, Bm Xﬁﬂ, and
Zgr into

) Bl N 3‘\6 ™ Zﬁ T
3.7 /6:< 1>7/87r: T 7)\71': ~T 7andZﬂ': ! )
( ) 2 BQW g /\[327r g Zﬁ27r
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where 8, € RP', B, € RP?, and p1 + p2 = p. Let Bg 1 denote the upper p1 x p
block of Bgy. Let Bg st and Bg yr denote the upper p; rows of Bgsy and Bgyr
respectively.

The subvectors of € are categorized as follows. The vector (3; consists of the
parameters that are restricted by the null hypothesis. The vector (35 consists of
nuisance parameters that lie on the boundary of the parameter space. The vector
0 consists of nuisance parameters that do not lie on the boundary of the parameter
space. The vector ¢ consists of nuisance parameters that satisfy a block diagonality
condition with respect to the other parameters. They may or may not lie on the
boundary of the parameter space.

The defining features of the parameters ¢/ and ¢ are the following.

Assumption 7. (a) J, is block diagonal between 0, and ¢ ¥Ym € II. That is,
Tipr = Ty = 0 ¥ € 1L

(b) The set A of Assumption 5 is a product set Ag x As x Ay, where Ag C RP,
As C R4, and Ay C R" are cones.

Assumption 8. As = RY.

Under Assumption 7,
Zow = Tz Gur, Zypw = T Gy, and Zgr = HZ,r, where H := [I,: 0] € RP*PH4),
(3.8)

For A = (A3, A5, Ay)' € R®, we define

453, ™) = (Ag = Zan) (HIZH') ™" (\g — Zpy) and

(39) q’l/)()\I/HT() = ()\1/1 - Z’L/)ﬂ')’j’t/)ﬂ'()\’l/) - Z’L/)ﬂ')'

The asymptotic distributions of sub-vectors of BT(IQ\7r — 6p) are as follows.

Theorem 2. (a) Suppose Assumptions 2— 8 hold. Then, BﬁT(B, — By) = /):/3.
provided Bgsy = 0 and Bgyr = 0, where A\gr solves qz(Agr) = infy,en, q8(Ag,T);
BgT(g. — 50) = jé:ng, —jé:ljgﬁ,//{ﬁ, provided Bé,BT = 0 and B&pT = 0;
Byr(1e — 1) = Aype provided Bygr = 0 and Bysp = 0, where Ayr solves qy(Aypr, )
= inf,\weAw Qy (/\7/,,7r); and the convergence of these three terms holds jointly.

(b) Suppose Assumptions 2-5, 7, and 8 hold. Then, ET(E., o) —lp(by,e) = %(Z’ﬁ.(Hj*_.1
XH")71Zze — inf qg(Ag,e)) + %Gé j{ng. —|—%(Z’ TpeZype— inf  qy(Ay,e)) and

AsEAs ot be L Ay €Ay

sup(ET(@r,ﬂ)—éT(Ho,ﬂ)) 4, 1 sup <Z’ﬂ7r(Hj*}1H’)_1Zﬁ7r— inf gg(Ag,)
well well As€Ag
+ Géﬂjé:rlG&r + Z;/)W‘Z/WZT/”F - lnf qI/J()‘T/”ﬂ-)
)\wel\w

1 N —1gn—17% 171 N N
= 4o ()\HW(HJ*F H') " Ngp + Gl T Gor + AWJWAW).
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When Ag is defined by equality and/or inequality constraints, which is often the
case, a closed form expression is available for /X/gﬂ. Theorem 5, (6. 5) and (6.6) of E1
give the appropriate expression when a subscript 7 is added to Zg, j, CF}, Pp(j), and
A. As an example, suppose Ag = R*. Then,

(3.10) Agr = max{Za,, 0}.

4. Examples (Continued)

4.1. GARCH Example

We consider the Gaussian QML estimator of 8. The Gaussian quasi-log likelihood
function is

T T
(4.1) lp(0,m) = 27) —%Zlnht 0,7 —%Ze )/R{(6, )

t=1 t=1

where 7 = 3.14... denotes the number pi. Assumption 1* is verified in the Appendix.
Note that hj (0o, 7) = 8o + 71 (h% (0, T) — o). In consequence, when h(6g, )
= g, we have hj (6, m) = 6o for all t and ¢7(6p, m) does not depend on 7. If hi(0y, )
# 6o, then ¢7(0y, ) depends on 7 through the terms 7¢=1(h%(6y, 7) — &9).
Next, we define the components of the quadratic approximation of ¢7(6, 7). Let

he(0,7) := 6+ 05, iﬂkef_k_lw) and
(4.2) by (0, 7)== —1% 1n(27:r) — L In(h(0, 7)) — Lei(0)/h(0,m).

(The double subscript on ¢;(0,7) is used to distinguish ¢4 (0, 7) from ¢7(0,7) when
t =T.) Note that hy(0, ) is the unobserved conditional variance given the parameters
(0, ) with the initial condition hj (0, 7) replaced by an infinite weighted sum of lagged
values of e?(6). Also, £;(6,7) is the corresponding unobserved t-th contribution to
the quasi-log likelihood. The asymptotic behavior of the actual quasi-log likelihood
formed using A} (6, ) is shown to be equivalent to that based on h: (6, ).

The components of the quadratic approximation of ¢7(0, 7) at 6q are:

T
Dey(6o,7) = Ztu(00,7), D*lp(6o,7) := —TJr, By :=T"*I,. 12,

t=1

/
%Ett(eoa ) (% _1 ZT{ Zt k—1> 25 ( _1)7 ZtXL{/(S(l)/2> ) and
2c 1
52 [ TP P s = 0
jﬂ—Z: —Emgtt(eo,ﬂ') = 5 ﬂ 67 0 5 where
0 0 25, EX;X]
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Assumptions 2%* and 3* are verified in the Appendix. The verification of As-
sumption 3* uses the central limit theorem for square integrable, stationary and
ergodic, martingale difference sequences applied to {(-2; 25701 (00,71), s 57 9 0,00, 7)) :

= ...,0,1,...} to obtain the convergence in distribution of the finite dimensional dis-
tributions of the process B:FIIDET(H,o). In consequence, the limit process {Gr
7 € IT} of Assumption 3* is a mean zero Gaussian process with covariance function
Cov(Gry,Gry) = Lny 1y = Eaeétt(eo, 71'1)89, Ly (0p,m2) . Some calculations show that

2 1 1 0o kp,3,2
3 <1—7rc17r2 + (141)(142)) Toll—m) 2612 pPral 0”2Ezt % p1 X1
3 v/
I7l’177r2 = 260(16771'1) ﬁ ;/2 EZtX
# S TEZ2 X, ﬁEzth 6o B2 X X]
(4.4)
Assumption 4 holds by Lemma 1. Assumptions 5* and 6 hold with A := Rt x R™+1,
There is no parameter (35 in this example, so 8 = 3;. The vector 6 is partitioned

as 0 = (31,6,¢) and 0, := (31,6)’. Assumption 7(a) holds, because J, is block
diagonal by (4.3). Assumption 7(b) holds, because A is a product set with

(45) A[g = Aﬁl = R+, A5 = R, and A¢ = R".

Theorem 2 and (3.10) provide the asymptotic distributions of T' 123, Tl/ 2((5/\
60), TY2(D,—tby), and sup ey (¢ (B, mh—r (80, )) for this example, where B, = B,
because all the requisite conditions have been verified and Br is diagonal. We have

Tl/QBI, = Xgl., where
Xﬁlﬂ = max{Zg,~,0} and
(4.6) Zgr=HIGFGix ~ N, HI ' Tor z Tin H') = N(0,1 — 7*).
Here H = (1,0). Note that Xglﬁ has a half-normal distribution.

The process Zg » is a Gaussian process with covariance function that is fairly
simple. Equations (4.3) and (4.4) and some calculations show that

(1—m)(1-m3)

1 — 179

(4-7) COV(Zﬂlma Zﬁlm) = Hj*;riz-*mﬂrzj*wéH/ =

Let {Z :4 > 1} be a sequence of iid standard normal random variables. Simple
calculations show that (1 — %)Y 2% 7'Z; is a Gaussian process that has the same
covariance function as Zg . Thus,

(48) Zﬁlﬂ o (1 — 7T2) ZTFZZZ and /A\ﬁlﬂ ~ max{(]_ — 7'(2) Zﬂ-igi’o},

where ~ denotes equality in distribution of the stochastic processes indexed by 7 € II.
One can simulate the processes Zg,w and g r easily by simulating the truncated

process (1 —72) .11 7' Z; for some TR large.
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By Theorem 2(a), T%/? (3.—50) = A, where Ay = 26Gs —60(1—m)"'max{Zg n,
0}, Gs := Gsr does not depend on 7 (because it is a mean zero Gaussian process
whose covariance function is given by the (2,2) element of Zr, 7, in (4.4), which is
independent of 7), and Gux := (Gg,x,Gs)" ~ N(0,Zsr x)-

Note that Gy, := Gyr and Jy := Jyr do not depend on 7. By Theorem 2(a) and
the fact that Ay, = R", Bygr = 0, and Bysr = 0, we have T1/2(171, —y) = Xd,,
where /Xq/, =7y = jw_le ~ N(0, \71/)_1) and jw_l = 60(EX:X;)"!. Let 7 denote any
estimator of 7. Then, T1/2(171ﬁ—¢0) = Xq/, ~ N(0, (EW;W/ /var(6y))1). This implies
that the extremum estimator of ¢ from the maximization of ¢7p(0,7) over (0,7) €
O x II is asymptotically normally distributed when the GARCH-MA parameter is
zero just as it is when the GARCH-MA parameter is positive. (The preceding result
for 4 holds because infren T2 (b — ) < T2 (W5 =) < supren T (¥r — 1)
and the lower and upper bounds both have asymptotic distribution given by X/, by

the continuous mapping theorem.)
By Theorem 2(b), (4.6), (4.7), and Js = 8,2/2, we obtain

sup (Ur (0, m) —r (8o, 7)) <, %igg (max*{Zg, ,0} c/(1 — m)) + G365 + %X;,ijw.

mell

(4.9)

4.2. Random Coefficient Example

We consider the Gaussian QML estimator, which is based on the assumption that
¢ and 7, are normally distributed and independent of X;. The Gaussian quasi-log
likelihood function is

T
p(0,m) := =L In(27) — 3 " In(d2 + X[y, 61,m) Xy)
. t=1
(4.10) —3 > (Vi — by — X{p1)? /(82 + X151, 61, ) Xy).
t=1

Assumption 1* is verified in the Appendix.
The quadratic approximation of ¢7(6,7) at 0 is defined as follows. Let

Wi = (X[, 1), Wy(r) == (X§,(m), X3,(610)',1)',
Xiy(m) := X1, Q0(m) X1z, X3,(010) := (0/081) X5, Q2(610) Xt
(4.11) res;(0) :=Y; — ¥y — X[y, and var (0, ) := 82 + X;Q(5,,01,7) Xy
Note that var:(6,7) does not depend on 7 when § = 6y, because X{Q(3,61,7)X¢

= 0, X7, 01 (m) X1t +X5,Q2(61) Xo2:. In consequence, we denote vary(0p, m) by var(6o).
Define

T 1
Dlr(lo,m) =Y <res%(90) - vart(eo)’mvft(w), rest (o) VVt/> 7

— 2var?(6o) " vare(6p)
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DQéT((gOa ) .

Ire = Tr =

:_Tjﬂ'a
YEW, ()W, () [var} (6) 0
0 EW, W/ [var:(6p)

(4.12)  Zpy = T TY2Dlp (6, 7).

., By :=TY2], and

It is shown in the Appendix that the quadratic approximation of (3.3) holds (in
particular, Assumption 2%* holds) under the assumptions above and the moment
conditions below.

We assume that

(4.13) ElleeXe|[* < 00, Bl|n||*|Xe]® < o0,
(4.14) EW,W! >0, E(? — 1)*Wy(m)Wy(x)' > 0 V& € II, and EX,X, > 0,

where )N(t is a vector that includes the constant 1 and X;; Xy, for all j = 1,...k and
k=1,...,b+cand “> 0" denotes “is positive definite.”

Assumption 3* is verified in the Appendix. The verification uses the CLT for
iid square integrable random vectors to obtain the convergence in distribution of the
finite dimensional distributions of the process T~/ 2Dl7(6y,e). In consequence, the
limit process {G, : ™ € II} is a mean zero Gaussian process with covariance function
COV(GM,GM) = m Ty = EDZT(Qo,Wl)DET(Qo,TFQ) where

2(09) — varg(6g))? ~ —~ res? (0p) ~
;E(rest(o t\vo 1 1pI®elvo /
i vart (0) Wi(m)We(ma)" 3 Var?(eo)m(m)m
e }(600)
res?(6g —~
%Evar% 60) W, Wy (ms)! EW, W} /var(6y)
(4.15)

Assumption 4 holds by Lemma 1. Assumptions 5* and 6 hold with A := Rt x R5~!,

We partition 6 as follows: [ = (3, § = (87,62), ¥ = (Y},vy), and
0. := (B,681,82). With this partitioning, Assumptions 7 and 8 hold. In particu-
lar, by (4.12), Jx is block diagonal between 60, and . The set A is a product set
Ag x Ag X Aq/, with

(416) Aﬁ = Aﬁl = R+7 Aé = Rngl, and AT/’ = Rb+c+1.
Theorem 2 provides the asymptotic distributions of TY23 Bre, TV 2(5 —8¢), TY/? (w

¥g), and sup,ren(éT(Hﬂ,W) lp(0p,m)), where 61, = 3,, because all of the requisite
conditions have been verified and By is diagonal. In particular,

Tl/QBh = Xﬁl. = max{Zg,,0}, where
(4.17) Zpin = HI ' Gur ~ N(0, HI T o T i H'),

using (3.10). Thus, Xﬁlﬂ has a half-normal distribution. Unlike the GARCH Example,

the covariance function of Xﬁv does not simplify. It is given by Cov(Xﬁm,Xﬁm)
= Hj*?rlll—*m,ﬂzj*wéHl
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By Theorem 2(a), TI/Q(ZS\.—éo) = ;\\6.7 where XM = j{lGls —j{ljgfglﬂmax{Zﬁlm
0}, Gur := (Gg,x,Gs)' ~ N(0,Zsz x), and Gs and Js := Jsr do not depend on 7.

By Theorem 2(a) and A, = RPTeHL we obtain Ay = Zy := jq/leip ~ N(0, \71/71)
and TYV2(h, = g) = Ay ~ N(0, (EWW] [var,(60)) 1), where Ay, Zy, Gy i= Gy,
and Jy := Jyr do not depend on 7. Let 7 denote any estimator of . Then, TY? (Ym—
o) = Xp ~ N(0, (EW;W//var;(00))~!), for the same reason as in the GARCH
example. This implies that the extremum estimator of ¢ from the maximization of
lp(0,m) over (6, ) € © x II has an asymptotic normal distribution.

By Theorem 2(b), we have

sup(ET(@r, ) —Lp(0g,T))
mell

418) L L supmax®{Zss, 0}/ (HI 7 Tunn T H') + GT G5 + Ny Ty A
Tell

5. The Quasi-Likelihood Ratio Test

5.1. The QLR Test Statistic

In this section, we define the QLR test statistic and give the asymptotic distrib-
ution of the QLR statistic under the null hypothesis.

The null hypothesis is
(51) Hp : 61 = 61*7

for some specified vector 3;, € RP'. The form of the null hypothesis is built into part
(a) of the following assumption.

Assumption 9. (a) For some (3, € RP', ©g = {0 € © : 0 = (0.,, 35,8 ,¢") for
some By € RP2,6 € R, and ) € R"}.

(b) B,BleT =0 and Bﬁlfl/)T =0.

(c) © is a product set with respect to (37,05, ,¢") local to 8, V0 € ©g. That is,
ONSO,e) = (B x By x AxU)NS(,e) for some By C RPY, By C RP2, A C RY,
U CR", ande >0, V0 € Oy.

(d) Ag = Ag, x Ag, for some cones Ag, C RP' and Ag, C RP2.

As shown below, in conjunction with Assumptions 5, 7, and 8, Assumption 9 implies
that Assumption 5 holds with © replaced by ©¢ and A replaced by

(52) Ao = {0} X AﬁQ x R x A¢,

where Ay and Ag, are the same as in Assumptions 7 and 9 respectively.

The restricted (by Hy) extremum estimator of 0y for given 7 is denoted goﬁ. By
definition, 0y, € ©g Vm € II and

(5.3) tr(Bor, ) = sup £r(0,7) + opr(1).
96@0
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We partition Ggr as (5., BQOW,%W, @gﬂ)’ conformably with 6.
The QLR statistic is defined by
(5.4) QLRy := —2(sup Ly(0px, 7) — sup Ly (0, 7)) + 0p(1).

mell mell

5.2. Results for the Restricted Parameter Space ©g

Here we determine the asymptotic distribution of the maximum of the estimator
objective function over the restricted parameter space ©g. We do so by applying the
results of Section 3 with © replaced by the null parameter space ©g throughout.

We use the following restricted analogues of Assumptions 1 and 4:

Assumption 1g. 5% = 0y + opr(1).
Assumption 4. BT(EO7r —00) = Opr(1).

We note that Assumption 1* is a sufficient condition for Assumption 1o provided
0y € Oy, which we assume here, because 0y € Oy C ©. Sufficient conditions for
Assumption 4 are given in Theorem 3 below.

Let Aox be a minimizer of q(A, ) over cl(Ag). That is, Xox € cl(Ag) Vmr € II and

(5.5) q(Aom, m) = )\léljfo g\, ).
We partition Xoﬂ conformably with 6:
~ ~7 ~ ~7 ~ ~ ~7
(5'6) Aor = (>‘,807r7 >‘607r7 >‘1p07r), = (0,7 >‘[3207r7 >‘607r7 >‘1p07r),'
Theorem 3. Suppose Oy € Oy.
(a) Suppose Assumptions 5 and 7-9 hold. Then, Assumption 5 holds with © and A
replaced by ©¢ and Ao, respectively, where Ay and Ag, are the same as in Assumptions
7 and 9.
(b) Assumptions 1o, 2%, and 3 imply Assumption 4. _
(c) Suppose Assumptions 2, 3, and 4g hold. Then, lp(Oor, ) = by (0o, 7)
+ 5 Zpa TraZrx — § infoeo, qr(Br(0 — 00),7) + 0pa(1).
(d) Suppose Assumptions 2, 3, 4o, 5, and 7-9 hold. Then,

01 (Boe, ®) — U100, 8) = $(Z0TeZa — Jnf g(Ae)) = 1N0eToN0e and

sup(ZT(/@\oﬁ,w) — lr(6o,7)) LA % sup(ZrJrZn — inf q(A\, 7)) = %sup Xgﬂjﬂxoﬂ.
el el A€A0 el

(e) Suppose Assumptions 3, 5, and 7-9 hold. Then, Z.. T Zy — infycp, ¢(A, ) =

Zh (HIZ H) " Zge = infacqoyeny, 456N + GorTor Gor + Zhyr Tpm Zym
~1 ~ -~/ o~

- ian¢€A¢ Qo (/\1/17 7T) = )‘HOW (Hj*;lHl)_l/\ﬁOW + Géﬂjé;lGéﬂ + Al/mjl/)ﬂ'/\f/”r‘

Comment. The convergence in part (d) is joint with that of Theorems 1 and 2 be-

cause all of the results follow from an application of the continuous mapping theorem
to the process (B;l Dlr(6g,0),Tre)-
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5.3. The Asymptotic Null Distribution of the QLR Statistic

The testing applications that we consider for the QLR test are ones for which
¢p(0p, ) does not depend on 7. In particular, dependence of ¢7(6g, ) on 7 through
initial conditions in a time series context is not permitted. Furthermore, we require
that Gsr, Gyr, Jsx, and Jyr do not depend on 7.

Assumption 10. (a) ¢7(0g, ) does not depend on 7 for all T large and is denoted
lp(0o).

(b) Gérs Gyr, Tsr, and Typr do not depend on m and are denoted Gs, Gy, Js, and
Jy respectively.

Assumption 10(a) is violated in some time series models if the initial conditions are
chosen inappropriately. For example, in the GARCH Example, if hj(0,7) is such
that hj(6p,m) # 6o, then lr(6p,m) depends on 7 by an opr(1) term. The reason
Assumption 10(b) typically holds is that ¢7(0,7) does not depend on 7 for all § € O
and O is determined by the sub-vector 3, not by ¢ or ¢». Thus, starting at 6y € Oy,
a change in ¢ or ¥ still leaves 0y in O and still leaves ¢ (6, ) independent of 7.
In consequence, Dsly (6, ™), Dylr(00,7), Tsrr, Jyrx, and the (normalized) limits
of these terms, Gsr, Gyr, Jsr, and Jypr, do not depend on 7, where Dlp (g, )
= (DﬁZT(eo, 71')/, D&ZT(Q(), 71')/, DQ/)ZT(QO’ ’7'(')/)/.

Note the implications of Assumption 10. First, by part (a), QLRr = sup,cp
(br (O, 7) —Lp (6, 7)) —supﬂen(éT(goﬁ,ﬂ) —lr(6p,m)) +0p(1) and the asymptotic
null distributions of the first two summands are given in Theorems 2(b) and 3(d)
respectively. Second, by Assumption 10(b), many of the limit random variables in
Theorems 2(b) and 3(e) do not depend on 7 and can be pulled out of the expressions
involving the supremum over 7 € II. Furthermore, the terms that do not depend on
7 are exactly the same in the limit expressions for sup .y (ET@W, ) —lp (6o, )) and
SUD ety (ET@OW, ) —lr(0p,m)). Thus, they cancel when one considers the asymptotic
distribution of QLR for 6y € Oy.

We now state the asymptotic distribution of QQLRr for parameter values 6y € ©g.

Theorem 4. Suppose 0y € O and Assumptions 2-5, 4¢, and 7-10 hold. Then,

(a) QLR = supye(Zh, JreZrr —infrea qr(N, 7)) — supr e (2, Jre Zrr — infaea,
qr(A,m)) + op(1),

(b) QLRy —4 ADgrr = sUpgen(ZpTnZy — infrep ¢\, 7)) — supren(ZiTrZx
—infaen, (A, 7)) = Sup,cp X;jﬂxﬁ — SUPgeTy Xgﬂjﬂxoﬂ >0, and

(¢) ADgLr = supren(Zj,(HT 7 H')  Zga—infy en, q5(As, ™)) —Supren (Zf, (H T,
XH')™ Zr = inf e (o), 95(N3: ) = SUPyert e (HIT H') ™ Ng = subyerr Ngon
X (HJ A H') YAgor > 0.

Comments. 1. ADg g stands for “asymptotic distribution of the QLR statistic.”
2. The expression for ADgpr in Theorem 4(c) has the advantage over the ex-

pression in 4(b) that the dimension p of [ is often much smaller than the dimension
s of 6.
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3. A general method of obtaining critical values corresponding to ADgrr is
by simulation. (This is also true for the RQLR, Wald, and score tests considered
below.) If Ag is defined by inequality constraints, which is often the case, then Agr
is the solution to a quadratic programming problem. In consequence, Xgﬂ can be
simulated very quickly. Programs for solving quadratic programming problems are
available in GAUSS and Matlab. When unknown nuisance parameters appear in the
definition of ADgr R, they can be replaced by consistent estimates in order to carry
out the simulations.

The asymptotic null distribution of QLR7, ADgrr, given in Theorem 4(b)—(c)
simplifies in various cases. First, if the estimator objective function does not depend
on 7 for any 0 € © (or, equivalently, if IT contains a single element), then the suprema
over m € II disappear everywhere, the Z! 7. Z, terms cancel in Theorem 4(b), and
the Z/gﬂ(Hj*;lH’)*lZﬁﬂ terms cancel in Theorem 4(c).

Second, if no parameter (35 appears, as occurs in the GARCH and Random Coeffi-
cient Examples, then the terms 511p7r€H(Zégﬂ(Hj*;rlH')*lZg7r — ianﬁe{O}xA,@Z q3(Ag, ™))
and sup,cy X/,BOW(H Tt H' )*ﬁﬁoﬂ in Theorem 4(c) are both zero.

Third, if Ag = RP, then infy en, qs(Ag, ) = 0, X{gﬂ = Zgx, without loss of
generality (wlog) no parameter 3, appears (because it can be absorbed into ¢), the
terms in the previous paragraph are zero, and

(5.7) ADqrp = sup Ze (HIZH') ™ Zsr.
S

This corresponds to the classical case of an unrestricted alternative hypothesis and
no nuisance parameters on the boundary of the parameter space.
Fourth, suppose the following assumption holds:

Assumption 11. (a) Giur ~ N(py,Zix) conditional on some o-field F, for some
(possibly random) (p+q) X (p+ q) matriz-valued process L. and p + q vector-valued
process ji, that are F measurable and whose sample paths are bounded and continuous
functions of ™ on II with probability one.

(b) Zir = cxTar for some (possibly random) scalar ¢z with inf e e > 0.

Typically @, = 0 when 6y is in the null hypothesis, as is considered here. We allow
for p, # 0, because this assumption also is used below for local power results and in
such cases one usually has u # 0.

Assumption 11(a) often holds as a result of a central limit theorem. If Assump-
tion 11(a) holds and ¢7 (0, ) is a correctly specified log-likelihood function, then the
information matrix equality for any given 7 implies that Assumption 11(b) holds
with ¢; = 1. Assumption 11(b) holds for LS estimators of regression models with
cx = 0 provided Assumption 11(a) holds and the regression errors are homoskedas-
tic conditional on the regressors with variance 0. Assumption 11(b) holds for GMM
and minimum distance estimators with c¢; = 1 provided an asymptotically optimal
weight matrix is employed.
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When Assumption 11 holds with j,, = 0 and Ag = RP, we have

(5.8) Ly (HI G H') ™ Zge ~ exx Wm €11,

where X}Q, denotes a random variable with a chi-squared distribution with p degrees
of freedom. Thus, ADgp R is the supremum of a (rescaled) chi-squared process.
When Assumption 11 holds with p, = 0, Ag # RP, and Ag is a convex set,

the distribution of X;;W(H JAH )*ﬁﬁﬁ for fixed 7 is that of ¢; times a mixture of
chi-square random variables. This follows from Theorem 3.1 of Shapiro (1985). See
Shapiro (1985, Sec. 4) for formulae for the mixing weights when p < 4.

Given that Assumption 11(a) holds, the additional Assumption 11(b) reduces the
number of nuisance parameters that appears in the asymptotic distribution ADy g.
To see this, let A; be a p x p (possibly random) matrix that is symmetric and
nonsingular with probability one for each m € II. Our leading choice for A; is

(5.9) A, = Diag?(HJ ' H').

Let Agar :== A;lAﬁ and Zgar = A;lZgﬂ. Define X,BAﬂ' such that XﬁAﬂ' ecl(Agaxr)
and

@A Agar, ) = /\ﬁénf qpa(Ag, T), where

AEAW

(5.10) gsa(Ag,m) = (Ag — Zpan) (A7 HIZ H' ALY ™ (Ng — Zpar) for A € RP.
Define X{goAﬂ as XﬁAﬂ is defined but with Agar replaced by Agoar := AZL({0} x Ag,).

Lemma 2. For any p X p (possibly random) matriz Ay that is symmetric and non-
singular for each m € II with probability one, )\gﬂ =A )\gAﬂ and )\507r =A )\goA7r

Comments. 1. By Lemma 2, X/ﬁﬁ (HJ,! H’)*lxw equals XlgAﬁ (A;lHj*;lH’A;rl)*l
xXg Ax and analogously with Xgﬁ and Xg Ax replaced by Xgoﬁ and Xgo Ax- Under As-
sumption 11(a), the distributions of these terms depend on the nuisance parame-
ters (or nuisance random variables) in A;'HJ_ 'H'A;! and in the (conditional)
covariance matrix of Zgar, viz., A;lHj 1T, 1H'A 1. Take A, as in (5.9)
and suppose Assumption 11(b) also holds. Then, the matrix AYHI AT T,
xH'A; Y equals e A, PHT P H' A and knowledge of the former implies knowledge
of ATYHJ-'H'A-! up to scale. In this case, the total number of nuisance parame-
ters in these two matrices reduces from p? to 1+p(p —1)/2 when ¢, is unknown and
from p? to p(p — 1)/2 when ¢, is known.
2. The proof of Lemma 2 follows easily from the fact that gg(\g, 7) = gga(A;  Xg, 7).

5.4. The Rescaled Quasi-Likelihood Ratio Test

In this section, we introduce a rescaled QLR statistic that eliminates, or reduces
the number of, nuisance parameters that appear in the asymptotic null distribution of
the QLR statistic. We consider the common case where Assumption 11(b) holds, but
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Lin # Jur- For example, the latter often occurs in likelihood scenarios with model
misspecification, such as the GARCH Example when the innovations have a non-
normal distribution. In such cases, the asymptotic distribution of the QLR statistic
depends on some nuisance parameters.

Let ¢; be an estimator of ¢, (defined in Assumption 11(b)). We append the
following assumption to Assumption 11:

Assumption 11. (c) ¢ = ¢, jointly with the convergence of Assumption 3.

When ¢, is non-random, Assumption 11(c) holds if ¢ = ¢z + 0pr(1).
The rescaled QLR statistic is defined to be

(5.11) RQLRy := —2(sup Ly (Bor, @) [Ex — sup by (0, 7) /) + 0p(1).
mell well

The asymptotic null distribution of RQLRy is given in the following theorem.

Theorem 5. Suppose 0y € Oy and Assumptions 2-5, 4g, and 7-11 hold. Then,
RQLRy % ADporr = swpyen Now(HIT o Tun Tunt ') Ngn—sup e Ngor (H Ty Tun
X T H') " Aggr > 0.

Comment. By Assumption 11(a), the weight matrix (HJ'Z.xJ - H')~! on the
right-hand side of Theorem 5 equals the inverse of the covariance matrlx of Z om condi-
tional on (Jyr, Zer). Let Ay = Diag/?(HJ  Tx T H'). By Lemma 2, Aﬁﬂ(Hj*;
><I*7r *WlH’) 1)\57r equals )‘,BAW( AHIT AT T H AL~ 1)\5A7r and likewise with
)\fgﬂ and /\ﬁ Ax replaced by )\/307r and Ago Ar- If i = 0, the distribution of these terms
depend only on the nuisance parameters in @A 'HJ 'Z.J.tH
x A7l Since the main diagonal elements are all ones, there are at most p(p — 1) /2
unknown nuisance parameters. When p = 1, there are no nuisance parameters and

N2 when Ag = R

1 1 /
(5.12) Aﬁw (HI 7 Tan Ton H ) Xon {maxz{Nﬂ,o} when Ag = RY,

where N ~ N(0,1) Vr € II. Of course, the correlations between Ny, and Ny, for
1,2 € II might depend on nuisance parameters. When p > 2, the distribution of

)\ﬁﬁ(H T Lin Tt H') ™ 1)\g7r for fixed 7 is that of a mixture of chi-square random
variables by Shaplro (1985, Thm. 3.1), provided Ag is convex. See Shapiro (1985,

Sec. 4) for the mixing weights. The same holds for the term with X{goﬂ in place of
Som.

5.5. GARCH Example (Continued)

The null and alternative hypotheses of interest are Hy : $; = 0 and H; : §; > 0.
A test of Hy versus Hj is a test for the presence of conditional heteroskedasticity.

Assumption 9(a) holds with 3;, = 0. Assumption 9(b) holds because By =
TV/21,,5. Assumption 9(c) holds with B; = RT, A = R, ¥ = R", and p; = 0.
Assumption 9(d) holds because pa = 0.
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The restricted parameter space is Qg := {6 € © : = (0,6,4')'}. When the initial
condition is k3 (6, m) = ¢, the quasi-log likelihood does not depend on 7 for any 6 in
O¢. This condition really is part of the specification of the null hypothesis because it
only needs to hold under the null hypothesis and the desired null hypothesis is that
the conditional variance is a constant dg. In this case, the restricted estimator 507r
does not depend on 7 and equals

T T

~ ~ -~/ ~

Oor = (0,60,%)', where g = (3 X X])™' Y XoYs,
t=1 t=1

T
(5.13) 30 = Zet /T, and e; = Xﬂ/’o

t=1

Whether or not hj(f,7) = 6, Assumption 1o holds, because Assumption 1* has
already been verified and it is a sufficient condition for Assumption 1g when 6y € Og.

By Theorem 3(a), Assumptions 5 and 7-9 imply that Assumption 5 holds with ©
and A replaced by ©¢ and Ag, respectively, where Ag := {0} x R x R". Assumption
49 holds by Theorem 3(b) because Assumptions 1g, 2*, and 3 have been verified.

Assumption 10(a) holds if the initial condition is such that hj(6p,7) = dp, but
not otherwise. An earlier section points out that the conditions of Assumption 10(b)
hold in this example.

By Theorem 3(d) and (e) and Assumption 10(b), we have

~ 1~  ~
(5.14) sup(er (Bos, ) = Er (00, 7)) L G2+ EA;JI/,AI/,.

By Theorem 4(b) and (c), (4.3), (4.4), (4.6), and (4.8), we have: under the null,

QLR 4, SUDrer )\ﬂ 7r(Hj*ﬂlH’) 1)\g 7 = CSUP,cpp Max {ZglF,O}/(l —72)
~ csupen max?{v,y, 0},  where vy i= (1 —72)1/23°%°, i Z;.

(5.15)

Here, {Z; : i > 1} are iid standard normal random variables. In general, the asymp-
totic null distribution of QL Ry depends on the nuisance parameter ¢ = (Ez} —1)/2.
If the errors are normally distributed, then ¢ = 1 and this nuisance parameter disap-
pears. For this case, we have generated the asymptotic critical values by simulation.
For II = [.00,.95], for significance levels 10%, 5%, and 1%, the critical values are
3.06, 4.33, and 7.30 respectively. These values were obtained using 40,000 simulation
repetitions and the discrete grid I = {.00, .01, ...,.95}. The same critical values were
obtained using the finer grid II = {.000, .001, ..., .950}.

Next, we consider the RQLRy statistic. By (4.3) and (4.4), Assumptions 11(a)
and (b) hold with i, = 0 and Z.r = cJir. If the errors are not necessarily normally
distributed, we consider two estimators of c. The first employs 6or. The second
employs 6. Both are such that Assumption 11(c) holds. The estimators are

T
(5.16) ¢:=( Z t/ 1)/2 and ¢, := Zet ) /i ( (97r,7'(') -1)/2,

t=1

=
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where & and 8y are defined in (5.13) and e,(0) and h; (0, 7) are defined in (2.1). We
define RQLRy as in (5.11) with ¢, given by either of the definitions in (5.16).

By Theorem 5, RQLR7 has the same asymptotic null distribution as the QLR
statistic given in (5.15), but with HJ'H' replaced by HJ ' Tin J7  H' and ¢ =
1. Thus, the RQLRy test statistic has a nuisance parameter free asymptotic null
distribution. Critical values for this test statistic for arbitrary c are the same as
those listed above for the QLR statistic for the special case where ¢ = 1.

5.6. Random Coefficient Example (Continued)

The null and alternative hypotheses of interest are: Hy: 3y =0 and H; : 8; > 0.
Under the null, the coefficients on the regressors X7; are nonrandom. Thus, a test
of Hy versus H; is a test for the presence of random variation in the coefficients on
X1t Assumption 9(a) holds with 3;, = 0. Assumption 9(b) holds because By =
T'/21,. Assumption 9(c) holds with B; = Rt, A = RIT!, & = RbH1 and py = 0.
Assumption 9(d) holds because pa = 0.

The restricted parameter space is Qg := {6 € © : § = (0,8 ,¢)'}. The quasi-
log likelihood does not depend on 7 for any 6 in ©g. In consequence, the restricted
estimator Ay, does not depend on 7 and is denoted 8. Assumption 1g holds, because
Assumption 1* has already been verified. For the same reasons as in the GARCH
example, Assumption 4¢ holds and Assumption 5 holds with © and A replaced by O
and Ag, respectively, where Ag := {0} x RIT! x Rb+e+L,

By Theorem 3(d) and (e), we have

~ 1 o~
(5.17) sup (¢ (ox, ™) = 1(60,)) % (ngglag + A;xw) .

mell

Assumption 10 holds in this example because VIN/t(w) depends on 7 only through
the subvector X7,(m). By Theorem 4(b) and (c) and (??), we have: under Hy,

QLR % Slelg max?{Zg ,0}/(HT H') = sgg max?{vg, ,0}, where
Von = (HI L H) Y225 ~ N(0,¢r) and ¢r := HI  Tor n T H' [ (HTHHY).
(5.18)

If the errors ¢; and 7, are normally distributed and are independent of X;, then
Tin gz = Jur and ¢ = 1. In this case, the distribution of maxQ{yﬁlﬂ, 0} for 7 fixed
is nuisance parameter free with distribution function F'(x) = 1/2 4+ F2(x)/2, where
F\2(x) is the distribution function of a chi-square random variable with one degree
of freedom. If a single random coefficient variance is under test, i.e., b = 1, and the
errors are normal, then no nuisance parameter m appears under the alternative and
the asymptotic critical value for a QLR test of significance level « is given by the
1 — 2« quantile of a chi-square random variable with one degree of freedom. For
significance levels 10%, 5%, and 1%, the critical values are 1.642, 2.706, and 5.412.

When more than one variance is under test, one can obtain critical values and
p-values by simulating sup, ci maxQ{yg 7> 0} with any unknown quantities replaced
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by consistent estimates. This can be done as follows. Let {Z :i=1,..,T} be iid
N(0,1) random variables. Let

res? 90) - Varz(eo)
2var? (90)

Vom = (HI 7 H) YV2HI T~ 1/22 Wi(60)Zi, where

i=1
N 1 Jd - N
Jerr = 57 > Wi(Bo, m)Wi (b, m)' /varf () and
=1

(5.19)  Wy(0,7) == (X§(m), X3,(81), 1),

One simulates Vg, for a finite grid Ilg of m values in II and computes sup,cy,
max*{Vg r,0}. The 1 —« quantile of R such simulations is the appropriate asymptotic
critical value for a level a test. Provided the mesh size of the grid goes to zero
and the number of simulation repetitions goes to infinity as T' — oo, the simulated
critical values yield a test with the correct asymptotic rejection rate under the null.
(This follows by weak convergence of Vg 4 to v3,4 as T — oo and the continuous

mapping theorem, where the random variables {Z :4=1,...,T} are defined on the
same probability space as the original sample.) The fraction of simulated values of
sup, ey max*{Ug,r,0} that exceed the observed value of QLRy is the simulated p-
value. If necessary, for ease of computation, one can replace the sum over ¢ = 1,...,T
by a sum over i = 1,...,T1 in the definition of U r, where T1 < T Provided T1 — oo
as T — oo, the resulting simulated critical values and p-values are still asymptotically
correct. The above simulation method is quite similar to that employed in Hansen
(1996).

To avoid the computational burden of simulating vg r for a very fine grid of 7
values, we recommend using a relatively course grid and defining the test statistic
QLR with the same grid Il as used for the simulations.

To illustrate computational costs, we simulated asymptotic critical values for the
case where two random coefficient variances are under test, one correlation parameter
71 appears, the sample size is 100, a grid of 21 equally spaced values of 71 in (—1,1)
is used, and a grid of 20 equally spaced values of w2 on the quarter unit circle are
used. The computation time for 1000 simulation repetitions was 4.9 minutes using a
Pentium 1T 333 Mhz PC. The computation time was found to increase linearly in the
number of simulation repetitions and the number of 7 values.

Next, we consider the RQLRy test. Assumption 11(a) holds with p, = 0 and
Tsx = Lur z. Assumption 11(b) holds with ¢, defined above. Note that infrcrcr > 0
because Jir and Zir r, defined in (4.12) and (4.15), are positive definite by (4.14)
and continuous in 7 and II is compact. In this case, we define

=H f*}lﬁ A*Tﬂi};ﬂ' J(HT ;L H'), where

(res?( 90 —vart(eo)) ~ o~~~
(520) *Tﬂ' = 4T Z vart 90) Wt((gO?W)VVt(eO?W)

and f*TW is defined in (5.19). Alternatively, we can define ¢, with 50 replaced by gﬂ
n (5.20). In either case, Assumption 11(c) holds.
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By Theorem 5, the asymptotic null distribution of RQLRr is given by that of

sup maXQ{nﬁlm 0}, where
well

(521) nﬁlﬂ = (Hj*;rll—*ﬂ' *;rlHl)il/QZﬁlW ~ N(07 1)

When a single random coefficient variance is under test, the limit random variable
has distribution function F(x) =1/2 + F,2(x)/2 (whether or not the errors are nor-
mally distributed). Critical values are given above. When more than one parameter
is under test, then simulation methods, as discussed above, can be used to obtain
critical values and p-values.

6. The Wald Test

6.1. Definition of the Wald Statistic

In this section, we consider a Wald test of Hy : 3; = (31, and determine its as-
ymptotic null distribution. The test statistic defined by Wald (1943) is a quadratic
form in the difference between an unrestricted QML estimator Bl and the value 3,,.
We consider such a statistic in a more general context in which the unrestricted esti-
mator Blﬁ satisfies restrictions imposed by the maintained hypothesis and is allowed
to depend on a parameter 7.

The resulting generalized Wald test is asymptotically equivalent to the QLR test
under correct model specification in likelihood scenarios in some cases and can be
made to have improved asymptotic properties under model misspecification by judi-
cious choice of its weight matrix.

The weight matrix for the quadratic form in Blﬂ — 31, is denoted YA/T_WI. Conditions
that it must satisfy are given below. The Wald test statistic, Wr, is defined as follows:

Wy := sup Wrp(m)+o0p(1), where Wy (7) := (BM_51*)’3;31T17T;1351T(BM—51*).

well
(6.1) R
The weight matrix Vfﬂ1 is assumed to satisfy:

Assumption 12. (a) Vire = Vi for some stochastic process {Vz : m € II} whose
sample paths are bounded and continuous with probability one and the convergence is
joint with (B;IIDZT(QO, o), Jre) = (Go, Ts) of Assumption 3.

(b) infrem Amin(Vz) > 0 a.s.

We now partition the sample size T" quantities Jr, and XTW defined in (3.3) and
(3.4) conformably with 6:

(62) jTﬂ' _ |:j*T7r j*’t/)TTl’

~ '~ ~f -~/ ~/ !
j’l/)*Tﬂ' jT/)Tﬂ' and )\Tﬂ B <)\ﬁ1T7” /\ﬁQTW AéTW Ad}TW) ’

The following is a sufficient condition for Assumption 12 that is applicable except
in unit root cases.
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Assumption 12*. (a) Assumption 11(a) holds.
(b) Virw = Hi Tt Lerw T, HY, where Hy = [I,0] € RP>(ta),
C) j*TTl’ = j*TTl’ + Opﬂ'(l)

(
(d) Zze = Tue jointly with (B "Dlr(0o,0), Tre) = (G, Ju) of Assumption 3.
(e) 0 < infrem Amin (Zir) < SUPgerr Amax(Zsr) < 00 with probability one.

When (Jur,Zir) are mnon-random, Assumptions 12%(c) and 12*(d) hold if
(Jwrms Lirn) = (Jsr, Lexr) + 0pr(1). Under Assumption 12*, Vi = HNIA T T H,.
When Assumption 11(b) holds, the latter simplifies to Vi = e H1 J  HY.

An alternative sufficient condition for Assumption 12 is

Assumption 122, (a) Vix Hlj*}lﬁHi
( ) j*T7r - j*T7r +0p71'( )

Under Assumption 122, V, = H1J_ ' Hj.

The choice of Y7T7r given in Assumption 12* is often preferable to that in Assump-
tion 122*, because the asymptotic distribution of the Wald statistic under Assumption
12* involves fewer nuisance parameters than under Assumption 12%* when Assump-
tion 11(a) holds, but Assumption 11(b) does not, see the Comment to Theorem 5.

6.2. The Asymptotic Null Distribution of the Wald Statistic

The asymptotic null distribution of Wy is given in the following theorem.

Theorem 6. Suppose 0y € Oy and Assumptions 2-9 and 12 hold. Then,

(8) W) = X3, Vi Ay -+ 0p(1),

(b) Wr = supren B\\IﬁlTW‘/}YTﬂ'l}\\ﬁlTﬂ— + 0p(1),

(c) Wir(e) = X5, Va Ag,e. and A A o

(d) Wr —>dAADW = SWpreq )\ﬁlﬁvﬁfl)\glﬂ > 0, where Agr = (Mg x> Ag,r)'s Agr €
cl(Ag), and Agr satisfies qa(Agr, ™) = infy en, ga(Ag, ).

Comments. 1. In comparison to Theorem 4 for the QLR statistic, Theorem 6
requires that A is convex (Assumption 6), but does not require Assumptions 4¢ or
10. Assumptions 4¢ and 6 hold in most applications. Assumption 10(a), however,
does not always hold.

2. The statistics QLRT and W have the same asymptotic null distribution
(i.e., ADgrLr = ADy) if Ve = H1J 7+ Hi + 0,r(1) and either (i) ps = 0 or (ii)
HJ_'H' is block diagonal with p; x p; and pa X p2 blocks, with lower block that
does not depend on 7, and Zg,, does not depend on 7. The condition on YA/T7r
holds under Assumption 12%*. It also holds under Assumptions 11 and 12* when
¢r = 1. The statistics RQLRy and WT have the same asymptotic null distribution
(i.e., ADgrorr = ADy) if VT7r = Hle7r *Tﬂ'j*TﬂHl +0pr (1) either condition (i) or
(ii) above holds. The condition on Vi holds under Assumption 12*.
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One might think of defining a Wald statistic that has the same asymptotic distri-
bution as the QLR statistic whether or not condition (i) or (ii) holds by basmg it
on the difference between quadratic forms in B and 50m where 5% = (607” 607” woﬁ)
and 507r = (B, BQOW) . This does not Work, however, because 3y, and 6207r need to
be centered at By (where 0o = (0., B4, 89, ¥p)’ under Hp) and By is unknown.

3. If Assumption 11 holds, Ag is convex, and VT7r = H J T *Tﬂj*Tle +opr(1),

then the distribution of /A\,ﬁﬂ.vﬂ._ Agr for fixed 7 is that of a mixture of chi-square
random variables, see Shapiro (1985, Thm. 3.1 and Sec. 4).

6.3. GARCH Example (Continued)

We choose the weight matrix of the Wald statistic to eliminate any nuisance
parameters in the asymptotic null distribution of the statistic and to be as simple
as possible. In particular, we take VT7r = H J! Lirw A H =1— 72. This choice
satisfies Assumption 12*. The requirement of (2.2) that sup{7r € II} < 1 ensures that
Assumption 12*(e) holds. With this choice of weight matrix, we have

(6.3) Wy =T sup Bir/(l —?).

mell

By Theorem 6(d), under the null hypothesis,

(6.4)  Wr <, sup )\ﬁ +/(L=7?) = sup max*{Zg,»,0} /(1 — %) ~ sup max*{vn, 0},
well mell mell

where v is defined in (5.15). Note that the asymptotic null distribution of the Wald

statistic is nuisance parameter free. It is the same as that of the RQLR statistic.

Critical values are given in Section 5.5.

6.4. Random Coefficient Example (Continued)

We take the weight matrix to be VT7r = Hle7r *ij*Tth where j*TW and
Z.1r are as defined in (5.19) and (5.20) using the unrestricted estimator 6 in place
of Bp. With this choice, Assumption 12*(a)—(d) holds. Assumption 12*(e) holds be-
cause Ly r, defined in (77?), is positive definite by (4.14) and continuous in 7 and

IT is compact. By Theorem 6(d), W has the same asymptotic null distribution as
RQLRy, see (5.21).

7. The Score Test

7.1. The Directed Score and Score Statistic

In this section, we introduce a score test. The score test statistic is defined to be
a quadratic form in a vector of “directed scores,” denoted ds,. The directed score
vector is the part of the score of the estimator objective function that is relevant to
the null hypothesis, evaluated at the restricted estimator 507” and directed to lie in
the parameter space.
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The weight matrix 17T7r for the score test can be taken as in Assumptions 12, 12*,
or 12%*. Usually, one evaluates the weight matrix at tkle restricted estimator 6y, for
the score statistic and at the unrestricted estimator 0 for the Wald test (because
then the score statistic does not require that one calculates 6 and the Wald statistic
does not require that one calculates fp;). Assumptions 12, 12*, and 122*, however,
do not distinguish between these two cases. Either is permitted. Thus, we employ
these assumptions as they are stated in Section 6.

We start by introducing the score function for the parameter 0, = (3',68')". We
suppose that there exists a random function D,¢r(0,7) € RPT4 which we call the
score function, such that

(7.1) D L7 (0,7) := Dly(0g,7) + D2p(g, m) (0 — 0o) + Ri(0,7),

where D, 07 (0g,7) and D207 (0g,m) equal the first p + ¢ rows of Dlp(6y,7) and
D20r(6p, ) of (3.3), respectively, and Ri(6,7) is an RPT9-valued random remainder
term that satisfies Assumption 13 below. If ¢7(6,7) has pointwise partial derivatives
with respect to (wrt) 6., then D, lr(0,7) equals the vector of partial derivatives of
lp(0,7) wrt 6,. As with Assumption 2, however, we do not require that ¢7(6, ) has
pointwise partial derivatives. Our results allow ¢7(0, 7) and D,¢7(6, ) to have kinks
and discontinuities as functions of . In this respect, our results are novel even in
the classical special case where the estimator objective function does not depend on
7 and the parameter space © contains a neighborhood of #y. We are not aware of
any papers that consider score tests or LM tests with non-differentiable estimator
objective functions.

The directed score depends on an estimator iTW of Jerr (for Jurr as in (6.2)).

Assumption 13. (a) For all 0 < 7 < 00, SUPgey:||Br(0—00)||<y HB*_%IR;(@J)H
= Opl(l)'
(b) j*TTl’ = j*Tﬂ' + Opﬂ'(l)'

Lemma 3. Assumption 2% implies Assumption 13(a).

The Appendix provides an alternative sufficient condition for Assumption 13(a) that
utilizes stochastic differentiability rather than pointwise smoothness of D,¢p(0,7).
The directed score ds; is defined by ds; € BﬁlT(Bl — [1,) and

qp,r(dsz,m) = 45,7(Ag,» ) + 0pr (1), where

inf
Ag1€Bg T (B1—P1.)
~ , ~ ~ -1
Z]\/ng()\ﬁNﬂ-) = (A/81 - Hlj*}irB;Tl' D*ET(QOﬂV Tr))l (Hl‘ZleﬁHi)
(7.2) x(Ag, = H1 T Bz Db (Bom,m)) and Hy = [I,:0] € RP*PH0),

The parameter space By that is used to define the directed score is defined in As-
sumption 9(c). It is the parameter space for the sub-vector 5; of . Thus, if © is a
product set By x Ba x A x WU, then Bj is the set used to define the directed score.
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If By = RP:, then the directed score is undirected and equals Hli};B;%l

XD*ET@OF,W). The latter is just the part of the normalized score function that
relates to 3; — the parameter of interest — evaluated at the restricted estimator of
0, 5071’- When B; # RPt, then the directed score is defined so that it only takes values
that Bg 7(81, — [1.) can take. That is, it only takes values in Bg 7(B1 — (1)

If By, r(Bi ~ fi1,) = R", then dsy is given by (3.10) with Agr and Zg, replaced

by ds; and Hle7r o D ZT(QOW, 7). If Bg r(B1 — B1,) is a cone defined by lin-
ear inequality and/or equality constraints, then a closed form expression for dsy is
glven by Theorem 5 or (6.6) of E1 with )\ﬁ, Zs, HJ, 1H', and Ag replaced by ds;,
Hlj*:mr o D ET(QOW, ), Hlj*TﬂHl, and Bg, 1(B1 61*) respectively.

The score test statistic, St, is defined by

(7.3) St = sgg St(m) + op(1), where Sp(m) := alsQJA/T_ﬂlaLs7r

and YA/T7r satisfies Assumption 12.

7.2. The Asymptotic Null Distribution of the Score Statistic
We define

_ —1
98,0 (Nay ) = (Ngy, = Zgyr) (LT ,pHT) ™ (s, — Zpyr) and
(74) Zry = (Z;J’lTﬂa Z;jZTﬂa Z¢I5T7r7 Z'L/pTﬂ)/

for Zry as defined in (3.3).
The asymptotic properties of ds; are given in the following lemma.

Lemma 4. Supp05€ 90 € Og and Assumptzons 2, 3, 49, 5-9, and 13 hold. Then,

(a) Hlj*T7r «T ''D ZT((gOm m) = Hlj*TwB*T D ET(‘L)O’ )+0p7r( )= ZﬁlTﬂ +Op( )
(b) dsz = Opr(1),

(C) ap, T (dsﬂv ) - q/31T(dS7T77T) + Opﬂ(l)a

(d) apg, T (dsm 7T) = inf)\/gl €Bg,7(B1—B1.) QBlT()‘,BpT() + Opﬂ'(l)7

(e) mfxﬁfsﬁﬂ(srﬁl*) as,7(Ag,, ) =infx; en, Q,BlT(/\ﬁl/a\ﬂ') + opr (1),

(f) gs,7 (Angﬁ, ) = inf)‘mEAm 43,7(A3,, ) + 0pr(1) for Ag,7r defined in (6.2), and
(

Comment. Lemma 4(g) and Theorem 6(a) combine to show that the Wald and score
test statistics are asymptotically equivalent (i.e., W = Sy +40p(1) for 8y € ©g) when
they are constructed using asymptotically equivalent weight matrices. Furthermore,
by Theorem 4(a) and the proof of Theorem 4 of E1 adjusted appropriately, we obtain

~! _ 1~ ~7 _ 1~

QLR = sgg AT (Hj*TlﬂH’) AsTr — Slellr)[ Asorn (HJ*TIWH') Agorr + 0p(1),
s Y

(7.5)

where Aoy = (/)\‘,IBOT7H X;OTW, X;OTW)’ is defined to satisfy Aoz € cl(Ag) and gr (XOTW, )
= infycp, ¢r(A, ), under Assumptions 2-5, 4¢, and 7-10 when 6y € ©¢. Thus, the
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QLR, Wald, and score test statistics are asymptotically equivalent for 8y € ©g when-

ever the weight matrix Vﬂr1 of the latter two statistics satisfies Vi, = Hlj*}lﬂH{ +

opr(1) and either (i) p2 = 0 or (ii) HJ,+ H" is block diagonal with p; x p1 and pa x po
blocks, with lower block that does not depend on 7, and Zg, 7 does not depend on
7 (because if (i) holds, then X;;OTW =0, and if (ii) holds, then Xg20T7r = X@TW, X@Tﬂ
does not depend on 7, and Ag,orr = 0).

The asymptotic null distribution of the score statistic St is as follows.

Theorem 7. Suppose 8y € Og and Assumptions 2, 3, 49, 59, 12, and 13 hold.
Then,

-~/ /\_ o~
(a) ST(T() = A,BlTﬂVTﬂl)\ﬁlTﬂ' + OPW(1)7
-~/ o~ o~
(b) St = supyer )‘ﬁlTwVT_ﬂl)‘ﬁlTw +0p(1),
~/ ~
(c) Sr(e) = )\ﬂl,X/:l)\gl., a7/zd
(d) St —4 ADg = sup,cy )\ﬁlﬂVgl)\glm where g, is as in Theorem 6.

Comments. 1. The score test does not require one to compute the unrestricted
estimator 6. This has computational advantages in some cases over the QLR and
Wald tests, which require computation of 6.

2. The choice of weight matrix to satisfy Assumption 12* or 12?* has the same
effect on the asymptotic distribution of the score statistic as it does on the asymptotic
distribution of the Wald statistic, as discussed above.

7.3. GARCH Example (Continued)

In this example, the score function D, ¢7(6,7) and QZTW are

T
Dubr(8,7) =Y (%(63(9) — B (0, 7)) b (0, 7) /(B3 (6, 7r))2) and

t=1
s 1 @ ya—n? Y-k |
Ty -miy) /8, |
T
(7.6) G i=70/(280) and 7o = ;;F 3 (@ - o).
t=1

Assumption 13(a) holds by Lemma 3(a) because Assumption 2%* is verified in_the
Appendix. Assumption 13(b) holds using the definitions of Jirr (= Jir) and Jirr
in (4.3), (5.13), and (7.6), the moment conditions in (2.3), the law of large numbers
for stationary and ergodic processes, and some simple manipulations.

Some calculations give

T
Y ~ (1—m?) 9 2 s
(7.7) HJ L B} Doty (8o, ) = e Y (@ —d0) Y 7, .
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(We assume hj(6,7) does not depend on (3; when defining D.lr(6,7). This im-
plies that the term wtfla%lhf(é), ), which otherwise would appear in the formula for

a%lhf(e,w), is zero.)
The set Bg, 7(B1 — 31,) equals R in the present case. In consequence, a closed
form solution for ds, can be obtained quite easily:

T

1— 7_‘_2 ~ R t—2 ~
(78) dsﬂ = max{% Z(ef — 60) Z 7Tket2_k_1, 0}
k=0

t=1

We take VT7r =H j*ﬂlI*ﬁ ~J-LH' = 1—72. This choice of weight matrix satisfies
Assumption 12*. With this welght matrix the score test statistic is

-2
(7.9) St = sup(l - 7TQ)HWQ{A 7 Z —60) ) _mE 41,0}
The asymptotic null distribution of the score statistic is given by Theorem 7(d). It
is the same as that of the Wald statistic, see (6.4).
7.4. Random Coefficient Example (Continued)

The function D, l7(6,7) in this example is

T
(7.10) Dobr(0,7) =Y resi (¢

t=1

—vary (0,7

"6, 7),

2vart 0, )

where fI/IV/t(Q, ) is defined in (5.19). The matrix Torw of Assumption 13(b) is defined
in (5.19). Assumption 13(b) holds by Assumption 1g, a uniform law of large numbers,
and the continuity of EfV[Z((‘), W)Wt(Q, ) /var?(0, ) in . Assumption 13(a) holds by
Lemma 3 because Assumpt1on 2%* is verified in the Appendix.

We take VT7r = Hj *Tﬂ(eo)j*TﬂH’ where 1'*T7r is defined in (5.20). This
choice of weight matrix sat1sﬁes Assumption 12*. (Note that the weight matrix is
actually a scalar in this case because p = 1.)

We have Bg r(B1 — 31,) = R" and a closed form expression for ds; is

(7.11) dsy := max{HJ ;L T~2D,tr(0y,7),0}.

The score test statistic 1s

(o) 00) oy~ -
(7.12) Sy := sup max2{V;./*T WZreSt o) — vary( O)Hj*};m(eo,w),o}.
TEll 2vart(90)

The asymptotic null distribution of the score statistic is given by Theorem 7(d). It
is the same as that of the RQLR and Wald statistics, see (5.21).
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8. Local Power

In this section, we consider the asymptotic distributions of the QLR, RQLR,
Wald, and score tests under sequences of local alternatives to the null parameter
value 6. We consider sequences of pseudo-true values of the form 679 = 6o + B, 177T,
where {ny : T > 1} is a sequence of constant s-vectors that satisfies n — n for
some 7. When the data are generated by such a sequence, we say that the data are
generated “under @pq.”

One can use the results of Sections 3 and 6-7 to determine the desired asymptotic
results under the local alternatives 6. One verifies Assumptions 1, 1g, 2, 4-6, 4,
7(b), 8, 9, and 13 (and all the superscripted versions of these assumptions) under
Or¢ with exactly the same quantities appearing in these assumptions as under 6.
For example, one verifies Assumption 1 under 07y with the probability limit being
fp just as under 6y and one verifies Assumption 2 under 679 with the components of
the quadratic approximation being the same as under 6.

Next, one verifies Assumption 3 or 3* with the same processes (B, 1'D£T(90, o),
X Jre) under Op¢ as under 6y, but with a different limit process (Go, Js) under 67q
than under 6y. For example, if G4 is a mean zero Gaussian process under 6, then
G, typically is a Gaussian process with the same covariance function but a non-zero
mean under 079 The asymptotic distributions of the test statistics differ under ¢
than under 6y because the limit process (G,,Js) differs. In consequence, the tests
typically have non-trivial asymptotic power against local alternatives. Note that for
cases without stochastic trends 7, of Assumption 3 typically is non-random and is
the same under 61¢ as under 6.

As with Assumption 3, one verifies Assumptions 7(a) and 10-12 under 67y with
limit processes Jo, Gso; Gie, .-, Ca, and V, that may be different under 67y than
under fg. In many cases, however, J,, e, and V, are non-random and are the same
under O7¢ as under 6.

Assumptions 5, 6, 7(b), 8, 9, and 10(a) do not depend on the distribution of the
data and, hence, if they have been verified for results under 6y they also hold for
results under the local alternatives 67q.

In many cases, the local alternatives 67 are contiguous to the null 6y. In such
cases, if Assumptions 1, 1p, 2, and 13 (and any the superscripted versions of these
assumptions) hold under 6y, then they automatically hold under 61¢. Furthermore, if
Assumptions 7(a), 11(b), 11(c), and 12 hold under 6y with non-random limit processes
Jeo, Lie, Ce, and V4, as is typically the case when no stochastic trends are present,
then they automatically hold under O7¢. If Assumptions 4 and 4¢ are verified using
Lemma 1 under 6g, then they also hold via Lemma 1 under 6pg provided Assumption
3 holds under 61g. Thus, with contiguous local alternatives, the main task is to verify
Assumption 3 under O7¢. This can be done using the same methods as when verifying
it under 6.

For brevity, we do not provide local power results for the two examples.
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9. Appendix of Proofs

9.1. Sufficient Conditions for Assumptions 2* and 4

The form of Assumption 2* is such that one can replace the objective function
¢p(0,7) by a more tractable function, say Lr(0,7), that is a close approximation
to ¢p(0, 7). For example, in the GARCH(1, 1) Example, ¢7(6, ) is a sum of quasi-
log likelihood contributions that depends on initial conditions and, hence, is not
stationary and ergodic. We can define a more tractable function £r(6,7) to be the
stationary and ergodic analogue of ¢7(0,7) that replaces the initial conditions by
terms that depend on the infinite history of the process. Now, suppose

(9.1 sup |01 (6, 7) — Ly (Og, ) — Lo (0,7) + L1(60,7)| = 0p(1)
0€O:||0—00||<yr,mEIL

for all v — 0. Also, suppose L7(6,7) has an expansion of the form

£T(9, ’7T) = £T(90,7T) + D,CT(@(), 7'(),(9—90)
9.2) +1(0—00) D2 Ly (00, 7)(0—00) + R (0, 7),

where R}.(60,m) satisfies Assumption 2* with Rp(6,7) replaced by R%(6,7). Then,
lp(0, ) satisfies (3.3) with

DéT((gOaﬂ-) = D'CT(Q(MT{)? DQET(Q(MW) = DQ‘CT(eOaﬂ-)? and
(93) RT(Q,TF) = R;«(@,T() -+ (ET(Q,W) — ET(Qo,ﬂ') — ,CT(Q,T() + ,CT(Q(),W)).

Assumption 2* holds for ¢7(6,7) in this case by (9.1) and (9.2).

Next, we give a sufficient condition for Assumption 2* that does not rely on
smoothness of ¢7(0,m) in §. We say that a sequence of random functions {gr(6, ) :
T > 1} is stochastically differentiable at 6y for © C R® uniformly over IT with random
derivative s-vector Dgr(0g, ) if

gr(0,7) = gr(6o,7) + Dgr (69, m) (6 — 09) + r1(0,7) and

(9.4) sup — Tlre(O,m)l/ (141720 = 00)l1) = opn(1)
0€©:(|0—00|[<vp

for all v, — 0. We apply the concept of stochastic differentiability to random func-
tions g7 (6, 7) that are O, (1), such as sample averages, and for which T"/2Dgr (6, 7)
= Opr(1).

Assumption 2%, (a) By = TV/2I,.

(b) For some non-random function 0(0,7), T~ p(0,7) L £(6,7) Y0 € © N S(0y,¢)
for some ¢ >0, Vr € Il.

(c) For each m € 11, the domain of £(0,7) as a function of 0 includes a set O that
satisfies conditions (i) and (ii) of Assumption 2%*(a).

(d) €(0,m) has continuous ¢/r partial derivatives with respect to 6 of order two on
Ot Vr € 11, with ¢/r partial derivatives %f(@,ﬂ') and 63—(;,6(9,@ of orders one and
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two, respectively, that satisfy %é(@o,ﬂ) =0Vr ell and 8—26(9,@ is continuous

8900’
at Oy uniformly over m € II.
(e) {T~Yp(0,m)—€(0,7) : T > 1} is stochastically differentiable at 0y for © uniformly
over I with random derivative vector T~ Dlr (0o, ).

The proof of the sufficiency of Assumption 23* for Assumption 2* is analogous to that
given in E2 for the case where no parameter m appears.

The empirical process results referred to in E2 can be used to verify the stochastic
differentiability assumption, Assumption 2%*(e).

9.2. Sufficient Conditions for Assumption 13

We now introduce a sufficient condition for Assumption 13 that uses stochas-
tic differentiability and allows D,¢7(0,7) to have kinks and discontinuities. This
condition is similar to Assumption 23*.

Assumption 13*. (a) By = TV/?I,.

(b) There exist random RPY9-valued functions {Dlp(0,7) : T > 1} and a non-
random RPY-valued function D.0(0,7) that satisfy T 'D,lp(0,7) = D.L(0,7) +
opr(1) V8 € © N S(0y,€) for some € > 0.

(c) For each m € 11, the domain of D.L(0,7) as a function of 0 includes a set O
that satisfies conditions (i) and (ii) of Assumption 2%*(a).

(d) D.l(0,m) has continuous £/r partial derivatives with respect to 0 of order one
on ©F Vr € II and the (/r partial derivatives, denoted D2((f,7) € RPTD*S  qre
continuous at 0y uniformly over m € II.

(e) {T~'Dlp(0,m) — DL(O,m) : T > 1} is stochastically differentiable at 0o for
© uniformly over II with random derivative (p + q) x s matriz T~ D207 (0y, ) —
Dfﬂ@o,ﬂ), where D201 (0y, ) equals the first p + q rows of D*{7(0g, ) of (3.3).

(f) Jsrn = Tarr + Opﬂ(l)-

Lemma 5. Assumption 13* implies Assumption 13.

Comment. The definition of stochastic differentiability uniformly over II in (9.4)
can be weakened and Lemma 5 still holds. In particular, the T term that appears in
the numerator of (9.4) can be replaced by T%/2.

9.3. Proofs of General Results

Lemma 6. Under Assumptions 2-4, ET(/H\W,W) = Ly (0o, ™) + %Z,TWJT”ZT”
—3 infoco gr(Br(8 — 60), ) + opr(1).

Lemma 7. Suppose Assumptions 3 and 5 hold. Then, infxep, (©—gy) T (A, )
= inf/\gA qT()\,T() + Opﬂ(l).

Proofs of Lemmas 1 and 6. The proofs are analogous to those of Theorems
1 and 2 of E1, respectively, with O,(1) and o,(1) replaced by Opr(1) and opr(1)
throughout. O
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Proof of Lemma 7. The proof is analogous to the proof of Lemma 2 of E1 with
the subscript 7 added to Zr, Zry, Jr, op(1), Op(1), disty(e,e), and Cr and with
gr (M) changed to gr(A, 7). No subscript 7 is added to dist(e,e), || ® ||, or o(e). The
subscript 7 is added to Zors and Za7, except where they appear as ||Zorp|| and
||Za1s||, in which case || Zers|| and ||Za7s|| are defined to equal sup,cpy || Zorex|| and
SUPrerr || ZaTer || respectively. The only exception to the latter is on the left-hand side
of the last equation of the proof in which case ||Zors|| denotes || Zerp,||. O

Proof of Theorem 1. The proof of part (a) is the same as the proof of Theorem
3(a) of E1 with the subscript 7 added to Ay, 6, Ap, Zr, || ®||r, Jr, 0p(1), 1, €k, Pr,
and A} and with ¢r(e) changed to gr(e,m). Given part (a), for part (b) it suffices
to show that XT. = X.. XTW is uniquely defined because A is a convex cone. We
can write XTW = h(B} 1/DET(QO, ), Jrr), where the function h is defined implicitly
n (3.4). The function h is uniformly continuous over any set of points {(A¢, He) :
¢ € C} for which 0 < inf{Apin(He) : ¢ € C} < sup{Amax(He) : ¢ € C'} < co. Because
0 < inf{Amin(Tr) : m € IT} < sup{Amax(Tx) : ™ € II} < oo with (Z,, Js) probability
one, the function mapping (B:Fl/DéT(HO, o), Jre) into e is continuous (with respect
to the uniform metric on the space of functions on IT) with (Z,, J,) probability one.
Thus, the continuous mapping theorem applies and gives XT. = X..

The convergence in the first result of part (c) holds by Lemmas 6 and 7, Assump-
tion 3, and the continuous mapping theorem The equality in the first result of part
(c) holds by the orthogonality property hy jﬂ( r — Zz) = 0, which does not require
Assumption 6, see Perlman (1969, Lem. 4.1), and some algebra. The second result
of part (c) holds by the first result and the continuous mapping theorem. O

Lemma 8. Suppose Assumptions 3, 7, and 8 hold. Then,

(2) 45(Agr, ) = HlfAﬁeA,@ q5(A; 7)),

(b) A&r = Ty Gon — 5" Topr Ao

(C) qi/)()‘¢7r7 ) = lanwEAw qw()‘¢7 )’ and

(d) Z4TnZn — infren q(\, 1) = Z (HTZ H') ™' Zpn — infazen, as(Ms, 7)
Gl T Ger + ijzw infa,en, @ (A7) = Aggr (HT,TH) ™ Nr

+ Gl To Con + Mg Tim .

Proof of Lemma 8. The proof is the same as that of Theorem 4 of E1. [
Proof of Theorem 2. Theorem 1 and Lemma 8 combine to establish Theorem 2. O

Proof of Theorem 3. To prove part (a), suppose ¢gp € Br(©¢ — 0o)/bpr VYT > 1
and [|¢or|| — 0. Because Bg s = 0 and Bg yr = 0, we have ¢g op = 0, where
bor = (83,01 Dp,01> Psors Pypor)’- By Assumption 5, there exists {A\p € A : T > 1}
such that H¢OT — )\TH = O(H¢OTH) Write )\T = ()\ﬁlT7)\ﬁ2T7)\(§T7 ’L/)T) Define
Ao = (0", g, s Ny, Ayr)'- By Assumptions 7-9, A = Ag, x Ag, x R? x Ay and,
hence )\OT € A0 = {0} xAg, X RIx Ay Also, [[¢gr—Aor|| S ||¢0T_)‘T|| = o([[¢orl])-
Thus, dist(¢gz, Ao) = o(||@gr||), as desired.
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Next, suppose Aoy € Ag VT > 1 and ||Agr|| — 0. By Assumption 5, there exists
¢p € Br(© — 60p)/bp YT > 1 such that ||[Aor — é7|| = o(||Xor]]). Write ¢p =

(¢,%’1T7 QS,IB2T7 d)gT? QS{LAT)/' Define ¢OT = (0/7 QS,,B2T7 ¢:§T7 d);/)T),‘ Because O is a pI'OdllCt
set local to 6 V6 € ©Op, we have ¢gr € Br(©g — 0y)/br for T large. Furthermore,
1Aor = dorll < [[Xor —drl] = o(|[Aer|]). Thus, dist(Aor, Br(©9—00)/br) = of[|Xor||)
and part (a) is established.

Parts (b) and (c) follow from Lemmas 1 and 6, respectively, with © replaced by
©p. Part (d) follows from Lemma 7 and Theorem 1(c) with © replaced by ©¢ using
the results of parts (a) and (c). Part (e) follows from Lemma 8(d) with A, Ag, and

Xgﬁ replaced by Ag, {0} x Ag,, and Xgoﬂ respectively. [

Proof of Theorem 4. First, by Assumption 10(a), QLRy/2 = supweH(ET(@r,w)
—Llp (6o, )) —supweH(ZT(léoﬂ,w) —C1(8p,m)) + 0p(1). Now, part (a) of the Theorem
follows from Theorems 3(a) and 3(c) and Lemmas 6 and 7. Part (b) follows from
Theorems 1(c) and 3(d). Part (c) follows from Lemma 8(d) and Theorem 3(e). O

Proof of Theorem 5. The Theorem follows from Theorem 2(b), Theorem 3(d)—(e),
Assumptions 10 and 11, and the continuous mapping theorem. [J

Proof of Theorem 6. Part (a) holds by Theorem 1(a) and Assumptions 9(a), 9(b),
and 12, because 3, = (3 for 6y € ©g. Part (b) holds by part (a). Part (c) holds by
part (a), Theorem 1(b), Assumption 12, and the continuous mapping theorem. Part
(d) follows from part (c), the continuous mapping theorem, and Lemma 8(a). O

Proof of Lemma 3. We make one-term Taylor expansions of D,¢r(6,7) about
element by element using Theorem 6 of E1. Stacking the expansions gives

(9.5) D lp(0,7) = Dylyp(6g,7) + D20y (6 7)(0 — 6p),

where 61 lies between 6 and 6y and 6] may differ across the rows of D207(61, ).
Thus, (7.1) holds with

(96) B Ry(0,m) = (B (D22(6],7) — D2r(0,7)) By | Br(6 —6y).

Thus, by Assumption 2*(c), supgee|jo—gy/|<v, 1Bt B (0, m)||/||Br(6—00)|| = 0pr(1)
for all 47+ — 0. This implies Assumption 13(a) by taking vy = v/ Amin(Br). O

Proof of Lemma 4. We establish part (a) as follows. By Assumptions 3 and 7(a),
JwyTe = Jspe = 0. Hence, by the continuous mapping theorem,

d
(97) SUE Hj*l/}Tﬂ'H — 0 and \7*1/)T7r = j{;}*Tﬂ' = Opﬂ'(l)'
(OS]
This implies that

v Jri 0 _y
g 1= jTﬂlBTl DET(QO,W) = < OT jw%ﬂ) BT1 DET(Q(),W) + Opﬂ(l) and
(9.8) Zurw = T Bt Dilr(80,7) + 0pr(1),
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which establishes the second equality of part (a) because Zg, 1 = H1Zspr.
Next, by Assumptions 3, 4p, and 13(a),

B;’I}ID*ET(?O\OW:W) = B;%/D*ET(QOJT) + [j*TTl’ j*¢TW]BT(/9\07T - 90) + B;CZ}IR%(Q\OW,W)
= Opx (1), because

|| B R @or, m)| | 10111 (Box — b0 <)

< SUPgeoy:|| By (6—60)||<y 1B Ry (0,m)|| = 0pr(1)
(9.9)
for all 0 < < oo and for any ¢ > 0 there exists a v < oo such that limsupy_,
P(||Br(for — 00)|| > 7) < e. By Assumption 9(a), B9 = B1x = B1p- This, (9.7)-
(9.9), and Assumptions 9(b) and 13(b) give

1T B Dulr(Bor,m) = H1T 75 Byt Dutr (B, m) + 0pre(1)

= Hlj*_T%rB;TlID*fT(Ho,W) + Hiy[Ipiq : j*’_Tlﬂj*’LpTﬂ]BT(b\Oﬂ —0o) + opx(1)
(9.10) = H1J7: B2} Dol (0, 7) + 0pr(1),

which establishes the first equality of part (a). ~ ~
For part (b), let vy, = (H1J 7 H}) sy and &py = (H1 T 7 HY) Y2 HL T s
B*}y D, ty(0or, 7). By part (a) and Assumptions 3 and 13(b), &7, = Opr(1). Thus,

(9.11) H’YTw_anHQ = ‘/J\ﬁlT(dsﬂvﬂ) < qﬁlT(Ovﬂ)‘FOpﬂ(l) = flwaTn“‘Opﬂ(l) = O;mr(l)-

Hence, v, = Opx(1). This and Assumptions 3 and 13(b) yield part (b).

Part (c) follows straightforwardly from Assumption 13(b), the definitions of
43,7(As,, ) and qg,7(\g, ’f)’ and parts (El) and (b). B

For part (d), define ds; to satisfy ds, € Bg,r(B1 — B1.) and qg,7(dsy, )
= inf)\ﬁleBﬁlT(Brﬁl*)qﬁlT()‘ﬁlvw) + opx(1). By the method of proof of part (b),
we obtain dsy = Opr(1). As in the proof of part (c), we then obtain gg 7 (dss,m) =
qung(chﬁ, 7) + 0pr (1) using part (a). This result, part (c), and the definitions of dsy

and ds;, give

opr(1) < Gp,r(dsr, ) — Gp,r(dsr, )
(9'12) = QBlT(dSmﬂ-) - QBlT(dsmﬂ-) + Opﬂ'(l) < Opﬂ'(l)'

Equation (9.12) and the definition of dsy establish part (d).
Part (e) holds by the proof of Lemma 2 of E1 with 8, A\, By, Z, Jr, qr(\), O, A,

_ ~1
and op(1) replaced by 31, Ag,, Bg,r, Z5,7x, (Hlj*T;H{) » qa,7(Ag, ), Bi, Ag,,
and opr(1) respectively. We use the fact that Assumptions 5, 7(b), and 9(c) imply
that Assumption 5 holds with © and A replaced by By and Ag, .

Part (f) holds by the proof of Theorem 4(a) of E1 with Xﬁ, Z, J, G, Gy, Gs,

Q,B(Aﬁ)a replaced by /\[31T7r7 ZT7r7 jTﬂ'J GT7r7 G*Tﬂ'? G6T7r7 Q,BlT(/\ﬁlaTr)a ey where
Grr = BV Dlr(60,7) and Gz = (Glpgs Gl = (Gl 1y Gy s G Gl ) -

39



In place of Assumption 7(a) of E1, which assumes that J., = Jj, = 0, we use (9.7),
which yields Jwprr = 0pr(1). In consequence, some of the equalities in the proof of
Theorem 4(a) of E1 are equalities only up to opr(1) terms.

Part (g) holds by the proof of Theorem 3(a) of E1 with 0, 5 A, XT, A, By, Zp, Jr,

1
Op(l), replaced by 61, 617” )\gl, )\ngﬂ, Agl, B/ng’ ZﬁlTﬁ, (Hlj*TﬂHl) Opﬂ(l),
.. respectively. The proof uses the fact that g r(dsz, 7) = qg, 1 (>\,31T7r, ) + opr (1),
which holds by parts (d)—(f) of the Lemma. O

Proof of Theorem 7. Parts (a) and (b) follow from Lemma 4(g) and Assumption
12. Part (c) follows from part (a), Assumption 12, Theorem 1(b), and the continuous
mapping theorem (CMT). Part (d) follows from part (c) and the CMT. O

Proof of Lemma 5. Define the p + g vector rp(6, ) via

T Dyby(0,7) — Dul(0,7) := T~ Dyly(6g, ) — Dil(Ho, )
(9.13) (T D2Ur (89, ) — D2(0o, 7)) (0 — Og) + rp(0, 7).

By the stochastic differentiability Assumption 13*(e),

2
(9.14) sup — Tlrr(0,m)Il/ (1+ 1720 = 60)ll ) = op(1)
0€O:[|6—0o|<vr

for all v — 0.
By Theorem 6 of E1 and Assumptions 13*(c) and 13*(d), element by element
one-term Taylor expansions of D, ¢(6,7) about 6y stacked give: V0 € © N C(6y,¢),

(9.15) D.L(0,7) = Dyl(6o, ) + D2(6F, 7)(0 — 6y),

where 6 lies between 6 and 6y and may differ across the rows of D2(01 ).
Combining (9.13) and (9.15) gives

T_ID*KT(H, 71') = T_ID*ZT(Q(), 71') + T_IDEZT(Q(), 71')(9 - 90)
£ (D20(61,m) — D200, m))(0 — o) + 1 (6.7)
(9.16) — T, 00 (60, 7) + T~D205 (60, 7)(0—00) + o(||0—00||) + (6, 7),

where the second equality uses the continuity of D2/(6,7) at 6y uniformly over II.
Combining (9.16) with (7.1) divided by T gives

(9.17) T 'R;(0,7) = o(||0 — 0o||) + rr(6,).
This result and (9.14) imply Assumption 13(a) by taking vy = v/Amin(Br). O

9.4. Proofs for the GARCH Example

To verify Assumptions 1* and 2*, we show that ¢7(6,7) is closely approximated
by the sum of stationary and ergodic terms Lrp(0,7) = Zthl £ (6, 7). Note that
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we can write £7(6,7) = YL | ¢5(, ), where (6, 7) = —$In(27) —3In(h} (0, 7))
—3e7(6)/h; (0, 7). First, we show that

(9.18) Z%%upen |ds(8,7)| < 0o a.s., where dy(0,7) = £y (0, 7) — £5(8, ).
t=2 o

Some calculations show that for ¢ > 2,

hi(0,7) = hi(0,7) + 7" LA(0,T), where
A(0,m) = (8 + By Yy e (6) —hi(8,m)),
k=1

21 (0, 7)| = [Wn(he(0,7) /7 (0,7)) + € (0)/hu(0,7) = e} (0) /i (8,))|

1 |A(O,7)| it AG, )
. < t—1 | ) 2 U J
(9.19) <In (1 + 7, 01— ) 7Tu)> +e;(0) T 0.7
-1 A0, )| 2
=M S (1— ) (1+ei(0)/e), and
2> s a0 < et EOTS s (1o
“— 9eo,renl b¢(1 —my) po 9o

The right-hand side of the last expression in (9.19) is finite with probability one,
because (i) the fact that E supgeg €2(6) is finite and does not depend on ¢ implies that
EY % wFsupgeo €2, (0) < oo, which, in turn, implies that Y22, 7% supyeg €2 ,.(0)
< 0o a.s., (ii) the assumption that supgcg remr Pi(6,m) < oo and result (i) imply
that suppeg rerr |A(0,7)| < 0o a.s., and (iii) result (i) implies that Y2, ml 1 (1 +
Suppeo €2(0)/6¢) < oo a.s. Hence, (9.18) holds.

Equation (9.18) and Kronecker’s Lemma imply that

T
(9.20) sup T Ly (0,m) — Lr(0,m)] <T 1> sup |di(6,m)| 5 0.
0cO,rcll =1 0cO,mrcll

Now, we verify Assumption 1*. Given (9.20), it suffices to verify Assumption
1*(a) with T-1Ly(0, ) in place of T~1¢7(0, 7). To do so, we use the uniform law of
large numbers given in Theorem 6 of Andrews (1992) employing Assumption TSE-
1D. This uniform law of large numbers holds, because {ly(0,7) : t = ..., 1,2,...} is
stationary and ergodic, ¢4(6, ) is continuous in # and 7 a.s., and

E sup [204(0,7)] < In(27) +1In(6,) + Eln(8y + By, Y whsupe? , (6))
0cO,ncll e1 0co

(9.21) +Esupe?(6)/6, < oo.
0co

The limit function ¢(6, m) of Assumption 1*(a) equals El; (6, ).
Next, we verify Assumption 1*(b). Because 3;5 = 0, ¢(6p,7) does not depend
on 7. The uniform LLN used above delivers continuity of the limit function ¢(6,7)
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:= F{;(6,7) on the compact set © x IT. In consequence, it suffices to show that ¢(6, )
is uniquely maximized over © at g for each m € II. We have

Ely(0,7) = =3 In(27) — $EIn(h (0, 7)) — $Eef(0)/hy(0, ) and
Eef(0)/he(0,m) = Eei [hy(0,7) + (1 — o) X X{(¥ — 1))
(9.22) > B2} /h(6,m)
= Eh()t/ht((g,ﬂ')

with strict inequality unless 1) = 1), because EX; X/ is positive definite (pd). The
function In(x) + y/x is uniquely minimized over x > 0 at x = y. Hence,

(9.23) Ely(0,m) < 1n(27r) — —Eln(hto) — 5 ={(0p,m)

with equality iff ¢ = ¢g and P(h:(0,7) = hot) =
Hence, Assumption 1*(b) holds provided for any 6 with ¢ = vy, P(h(0,7) =
hot) = 1 iff @ = 0y. For 6 with ¢ = 1, we have

(9.24) hi(0,7) — hoy = (R 1(0,7) — hor—1) + (d027_1,1 — )" (6 — By),

where 6 = (3;,6) and 6y = (0,80)’. By stationarity of {hy(,7) —hg; : t = ...,0,1...},
he(8,7) — hot = 0 a.s. iff hy—1(0,7) — hor—1 = 0 a.s. Combining this with (9.24), we
find that hy(0, 7) —ho, = 0 a.s. iff (6022 1, 1 —m)/ (0 —0p) = 0 a.s. Because §p > 0 and
2; is not a constant by (2.3), the latter holds only if 3; = 0. Given 3; = 0, (6022 1,
1 —7)(0 —6p) = 0 a.s. implies that § = o, because m < 1. This completes the
verification of Assumption 1*(b).

Next, we verify Assumption 2* for ¢7(0) by showing that it holds for £L7(#) and
that ¢7(0) is closely approximated by L£1(0) in the sense that (9.1) holds. To establish
(9.1), we note that the left-hand side of (9.1) is less than or equal to

(9.25) 2 Z sup |dy(6, 7))

7 0€0:]|0—00|<~p,mEIl

The function d; (0, 7) is continuous in € uniformly over 7 € IT a.s. Hence, sup{|d;(0, )| :
0 €O :||0—06]| <~vp,mell} —-0as asT — ooVt > 1 By (9.18), given

e >0, 371 < oo such that Y 27 | SUPpeg ren [di(6,7)| < €/4. And, given ¢ > 0

and T1 < oo, 3T < oo such that VI > T5 we have supgce, (o 00l | < mell |d:(0,7)|

< ¢e/(4Ty) vt <Tj. Combining these results, we find that the expression in (9.25) is

less than or equal to

(9.26) 2 sup |di(0,7)| + 2 sup |di(0,7)| <e.
;%@He Oo||<yp,mell = %:Jrl 0co,mell

Hence, (9.1) holds.

We verify Assumption 2* for £7(6) using Assumption 22* and the comment fol-
lowing it. (Note that the latter applies because it follows from the result in the next
paragraph that — 8969, Lr(00,7) = Tr + 0pr(1).) Assumption 2% (a) holds with
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Ot =0 NC(y,e) for some € > 0 small, because © — y is a union of orthants local
to 0. Assumption 22*(b) holds straightforwardly.

We verify Assumption 2%*(c) for Lr(#,n) by showing that SUPgeo, ren Hag_éje’
Lr(0,7) —E5o0y(0,7)|] — 0, for some set ©g C © that contains © N S(fo, ) for
some € > 0, and F %{;g,ﬂtt (0) is continuous at #y. Both of these results follow from
the uniform LLN given in Theorem 6 of Andrews (1992) using Assumption TSE-1D
provided

(9.27) E sup
6cOg,mell

2

0
anog )

< 090,

because (02/0000')0y,(0, ) is stationary and ergodic and continuous in (6,7) a.s.
Let h, e, 0, &', and 0? abbreviate hy(0,7), e/(6), 8/00, 0/0¢', and 9*/000¢’

respectively. Some calculations show that

20%0,(0,7) = (h™'e* —1)(h"10%h — h™2(0h)?) + h™2edh(20'e — h ™ ed'h)
—2h~led?e — 2h710e(0'e — h ' ed'R),
h=t < 6,1, [10el| < 11Xell, 9%e =0, e < C(lz] + | Xyl]), and

(9:28)  [[0RlI+ 10*h]] < C Y mi(L+ [zemir|* + || Xemgal ),
k=0

for some constant C' < co that does not depend on 6 or 7. In consequence,

00 2
10%6(8, )|l < C(L+ |z + [1X¢| ) (Z T+ 2 + IIth1||2)>
k=0

(9.29) +C(Jze] + XD Y w1+ 2ot [* + [ Xempa [P) + ClIX .
k=0

Hence, E supgce, ren [10%¢:(0,7)|| < oo by the moment conditions of (2.3).

Next, we verify Assumption 3*. By Theorem 10.2 of Pollard (1990), B, Y Der (6, o)
= G, if (i) IT is totally bounded, (ii) the finite dimensional distributions of B;ll
x Dlr (6, e) converge to those of G,, and (iii) {B;llDET(QO, o) : T > 1} is stochas-
tically equicontinuous. Condition (i) holds because II C [0, 1]. The variable B:Fll
X Der(6g,7) equals T—1/2 Z?:l 00y (09, ), which is a normalized sample average
of strictly stationary martingale difference random variables. Using the definition
of 00y(0g,7) in (4.3) and the moment conditions in (2.3), we obtain Esup, .y ||0
l4(0,7)||* < co. In consequence, the martingale difference central limit theorem
of Billingsley (1968, Thm. 23.1) implies that each of the finite dimensional distribu-
tions of B, 1IDET((‘)O, o) converges in distribution to a multivariate normal distribution
with covariance given in (4.4), which by definition equals the covariance of Go. Thus,
condition (ii) holds. Stochastic equicontinuity of {7123 94y (6g,e) : T > 1} is
established by the same argument as in Andrews and Ploberger (1996, p. 1340, (A.14)
and the following paragraph) for v4.(r) with Y; and Y;_x_; replaced by 6(1)/ 2(,2152 -1
and z;_p_1 respectively. Hence, condition (iii) holds.
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The matrix Jr is symmetric and non-random, so, to verify Assumption 3*, it
remains to show that sup,ci Amax(Jr) < 00 and infrer Amin(Jx) > 0. From (4.3),

Ezf -1

(9.30) det(Jr) = det (m

) x det(65  EX: X)),

which yields the desired results because 0 < Ez}t — 1 < oo, sup{n? € I} < 1, &y > 0,
and EX;X] is positive definite by (2.3).

9.5. Proofs for the Random Coefficient Example

First, we verify Assumption 1*. Assumption 1*(a) holds by the uniform LLN of
Andrews (1992, Theorem 4) using Assumption TSE-1D and the standard pointwise
LLN for iid random variables with finite mean. The function ¢(0,7) of Assumption
1*(a) is

00, ) == —3In(27) — $EIn(82 + X{Q(By, 61, m) Xy)
(9.31) — 3E(Y: — by — X{1p1)? /(62 + X{Q(B), 61,m) Xy).

Sufficient conditions for Assumption 1*(b) are: (i) £(0,7) < £(6y) for all 6 € ©
with 6 # 0y and all 7 € II, (ii) ¢(0,7) is continuous on © x II, and (iii) © x IT is
compact. Condition (ii) holds straightforwardly. Condition (iii) holds by assumption.

To show condition (i), we first show that for any (3;,01,02) in the parameter
space the third summand of ¢(f,7) is uniquely maximized by (11,%9) = (¥10,Pa0)-
The third summand of £(6, 7) can be written as the sum of —1 E(vy —t9y +X[(¢; —
V10))? /(82 +X[Q(B;,81,7)X;) and a term that does not involve (1;,1)5). In con-
sequence, the third summand is uniquely maximized at (¥, %) if E(a’Wt)? /(82
+X[Q(B1,61,7)Xt) > 0 whenever a # 0 or, equivalently, if E(a’W;)? > 0 whenever
a # 0 or, equivalently, if EW;W/ > 0, where the second “if” holds because 1/(82
+X7Q(5;,61,m)X:) is positive with probability one. The last condition holds by
(4.14).

Next, we show that, for any parameter 6 = (31, 87, 62, W), ¥ag)’ with (B, 8, 62)" #
(0,8%0,020)", (0, 7) < £(6p) for all w € II. For 6 as above, £(6,7) can be written as

_ 820 -+ XI5y, 610, 1) X
= _1 _1 / 17920 t 1,910, t
0(0,m) = —51In(27) — 5 EIn(d2 + X;Q(B1,01,m)Xs) + 5 E 5y T XIB, 01,1 X,

(9.32)

The function (Inz) 4 y/x is uniquely minimized over x € R at x = y. Thus, ¢(6,)
< {(fp, ) unless

(933) P((SQ + X{Q(ﬁl,él,W)Xt — ((520 + Xt/Q(O, 610,7T)Xt) = O) =1.
By the form of Q(3,61,7), Q(B1,01,m) = Q(0,610,7) only if (5;,61) = (0,610). In

consequence, the left-hand side of the equation in the probability in (9.33) is of the
form ¢ X; for a vector ¢ # 0 because (83,61,02) # (0, 610,020). But, EXtX,; >0
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(by (4.14)) implies that P(¢’X; = 0) < 1 for all a # 0. Thus, (9.33) cannot hold,
condition (i) does hold, and the verification of Assumption 1* is complete.

We verify Assumption 2* for the random coefficient example with D¢p (60, )
and D?(7(6g,7) of (3.3) as defined in (4.12) using Assumption 2?* and the remark
following Assumption 22*. The proof is analogous to that for the random coefficient
example of E1 given in Section 3.6.1 of E1. In the present case, the matrix of 1/r
partial derivatives of order two of ¢p(8,7) is

ores?(0) — vary (0, res; (6 —~
———lp(0,m) = — t ’ t ’
o050 ; res(0) G0 L
var2(f,m) ¢ T vary(0,7) ¢
(9.34)

where Wi(0,7) i= (Xf,(r), X3,(61),1)"

Next, we verify Assumption 3*. Note that (4.14) implies that EI/VtVVt / vart((‘)o)
> 0, EWy(m)Wy(x) Jvar2(6o) > 0 Vr € II, and E(res?(6o) — vary(60))2Wy(m) Wi (n)’
Jvarg(0o) > 0 Vr € II. Continuity in 7 of the latter two terms and compactness of
I1, then yields inf e Amin(-) of the latter two terms to be positive. In consequence,
inf e Amin(Jx) > 0. By (4.12), Jr is symmetric. By (4.13), continuity in 7 of Jr,
and compactness of II, we have sup ¢ Amax(Jr) < 00.

Thus, Assumption 3* holds provided T-1/2D¢y (6o, 8) = Go. By Theorem 10.2
of Pollard (1990), T='/2D{¢1(6y,8) = G, if (i) II is totally bounded, (ii) the fi-
nite dimensional distributions of 7-1/2D¢r (6, e) converge to those of G, and (iii)
{T='2D0r(6y,e) : T > 1} is stochastically equicontinuous. Condition (i) holds by
compactness of II. Condition (ii) holds by the CLT for iid mean zero finite vari-
ance random variables using the definition of Dlp(0g,7) in (4.12) and the moment
assumptions of (4.13). To obtain condition (iii), we write

HT*1/2D€T(90 m) —T~Y2D0r(00,7)||

179 res?(0g) — vary(6o) -,
/ Z Svar2(fo) X1, (1 () — (7)) Xt

T
< Z Z 190 ()15 = Q(@)is| T2 |resi(8o) — vary(60)] - || X1 X511/ 620

=1 j=1 t=1

b b
9:35) =D lIu(m)iy — u@)il0p(1),

i=1 j=1

where 4 (7);; denotes the (7,7) element of Q;(7) and X;; denotes the i-th element
of X;. This result, the continuity of Q;(m);; in 7, and the compactness of II yield
stochastic equicontinuity of 7~/ 2Dlr(0g,e): given any n > 0, there exists A > 0
such that

(9.36) Timp_, oo P ( sup | T=Y2Der (00, 7) — T‘1/2D€T(¢90,ﬁ)||> <n

w,wEIL||m—7|| <A
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