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1. Introduction

A guiding principle in much of Denis Sargan’s research was the ‘marriage’ of time
series and simultaneity. In one of his earliest published papers, Sargan (1953) studied
the properties of the correlogram and periodogram. Subsequently, his work (1957,
1958) on instrumental variables provided a methodology of estimation that was well
suited to the joint treatment of simultaneity and time series dynamics in parametric
models. Later on, his work with Espasa (1977) sought solutions to much more gen-
eral time series regression problems in the presence of simultaneity. Inspired by the
work of Hannan (1963), these solutions utilized spectral methods which permit an
investigator to be agnostic with respect to the time series properties of the errors in
an econometric model. These methods now fall into the category of semiparametric
approaches to modeling, treating the errors, as they do, in a nonparametric fashion
while leaving the systematic components of the model in parametric form. Since this
early work, nonparametric and semiparametric approaches to econometric modeling
have grown in popularity in both time series and microeconometric applications. In
view of the common lack of prior information from economic theory models about
dynamic formulations, the use of these methods in time series contexts has seemed
highly desirable to many researchers including those who have argued for the use of
unrestricted vector autoregressions (Sims, 1980). Spectral methods, like unrestricted
VAR’s, can be regarded as tools for describing the data and it is this rather more
general subject that concerns us in the present paper.

Description is the starting point in much empirical work. In almost all econometric
applications it is common to look at the data that has been collected, and find ways
of revealing what seem to be its principal features. Graphical representations taking
the form of time series plots and charts give us particularly useful ways of envisioning
information and conducting comparative analyses over time. Tellingly, these methods
appear both in formal applied econometric analysis and in the popular press, where
they figure prominently in business page discussions of the behaviour of economic
time series like asset prices, exchange rates, business confidence and production. Of
course, while it is relatively easy to point informally to characteristics that such data
seem to display in visual plots and charts (and this is, indeed, what is done daily in
the popular business press), it is rather a different matter to formalise this process of
description.

In describing the characteristics of economic time series, we are greatly assisted by
a presumption of stationarity. For then we can utilize time invariant parameters like
the mean, the variance, and the autocorrelogram to build a groundwork of descriptive
statistics which involve the sample analogues of these quantities. These parameters
provide points of bearing that are useful in summarising a particular series and in
comparing different series. Extending the groundwork further, there are the underly-
ing time invariant marginal and finite dimensional probability densities of the data as
well as its spectral density and higher order spectra, all functional quantities that can
be estimated from the observed data in terms of sample analogue functions. While
inferential procedures can and, indeed, have been developed for all these quantities,
they are first and foremost descriptive tools.



Unfortunately, this entire groundwork of descriptive statistics gets lost when the
presumption of stationarity is removed because the underlying time invariant quan-
tities no longer exist. The sample analogues are still, of course, computable in the
same way, but their interpretation is not the same and they typically no longer con-
verge without restandardisation as the sample size increases. Instead, in many cases
of interest like time series that have random wandering characteristics, these sample
analogues end up having random rather than nonrandom limits, as shown in Phillips
(1986, 1998). Notwithstanding this random limiting behavior, it remains of interest
whether any of these sample analogues continue to be useful as descriptive tools for
nonstationary data and, if they are, how they should be interpreted.

It is little exaggeration to say that there are presently in use no tools of descriptive
statistics for nonstationary data. In recent work, the author (1998) suggested some
methods of spatial density analysis that apply in a fairly natural way to nonstationary
data with stochastic trends and made a start in addressing the questions just raised in
the last paragraph. This paper reviews and extends some of those methods and gives
some illustrations of the methods in practical empirical work and simulations. The
empirical applications chosen for this paper include macroeconomic data on inflation,
financial data on exchange rates and political opinion poll data. In the inflation
application, it is shown how the methods can be used to measure historical hazards
for inflation and deflation, the former being of interest in view of recent inflation
targeting policies by monetary authorities in several countries, and the latter being
of interest in view of recent experience in the Asian economies.

The paper is organised as follows. Section 2 outlines the spatial techniques given
in Phillips (1998) and the backbone of limit theory that justifies these descriptive
methods and provides guidance on their practical interpretation in applications. Sec-
tion 3 gives some brief illustrations with simulated data. Section 4 reports empirical
applications to inflation, exchange rates and opinion poll data. Section 5 makes some
concluding comments in relation to more general issues of econometric methodology.

2. Concepts, Background Theory and Asymptotics

2.1 Preliminaries

To fix ideas and facilitate the development, we suppose that the data are well
modeled by a stochastic trend with a single unit root. All of the present theory has
been developed in Phillips (1998) and Phillips and Park (1998) and the remainder
of this section largely overviews methods from those papers that we will use here.
Extensions of the ideas to more general cases, like series with fractional roots or near
unit roots, are presently under development and these are likely to be important
in empirical work where there is evidence of long range dependence or fractional
stochastic trends. We expect the methods we are about to discuss to continue to be
applicable in such cases in their present form, but with some changes in the technical
details and limit theory that are yet to be worked out.

Accordingly, this paper concentrates on a unit root time series y; = S{u,, whose
increments u; form a stationary time series with zero mean and finite absolute mo-



ments to order p > 2, and which satisfies the functional law

Y () = y[—\/’% = B(-) = BM(o?). (1)
Here, 02 is the long run variance of u;, or 27 fu,(0), where f,, is the spectrum of
u;. Primitive conditions for (1 ) are well known (e.g., see Phillips and Solo, 1992)
and we do not pursue them here. In fact, we need to go a little further than (1)
and arrange the probability space in such a way that the processes Y,, and B lie in
the same space. This can be accomplished by embedding arguments. In particular,
we can use the Hungarian strong approximation (e.g. Csorgo and Horvath, 1993) to
1+, which enables the construction of an expanded probability space that includes a
Brownian motion B (+) for which

sup [y, — B(k)| = 0a.5.(n'?),

0<k<n
so that &
Yk
sup |=—= — B[ — || = 04.s.(1). 2
O<kgn ﬁ (n>‘ ( ) ( )
Since Yy, (r) = yf/— ,for (t—1)/n <r <t/n, t >1, we get the direct representation
nr
Y, () = B(™) 4 o, (1) @

which effectively embeds the process Y;, in the Brownian motion B. Nothing will be
lost if we proceed as if the space has already been set up to ensure (3).

2.2 Soujourn Time and Spatial Density

A central idea in the spatial density analysis of Phillips (1998) is to replace the
notion of a time invariant marginal probability density with that of a time depen-
dent stochastic process that measures spatial density as it has occurred over a given
temporal trajectory of the time series. However, instead of measuring probability
density at spatial points, this alternate quantity measures the density contributed
at different spatial points towards the total quadratic variation of the process over a
given interval of time. We explain this difference as follows.

If X; is a strictly stationary time series with absolutely continuous distribution
and probability measure P, then its time invariant probability density can be written
in terms of the formula

pdfx (s) = hm—/l lx—s| < e)d (4)
Accordingly, as this definition makes clear, the quantity pdfx (s) measures the con-

tribution to the overall probability P that comes from around the spatial point s.
Inverting (4), we get for a measurable set A

P(X, € A) = / 1(A)dP = /A pdfx (s)ds. (5)
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For a nonstationary series like g, there is no time invariant probability measure P
and it is no longer sensible to think of decomposing probability into densities from
different spatial regions. Moreover, each trajectory (y: : t = 1,...,n) has its own
special characteristics, as does that of the limit Brownian motion process B. In view
of (1) and (3), it is simplest to replace the time index ¢ with the index r representing
the fraction of the sample included in the series by time t. Then, the corresponding
trajectories of the series and the limit process are given by (Y, (r) : r € [0,1]) and
(B(r) : r € [0,1]). The quadratic variation of the limit process B is given by the
square bracket process

B), = [ (@B)? = ro* ©

which is a simple linear deterministic function of r in this Brownian motion case.
Over the full sample (i.e., when r = 1), the total quadratic variation of the limit
process B is simply o2. We may therefore contemplate decomposing this variation
into densities from different spatial regions according to

T
Lis(r,s) = lim l/ 1(|B(t)—s| < )d[B)s. (7)
e—02¢ Jg

The limit in (7) is known to exist almost surely and the limit function Lp(r,s)
is called the local time of the Brownian motion B at the spatial point s. Lg(r,s)
is a continuous stochastic process in both its temporal and spatial arguments and
it measures the soujourn time that the process B spends in the vicinity of s over
the time interval [0,7]. Obviously, it is increasing in 7 (i.e., as more time elapses,
the number of visits to s, and hence the density there, can only increase). These
properties of the local time process of Brownian motion are rather well known (e.g.
Revuz and Yor, 1994).

Just as we can invert (4) to form (5), we may invert (7) to deliver the occupation
time (in variational units) that B spends in the set A over the time interval [0,7],
viz.

/ 1(B(t) € A)d[B]; = / Li(r, )ds.

0 A

When A is the whole real line, this formula produces the decomposition
(B, :/ Lg(r,s)ds,

which, in view of (6), leads quite simply to

o0
o? :/ Lp(1,s)ds, (8)
—0o0
an expression that breaks down the variance of B(1) (i.e., the limiting variance of

Y,(1) ) into the contributions associated with each spatial point s visited by B (re-
spectively, Y;,). Standardising (8) by 02 we have

1=/ Lp(1,s)ds,
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where
Lp(l,s) =0"2Lp(l,s) = hm—/ 1(|B(t)—s| < e)dt 9)

is chronological local time in the sense that it measures soujourn time at s purely
in chronological units (rather than variance based units). Lpg(1,s) is normalized so
that the total amount of time spent by the process in the vicinity of all points that it
could possibly visit is unity (i.e. the length of the time interval [0, 1] over which the
process has been active). Similarly, Lg(r,s) = c=2Lg(r,s) and r = [°°_Lp(r, s)ds.

Roughly speaking, we can think of L(1, s) as the proportion of time over the unit
interval [0,1] that B spends in the vicinity of the spatial point s. Similarly, Lg(r, s)
can be interpreted as the proportion of time over the interval [0, 7] that B spends in
the vicinity of the spatial point s.

2.3 Estimating a Spatial Density

We can construct spatial measures for the observed time series y; that are similar
to the measure Lg(1,s) for the soujourn time of Brownian motion. In particular, the

quantity
(‘_ 5| < 5n>
=

simply counts the number of times % lies within &, of s, and so the quantity

11 1 /1
% n 1(7—8 <5n>:£/0 1(|Y, (r) —s| <ep)dr (10)
measures the relative amount of time that % lies within &, of s, given the total

number of observations (n) and the length of the interval (2e,). In view of the
embedding (3), (10) is approximately

%/OllﬂB(r) — s <ep)dr, (11)

whose limit as ¢, — 0, according to (9), is Lp(1,s). Thus, (10) is an empirical
estimate of the chronological time, Lg(1,s), spent by the limit process B in the
vicinity of the spatial point s. We can think of (10) as a spatial density estimate
constructed with a uniform kernel and with bandwidth parameter ¢,,. Using a general
kernel function K. (-) = K(2) instead, we would have the estimate

Ll Zﬁatz}ff(( 7))

where K (-) is a symmetric, nonnegative kernel function that integrates to unity. We
can rewrite this formula as

11 &

P9 = s 2 K (Vs - )
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= o 2 K s - w)
= L’n iKhn(\/ﬁs - yt) ) (12)
t=1

o LB(l, %) - % gma —u), (13)

both of which are expressed as a kernel function in terms of the original series .

The bandwidth parameter in (12) is hy, = \/ne, and the spatial position, a = \/ns,
is now measured in units of \/n. As is apparent from (11), it is important that , — 0
if we are to achieve a consistent estimate of the local time Lg (1, s) . However, it is no
longer vital that h,, — 0, and, indeed, Lp (1,s) may still be consistent for Lg (1, s)
even when h,, is constant or slowly increasing. The reason is that in conventional
kernel density estimation for stationary processess a shrinking bandwidth serves the
purpose of focusing attention on a particular spatial point, whereas in the present
situation 1 tends naturally on its own to drift away from any given spatial point at
the rate \/n. So, on the one hand, there is less reason to have to focus attention on
given spatial points, because this focus occurs in a natural way. But, on the other
hand, there are necessarily a reduced number of relevant observations in estimating
the spatial density Lp (1,s). In fact, there are only O(,/n) relevant observations to
each spatial point, compared with the usual O(n) relevant observations in stationary
density estimation. In effect, this is because the number of returns that a unit root
process, like a random walk, makes to the origin or some other fixed point is of
the order of \/n (c.f., Feller, 1957, p.83), whereas all n observations of a stationary
times series are relevant in fitting its probability density at any point in the support.
This difference in the order of magnitude explains the standardizing factor ﬁ that
appears in (12). By contrast, if X; is a strictly stationary time series with probability
density (4), then the corresponding kernel density estimate is given by

— 1 & 11 ¢ 1
d, s) = — Kp(s—Xy) =—— K|l—(s—X,)), 14
P (4) = 3 YKo = X0 = - 3K (50 X0)) (14)

where the standardising factor is % and the bandwidth parameter h,, — 0.

2.4 Limit Theory

Under some rather weak regularity conditions that are discussed in Phillips (1998)
it is shown that

[rer]

ZALB(T, s = % ZKhn(\/ﬁs — Yp) —a.s. Lp(r,s — By(k)), (15)
=1

This result allows for nontrivial initial conditions in the process y; = Xius + yo,
showing that the point (s — Bp(k)) at which the spatial density is estimated may



be affected by initial conditions if these are not O,(1). In particular, if the initial
conditions extend into the distant past as in

[r25]

Yo = Zu,j, for some k >0
7=0

for which the following functional law holds

[re5]

no2 Zu_j = By (k),
=0

then in place of (1) we have
niéy[nr] = B(T’) + Bo(lé),

with the Brownian motions B and By being independent. Again, matters can be
arranged so that the probability space of y; includes By.

A limit distribution theory for the estimate L B(r, s) is also available. Indeed, using
the normalization factor ¢, = 1/e, = \/n/hy,, we have the following mixed normal
limit theory (Phillips, 1998)

Ven |L(r,s) = Lp(r,s = Bo(k))| = MN(0,16K;Tp(r,s — Bo(x))),  (16)
where the constant is

K= | b / T K()(p MK (8)dpdt,

a quadratic functional of the kernel K and the covariance function of Brownian
motion. When K is a normal kernel, Ky = 73 (2% — 1) . The convergence rate

in (16) is \/c, = ni /I, which is slower than the conventional rate of convergence
of kernel density estimates in the stationary case (viz. +/nh;) for all bandwidths
hy, = ¢/n? with b < 1.

Using (16), asymptotic confidence intervals for L (r, s—By(k)) can be constructed
at each spatial point, giving e.g.,

=~ 1
T 2
Da(rs) £ 1_96<M>

Cn,

as a 95% confidence interval for Lg(r,a — By(k)). By virtue of the standardization of
yt, the quantities measure spatial departures from the origin in units of \/n and the
spatial points are centred on a standardized initial condition. Hence, for a confidence
interval directly at the point s°, we would compute

1
16K5Lp (7", s0 —f—n*%yo) )2 (17)

Cn

EB (r, ¥+ n_%y()) + 1.96(
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These intervals can be compared with the confidence intervals of kernel estimates
of a stationary probability density like (15). By traditional theory (Silverman, 1986)
a 95% confidence interval for the probability density pdfx (s) is,

pdf  (s) £ 1.96 (%}f(s)f (18)
where o
ky — / K(r)2dr. (19)

Leaving aside initial conditions, the only differences between (17) and (18) are in the
scale factors and the convergence rate. The former arises because of persistent tempo-
ral dependence in the trajectory of y, and the latter because of the effective number
of observations. In other respects, (17) simply extends the theory of nonparametric
density estimation to spatial density estimation for stochastic processes.

2.5 Interpreting Spatial Density Estimates

The interpretation of spatial density estimates like EB (r,s) is similar to that of
a conventional probability density estimate. As indicated earlier, in rough terms
Lg(1,s) is the proportion of time over the unit interval [0,1] that the limit proces
B spends in the vicinity of the spatial point s. Similarly, the quantity L g(r,s) is an
estimate of the proportion of time over [0, 7] that the standardised series % spends

in the vicinity of s. The quantity L B (7’, %) is then an estimate of the proportion of
time over [0, 7] that the series y; spends in the vicinity of a. Note that

oo a oo
/ooLB(L%) da = /foo Lp(1,s)ds\y/n = +/n,
so that on this adjusted scale of spatial measurement the total amount of soujourn
time is set to \/n rather than unity. With this modification, we can think of spatial
density estimates just like conventional density estimates, the difference being that in
the latter we are distributing probability across space whereas in the former we are
distributing soujourn time across space. As is apparent from (13) and (14), the same
formula applies in each case up to normalization by /n. Thus if we use the spatial
density estimate (13) in the case of stationary rather than nonstationary data we will
obtain the usual kernel density estimate scaled by y/n. In that case, we are effectively
distributing a non-unitary /n probability across spatial points, rather than the \/n
sojourn time.

2.6 Hazard Functions

Following Phillips (1998), we define the spatial hazard function Hp(r, a) associated
with a given spatial density Lp(r,s) as follows

Lg(r,a)

Hp(r,a) = W.

(20)
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This definition is entirely analogous to the hazard rate A(x) associated with a con-
tinuous probability density pdfx (x), which has the form

) = pdfx(@) _  pdfx(z) _ pdfx(x)
[Zpdfx(s)ds — 1—cdfx(x)  F(z)

where cdfx () is the cdf of the distribution and F(z) = 1 — edfx(z) is the survivor
function. It is also useful to define the left sided hazard
Lg(r,a)
S N TG 2
The functions (20) and (21), like the spatial density Lp(r,a) itself, have two argu-
ments, time and space. Note that Hp and hp are invariant to whether Lg(r,a) or
Lp(r,a) are used in definitions (20) and (21).

The spatial hazard functions can be interpreted as follows. Hpg(r,a) measures
the conditional likelihood computed over the sample path to time r that B takes the
value a, given that it takes values at least as big as a. Similarly, hp(r,a) measures
the conditional risk computed over the same sample path to time r that B takes
the value a, given that it takes values at least as small as a. To be more concrete,
suppose the time series y; is inflation and that B(r) is the weak limit of nféy[nr]. The
spatial hazard Hg(r,a = —=) then measures the conditional likelihood computed over

S
W
the period [0,7] (which is expressed in standardized units of fractions of the overall
sample, so that it corresponds to an observation period of ¢ = /nr for y;) of an
inflation rate of s, given that inflation is at least as great as s. Similarly, hg(r,a =

ﬁ) measures the conditional risk computed over the period [0,r] (respectively, an

observation period of t = \/nr for y;) of an inflation rate of s, given that inflation is at

least as small s. In the latter case, when s is negativc we can think of hp(r,a = ﬁ) as

measuring the hazard of deflation rather than inflation. That is, if there is deflation,

hp(r,a = ﬁ) measures the relative likelihood of a deflation rate of s.

For a given time period r, the shape of the spatial hazard rate functions Hg(r,a =

ﬁ) and hp(r,a = ﬁ) can be studied in just the same way as we look at hazard

rates in the analysis of independent (or strictly stationary) data. In such studies it is
usually of interest to find out whether the hazard declines, increases or stays constant
as we increase s, whether there are multiple peaks in the hazard and so on. Since
our hazard rates also depend on time r, we can consider what happens to the hazard
rate functions as the time period changes or as new data is introduced. In the case of
inflation, this means that we look at whether the hazard of a certain rate of inflation
of deflation rises or falls over time.

2.6 Hazard Functions Asymptotics

The spatial hazard functions Hg(r,a) and hg(r,a) are empirically estimable using
the nonparametric spatial density estimate Lg(r, ﬁ ). In particular, we may construct




These estimators are consistent and have mixed normal distributions under the same
regularity conditions as the limit theory for the spatial density estimate Lg(r, ﬁ)
In particular, we have

Hp <7“, %) —as. Hp(r,a— By(k)), hp (7", %) —as. hp(r,a— Bo(k)),

and

Ven [ﬁB (7‘, n*%s> — Hp(r,a — Bo(ﬁ))] = AMN (0’[(2[%1((7;’2:2%(&)));) ’

hB(r,a—Bo(/q))2>
Lp(r,a — By(k) ’

N [EB (r, n_%s) — hp(r,a— BO(/{))} = 4MN (O,Kg —

The results for Hp (r, n=3 s) are proved in Phillips (1998) and those for hp (r, n3 s)
follow in a similar way.

2.7 Interpreting Moments

In stationary cases, the ergodic theorem and the existence of moments are all that
are required to ensure good limiting behavior of sample moments. Thus, if X; is
strictly stationary and ergodic, and X[ is integrable then

n

n Y Xf —as EX], (22)
=1

a result that allows us to interpret sample moments of integrable functions of the
data in terms of population moments.

In nonstationary cases, the absence of ergodicity means that quite different lim-
iting behavior can be expected of sample moments than what occurs in (22). Never-
theless, sample moments still play a role as descriptive statistics for the sample data,
because they continue to summarize key features of the data in much the same way
as in the stationary case. In many cases, empirical investigators want to characterize
the data by some data reduction techniques without having to resolve potentially
complicated issues like choosing between stationary and nonstationary generating
mechanisms. Thus, it is of interest to be able to interpret sample moment character-
istics for nonstationary data.

For a time series y; satisfying (1), it is now a very well known application of func-
tional limit theory and continuous mappings (Phillips, 1986, 1987) that standardized
moments of y; have the following asymptotic behaviour

n

1
N / B(r)*dr. (23)
n'ts o 0

There is another way of writing this result. We use the fact that if ¢ is a measurable
and locally integrable map then

/1g(B(r))dr _ /°° 9(s)Tp(1, 5)ds. (24)
0 —00
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This result, known as the occupation time formula (Revuz and Yor, 1994), converts
temporal integrals into spatial integrals involving local time. We have written the
formula (24) here in terms of chronological local time Lg(1,s). Applying (24) to (23)
reveals that we have the alternate representation

13_& iyf :%i <%>k = /oo Ska(l,s)ds, (25)

n-2 i t=1 o

which is the k’th moment of the spatial distribution Lg(1,s). In effect, sample mo-
ments of y; converge weakly to corresponding sample moments of the spatial distri-
bution of the limit process. In this form, (25) is a very natural analogue of (22).
Moreover, it makes it clear the sense in which sample moments continue to be useful
descriptive characteristics of the data. Whether the data are stationary or nonsta-
tionary, sample moments provide summary information about the observed data that
reflect characteristics of an underlying population. This population is just the sta-
tionary distribution in the case of a stationary, ergodic time series, whereas it is the
sojourn distribution of the limit process in the nonstationary case.

3. Simulations

This section illustrates the spatial density estimates in some commonly arising cases
with simulated data. The model for y; is taken to be a Gaussian first order autoregres-
sion with and without a deterministic trend component. The generating mechanisms
are as follows:

Model 1: Gaussian AR(1) with no trend
Yi = pyi—1 +ug, up =iid N (0,1)
Model 2: Gaussian AR(1) with trend
ye="bt+yl, yl=pyl+w,  w=iid N(0,1)

The AR coefficients selected were p = 0.5,1.0, covering stationary and unit root
cases, and the deterministic trend coefficient b = 0.05 was chosen for model 2. When
the model is stationary, the initialization yg is drawn from the stationary distribution.
When the models have a unit root, the initialization is set to zero. The sample
size is set at n = 500. Figs. 1-4 display the data (Figs. X(b)) and the resulting
spatial density estimates (Figs. X(a)). The bandwidth in these exercises, and in our
empirical illustrations in Section 4, is chosen using the rule h,, = n~'/5. Pointwise
95% confidence bands for the spatial density are given by the broken lines in the
figures.

12
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Fig. 1(a) Spatial Density of AR(1): p =0.5
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Fig. 1(b) AR(1) Data: p =0.5

For model 1, y; is stationary when |p| < 1 and the invariant distribution is

N (0,02) with 032/ = lij. It is this invariant distribution that is being estimated
by the spatial density estimate in the p = 0.5 case (Fig. 2a), subject to rescaling the
probability by y/n, as mentioned earlier. In the unit root case (Fig. 1la), the spatial
density estimates the soujourn time of the series at each point that it visits. The
differences between the two cases are very apparent in the figures. In the stationary
case the fitted curve is smooth and a good approximation to a rescaled normal den-
sity. In the unit root case, the curve is irregular and shows substantial variation in
soujourn levels over quite a large range of spatial values. This irregular curve is our

point estimate of the stochastic process Lg (1,s), for which the Brownian motion B
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is the limit process of n*%y[m]. It gives us summary information about the spatial
points y; has visited and the relative proportion of those visits to the full sample.
Apparently, the regions [—4,1] and [3.5,4.5] are the most frequently visited in this
sample path. The spatial support is also far wider in the unit root case.
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Fig. 2(a) Spatial density of Random Walk
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Fig. 2(b) Random Walk

Model 2 allows for trend stationary and random walk with drift realizations. The
same innovations were used for generating the data in this case as for Model 1. Fig. 3
gives the trend stationary results. With 5% trend growth, the data is now distributed
over a much wider region than for Model 1. The spatial density estimate is no longer
a smooth curve (as in Fig. 1) and has wide confidence bands. From these bands
it is apparent that the spatial density outcome is compatible with a uniform spatial
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distribution over the support, barring the very ends of the range. This marries with
the notion of the data being stationary about the fixed trend line y = b¢, and will be
discussed further below. This behavior would be accentuated were the data generated

more frequently about this line (i.e. infill observations keeping the span of the data
fixed).
The stationary component has distribution ¢y =4 N (0,02), so then y; =4

N (bt,ci) and the density of the data is invariant up to the mean. Some calcu-
lations reveal that the spatial density estimate in this case has mean value

B(2a ) = (G S n)

When b = 0, (26) is

VI T 140 ()],
o) 1+0(n)]

which is the density of IV (0,02 + hi) evaluated at the spatial point a and scaled
by /n. (The variance term, (IZ + h2, is well known from conventional kernel density
asymptotics - e.g. Hiirdle and Linton, 1994). When b # 0, (26) can be approximated
for large n by writing bt ~ bngt where ng < n is large and fixed. Then, (26) is
approximately

dr

a—bn L ’ a—omogr 2
- (2(023_}%)) [1+0(hd)] Jn /1 e—ﬁ%[wo(%)]
I I
V21 (02 + h%) =1 V2T ((f% + h%) 2 /0
NG

b g’

which we note to be independent of the spatial point a. Thus, in the trend stationary
case, the spatial density estimate has approximately constant mean, corroborating
the form of the empirical estimate found in Fig. 3. Thus, one of the characteristics
of spatial densities of trend stationary series is that that the mean density is approx-
imately constant over the support. As we will see, this behavior is quite different
from the spatial density of a random walk with drift.
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Fig. 3(b) Data for AR(1) + trend (5%): p = 0.5

Fig. 4 gives the spatial density of a random walk with a 5% drift, so that the
deterministic component here is the same as it is in the trend stationary case. It is
apparent from Fig. 4(a) that the regions [3,5] and [23,27] are the most frequently
visited in this sample path. Clearly, the spatial support is far wider than in the case
of no drift (Fig. 1), but the curve is just as irregular.
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This can be explained by noting that if M(r) = br + B(r) is Brownian motion
with drift, then dM = bdr + dB, so that (dM)? = (dB)? = dt and the quadratic
variation process of M is the same as that of B, i.e. [M], = [B], = [i (dB)*. Then

Lot (rs) = lim%/orl(]M(t)—s]<e)d[M]t
= dim— [T1(B@)— (s — bt) | < &)t

and the sojourn time of M at s can be regarded as a version of the sojourn time of
Brownian motion recentred around the drift.
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4. Empirical Applications

4.1 Exchange Rate Data and Target Zones

Exchange rate data under floating regimes typically behave as if they have no fixed
mean and are usually well represented by unit root processes. Intermediate between
fixed and flexible exchange rate regimes are target zone systems where exchange rates
are permitted to float within bands. This exchange rate mechanism was operated
by the European Monetary System (EMS) over the 1980’s and 1990’s. For most
countries in the EMS, the bands were set at £2.25% around a central parity that
was occasionally adjusted by currency realignments. Such exchange rate target zones
have been the subject of considerable research. A theory model for exchange rate
target zones was developed by Krugman (1991, 1992) and has formed the starting
point in much of the subsequent research on this topic. This model allows for the
determination of the exchange rate within the band in terms of a nonlinear function
of economic fundamentals which are represented by Brownian motion. The nonlinear
function arises because of the presence of monetary policy intervention designed to
keep the exchange rate in the band. It has an S—curve shape and approaches the
edge of the band in a smooth tangential fashion that is characterized as ‘smooth
pasting’ (Dixit, 1995). One of the empirical implications of this theory is that the
distribution of exchange rates within the band should be U—shaped, so that there is,
in effect, a greater concentration of observations closer to the edge of the band than
in the center of the band.
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Fig. 5(a) Spatial Density of FF/DM Exchange Rate
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The empirical evidence in support of this implication of the target zone model
can be assessed by using our spatial density approach. Fig. 5(b) shows the French
Franc/German mark exchange rate from March 1979 through to March 1992 in terms
of deviations from the central parity at the beginning of the period. This data was
used by Svensson (1992) in his review of the target zone literature. The +2.25%
bands around the central parity are shown by broken lines in this figure. Succes-
sive realignments in the central parity are also shown, occurring in September 1979,
October 1981, June 1982, March 1983, April 1986 and January 1987. All of these
realignments devalued the franc against the mark. Combining all these periods, Fig.
5(a) gives the spatial density of the exchange rate deviations from the central parity.
The figure shows strong evidence of bimodality in the data, revealing a clear peak in
spatial density at the lower edge of the band around —2%. The remainder of the data
appears to be spread out fairly evenly over the positive region of the band [0,2.25] .
These results provide partial support for the conclusion from the target zone model
that exchange rates should tend to cluster near the edges of the band. However, the
spatial density is clearly not U— shaped, and there appears to be a strong tendency
in these data for the exchange rate to spend a good deal of time in the center of the
band as well as near the edges, a feature that is also fairly evident in the time plot
of the data. What the spatial density in Fig. 5(a) adds to a close examination of the
time plot of the data is a quantitative evaluation of the relative importance of differ-
ent spatial locations, precisely the matter that needs to be addressed in considering
the empirical implications of the target zone theory model. Thus, while the target
zone model is rejected, it appears that there are some implications of the model that
do find support in the data.

4.2 Inflation Data: Measuring Inflation and Deflation Hazards

Fig. 6(a) shows annual CPI inflation rates for the US based on monthly data for
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the CPI over the period 1934:1-1997:12. The time plot shows several periods of two
digit inflation, periods of deflation and substantial volatility in inflation, especially at
higher rates. Fig. 6(b) gives the spatial density estimate and reveals a primary con-
centration of variation around the 1%-6% inflation rate, a mode around 9% inflation
and a further mode indicating a peak in deflation around -2.5%.
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Fig. 6(a) US Inflation 1934-97
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Fig. 6(b) Spatial Density of US Inflation 1934-97

Figs. 6(c) gives hazard rate estimates for US inflation. Inflation hazards clearly
peak at low levels (around 3%), intermediate levels (around 6%) and low two-digit
levels (around 10-12%). The 3% and 10-12% peaks are both statistically significant
and there is a fall off in the hazard rate around 8%, between the peaks. The rising
hazard around 16% is insignificant and can be ignored, being dependent on only a
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few observations. Overall, these estimates indicate that, conditional on there being
inflation, historical experience over the last 60 years in the US indicates that the

predominant inflation risks are at low levels and low two-digit levels.

Hazard

0.3 .
1
1
1
i
I
(
0.2r —— Hazard Rate i
--- standard error ,'
|
1
I
1
1
1
0} !
1
1
i
,\‘/ \ /
//
0.0 =Bl L : . ‘
-4 -2 0 2 4 6 8 10 12 14 16
Inflation rate
Fig. 6(c) US Inflation hazard 1934-37
1.0
0.9
1
0.81Y
071 I\ —— Hazard Rate
\ --- standard error
0.6F \
P \
Q o5
@ |
T 04l
0.3}
0.2
01
0.0 L L L L L L L Tt mem e
-40 =30 -20 -10 0.0 1.0 20 3.0 40

Inflation rate
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Figs. 6(d) gives hazard rate estimates for US deflation. These are based on
an estimate of the left sided hazard function (21). The unbroken line in Fig. 6(d)
measures the conditional risk of inflation at a particular rate, given that inflation
is no greater than that particular rate. Thus, when that inflation rate is negative,
the curve measures the conditional risk of deflation. The estimates shown in Fig.
6(d) indicate that there is a significant risk of deflation around the —1% level. The
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risk then falls off and subsequently rises again to another peak around—3.5%., This
peak and the subsequent higher rates of deflationary risk are statistically insignificant
and are based on only a single episode of high deflationary rates experienced in the
interwar period. In sum, we may take these estimates as indicative of a non-negligible
risk of low levels of deflation (around —1%) based on historical US experience.

4.3 Opinion Poll Data: Nixon and Clinton approval ratings

We end this empirical section with a brief application to political opinion poll data.
Like many economic time series, there is substantial evidence that presidential opinion
poll data are well modeled by unit root processes (e.g. Blood and Phillips, 1995 ,
1997). As such, this type of data is amenable to the type of descriptive statistical
analysis considered in this paper. In some respects, our approach is particularly useful
with data of this type because the data is usually not equally spaced in time, making
conventional discrete time modeling difficult. Figs. 7(b) and 8(b) show opinion poll
data for the Nixon and Clinton presidencies. From these data, the spatial densities
were computed and are shown in Figs. 7(a) and 8(a).
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As is apparent from the time plot of the data in Fig. 7(b), the latter part of
the Nixon presidency was characterized by a sharp falling off in the ratings as the
Watergate crisis fulminated. For obvious reasons, Nixon approval ratings do not
follow a stationary process. Nevertheless, we may conduct a spatial density analysis
along the lines we have discussed. The spatial density estimate shown in Fig. 7(a)
manifests the phenomenon of the effects of the fulminating Watergate crisis on the
Nixon presidency in a remarkably clear bimodality in the Nixon approval ratings,
with a significant lower mode in approval around 25%.
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Fig. 8(b) gives a time plot of the approval ratings for President Clinton, up to
November 1997, prior to the breaking of the Lewinski scandal. The spatial density
of Clinton approval ratings are shown in Fig. 8(a). Apparently, it is hard to reject
that Clinton approval ratings are uniformly distributed over the region [40%,60%] ,
indicating a clear difference in the spatial distribution of approval ratings between
the two presidencies. Obviously, it will be of interest to use these methods to assess
the effects of the Lewinski scandal on the spatial distribution of Clinton approval
ratings.

5. Concluding Comments on the Relation to Nonpara-
metric Methods

Fconometric work, like other applications of statistics, involves data reduction. Even
descriptive techniques, like the spatial densities and hazard rates that are applied
here, necessitate a loss of information. Their usefulness comes from the need to
discover regular features of the data and convenient means of expression for them,
tasks that seems to be much more difficult for nonstationary data than they do for
stationary data. However, while we no longer have a framework of time invariant
characteristics to rely upon when the data are nonstationary, we can find convenient
quantitative representations of their sample characteristics without being dependent
on the use of a specific model. Thus, whereas we no longer have fixed population
moments or a time invariant probability density to rely upon, we do have a well
defined concept of spatial location that has meaning beyond the immediate sample
data. Our analysis shows that it is possible to construct quantitative measures of
spatial density and apply these measures in an informative way to a variety of different
data sets. Once this has been done, it is possible to use these measures in further
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constructive ways to estimate interesting functionals of spatial densities like hazard
functions.

The techniques discussed and illustrated in this paper have a certain role to play
in the ongoing evolution of econometric methods. In recent years, much of econo-
metrics has been concerned with an attempt to achieve generality wherever possible,
without sacrificing specificity where it connects most closely to underlying economic
ideas. One way of attaining generality that has become increasingly popular in both
microeconometric and time series studies is the use of nonparametric and semipara-
metric techniques. These techniques seek to avoid precise formulations or specific
functional representations wherever generality is considered desirable and, thereby,
it is hoped that the techniques will sit more comfortably with abstract propositions
of economic theory. Nevertheless, existing validation of the use of these techniques
has rested on the presence of invariant functional quantities, like a probability den-
sity or a spectrum, that can be estimated. What the methods of this paper show
is that the notion of a general nonparametric approach to data analysis continues
to retain validity even when the data are manifestly nonstationary and there are no
underlying time invariant quantities to estimate. What changes is not the approach
to data analysis, but the interpretation of the empirical quantities that emerge from
a nonparametric analysis. For nonstationary series, these quantities simply reflect
variational decompositions across space rather than probability decompositions.

6. Notation

—a.s. almost sure convergence =,—,; weak convergence
—p convergence in probability [] integer part of
=4 distributional equivalence rAS man(r, s)

B (r) Brownian motion = equivalence

BM (0?) Brownian motion with variance 0> 0,(1)  tends to zero in probability
1(A) indicator of A 04.5.(1) tends to zero almost surely
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