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Abstract

In recent years, the global reinsurance market has undergone rapid evolution.  A
series of mergers and acquisitions has led to dramatic consolidation, while the
development of insurance-based securities has begun offering new ways to enhance
and/or compete with traditional reinsurance products.  In this article, we employ the
insurance market game framework of Powers, Shubik, and Yao (1994, 1998) and Powers
and Shubik (1999) to study the design of an optimal reinsurance/retrocession market.
Using price in the primary insurance market as our primary objective function, we
analyze market configuration in terms of both the need for additional levels of
reinsurance/retrocession, and the optimal number of firms at a given level.
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1.  Overview

In recent years, the global reinsurance market has undergone rapid evolution.  A

series of mergers and acquisitions has led to dramatic consolidation, while the

development of insurance-based securities has begun offering new ways to enhance

and/or compete with traditional reinsurance products.  These changes naturally give

rise to questions such as:

• Is a reinsurance market really necessary?

• What is the optimal number of reinsurers?

• What is the role of retrocession (i.e., the insuring of reinsurers)?

• Is there a theoretical upper bound on the optimal number of retrocession levels?

As a practical matter, it is difficult to assess the effects of the number and size of

primary insurers on the price and availability of insurance in a given market.  This is

because empirical studies of scale economies can evaluate only the relative efficiencies

of firms of different sizes under a fixed market configuration, and theoretical studies of

market equilibrium are often restricted by traditional assumptions of competitive

equilibrium with infinite numbers of buyers and sellers.  The problem for reinsurance

and retrocession markets is magnified by even greater limitations on industry data, and

the general lack of a formal modeling structure.

1.1.  Previous Work

In Powers, Shubik, and Yao (1994, 1998) and Powers and Shubik (1999), we

proposed a game-theoretic model to study various effects of scale in a primary
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insurance market.  Unlike conventional equilibrium-analysis models, in which buyers

and sellers are assumed to be price-takers, our game-theoretic model permitted the

analysis of market equilibrium with arbitrary numbers of buyers and sellers, so that

marginal changes in competitive forces and insurer solvency could be studied as the

numbers of players changed.

In our previous work, we were able to show that, under certain assumptions,

there is a natural tradeoff between the positive and negative aspects of increasing the

number of firms in a market with a fixed amount of capital.  As the number of firms

increases, the weakening of the oligopolistic structure of the market improves

efficiency, causing price to decrease and customers to purchase more insurance.

However, the increasing number of firms also diminishes the “quality” of insurance (by

lowering the average capital per firm, thereby increasing the probability of insurer

default) eventually causing the customers to purchase less insurance.1  These two

opposing influences determine an optimal number of firms— in terms of maximizing

the amount of insurance purchased— when the marginal changes are equalized.

1.2.  New Results

A natural way in which the dangers of default can be ameliorated, yet

competition can still be preserved, is to introduce a level of reinsurers, even if the total

capital invested in insurance/reinsurance underwriting remains the same.  In this

article, we develop a formal game-theoretic model to examine the potential value of

                                               
1 A further effect of increasing the number of insurers is that the sellers restrict the amount of insurance
they are willing to sell as the price continues to decrease.
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adding a reinsurance structure to the insurance industry.

Specifically, we consider a market game,   G r( ), with one level of primary

insurance and   r  levels of reinsurance.  At each level, we assume a simple, symmetric

model in order to preserve analytical tractability.  However, we are confident that our

qualitative results are independent of this simplification, and we note that it is a

straightforward matter to simulate results for non-symmetric cases.

Because of the complex notation and modeling throughout much of the rest of

the text, we summarize our principal results in this section, as follows:

• Theorem 1 shows that, for an insurance/reinsurance market with an endogenously

imposed configuration, both price and quantity decrease over the reinsurance levels

      λ= 1, 2,K ,r .

• Corollary 1 shows that, for the insurance/reinsurance market of Theorem 1, with

risk neutral reinsurers at and above reinsurance level   L , equilibria exist up to, but

not above, this level.

• One sufficient condition for the desirability of introducing a reinsurance level

imposes a bounded interval on the primary insurer’s risk aversion coefficient,

  σ0 = σ ; this interval tends to shrink if the exogenous probability of the primary

insurer’s insolvency is positive, or the losses are catastrophic (i.e., perfectly

correlated) in nature.

• Given that the reinsurer’s risk aversion coefficient, σλ, decreases over the

reinsurance level, λ, approaching zero (i.e., risk neutrality) as λ→ ∞ , it follows that
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the sufficient “reinsurance desirability” condition eventually imposes an upper

bound on the optimal number of reinsurance levels.

• A simple numerical criterion for the optimal saturation level of a reinsurance market

is given by a monotonically increasing, concave-downward function of the number

of primary insurers, each point of which is found as the solution to a cubic equation

in the number of reinsurers.

• Corollary 2 reveals that, for the insurance/reinsurance market of Corollary 1, in

which insurers/reinsurers are able to coordinate their bids and offers, equilibria do

exist at levels above   L , and these markets are characterized by the purchase of

“over-insurance”.

2.  Statement of the Problem

There are two major difficulties inherent in the study of reinsurance markets—

difficulties that hinder both the collection of empirical data and the development of

appropriate theoretical models.  First, reinsurance is, and traditionally has been, the

most international of insurance markets, with primary insurers in one country often

purchasing reinsurance from both domestic and alien reinsurers.  As a result, it is

difficult to isolate data relating to transactions within only one country, and it is also

difficult to obtain complete and consistent information regarding the global reinsurance

market as a whole.  A second problem is the hazy line that exists between the primary

insurance and reinsurance markets in many countries, where large primary insurers

frequently assume reinsurance business from other primary insurers.
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2.1.  U.S. Insurance/Reinsurance Markets

To simplify matters for our current study, we will restrict attention to the

relatively tractable relationship between domestic U.S. primary property-liability (P-L)

insurers and domestic U.S. “professional” reinsurers (i.e., reinsurers that write no

primary insurance business of their own).  In 1996, these combined

insurance/reinsurance markets consisted of approximately 3,300 primary insurers2

writing $250 billion in premiums, and 72 reinsurers (belonging to 65 reinsurance

groups), writing $19 billion in premiums. 3  We note that this reinsurance market

represents only about 20 percent of the global reinsurance market, and, most notably,

excludes the London and Bermuda markets, which provide substantial capacity for U.S.

primary insurers.4

In the past fifteen years, the reinsurance market has evolved rapidly.  Mergers

and acquisitions have led to dramatic consolidation, reflected in a 26 percent decline in

the number of domestic U.S. reinsurers (from 97 to 72) in the period from 1985 to 1996.5

Over the same time period, the (premium-volume) market share of the 10 largest

reinsurers grew by 12.5 percent (from 60 percent to 65 percent of the total market).6

Since the early 1990s, the development of insurance-based securities, including

various property catastrophe indexes (see Powers and Powers, 1997) and catastrophe

                                               
2 See Insurance Information Institute (1996), p. 5.
3 See Conning and Company (1997), p. 30.
4 In a sense, we are effectively making the coarse assumption that— for purposes of our analysis— the
relationship between the global primary P-L market and the global professional reinsurance market is
similar to that between the corresponding U.S. markets, apart from constant factors to recognize both the
greater volume of the global markets, and the disproportionately smaller U.S. reinsurance market.
5 See Conning and Company (1997), p. 22.
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bonds (e.g., Nationwide Mutual’s $400 million offering of 1995 and USAA/Residential

Re’s $477 million offering of 1997) have provided novel alternatives to traditional

reinsurance products.  The increasing viability and popularity of these alternative

products is undoubtedly one competitive force underlying the consolidation of the

traditional reinsurance market.

2.2.  Studies of Insurance/Reinsurance Market Equilibrium

The theoretical study of insurance and reinsurance market equilibrium has been

carried out under a variety of models.  The earliest formal results were given by Arrow

(1953) and Debreu (1953), who used contingent space to study economic equilibrium in

a simple risk exchange model with two risk averse parties.  By using contingent space,

these authors were able to extend certain fundamental results of economic equilibrium

from an exchange of goods to an exchange of risks.  Specifically, they showed that

competitive equilibrium exists, and proved that both the first and the second social

welfare theorems hold in an economy with uncertainty.  In other words, competitive

equilibrium is Pareto optimal, and every Pareto optimal solution can be supported by a

competitive equilibrium through the redistribution of endowments.

Though contingent space provides an elegant framework for economists to

analyze uncertainty, it is far removed from the reality of most insurance markets.  In

presenting a risk exchange model of the reinsurance market, Borch (1962) argued that

this market should contain only one price, rather than the multiplicity of prices

associated with all possible states in contingent space.  Borch proceeded to provide a

                                                                                                                                                      
6 See Conning and Company (1997), p. 30.
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price/quantity analysis, setting the price of reinsurance equal to expected losses plus a

risk loading proportional to the variance of losses, but found that his competitive

equilibrium results were not consistent with Pareto optimality.

As became clear from the work of Kihlstrom and Pauly (1971), Borch’s model

was over-specified because the form of his risk loading was not consistent with his

assumption that the parties in the risk exchange had quadratic utility functions.7

Kihlstrom and Pauly demonstrated that the single price of insurance is correlated with

the prices of contingent claims, and that the competitive equilibrium of a risk exchange

in price/quantity space is consistent with the competitive equilibrium of a risk

exchange in contingent space.

Subsequently, Baton and Lemaire (1981a, 1981b) applied the Nash bargaining

framework of cooperative game theory to the analysis of a reinsurance market, and

Kihlstrom and Roth (1982) provided a similar analysis of risk transfer between one

insured and one insurer.  Focusing on the case in which the insurer is risk neutral,

Kihlstrom and Roth showed that the equilibrium price of insurance will be actuarially

fair under this assumption, and pointed out that additional results could be proved if

the insurer were assumed to be risk averse.

As noted by Arrow (1996), the risk transfer— as opposed to risk exchange—

model recognizes the reality that the parties in most traditional insurance markets are

either buyers or sellers, and not eligible both to cede and to assume risk as in a risk

                                               
7 See Geanakoplos and Shubik (1990) for a discussion of necessary and sufficient conditions for the Pareto
optimality of competitive equilibrium in a one-good CAPM.
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exchange.  In Powers, Shubik, and Yao (1994, 1998), we first applied the full process

structure of a strategic market game to study equilibrium effects in a risk transfer model

of a primary insurance market.  For a one-period game in which the buyers and sellers

of insurance make strategic bids and offers to determine market price and quantity, we

were able to prove the existence and uniqueness of market equilibrium under certain

conditions.

More recently, in Powers and Shubik (1999), we focused on the relationship

between the law of large numbers (LLN) and the oligopolistic effect of the number of

firms in the market.  For the case of risk neutral insurers, we found that, for certain

reasonable parameter values, there is a natural tradeoff between the effects of the LLN

and oligopoly.  This tradeoff causes both equilibrium quantity and the equilibrium

payoff to customers to possess unique interior maxima over the number of insurance

firms.

3.  Modeling Considerations

Formal economic models require a high level of abstraction.  The precision and

consistency of the model comes at a high price, and one frequently has to guard against

“throwing the baby out with the bath water”— i.e., simplifying the model to the point

that critical features are omitted.  If there are one or more precise questions to be asked,

then it may be possible to build a highly abstract “stripped down” model that provides

answers to these particular questions.  However, there may be many other relevant

questions for which such a model is not adequate.
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In this article, we address the set of questions posed at the beginning of the

Introduction, using a “minimalist” formal model.  We recognize that our portrayal of

the primary and reinsurance markets is somewhat unrealistic, but we believe that the

model as a whole captures the essential statistical and strategic elements of an insurance

market, thereby enabling us to characterize accurately the conditions under which

reinsurance (and retrocession) is desirable, and optimal.

3.1.  The Primary Insurance Market

We now review the formal model of a primary insurance market presented in

Powers, Shubik, and Yao (1994, 1998).  This model employs a Cournot price-formation

mechanism with arbitrary numbers of buyers and sellers, so that marginal changes in

insurer solvency and competitive forces can be studied directly as the numbers of

players change.8

Consider a primary insurance market game with players consisting of   m

homogeneous customers,       i = 1, 2 ,K , m , and   n  homogeneous insurance firms,

      i = 1, 2 ,K , n .  At time 0, let each customer (buyer)   i  have initial endowment

    Bi 0( )= V + A  consisting of one unit of property with replacement value   V  and   A (  ≥ V )

dollars in cash.  Furthermore, let each insurer (seller)   j  have initial endowment

    S j 0( )= R n  dollars of net worth, where   R  is the total amount of capital supplied by

investors to the insurance market.

                                               
8 In this sense, our work is conceptually similar to that of Venezian (1994), who developed a theory of
“pseudo-supply” and “pseudo-demand” curves to account for changes in the “quality” of the insurance
product (i.e., the financial soundness of the insurer) as the number of customers per insurer varies.
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We assume that, during the policy period     0,t[ ], each customer’s property is

subject to a random loss with probability π, and that all losses are total.  The random

variable   δi  equals 1 if customer   i  suffers a property loss during     0,t[ ], and equals 0

otherwise, where the   δi  ~ i.i.d. Bernoulli(π).

3.2.  Strategies

To insure against a potential property loss in     0,t[ ], each customer   i  has the

option of purchasing insurance from some insurer by making a strategic bid,     x i ∈ 0,V[ ],

that represents the amount that he or she is willing to pay for insurance.

Simultaneously, each insurer   j  has the option of offering to sell insurance by making a

strategic offer,     y j ∈ 0, cR n[ ], that represents the total dollar amount of risk that   j  is

willing to assume, where     c > 1  is a solvency constraint imposed by government

regulators.

We assume that all bids and offers are submitted to a central clearinghouse that:

• calculates an average market price of insurance per exposure unit, 

      
P x ,y( )= x i '

i '= 1

m

∑ y j'
j' =1

n

∑ ;9

                                                                                                                                                      
However, whereas Venezian employed a contingent claims framework to determine a “pseudo-supply”
curve, we use expected utilities to compute the payoffs of both insurers and their customers.

9 Given that     y j = 0  is a permissible offer, it is theoretically possible--although highly unlikely in a real

insurance market--that 
    

y j' = 0
j '=1

n

∑ , causing     P x,y( ) to be undefined.  To avoid this problem, as well as

similar problems associated with 
    

x i ' = 0
i '=1

m

∑ , we take the approach of Dubey and Shubik (1978) and

assume that the clearinghouse furnishes at least one insurer, and one customer per insurer, that must
make non-zero bids/offers.
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• collects all premium bids,   x i , and distributes them to the   n  insurers in proportion to

the insurers’ respective coverage offers,   y j  (i.e., insurer   j  receives the premium

amount     y jP x ,y( ));

• randomly assigns each customer   i  to an insurer   j i( ) so that each insurer ends up

with the same number of customers, µ  (i.e., it is assumed that   n  divides   m  exactly

and that   µ = m n ).

Letting   M j denote the set of customers associated with insurer   j , we assume that

if customer   i ∈ M j  suffers a loss in     0,t[ ], then he or she will receive a loss payment in the

amount 
  
y j x i xh

h∈M j

∑
 

 
 

 
 
 — i.e., an amount proportional not only to   i ’s premium bid,   x i , but

also to   j ’s coverage offer,   y j .  This loss payment will be bounded above by   V  to reduce

problems of moral hazard.

To recognize the possibility of insurer insolvency during     0,t[ ], let   ηj  be a

Bernoulli random variable that equals 1 if insurer   j  becomes insolvent, and equals 0

otherwise.  If there is an insolvency, it is assumed that government guaranty funds will

pay a fixed proportion     g ∈ 0,1[ ] of all insurance claims made against the insolvent

insurer.10

                                               
10 This assumption is made to facilitate the analysis.  In the U.S., the large majority of state guaranty
funds have been set up in accordance with the National Association of Insurance Commissioners’ Model
Act, which provides for the payment of losses up to a dollar limit (often $300,000); see Duncan (1984).
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3.3.  Payoffs

Given the above development, we see that at time   t  customer   i ’s wealth consists

of

    

B i t( )= 1 − δi( )A + V − x i( )+ δi 1 − η j i( )( )A − x i + y j i( ) x i x h
h∈M j i( )

∑
 

 
 

 

 
 

 

 
 

 

 
 

             
  

+ δiη j i( ) A − x i + gy j i( ) x i x h
h∈M j i( )

∑
 

 
 

 

 
 

 

 
 

 

 
 ,

and insurer   j ’s wealth equals

    
S j t( )= R n + y jP x, y( )− y j δhxh

h∈M j

∑ x h
h∈M j

∑
 

 
 

 
 
 .

Note that     Bi t( )≥ 0, but   S j t( ) can take on both positive and negative values.

Now let   uB .() : ℜ → ℜ  denote the utility function of customer   i , for all   i , and

  uS .() : ℜ → ℜ  denote the utility function of insurer   j , for all   j .  It then follows that the

payoffs to customer   i  and insurer   j  are given by

    

E uB Bi t( )( )[ ]= 1 − π( )uB A + V − x i( )+ π 1 − ρj i( )( )uB A − x i + y j i( ) x i xh
h∈M j i( )

∑
 

 
 

 

 
 

 

 
 

 

 
 

                        
  

+ πρj i( )uB A − x i + gy j i( ) x i xh
h∈M j i( )

∑
 

 
 

 

 
 

 

 
 

 

 
 

and

      
E uS S j t( )( )[ ]= πr 1 − π( )µ − r uS R n + y jP x, y( )− y j xh

h∈H r

∑ xh
h∈M j

∑
 

 
 

 
 
 

 

 
 

 

 
 

H r ⊆ M j

∑
r = 0

µ

∑ ,

respectively, where 
      
ρj i( ) = Pr η j i( )= 1  δi = 1,x ,y{ } and       H r = h1, h2 ,K, hr{ }.
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 Given that an insolvency of insurer   j i( ) at time   t  is equivalent to the event

    S j i( ) t( )≤0 , we note that

      
ρ j i( ) = Pr S j i( ) t( )≤0δi = 1, x , y{ }

      

= Pr R n + y j i( )P x , y( )− y j i( ) x i x h
h∈M j i( )

∑
 

 
 

 

 
 − y j i( ) δh x h

h∈M j i( ),h≠ i
∑ x h

h∈M j i( )

∑
 

 
 

 

 
 ≤0

 
 
 

 
 
 

,

which is difficult to evaluate because the random variable 
  

δhxh
h∈M j i( ),h≠ i

∑  has a complicated

probability distribution.  To simplify matters, we assume that   ρj i( ) is given exactly by

the normal approximation for all   i .  Furthermore, since the loss payment

  
y j x i xh

h∈M j

∑
 

 
 

 
 
 ≤V  will typically be substantially less than     S j i( ) 0( )= R n , it follows that

the effect of any individual   x i  on the ruin probability will generally be insignificant.11

Thus, we make the additional assumption that 
    

∂ρj i( )
∂x i

= 0  for all   i .

4.  A Model of Reinsurance and Retrocession

An important aspect of insurance is the pooling of risk.12  However, if all risk is

pooled into a single firm, the customers face a monopolist.  If a society wants to

minimize the need for regulation, it may wish to find an industrial structure which

achieves, or comes close to achieving, the benefits of the pooling of risk while

                                               
11 See Appendix A of Powers and Shubik (1999) for a more rigorous characterization of this assertion.
12 Although pooling may not be a necessary component of all insurance transactions, the benefits of the
LLN that arise from pooling tend to improve the economic efficiency of such transactions (see, e.g., Porat
and Powers, 1999).
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preserving a reasonable degree of competition in the market.  We suggest that the

creation of a reinsurance market contributes to achieving this goal.

We now extend the model presented in Powers, Shubik, and Yao (1994, 1998) by

introducing one or more levels of reinsurers.  Although the second and higher levels of

reinsurance are commonly referred to as “retrocession”, we will adopt a convention of

simply denoting each level of reinsurance by its distance from the primary insurance

market; thus, level “1” will denote the reinsurance of primary insurers, level “2” the

reinsurance of level “1” reinsurers, etc.

In essence, we envision an     r + 1( )-stage strategic game in which there is first an

interaction between the customers and the primary insurers, then an interaction

between the primary insurers and the level 1 reinsurers, etc., through   r  levels of

reinsurance.  The solution to be considered here is a perfect pure strategy non-

cooperative equilibrium (PSNE)— “perfect” in the sense that the equilibrium in the

overall game is also an equilibrium in every sub-game.13

Let   G r( ) denote an insurance market game with one primary insurance market

and       r ∈ 1,2,3,K{ } levels of reinsurance.  The following four assumptions will provide

the basic framework for our analysis.

                                               
13 The detailed specification of information conditions in the extensive form of the game is critical to the
identification of perfect equilibria.  In general, the greater the information, the larger the set of non-
cooperative equilibria becomes.  We conjecture that a PSNE exists for all twice-differentiable utility
functions characterizing the risk aversion of customers, insurers, and various levels of reinsurers.
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Assumption 1:  There are

(i)   m  homogeneous customers (buyers) in the primary market, each with utility

function 
    
uB w( )= 1 − e− βw

β
,

(ii)     n0  homogeneous insurers (sellers) in the primary market, each with utility

function 
    
u

S 0( ) w( )= 1 − e− σ 0w

σ0

, and

(iii)   nλ homogeneous reinsurers at level     λ∈ 1,r[ ], each with utility function

    
u

S λ( ) w( )= 1− e− σλw

σλ
,

where       m > n0 > n1 > K > nr > 1 and       β > σ0 ≥ σ1 ≥ K≥σr ≥ 0 .

Assumption 2:  The primary insurers make offers     y j 0

0( ) and bids     x j 0

1( ), the reinsurers at

level     λ∈ 1,r − 1[ ] make offers   y j λ

λ( ) and bids     x j λ

λ+ 1( ), and the reinsurers at level   r  make

offers   y j r

r( ), where:  (1) all primary insurers and reinsurers make their offers

independently of their bids, and (2) price determinations, premium distributions, and

customer assignments are made at each level by a central clearinghouse.

Assumption 3:  Letting     M k
1( ) denote the set of primary insurers associated with level 1

reinsurer   k , it follows that if insurer     j ∈ M k
1( ) suffers a loss in     0,t[ ], then it will receive a

loss payment in the amount 

    

yk
1( ) x j

1( )

x j '
1( )

j' ∈M k
1( )

∑

xh
0( )

h∈H j
0( ) w( )

∑
x i'

0( )

i '∈M j
0( )

∑  (i.e., an amount proportional not only

to   j ’s premium bid,     x j
1( ), but also to   k ’s coverage offer,     yk

1( )), and that an analogous loss

payment rule is applied at each higher level of reinsurance     λ∈ 2, r[ ].
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Assumption 4:  The conditional probability of insolvency of the primary insurer   j ,

given a loss associated with customer     i ∈ M j
0( ), is 

      
ρj i( ) = Pr ηj i( ) = 1  δi = 1, x λ( ), y λ( ){ }, and

the reinsurers at all levels     λ∈ 1,r[ ] remain solvent with probability 1.

For notational convenience, let

(i) 

    

ρ*≡ Φ

µ0

Q0 * − Q1 *

 
 
  

 
 − R0 + P1 *Q1 * − P0 *Q0 *( )+ 1 + µ0 − 1( )π

π 1 − π( )µ0 − 1( )

 

 

 
 
 

 

 

 
 
 

,

and let

(ii)     Q0 * = f P0 *( ) denote the solution of the equation

    
1 − π( )e − βV + π 1 − ρ *( )e− βQ 0 *

m 1 − µ0 − 1
µ0P0 *

 
 
  

 
 + πρ *e

− βgQ0 *
m 1 −

g µ0 − 1( )
µ0 P0 *

 
  

 
  

= 0 ,

in all subsequent results.

The following theorem presents the fundamental result for our insurance market

game,   G r( ).

Theorem 1:  If Assumptions 1 through 4 hold,14 then there exists a unique type-

symmetric pure strategy equilibrium for   G r( ) in which:

(i) the equilibrium price at reinsurance level λ∈ 1,r[ ] is given by 

    
Pλ* = P0 *

µ v − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =1

λ

∏ ,

                                               
14 In addition to Assumptions 1 to 4, certain regularity conditions— analogous to conditions identified in
the proposition of Section 4 of Powers, Shubik, and Yao (1998)— are assumed to hold in this and
subsequent results.
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where

    

P0 * =

n r

nr − 1
 
 
  

 
 πe

σ rQ r *
m

µv − 1
µv

 
 
  

 
 n v − 1 − 1

nv − 1

 
 
  

 
 

v = 1

r

∏ 
  

 
  

πe
σ rQ r *

m + 1 − π
 
 
  

 
 

denotes the equilibrium price in the primary insurance market; and

(ii) the equilibrium quantity at reinsurance level λ∈ 1,r[ ] is given by 

    

Qλ*= Q0 * − m
σv

ln

1
π

− 1

1
nv − 1

nv

 
 
  

 
 P0 * µz − 1

µz

 
 
  

 
 nz − 1 − 1

nz − 1

 
 
  

 
 

z =1

v

∏
− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

v =0

λ− 1

∑ ,

where 
    

µz − 1
µ z

 
 
  

 
 nz − 1 − 1

n z− 1

 
 
  

 
 

z =1

0

∏ ≡ 1 , and     Q0 * = f P0 *( ) denotes the equilibrium 

quantity in the primary insurance market.

Proof:  The proof of this theorem is provided in the Appendix.                                          n

5.  The Case of Risk Neutral Reinsurers

If the reinsurers at all levels     λ∈ L,r[ ] are risk neutral (i.e.,   σλ → 0 for     λ∈ L,r[ ]),

then we are able:  (1) to provide explicit analytical forms for     P0 * and     Q0 *, and (2) to

show that equilibria do not exist for reinsurance levels     λ∈ L + 1, r[ ].

Corollary 1:  If Assumptions 1 through 4 hold, and if the reinsurers at all levels     λ∈ L,r[ ]

are risk neutral (i.e.,   σλ → 0 for     λ∈ L,r[ ]), then there exists a unique type-symmetric

pure strategy equilibrium for   G r( ) in which:
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(i) the equilibrium price at reinsurance level     λ∈ 1,L[ ] is given by 

    

Pλ* =

nL

nL − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =λ+ 1

L

∏ ,

where 
    

µv − 1
µv

 
 
  

 
 nv − 1 − 1

nv − 1

 
 
  

 
 

v =L + 1

L

∏ ≡ 1 , and

    

P0 * =

nL

nL − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

nv − 1

 
 
  

 
 

v = 1

L

∏

denotes the equilibrium price in the primary insurance market;

(ii) the equilibrium quantity at reinsurance level     λ∈ 1,L[ ] is given by 

    

Qλ*= Q0 * − m
σv

ln

1
π

− 1

µz − 1
µz

 
 
  

 
 n z − 1

n z

 
 
  

 
 

z = v + 1

L

∏
π

− 1

 

 

 
 
 
  

 

 

 
 
 
  

v =0

λ− 1

∑ ,

where     Q0 * = f P0 *( ) denotes the equilibrium quantity in the primary insurance 

market; and

(iii) equilibrium price and quantity do not exist for reinsurance levels     λ∈ L + 1, r[ ].

Proof:  The proof is provided in the Appendix.                                                                      n

5.1.  Analysis— When Is Reinsurance Desirable?

Using the results of Corollary 1, we are able to explore and characterize

conditions under which it is desirable, on the margin, to introduce a level of
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reinsurance— a problem that is conceptually similar for all reinsurance levels   λ≥ 1 .  To

this end, we compare the price of insurance in the primary insurance market under two

alternatives.  The first alternative, denoted by   A , is a primary insurance market in

which the number of primary insurers is increased by 2.  The second alternative,   B , is

the same primary insurance market, except that the number of primary insurers

remains fixed, while we add a reinsurance level with 2 risk neutral reinsurers.15

For both alternatives, we assume that there are   m  identical primary insurance

customers (each with constant risk aversion coefficient β ), and (initially)     n0  identical

primary insurers (each with constant risk aversion coefficient   σ0 = σ < β ).  In addition,

we assume that the primary insurers are subject to exogenous i.i.d. insolvency perils ~

Bernoulli ρ( ), and that the customers receive no loss payments following an insurer’s

insolvency (i.e.,    g = 0).  Finally, under alternative   B , we assume that the reinsurers

remain solvent with probability 1.

From Equations (8) and (7) of Powers and Shubik (1999), we obtain the following

expressions for price and quantity, respectively, in the primary market under

alternative   A :

    
P0

A( ) =

n0 + 2
n0 + 1

 
 
  

 
 πeσQ0

A( ) m

πeσQ0
A( ) m + 1 − π

,                                                                                            (1)

                                               
15 Note that we consider marginal changes of two firms, rather than one firm, simply to avoid problems of
division by zero.
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Q0
A( ) = − m

β
ln

1 − π( )e− βV + πρ

π 1 − ρ( )
m

n0 + 2
 
 
  

 
 − 1

m
n0 + 2

 
 
  

 
 P0

A( )
− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
  

.                                                             (2)

Similarly, from Corollary 1 above, we obtain the following expressions for price and

quantity, respectively, under alternative   B :

    
P0

B( ) = 2
n0

n0 − 1

 
 
  

 
 n0

n0 − 2

 
 
  

 
 π,                                                                                        (3)

    

Q0
B( ) = − m

β
ln

1 − π( )e− βV + πρ

π 1 − ρ( )
m
n0

 
 
  

 
 − 1

m
n0

 
 
  

 
 P0

B( )
− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
  

.                                                                    (4)

We now consider under what conditions alternative   B  (the creation of

reinsurance) provides a lower price in the primary market than does alternative   A

(primary market expansion); i.e., when     P0
B( ) < P0

A( ), or equivalently,

    
2

n0

n 0 − 1

 
 
  

 
 n0

n0 − 2

 
 
  

 
 π <

n0 + 2
n0 + 1

 
 
  

 
 πeσQ 0

A( ) m

πeσQ 0
A( ) m + 1 − π

.

This inequality may be rewritten as
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π< 1 −

1 + εn 0

2
 
 
  

 
1 − e− σQ 0

A( ) m
,                                                                                                   (5)

where 
    
εn0

= 1 − n0 − 1
n0

 
 
  

 
 n0 − 2

n0

 
 
  

 
 n0 + 2

n0 − 1

 
 
  

 
 > 0 .  Plotting 

    

Q0
A( )

m
 on the horizontal axis, and π

on the vertical axis, Inequality (5) may be denoted by the region between Curve (I) and

the horizontal axis in Figure 1 below.

Figure 1.  The Frontier of Reinsurance Desirability

    

Q0
A( )

m

π

    

1 − εn 0

2

  I( )

  1

    

1
σ

ln
2

1 − εn 0

 

 
 

 
 
 

    P0
B( ) < P0

A( )

    P0
B( ) > P0

A( )
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We now consider the actual functional relationship between 
    

Q0
A( )

m
 and π in

equilibrium.  Rearranging Equation (2), we find that

    

π = 1

1 − ρ( ) 1 − εm ,n0

P0
A( ) − 1

 
 
  

 
 e

− β Q 0
A( ) m( )− V 

  
 
  + 1 − ρeβV

,                                                     (6)

where 
    
εm ,n0

= n0 + 2
m

> 0 .

The Case of No Insolvencies

For the moment, let   ρ = 0 , so that

    

π = 1
1 − εm ,n0

P0
A( ) − 1

 
 
  

 
 e

− β Q 0
A( ) m( )− V 

  
 
  + 1

.

This equation is then plotted as Curve (II) in Figure 2 below.
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Figure 2.  A Sufficient Condition for Reinsurance Desirability

From this second figure, it can be seen that a sufficient condition for there to exist

a region such that     P0
B( ) < P0

A( ) is that Curve (II) be lower than Curve (I) at the upper

bound of the feasible domain of 
    

Q0
A( )

m
; i.e., at 

    

Q0
A( )

m
= V .  This sufficient condition is

described by the inequality

    

Q0
A( )

m

π

  1

    

1 − εn 0

2

  I( )

  II( )

    

1
σ

ln
2

1 − εn 0

 

 
 

 
 
   V
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1
1 − εm ,n0

P0
A( ) − 1

 
 
  

 
 e

− β Q 0
A( ) m( )− V 

  
 
  + 1

< 1 −

1 + εn0

2
 
 
  

 
1 − e− σQ0

A( ) m

Q 0
A( )

m
=V

    
⇔  

P0
A( )

1 − εm ,n0

< 1 −

1 + εn0

2
 
 
  

 
1 − e− σV ,                                                                                      (7)

where

    
P0

A( ) =

n0 + 2
n0 + 1

 
 
  

 
 πeσV

πeσV + 1 − π
                                                                                                   (8)

is given by Equation (1).  Combining (7) and (8) yields

    

n0 + 2
n0 + 1

 
 
  

 
 

1 − εm , n0( )
1

1 + 1 − π
π

 
 

 
 e

− σV

 

 

 
 

 

 

 
 

<
1 − εn0( )1

2
 
 

 
 − e − σV

1 − e − σV

    
⇔  

n0 + 2
n 0 + 1

 
 
  

 
 

1 − εm ,n0( )1 − e − σV( )< 1 − εn0( )1
2

 
 

 
 − e− σV 

  
 
  

1 + 1 − π
π

 
 

 
 e

− σV 
  

 
  

    
⇔  k1 1 − e− σV( )< k2

1
2

 
 

 
 − e − σV 

  
 
  

1 + 1 − π
π

 
 

 
 e

− σV 
  

 
  

    
⇔  k1 − k1e

− σV < k2

2
+ k2

2
1 − π

π
 
 

 
 e

− σV − e− σV − 1 − π
π

 
 

 
 e

− 2σV

    
⇔  y 2 + 1− k1( ) π

1 − π
 
 

 
 −

k2

2
 
  

 
  
y + k1 − k2

2
 
 

 
 

π
1 − π

 
 

 
 < 0 ,                                          (9)

where   y = e− σV , 
    
k1 =

n 0 + 2
n0 + 1

 
 
  

 
 

1 − εm , n0( ), and     k2 = 1− εn0
.
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To simplify the mathematics, we assume that     m >> n0 >> 0 , so that     k1 ≈1 and

    k2 ≈1.  Inequality (9) then reduces to

    
y2 − 1

2
y + 1

2
π

1 − π
 
 

 
 < 0 ,

which has solution set

    
y ∈ 1

4
− 1

16
− π

2 1 − π( ),
1
4

+ 1
16

− π
2 1 − π( )

 
 
  

 
 

    
⇔  − 1

V
ln

1
4

+ 1
16

− π
2 1 − π( )

 
 
  

 
 < σ < − 1

V
ln

1
4

− 1
16

− π
2 1 − π( )

 
 
  

 
 ,                    (10)

as long as 
  
π< 1

9
.16

The Case of Potential Insolvencies

If we now let   ρ > 0 , we easily can see from Equation (6) that this has the effect of

shifting Curve (II) upward, thereby reducing the size of the potential interval in which

    P0
B( ) < P0

A( ).

The Case of Catastrophe Losses

For the case of (perfectly correlated) catastrophe losses, the analysis is very

similar to the non-catastrophe case.  All of the expressions for price and quantity in the

primary market remain the same, except for the expression for price under

alternative  A , which now becomes

                                               
16 We note that the restriction 

  
π < 1

9
 is easily satisfied for most primary property insurance markets.
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P0

A( ) =

n0 + 2
n0 + 1

 
 
  

 
 πeσµ0Q 0

A( ) m

πeσµ0Q 0
A( ) m + 1 − π

,                                                                                        (1’)

where 
    
µ0 = m

n0 + 1
.

Following the same analysis as before, we find that both Curves (I) and (II) are

compressed to the left— although not in the same proportions— yielding the sufficient

condition for     P0
B( ) < P0

A( ),

    
− 1

µ0V
ln

1
4

+ 1
16

− π
2 1 − π( )

 
 
  

 
 < σ < − 1

µ0V
ln

1
4

− 1
16

− π
2 1 − π( )

 
 
  

 
                    (10’)

(as long as 
  
π< 1

9
).  Clearly, condition (10’) is substantially more restrictive than

condition (10), suggesting that the potential benefit of reinsurance on price in the

primary market may be much more limited in the catastrophe context.

5.2.  Analysis— When Are There Enough Reinsurers?

We now seek to identify conditions under which the reinsurance market is

saturated— i.e., under which it is no longer desirable, on the margin, to introduce an

additional risk neutral reinsurer rather than an additional primary insurer (with risk

aversion coefficient σ ).  As we will see, this problem is conceptually similar for all

reinsurance levels   λ≥ 1 .

We begin by comparing the price of insurance in the primary insurance market

under two alternatives.  The first alternative, denoted by   C , is a primary insurance

market with one level of reinsurance, where the primary market has     n0  insurers, and

the reinsurance market has     n1  reinsurers.  The second alternative,   D , is the same
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primary insurance market, except that the number of primary insurers is increased by

one (to     n0 + 1), while the number of reinsurers is decreased by one (to     n1 − 1).  To

identify the point at which the number of reinsurers has reached its optimal saturation

level, we solve for the maximum value of     n1  such that     P0
C( ) < P0

D( ); i.e.,

    n1 * = Max n1 :π ≤P0
C( ) < P0

D( ) ≤1{ }

      
    
= Max n1 :

n1

n1 − 1

 
 
  

 
 n0

n0 − 1

 
 
  

 
 n0

n0 − n1

 
 
  

 
 − n1 − 1

n1 − 2

 
 
  

 
 n0 + 1

n0

 
 
  

 
 n0 + 1

n0 + 2 − n1

 
 
  

 
 < 0

 
 
 

 
 
 

. (11)

Interestingly, this saturation level may be found as the solution to a cubic

equation in     n1 .  In the figure below, we provide the saturation level for a wide range of

primary market sizes, and, for comparison purposes, we also include the actual

domestic U.S. insurance/reinsurance market figures for 1985 and 1996.  Intriguingly,

we observe that, as the U.S. market consolidates, its position on the graph appears to

follow a trajectory toward the idealized market curve.
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Finally, we note that for reinsurance levels   λ≥ 2 , Equation (11) generalizes to

    nλ* = Max nλ :π ≤P0
C( ) < P0

D( ) ≤1{ }

            

    

= Max nλ : nλ

nλ − 1
 
 
  

 
 nλ− 1

nλ− 1 − 1
 
 
  

 
 nλ− 1

nλ− 1 − nλ

 
 
  

 
 nλ− 2

nλ− 2 − nλ− 1

 
 
  

 
  

 
 

                                  < nλ − 1
nλ − 2

 
 
  

 
 nλ− 1 + 1

nλ− 1

 
 
  

 
 nλ− 1 + 1

nλ− 1 + 2 − nλ

 
 
  

 
 nλ− 2

nλ− 2 − nλ− 1 − 1

 
 
  

 
  
 
 

,

which also may be found as the solution to a cubic equation in   nλ.

5.3.  A Market with Correlated Strategies

If we modify the model to permit the risk neutral reinsurer at level     λ∈ L,r − 1[ ] to

make its offer as an explicit function of its bid, then there do exist equilibria for levels

Figure 3.  U.S. Insurance/Reinsurance Market
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    λ∈ L + 1, r[ ], characterized by the purchase of “over-insurance” by all risk neutral

reinsurers.

Corollary 2:  If the premises of Corollary 1 hold, but Assumption 2 is relaxed so that the

risk neutral reinsurers at levels     λ∈ L,r − 1[ ] are able to make their offers as explicit

functions of their bids (i.e., 
    
y j λ

λ( )= ϕλ x jλ
λ+ 1( )( )), then there exists a (non-unique) type-

symmetric pure strategy equilibrium for   G r( ) in which:

(i) the equilibrium price at reinsurance level     λ∈ 1,r[ ] is given by 

    

Pλ* =

n r

nr − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =λ+ 1

r

∏ ,

where 
    

µv − 1
µv

 
 
  

 
 nv − 1 − 1

nv − 1

 
 
  

 
 

v =r + 1

r

∏ ≡ 1 , and

    

P0 * =

nr

nr − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

nv − 1

 
 
  

 
 

v = 1

r

∏

denotes the equilibrium price in the primary insurance market; and

(ii) the equilibrium quantity at reinsurance level λ is given by 

    

Qλ*= Q0 * − m
σv

ln

1
π

− 1

µz − 1
µz

 
 
  

 
 n z − 1

n z

 
 
  

 
 

z = v + 1

r

∏
π

− 1

 

 

 
 
 
  

 

 

 
 
 
  

v =0

λ− 1

∑  for     λ∈ 1,L[ ],

and by
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Qλ*= µv

µv − 1

 
 
  

 
 

v =L + 1

λ

∏ 

  
 

  
Q 0 * − m

σv

ln

1
π

− 1

µz − 1
µz

 
 
  

 
 n z − 1

n z

 
 
  

 
 

z =v + 1

r

∏
π

− 1

 

 

 
 
 
  

 

 

 
 
 
  

v = 0

L − 1

∑

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 for     λ∈ L + 1, r[ ],

where     Q0 * = f P0 *( ) denotes the equilibrium quantity in the primary insurance 

market.

Proof:  The proof is provided in the Appendix.                                                                      n
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Appendix

Proof of Theorem 1:

Payoff Expressions

First, note that the payoffs to the primary market customers, the primary market

insurers, the level 1 reinsurers, etc., are given as follows:

    

E uB Bi t( )( )[ ]= 1 − π( )uB A + V − x i
0( )( )+ π 1 − ρ j i( )( )uB A − x i

0( ) + y j i( )
0( ) x i

0( )

xh
0( )

h∈M j i( )

∑

 

 

 
 

 

 

 
 

    

+ πρj i( )uB A − x i
0( ) + gy j i( )

0( ) x i
0( )

xh
0( )

h∈M j i( )

∑

 

 

 
 

 

 

 
 ,

    
E u

S 0( ) S j
0( ) t( )( )[ ]= πw 1− π( )µ0 − w u

S 0( )
R0

n0

+ y j
0( )P0 − x j

1( ) 
 
 

H j
0( ) w( )⊆ M j

0( )
∑

w =0

µ0

∑

                                                                                                     

    

+ yk
1( ) x j

1( )

x j '
1( )

j'∈M k
1( )

∑ − y j
0( )

 

 

 
 

 

 

 
 

x h
0( )

h∈H j
0( ) w( )

∑
x i '

0( )

i '∈M j
0( )

∑

 

 

 
 

,

    

E u
S 1( ) S k

1( ) t( )( )[ ]= πw 1 − π( )µ 0µ1 − w u
S 1( )

R1

n1

+ y k
1( )P1 − x k

2( ) 
 
 

H k
1( ) w( )= H j '

0( ) w j '( )
j '∈M k

1( )
∏ ,

s.t . w j ' ≤µ 0 ,  w j '

j '∈M k
1( )

∑ = w

     

∑
w= 0

µ0 µ1

∑

                                                                                  

      

+ yl
2( ) x k

2( )

xk '
2( )

k ' ∈M l
2( )

∑ − yk
1( )

 

 

 
 

 

 

 
 

xh
0( )

h∈H j '
0( ) w j '( )
∑

x i '
0( )

i ' ∈M j '
0( )

∑ x j '
1( )

j '∈M k
1( )

∑

x j '
1( )

j '∈M k
1( )

∑

 

 

 
 
 
 
 
 

,

      

E u
S 2( ) Sl

2( ) t( )( )[ ]= πw 1 − π( )µ0 µ1µ2 − w u
S 2( )

R2

n 2

+ y l
2( )P2 − xl

3( ) 
 
 

H l
2( ) w( )= H j '

0( ) w j '( )
j ' ∈M k '

1( )
∏

k '∈M l
2( )

∏ ,

s.t . w j ' ≤µ 0 ,  w j '

j '∈M k '
1( )

∑ = w

k ' ∈Ml
2( )

∑

∑
w =0

µ 0µ1µ2

∑
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+ ym
3( ) xl

3( )

xl'
3( )

l' ∈M m
3( )

∑ − y l
2( )

 

 

 
 

 

 

 
 

x h
0( )

h∈H j '
0( ) w j '( )
∑

x i '
0( )

i '∈M j '
0( )

∑ x j '
1( )

j' ∈M k '
1( )

∑

x j '
1( )

j' ∈M k '
1( )

∑ xk '
2( )

k '∈M l
2( )

∑

xk '
2( )

k '∈M l
2( )

∑

 

 

 
 
 
 
 
 
 
 
 
 

,

etc.

First-Order Conditions— Primary Insurance Market

Now consider the first-order conditions for the primary insurance market.  Given

the assumption that 
    

∂ρj i( )

∂x i
0( ) = 0 , it follows that:

    

∂E uB Bi t( )( )[ ]
∂x i

0( ) = − 1 − π( )e− β A + V − x i
0( )( )

    

− π 1 − ρj i( )( )e
− β A − x i

0( ) + y j i( )
0( ) x i

0( )

x h
0( )

h∈M j i( )
0( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

1 − y j i( )
0( )

xh
0( ) − x i

0( )

h∈M j i( )
0( )

∑

x h
0( )

h∈M j i( )
0( )

∑
 

 
 

 

 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

  

    

− πρj i( )e

− β A − x i
0( ) + gy j i( )

0( ) x i
0( )

x h
0( )

h∈M j i( )
0( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

1 − gy j i( )
0( )

xh
0( ) − x i

0( )

h∈M j i( )
0( )

∑

x h
0( )

h∈M j i( )
0( )

∑
 

 
 

 

 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

 .

Setting the above derivative equal to 0 yields

    
1− π( )e − βV + π 1 − ρ *( )e

− βx * 0( )

P0 * 1− µ0 − 1
µ0P0 *

 
 
  

 
 + πρ *e

− βgx * 0( )

P0 * 1 −
g µ0 − 1( )
µ0P0 *

 
  

 
  

= 0 ,

or equivalently,
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1 − π( )e − βV + π 1 − ρ *( )e− βQ 0 *

m 1 − µ0 − 1
µ0P0 *

 
 
  

 
 + πρ *e

− βgQ0 *
m 1 −

g µ0 − 1( )
µ0 P0 *

 
  

 
  

= 0 .

Furthermore,

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂y j

0( ) =

    
πw 1 − π( )µ 0 − w e

− σ0
R0

n0
+ y j

0( )P0 − x j
1( )+ y k

1( ) x j
1( )

x j '
1( )

j '∈M k
1( )

∑
− y j

0( )

 

 

 
 
 
 
  

 

 

 
 
 
 
  

x h
0( )

h∈H j
0( ) w( )
∑

x i '
0( )

i ' ∈M j
0( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

H j
0( ) w( )⊆M j

0( )
∑

w = 0

µ 0

∑

                                                                                                           
    

× 1 −
y j

0( )

y j '
0( )

j '= 1

n0

∑

 

 

 
 

 

 

 
 
P0 −

x h

h∈H j
0( ) w( )

∑
x i'

i ' ∈M j
0( )

∑

 

 

 
 

 

 

 
 
.

Setting this derivative equal to 0 implies

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w n0 − 1

n0

 
 
  

 
 P0 * e

σ0 y * 0( ) − y* 1( )

µ1

 

 
 
 

 

 
 
 w

µ 0 − w
µ0

e

σ0 y* 0( )− y * 1( )

µ 1

 

 
 
 

 

 
 
 w

µ0

 

 

 
 
 

 

 

 
 
 

w = 0

µ 0

∑ = 0
,

or equivalently,

    

n0 − 1
n0

 
 
  

 
 P0 * πe

σ0 y * 0( )− y * 1( )

µ 1

 

 
 
 

 

 
 
 

µ 0 + 1 − π

 

 

 
 
 

 

 

 
 
 

− πe

σ 0 y* 0( )− y * 1( )

µ1

 

 
 
 

 

 
 
 

µ0 = 0

    

⇒  P0* =

n0

n0 − 1

 
 
  

 
 πe

σ 0 y * 0( )− y * 1( )

µ 1

 

 
 
 

 

 
 
 

µ0

πe

σ 0 y* 0( )− y * 1( )

µ1

 

 
 
 

 

 
 
 

µ0 + 1 − π

 ⇔  P0 *=

n0

n0 − 1

 
 
  

 
 πe

σ0 Q 0 *− Q 1*( )
m

πe
σ 0 Q 0 * − Q1 *( )

m + 1 − π ,                        (A1)

where we have used the facts that, for     W ~ Binomial µ0 ,π( ),

    E ezW[ ]= πez + 1 − π( )µ 0

and

    
E We zW[ ]= ∂

∂z
E ezW[ ]= µ0 πez + 1 − π( )µ 0 − 1

πez .
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First-Order Conditions— Level 1 Reinsurance Market

We now turn to the first-order conditions for the level 1 reinsurance market.

First, note that

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂x j

1( ) =

    
πw 1 − π( )µ 0 − w e

− σ0
R0

n0
+ y j

0( )P0 − x j
1( )+ y k

1( ) x j
1( )

x j '
1( )

j '∈M k
1( )

∑
− y j

0( )

 

 

 
 
 
 
  

 

 

 
 
 
 
  

x h
0( )

h∈H j
0( ) w( )
∑

x i '
0( )

i ' ∈M j
0( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

H j
0( ) w( )⊆M j

0( )
∑

w = 0

µ 0

∑

                                                                                                

× − 1 + y k
1( )

x j '
1( )

j '∈M k
1( )

∑ − x j
1( )

x j '
1( )

j'∈M k
1( )

∑
 
 
  

 
 

2

xh
0( )

h∈H j
0( ) w( )

∑

x i'
0( )

i '∈M j
0( )

∑

 

 

 
 
 
 

 

 

 
 
 
 

.

Setting this derivative equal to 0 yields

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w − e

σ 0 y * 0( )− y * 1( )

µ1

 

 
 
 

 

 
 
 w

µ0 + w
µ0

µ1 − 1
µ1P1 *

 
 
  

 
 e

σ 0 y* 0( )− y * 1( )

µ1

 

 
 
 

 

 
 
 w

µ 0

 

 

 
 
 

 

 

 
 
 

w = 0

µ 0

∑ = 0
,

or equivalently,

    

− πe

σ0 y * 0( ) − y * 1( )

µ1

 

 
 
 

 

 
 
 

µ 0 + 1 − π

 

 

 
 
 

 

 

 
 
 

+ µ1 − 1
µ1P1 *

 
 
  

 
 πe

σ0 y * 0( ) − y * 1( )

µ1

 

 
 
 

 

 
 
 

µ 0 = 0

    
⇒  P1 * = µ1 − 1

µ1

 
 
  

 
 n0 − 1

n0

 
 
  

 
 P0 * .                                                                               (A2)

Furthermore,

    

∂E u
S 1( ) Sk

1( ) t( )( )[ ]
∂yk

1( ) =
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πw 1 − π( )µ 0µ 1 − w e

− σ 1
R1

n1
+ y k

1( )P1 − x k
2( )+ y l

2( ) x k
2( )

x k '
2( )

k '∈M l
2( )

∑
− y k

1( )

 

 

 
 
 
 
  

 

 

 
 
 
 
  

x h
0( )

h∈H j '
0( ) w j '( )
∑

x i '
0( )

i '∈Mj '
0( )

∑
x j '

1( )

j '∈M k
1( )

∑

x j '
1( )

j '∈M k
1( )

∑

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

H k
1( ) w( )= H j '

0( ) w j '( )
j ' ∈M k

1( )
∏ ,

s.t . w j ' ≤µ 0 , w j '

j '∈M k
1( )

∑ = w

∑
w = 0

µ0µ1

∑

                                                                                      
    

× 1 − yk
1( )

y k '
1( )

k' =1

n1

∑

 

 

 
 

 

 

 
 

P1 −

xh
0( )

h∈H j '
0( ) w j '( )
∑

x i '
0( )

i '∈M j '
0( )

∑
x j'

1( )

j' ∈M k
1( )

∑

x j '
1( )

j ' ∈M k
1( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

Setting this derivative equal to 0 implies

    

µ0 µ1

w
 
 
  

 
 πw 1 − π( )µ 0µ 1− w n1 − 1

n 1

 
 
  

 
 P1 *e

σ1 y * 1( )− y* 2( )

µ 2

 

 
 
 

 

 
 
 w

µ0µ1 − w
µ0µ1

e

σ0 y* 1( ) − y * 2( )

µ2

 

 
 
 

 

 
 
 w

µ 0µ1

 

 

 
 
 

 

 

 
 
 

w = 0

µ0µ1

∑ = 0
,

or equivalently,

    

n1 − 1
n1

 
 
  

 
 P1 * πe

σ 1 y * 1( )− y * 2( )

µ 2

 

 
 
 

 

 
 
 

µ0 µ1 + 1 − π

 

 

 
 
 

 

 

 
 
 

− πe

σ1 y * 1( )− y * 2( )

µ 2

 

 
 
 

 

 
 
 

µ 0µ1 = 0

    

⇒  P1 * =

n1

n1 − 1
 
 
  

 
 πe

σ1 y* 1( ) − y * 2( )

µ2

 

 
 
 

 

 
 
 

µ0µ 1

πe

σ1 y * 1( )− y* 2( )

µ 2

 

 
 
 

 

 
 
 

µ0 µ1 + 1 − π
.                                                                            (A3)

Seller’s First-Order Condition— Level 2 Reinsurance Market

For the level 2 reinsurance market, we find that

    

∂E u
S 1( ) Sk

1( ) t( )( )[ ]
∂x k

2( ) =
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πw 1 − π( )µ 0µ 1 − w e

− σ 1
R1

n1
+ y k

1( )P1 − x k
2( )+ y l

2( ) x k
2( )

x k '
2( )

k '∈M l
2( )

∑
− y k

1( )

 

 

 
 
 
 
  

 

 

 
 
 
 
  

x h
0( )

h∈H j '
0( ) w j '( )
∑

x i '
0( )

i '∈Mj '
0( )

∑
x j '

1( )

j '∈M k
1( )

∑

x j '
1( )

j '∈M k
1( )

∑

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

H k
1( ) w( )= H j '

0( ) w j '( )
j ' ∈M k

1( )
∏ ,

s.t . w j ' ≤µ 0 , w j '

j '∈M k
1( )

∑ = w

∑
w = 0

µ0µ1

∑

                                                                         
      

× − 1 + yl
2( )

x k '
2( )

k ' ∈M l
2( )

∑ − xk
2( )

xk '
2( )

k '∈M l
2( )

∑
 
 
  

 
 

2

xh
0( )

h∈H j '
0( ) w j '( )
∑

x i'
0( )

i ' ∈M j '
0( )

∑
x j'

1( )

j' ∈M k
1( )

∑

x j '
1( )

j '∈M k
1( )

∑

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.

Setting this derivative equal to 0 yields

    

µ0 µ1

w
 
 
  

 
 πw 1 − π( )µ 0µ 1− w − e

σ 1 y * 1( )− y * 2( )

µ 2

 

 
 
 

 

 
 
 w

µ0 µ1 + w
µ0µ1

µ2 − 1
µ2P2 *

 
 
  

 
 e

σ1 y* 1( )− y * 2( )

µ 2

 

 
 
 

 

 
 
 w

µ0µ1

 

 

 
 
 

 

 

 
 
 

w = 0

µ0µ1

∑ = 0
,

or equivalently,

    

− πe

σ1 y * 1( ) − y * 2( )

µ2

 

 
 
 

 

 
 
 

µ 0µ 1 + 1 − π

 

 

 
 
 

 

 

 
 
 

+ µ2 − 1
µ2P2 *

 
 
  

 
 πe

σ1 y * 1( )− y * 2( )

µ 2

 

 
 
 

 

 
 
 

µ0 µ1 = 0

    
⇒  P2 *= µ2 − 1

µ2

 
 
  

 
 n1 − 1

n1

 
 
  

 
 P1 *.                                                                               (A4)

Reinsurance Market, Level λ

By induction on (A2) and (A4), we see that

    
Pλ* = P0 *

µ v − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =1

λ

∏                                                                              (A5)

for     λ∈ 1,r[ ].  Moreover, it follows from (A1) and (A3) that
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y * 1( ) = µ1y * 0( ) − µ1

µ0

σ0

ln

1
π

− 1

1
n0 − 1

n0

 
 
  

 
 P0 *

− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

and

    

y * 2( ) = µ2y *1( ) − µ2

µ0µ1

σ1

ln

1
π

− 1

1
n1 − 1

n1

 
 
  

 
 P1 *

− 1

 

 

 
 
 
 
 

 

 

 
 
 
  ,

and so by induction,

    

y * λ( )= µλy * λ− 1( ) −
µv

v = 0

λ

∏
σλ− 1

ln

1
π

− 1

1
nλ− 1 − 1

nλ− 1

 
 
  

 
 Pλ− 1 *

− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

    

⇔  y * λ( ) = µ v
v= 0

λ

∏   
 
 

y * 0( )

µ0

− 1
σv

ln

1
π

− 1

1
n v − 1

nv

 
 
  

 
 P0 * µz − 1

µz

 
 
  

 
 n z − 1 − 1

nz − 1

 
 
  

 
 

z =1

v

∏
− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

v =0

λ− 1

∑

 

 

 
 
 
 
 

 

 

 
 
 
 
 

    

⇔  Qλ* = Q0 * − m
σv

ln

1
π

− 1

1
nv − 1

nv

 
 
  

 
 P0 * µz − 1

µ z

 
 
  

 
 nz − 1 − 1

nz − 1

 
 
  

 
 

z =1

v

∏
− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

v =0

λ− 1

∑                       (A6)

for     λ∈ 1,r[ ].
For     λ= r + 1 , we know that     y * r + 1( ) = 0 , and so
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0 = y * r( ) −
µv

v = 0

r

∏
σr

ln

1
π

− 1

1
nr − 1

n r

 
 
  

 
 Pr *

− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

    

⇔  Qr * = m
σr

ln

1
π

− 1

1
n r − 1

nr

 
 
  

 
 Pr *

− 1

 

 

 
 
 
 
 

 

 

 
 
 
  

    

⇔  Pr * =

n r

n r − 1
 
 
  

 
 πe

σ rQ r *
m

πe
σrQ r *

m + 1− π
.

It then follows from (A5) that

    

P0 * =

n r

nr − 1
 
 
  

 
 πe

σ rQ r *
m

µv − 1
µv

 
 
  

 
 n v − 1 − 1

nv − 1

 
 
  

 
 

v = 1

r

∏ 
  

 
  

πe
σ rQ r *

m + 1 − π
 
 
  

 
 

.

Proof of Corollary 1:

Given that reinsurers at level   L  and above are risk  neutral, we find that the

equation analogous to (A1) or (A3) for reinsurance level   L  simplifies to

    
PL* = nL

nL − 1

 
 
  

 
 π.

It then follows from (A5) that

    

P0 * =

n L

nL − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

nv − 1

 
 
  

 
 

v = 1

L

∏
 ⇒  Pλ*=

n L

nL − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 nv − 1 − 1

nv − 1

 
 
  

 
 

v= λ+ 1

L

∏
for     λ∈ 1,L[ ], and then from (A6) that
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Qλ*= Q0 * − m
σv

ln

1
π

− 1

µz − 1
µz

 
 
  

 
 n z − 1

n z

 
 
  

 
 

z = v + 1

L

∏
π

− 1

 

 

 
 
 
  

 

 

 
 
 
  

v =0

λ− 1

∑

for     λ∈ 1,L[ ].
To see what happens at reinsurance level     L + 1  (and above), consider the simple

case in which     L = 0  (i.e., all primary insurers are risk neutral).  Then

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂y j

0( ) = πw 1 − π( )µ 0 − w 1 −
y j

0( )

y j '
0( )

j' =1

n0

∑

 

 

 
 

 

 

 
 
P0 −

xh

h∈H j
0( ) w( )

∑
x i '

i ' ∈M j
0( )

∑

 

 

 
 

 

 

 
 H j

0( ) w( )⊆ M j
0( )

∑
w=0

µ 0

∑
.

Setting this derivative equal to 0 yields

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w n0 − 1

n0

 
 
  

 
 P0 * − w

µ0

 

  
 

  w = 0

µ 0

∑ = 0 ,

or equivalently,

    

n0 − 1
n0

 
 
  

 
 P0 * − π = 0

    
⇒  P0* = n0

n0 − 1

 
 
  

 
 π ,

as expected.

However, now consider

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂x j

1( ) = πw 1 − π( )µ 0 − w − 1 + yk
1( )

x j'
1( )

j ' ∈M k
1( )

∑ − x j
1( )

x j '
1( )

j ' ∈M k
1( )

∑
 
 
  

 
 

2

xh
0( )

h∈H j
0( ) w( )

∑

x i '
0( )

i' ∈M j
0( )

∑

 

 

 
 
 
 

 

 

 
 
 
 

H j
0( ) w( )⊆ M j

0( )
∑

w= 0

µ 0

∑ ,

which implies

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w − 1 + w

µ0

µ1 − 1
µ1P1 *

 
 
  

 
  

  
 

  w = 0

µ 0

∑ = − 1 + µ1 − 1
µ1

 
 
  

 
 n1 − 1

n1

 
 
  

 
 < 0 .
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Thus, the optimal amount of reinsurance for the risk neutral primary insurer is 0.

Analogous results hold for higher levels of reinsurance in which the reinsurers are risk

neutral.

Proof of Corollary 2:

As in the proof of Corollary 1, consider the simple case in which     L = 0 , and let

    y j
0( ) = ϕ 0 x j

1( )( ).  It then follows that

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂y j

0( ) =

    

πw 1 − π( )µ0 − w 1 −
y j

0( )

y j'
0( )

j' =1

n0

∑

 

 

 
 

 

 

 
 
P0 −

dx j
1( )

dy j
0( )

 

 

 
 H j

0( ) w( )⊆M j
0( )

∑
w = 0

µ 0

∑

                                                                                     

+ yk
1( )

x j'
1( )

j ' ∈M k
1( )

∑ − x j
1( )

x j '
1( )

j '∈M k
1( )

∑
 
 
  

 
 

2

xh

h∈H j
0( ) w( )

∑
x i '

i '∈M j
0( )

∑
dx j

1( )

dy j
0( ) −

xh

h∈H j
0( ) w( )

∑
x i '

i' ∈M j
0( )

∑

 

 

 
 
 
 

.

Setting this derivative equal to 0 yields

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w n0 − 1

n0

 
 
  

 
 P0 * − dx *1( )

dy * 0( ) + µ1 − 1
µ1P1 *

 
 
  

 
 w

µ0

dx * 1( )

dy * 0( ) − w
µ0

 

  
 

  w = 0

µ 0

∑ = 0 ,

or equivalently,

    

n0 − 1
n0

 
 
  

 
 P0 * − dx * 1( )

dy * 0( ) + µ1 − 1
µ1P1 *

 
 
  

 
 π dx * 1( )

dy * 0( ) − π = 0

    

⇒  
dx *1( )

dy * 0( ) =

n0 − 1
n 0

 
 
  

 
 P0 * − π

1 − µ1 − 1
µ1

 
 
  

 
 π

P1 *
 
 
  

 
 .                                                                            (A7)

Furthermore,

    

∂E u
S 0( ) S j

0( ) t( )( )[ ]
∂x j

1( ) =
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πw 1 − π( )µ0 − w 1 −
y j

0( )

y j'
0( )

j' =1

n0

∑

 

 

 
 

 

 

 
 
P0

dy j
0( )

dx j
1( ) − 1

 

 

 
 H j

0( ) w( )⊆M j
0( )

∑
w = 0

µ 0

∑

                                                                          

+ yk
1( )

x j'
1( )

j ' ∈M k
1( )

∑ − x j
1( )

x j '
1( )

j '∈M k
1( )

∑
 
 
  

 
 

2

xh
0( )

h∈H j
0( ) w( )

∑

x i '
0( )

i' ∈M j
0( )

∑
−

xh
0( )

h∈H j
0( ) w( )

∑

x i '
0( )

i '∈M j
0( )

∑
dy j

0( )

dx j
1( )

 

 

 
 
 
 

.

Setting this derivative equal to 0 implies

    

µ0

w
 
 
  

 
 πw 1 − π( )µ0 − w n0 − 1

n0

 
 
  

 
 P0 *

dy * 0( )

dx * 1( ) − 1 + µ1 − 1
µ1P1 *

 
 
  

 
 w

µ0

− w
µ0

dy * 0( )

dx * 1( )
 

  
 

  w = 0

µ 0

∑ = 0 ,

or equivalently,

    

n0 − 1
n0

 
 
  

 
 P0 *

dy * 0( )

dx * 1( ) − 1 + µ1 − 1
µ1P1 *

 
 
  

 
 π − πdy * 0( )

dx * 1( ) = 0

    

⇒  
dy * 0( )

dx *1( ) =ϕ 0
′x * 1( )( )=

1 − µ1 − 1
µ1

 
 
  

 
 π

P1 *
 
 
  

 
 

n0 − 1
n 0

 
 
  

 
 P0 * − π .                                                         (A8)

Solving (A8) as a differential equation (subject to the boundary condition

  ϕ 0 0( )= 0) yields

    y * 0( ) = ϕ 0
′x * 1( )( )x * 1( ),

which generalizes to

    
y * λ( )= ϕλ

′x * λ+ 1( )( )x * λ+ 1( )

    
⇔  Qλ* = nλϕλ

′x * λ+ 1( )( )x * λ+ 1( )                                                                              (A9)

for     λ∈ L,r − 1[ ], where

    

ϕλ
′x λ+ 1( )( )=

1 − µλ+ 1 − 1
µλ+ 1

 
 
  

 
 π

Pλ+ 1 *

 
 
  

 
 

nλ − 1
nλ

 
 
  

 
 Pλ * − π

.

The fact that (A7) and (A8) are equivalent implies that the entire system of first-

order conditions is underspecified, with   r − L  degrees of freedom.  Thus, any

equilibrium solution will not be unique.  However, to maintain continuity between the
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solution for the case at hand (i.e.,   σλ → 0 for     λ∈ L,r[ ]) and the solution for the case in

which only the reinsurer at level   r  is risk neutral (i.e.,   σλ > 0 for     λ∈ L,r − 1[ ], but

    σr → 0 ), we may impose the   r − L  conditions

    
Pλ* = P0 *

µ v − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =1

λ

∏ ,

for     λ∈ L + 1, r[ ].  These conditions, in conjunction with

    
Pr *= nr

nr − 1

 
 
  

 
 π

(which follows from an equation analogous to (A1) or (A3) for reinsurance level   r )

imply

    

Pλ* =

n r

nr − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v =λ+ 1

r

∏
for     λ∈ L + 1, r[ ].  It then follows that (A9) may be rewritten as

    

Qλ*= nλ

µv − 1
µv

 
 
  

 
 n v − 1

n v

 
 
  

 
 

v =λ+ 1

r

∏
π

 

 

 
 
 

 

 

 
 
 

Pλ+ 1 *Qλ+ 1 *
nλ

 
 
  

 
 = µλ+ 1 − 1

µλ+ 1

 
 
  

 
 Qλ+ 1 *

for     λ∈ L,r − 1[ ], or equivalently,

    
Qλ*= µv

µv − 1

 
 
  

 
 

v =L + 1

λ

∏ 

  
 

  
Q L *

for     λ∈ L + 1, r[ ].
For this solution to be feasible, it must be true that all of the risk neutral

reinsurers are better off by entering equilibrium than by remaining out of the market.

In the simple case of     L = 0 , this means that

    

R0

n0

+ y * 0( ) P0 * − x *1( ) + y *1( )

µ1

− y *0( ) 
 
  

 
 π > R0

n0

+  ̃y * 0( )  ̃P 0 * −  ̃y * 0( )π

(where the tilde denotes the relevant quantity in the absence of reinsurance at the next

highest level).  More generally,
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RL

nL

+ y * L( ) PL * − x * L + 1( ) + y * L + 1( )

µL+ 1

− y * L( ) 
 
  

 
 π > RL

nL

+  ̃y * L( )  ̃P L * −  ̃y * L( )π              (A10)

for   λ= L ,

    

Rλ

nλ
+ y * λ( ) Pλ * − x * λ+ 1( ) + y * λ+ 1( )

µλ+ 1

− y * λ( ) 
 
  

 
 π > Rλ

nλ
                                              (A11)

for     λ∈ L + 1, r − 1[ ], and

    

Rr

nr

+ y * r( ) Pr * − y * r( )π > Rr

nr

                                                                                 (A12)

for   λ= r .

Inequality (A12) follows immediately from the fact that

    
Pr *= nr

nr − 1

 
 
  

 
 π > π.

Rewriting (A10) yields

    
y * L( ) PL * − π( )− x * L + 1( ) + y * L+ 1( )

µL + 1

π >  ̃y * L( )  ̃P L * − π( )

    

⇔  y * L( )

n r

nr − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 nv − 1 − 1

n v − 1

 
 
  

 
 

v = L+ 1

r

∏
− π

 

 

 
 
 

 

 

 
 
 

− x * L + 1( ) + x * L + 1( )

PL+ 1 *
π >  ̃y * L( ) nL

nL − 1

 
 
  

 
 π − π

 

  
 

  

    

⇔  ϕ L
′x * L + 1( )( )x * L+ 1( )

n r

n r − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v= L+ 1

r

∏
− π

 

 

 
 
 

 

 

 
 
 
− x * L+ 1( )

                                    

    

+ x * L + 1( )π
nr

n r − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 nv − 1 − 1

nv − 1

 
 
  

 
 

v = L+ 2

r

∏

 

 

 
 
 

 

 

 
 
 

> ϕ L
′x * L+ 1( )( )x * L + 1( ) nL

nL − 1

 
 
  

 
 π − π

 

  
 

  
,  (A13)

where we make use of the fact that 

    

y * L( ) =  ̃y * L( ) = ϕ L
′x * L + 1( )( )x * L+ 1( ) =

µv − 1
µv

 
 
  

 
 n v − 1

n v

 
 
  

 
 

v= L + 1

r

∏
π

 

 

 
 
 

 

 

 
 
 
x * L + 1( ).
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Inequality (A13) can then be rewritten as

    

µv − 1
µv

 
 
  

 
 nv − 1

nv

 
 
  

 
 

v =L + 1

r

∏
π

 

 

 
 
 

 

 

 
 
 
x * L+ 1( )

n r

n r − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 n v − 1 − 1

n v − 1

 
 
  

 
 

v= L+ 1

r

∏
− nL

nL − 1

 
 
  

 
 π

 

 

 
 
 

 

 

 
 
 
− x * L + 1( )

                                                                                                       

    

+ x * L + 1( )π
nr

n r − 1
 
 
  

 
 π

µv − 1
µv

 
 
  

 
 nv − 1 − 1

nv − 1

 
 
  

 
 

v= L+ 2

r

∏

 

 

 
 
 

 

 

 
 
 

> 0

    
⇔  

nL

n L − 1

 
 
  

 
 − nL

n L − 1

 
 
  

 
 µ v − 1

µv

 
 
  

 
 n v − 1

n v

 
 
  

 
 

v = L+ 1

r

∏ − 1
 

  

                                                                                
    
+ µL + 1

µL+ 1 − 1

 
 
  

 
 µv − 1

µv

 
 
  

 
 n v − 1

nv

 
 
  

 
 

v =L + 1

r

∏  

  
x * L+ 1( ) > 0

    
⇔  

1
n L − 1

 
 
  

 
 + µL+ 1

µL+ 1 − 1
− nL

nL − 1

 
 
  

 
 µv − 1

µv

 
 
  

 
 nv − 1

nv

 
 
  

 
 

v=L + 1

r

∏ 

  
 

  
x * L+ 1( ) > 0 ,

which is true because 
    

µL + 1

µL+ 1 − 1
> nL

nL − 1
 (from Assumption 1).

Finally, (A11) follows by substituting λ for   L  in the proof of (A10), and noting

that the right-hand side of (A11) is smaller than that of (A10).
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