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Abstract

We investigate the outcomes of simultaneous price competition in the presence of
private information on the demand side. Each of two sellers offers a different variety
of a good to a buyer endowed with a private binary signal on their relative quality.
We analyze how the unique equilibrium of the game changes as a function of the
(common) prior belief on the relative quality of the goods and the precision of the
private information of the buyer. Competition is fierce, and the buyer enjoys high
rents, when the prior belief is biased in favor of one good and private signals are not
very informative: the ex ante superior seller cannot resist the temptation to clear
the market, and triggers an aggressive response by the competitor. When instead
the distribution of ex post valuations is highly spread, due to a vague prior belief
and strong signals, the sellers become local monopolists and extract high rents from
the buyer. We provide a full characterization of the mixed-strategy equilibrium
which arises when the two goods are mildly differentiated ex post. QOverall, the
market-clearing temptation effect destroys the monotonicity and convexity of the
equilibrium profit of a seller in the prior belief. As a consequence, a competing seller
does not necessarily benefit from revelation of public information, sometimes even
if biased in its favor.
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1. Introduction

Martha is determined to hire the best decorator to revamp her vast town house in Central
London with stucco curved ceilings, stone-finished walls and mosaic floors. The classical
design of Sanderson — a decorator with a long-standing tradition in London — has clearly
an edge on the funkier design of Conran. Each decorator privately gives her a detailed
description and demonstration of the services to be provided and quotes an inclusive price.
Martha then decides which decorator to hire, if either, on the basis of this information. In
this and other similar circumstances the price-taking party knows more accurately than
the competing price-setters the match of her preferences (or technology) with the intrinsic
characteristics of the good or service exchanged. As further examples, the user of an input
of production is likely to be better informed than the suppliers on its quality, relative
to the available alternatives, and a sub-contractor knows better the cost of the specific
product or service required by competing contractors. In the case of sellers competing
for an informed buyer, what is the outcome of price competition among the sellers? How
much information should the buyer acquire? To answer these questions we extend the
classic Bertrand (1883) model of price competition to asymmetric settings with private
information on the demand side.

The problem of static competition for a privately informed buyer is a natural building
block for dynamic models of strategic pricing with learning in the presence of private
information. While Bergemann and Valimaki (1996), (1997), and Felli and Harris (1996)
analyze the dynamics of price competition as public information spreads, the final aim of
our research project is to study the case with private information. In such dynamic models
the level of differentiation among the goods is the state variable which evolves with the
accumulation of information on relative quality.

In our static model ex-post differentiation between the sellers is the result of prior
vertical differentiation and private information of the buyer. First, sellers may differ ex
ante, when it is common knowledge in the market that one variety of the good (Sanderson)
is more likely to be better than the other {Conran) before the customer receives any private
information on their relative quality. Second, sellers appeal ez-post in different ways to
the buyer, depending on the private signal (description and demonstration of the services
to be provided) observed before the purchase decision is made. In this paper we focus
mostly on the prototypical case of two sellers competing for a single buyer, who observes
a private binary signal on the relative quality of the two goods offered. Equilibrium prices
and profits of the sellers are characterized as functions of two crucial parameters of the
model: the common prior belief on the relative quality of the two goods, and the precision
of the buyer’s private information. The equilibrium is unique, so that we may illustrate
unambiguous comparative statics predictions on equilibrium strategies and payoffs for



changes in the two parameters.

The equilibrium strikes a balance between two tensions: each duopolist on the one
hand wishes to extract the maximum rent from the buyer for given probability of selling,
while on the other is tempted to reduce the price to increase the probability of selling at
the expense of the competitor. Slightly undercutting the price of the competitor can yield
a discrete gain in quantity demanded and therefore in expected profits, so that the payoff
functions of the sellers are discontinuous. Given the close connection of the games, the
equilibrium constructed shares many common features with that found by Osborne and
Pitchik (1987) in the Hotelling (1929) model with uniform distribution of consumers. In
two extreme regions of parameters the equilibrium is in pure strategies, while the sellers
play a mixed-strategy in the remaining intermediate region.

Firstly, a unique pure-strategy equilibrium arises for a sufficiently balanced prior belief
on the relative quality of the two goods and a sufficiently high precision of the private signal
of the customer. In this case, final differentiation between the two varieties is strong and the
customer becomes very keen to buy one of them depending on the realization of the private
signal received. In turn, each supplier only targets the customer with favorable information
for her own good, since it would be too costly to steal from the competitor the customer
who received unfavorable information. This separating eguilibrium is characterized by
little competitive pressure on prices and high profits for both sellers, who become local
monopolists and leave no rents to the buyer.

Secondly, when the prior quality perceived by the market is biased enough for one
seller and the precision of the private signal is low enough, the weak power of private
information cannot reverse the strong ex-ante inclination of the customer for one of the
two goods. Competition results then in a pooling equilibrium; the seller favored by the prior
belief covers the entire market by posting a limit price which excludes the competitor. This
price is necessarily low, relative to the level of perceived quality, because it must induce
the customer to buy even after receiving an unfavorable signal. Competition has therefore
a tendency to become fiercer and to lead to lower prices as uncertainty on the relative
quality decreases. In this region of parameters both types of customer enjoy rents.

Finally, in cases of mild final differentiation, both firms randomize over the continuous
price space in the unique equilibrium, in mized strategies by the sellers. Moving from
the separating to the pooling region the equilibrium randomizations put more weight on
low prices, as the seller favored ex ante has more incentive to undercut the competitor.
Our constructive characterization of the mixed strategy equilibrium can be useful in other
games with a continuum of actions and discrete private information.

The comparative statics of equilibrivin with respect to changes in the two parameters
reveals a natural continuity of equilibrium payoffs across different equilibrium regimes.
More importantly, it offers interesting insights on the value of information in a strategic
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setting with endogenous pricing. First, consider changes in the prior belief, achieved by
revelation of public information to both buyer and seller. Such information allows for better
decisions and is therefore socially beneficial, if one abstracts from distributional issues by
keeping prices fixed. The best-known result in a strategic setting is due to Milgrom and
Weber (1982): in a second-price auction with affiliated valuations of the buyers revealing
public information is always beneficial to the seller. A simple implication of this result is
that the profit function of a monopolist who sells to a privately informed buyer is convex
in the common prior belief. Our main finding is that this general convexity property is lost
whenever another differentiated seller who competes in price is introduced. In particular,
a seller dislikes revelation of public information when the prior belief is intermediate and
private information of the buyer is strong. The reason is again that extreme beliefs lead the
sellers to compete more fiercely. This non-convexity contrasts not only with the results for
the case of non-strategic pricing, but also with those obtained for learning without private
information. We also find that the payoff of the ex-ante superior seller is not monotonic
in the prior belief, in contrast to the monopoly case. Finally, the sum of the payoffs of
the sellers is non-monotonic in the level of ex-ante differentiation, in contrast to the case
without private information.

Second, consider changes in the precision of the private information of the buyer. In
contrast to the prediction in a fixed-price environment, the payoff of the buyer is non-
monotonic in the precision of her own private signal. The buyer is strictly worse off by
acquiring private information beyond a certain level, because the sellers can extract more
rents in equilibrium the greater the ex-post differentiation of valuations. Similarly, the
payoff of a seller is non-monotonic in the precision of the buyer’s private information, even
though more precise signals raise the total surplus to be shared among the society of sellers
and buyer.

When the sellers compete ex ante, the buyer does not necessarily purchase the ex-post
superior good, as would be required to achieve allocative efficiency. In particular, for mild
final differentiation (in the mixed strategy region and in part of the separating region) the
equilibrium is ineflicient because the ex-ante superior seller has an incentive to keep the
price high in order to extract more rent from the consumer.

The paper proceeds as follows: Section 2 briefly surveys the literature. Section 3
introduces our basic duopoly model of competition for an informed buyer and compares
it to that of Hotelling (1929). Section 4 characterizes the equilibrium for all parameter
values. Our main results on the value of information for the buyer and the sellers are
derived and discussed in Section 5. Section 6 deals with the robustness of our analysis and
results to changes in the assumptions. Section 7 concludes.



2. Relation to the Literature

Extreme predictions are obtained very easily in the Bertrand model with identical sellers,
but departing from the classical case can lead to formidable technical complications. This
could explain why this problem is relatively unexplored. Because private mmformation on
the demand side gives rise to ex-post differentiation between the two sellers, our model
has many formal analogies (and similar technical problems) to a Hotelling (1929) pricing
game for given locations of the sellers. In our setting the prior belief and the precision
of the signal affect the distribution of the buyer’s valuation: a prior more biased in favor
of one seller shifts the distribution closer to that seller, and more accurate information
of the buyer corresponds to a mean preserving spread in the distribution. In a similar
vein, Gabszewicz and Grilo (1992) study price competition conditional on quality in a
duopoly market where firms sell vertically differentiated products and consumers have
heterogeneous beliefs on quality. In order to tackle the problem of information acquisition,
we instead perform unconditional analysis in a market for a single buyer with belief derived
from a common prior. The restrictions on the corresponding reduced-form Hotelling model
provided by our parametrization are discussed throughout the paper.

Broecker (1990) analyzes the (mixed strategy) equilibrium in a competitive market
where each bank performs a binary test on applicant firms and offer credit conditional on
the realization of this test. In his setting each competitor has an independent (private)
signal on the firm, while we consider the specular case where the price-taking agent alone
has private information. Mixed strategy equilibria have also been constructed in rather
different models of price competition. For example, Rosenthal and Weiss (1983) charac-
terize the mixed-strategy equilibrium in Spence’s model of competition in the presence of
signalling. Their equilibrium construction extends to other models of competition with
discrete asymmetric information, like the Rothschild and Stiglitz model of competition in
the insurance market. The features of their equilibrium are completely different from ours,
because in those models the goods offered by different competitors are identical, while in
our setting they are differently appealing to different types of consumers. As a further
example, Varian (1980) models sellers who engage in sales behavior in an attempt to price
discriminate between informed and uninformed consumers in a Butters (1977)-like world.

Competing mechanisms for selling to informed buyers have received recent attention
in auction theory and industrial organization. For instance, McAfee (1993) constructs a
dynamic model of price formation where sellers compete in designing mechanisms to sell
identical objects to buyers. In our setting sellers offer instead differentiated goods and
the buyer has private information on their relative quality. Stole (1993) studies price
discrimination with non-linear pricing in differentiated oligopoly with private information
of consumers on preference for brand and quality. As discussed inh Section 6.1, in our



model] the linearity of the preferences of the buyer do not allow any scope for action on
the quantity dimension even when sellers are allowed to offer menus of lotteries.

Our model of price competition can aiso be interpreted as a first-price procurement
auction where the buyer decides which good to buy depending on the price bids as well
as the realization of a private signal on the relative quality of the goods offered. Manelli
and Vincent (1995) study optimal procurement mechanisms in environments where the
valuation of the buyer depends on the sellers’ private information. In their setting a
procurement auction may be suboptimal for the buyer, being dominated by a credible
take-it-or-leave-it offer to a seller selected at random. Similarly in our setting, where only
the buyer has private information, a credible offer of a price equal to zero to the ex-post
superior-quality seller would maximize the payoff of the buyer and achieve the efficient
allocation.!
for the buyer in this environment, it arises naturally when the bargaining power does not
rest with the informed party. In Section 6.1 we show that in our environment with linear
preferences simple price competition results when competing sellers optimally design the
mechanism and are allowed to offer menus of lotteries, provided that they cannot condition
their offers to those of the competitor.

Finally, our work relates to the literature on experimentation in oligopoly. For instance,
Harrington (1995) extends the model of learning of the market demand by a monopolist
to an oligopoly setting. Closer in spirit to us, Schlee (1996) considers the value of public
information in a model where buyer and seller share the same belief on quality. In his
setting the buyer demands multiple units and does not possess any private information.

Though our first-price auction is not the optimal procurement mechanism

3. Model

Supply. Consider the following one-shot model of simultaneous price competition for
an informed buyer. On the supply side of the market there are two sellers competing
simultaneously on prices. Each duopolist, denoted by j € {0,1}, posts price P; for her
variety of the good and commits to sell at that price if the buyer agrees. The marginal cost
of both suppliers is set equal to zero for convenience of notation. Each firm is risk-neutral
and maximizes expected profits.

Demand. On the demand side there is a single risk-neutral buyer with a unit demand
for an indivisible good. The payoff in case of no purchase (action ap) is 0. There are two
states of nature, wp and w;, indicating the superior good. Since good 1 is better than
good 0 in state wy, while the opposite is true in state wy, we assume for convenience that

IThis result holds since there is no private information of the sellers and no entry costs to become a
seller.



the (gross of price) payoff of purchasing good ¢ (action a;) in state w; is 1 if i = j and
0 if © # j. Relative quality indicates the match of the preferences of the buyer with the
intrinsic characteristics of the good. The buyer maximizes the expected valuation net of
the price paid.

Information. The state w is unknown to the sellers and the buyer who share the same
(common knowledge) prior belief ¢ = Pr(w;). Prior to purchase, the buyer observes the
realization of a private signal of bounded precision on the relative quality of the two
varieties and the prices posted by both sellers. In particular, we consider the case where
the signal o € {0y, 01} is binary with conditional probability distributions:

Prio) ={ §_, i @)
with ¢, j € {0,1}. Notice that for simplicity we are considering the symmetric case where
Pr (oijws) = o for 1 = 0,1 is the probability that the buyer receives the “correct” signal.
Without loss of generality we restrict attention to a € [1/2, 1], since o € [0,1/2] would
be equivalent to relabelling the signals. Since decreasing a corresponds to garbling this
binary signal structure, o parametrizes the precision (or “quality”) of the buyer’s private
information. The quality of the private signal is bounded whenever o < 1 and the signal
is informative for a # 1/2. The private signal received by the customer is not observed by
the sellers, but the conditional distributions of the signal in (3.1) are common knowledge.?

Bayesian Updating. Let f;(g,a) = Pr(w;|o;) be the buyer’s private posterior belief
that the state is w; after observing the signal realization o;. Bayes’ rule yields

aq

fo(g,a) = L-a)g f‘(q’a)=aq+(1—a)(1—4)'

a(l-g)+(1-a)q’

(3.2)

The updated belief represents, given the zero/one payoffs, the customer’s expected valu-
ation for good 1 in monetary terms. The ex-ante valuations are ¢ for good 1 and 1 — q
for good 0, and the ex-post valuations of the buyer with signal o; are f; for good 1 and
1 — f; for good 0. Notice that 8fo/8q > 0, 8f,/8q > 0, 8%f1/8¢* < 0 < 6%f,/Bq?, and
dfo/0a < 0 < 8f1/0a.

Game. Figure 1 illustrates the extensive form of the game. First, both firms quote
simultaneously prices to which they precommit to sell to the customer. Then nature

2The binary signal formulation is widely adopted, being the simplest one entailing information of
bounded precision (see e.g. Broecker’s (1990) study of competition with adverse selection). The quality
of our analysis should not change with alternative formulations with finite number of signals. We refer to
Section 6.2 for a discussion of alternative formulations of the model with a continuous signal structure,
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determines the realization of the signal according to (3.1). The true state of nature is not
known to the firms, so that their common probability assessment that signal g; is received
by the customer is

Pr(oilg,a) = qPr(oijw)) + (1 — q) Pr (oi|wo) . (3.3)

The customer observes the signal realization o; and updates the belief from ¢ to f;. In
the language of Bayesian games, we will refer to the customer who has received signal
o; as to type-i customer, since the realization of the signal is not known to the sellers.
The customer then compares her updated valuation with the prices quoted and decides
whether to buy and from which firm to buy. The payoff to a firm when selling is equal
to the price charged and the payoff of the customer is equal to the valuation for the good
bought minus the price paid for it. The order in the payoff vector in the figure is: seller 0,
seller 1, and the buyer.

Buyer’s Behavior. The customer chooses the good yielding the highest expected payoff
net of the price (incentive compatibility constraint), provided that the net payoff is non
negative because of the outside option of not purchasing (individual rationality constraint).
The net valuations of type-i buyer are f; — P, for good 1 and 1 — f; — P, for good 0, so
that good 1 is preferred to good 0 when

fi-PA>1~f—R, (IC;q)

where IC; ; stands for incentive compatibility for buyer of type ¢ to buy good j. By revers-
ing the inequality one obtains the JIC, ¢ constraint. Type-i customer is exactly indifferent
for prices

P] =2f,'— 1+P0 (IC‘I)
at which JC; binds. With some abuse of notation, P; = IC;(P:—_;) stands conveniently for
the price of firm j corresponding to P;_; through the IC; constraint, precisely ICi(Pp) =
2fi— 1+ Py and ICi{(P) =1 - 2f; + P,. The maximum willingness to pay for good j by
type—i customer is determined by the individual rationality constraint IR, ;

fi-P =2 0, (IR;,)
1—fi—P, > 0. (IR;0)

In summary, type-i customer buys good 1 if P, < min (2f; — 1+ P, f;), and good 0 if
Py < min {1 —~ 2f; + P;,1 — f;}. Figure 2a represents the IC’s and IR’s constraints in the
P,, P, space. The IR, lines are horizontal and I R; ¢ vertical. The IC; lines have both unit
slope. As illustrated in the figure, IC,, is binding for F < 1 — f; and IR, is binding
otherwise. IC) g, rather than IR, is instead always binding in the relevant range of
prices.



Differentiation. To understand the role of the parameters ¢ and ¢, it is useful to con-
sider the level of ex-ante differentiation {or asymmetry) |q — 1/2| as a measure of vertical
differentiation and Af = f; — fo > 0 — the difference of valuations for good 1 between
the two types of consumers — as a measure of horizontal differentiation. Finally, ex-post
differentiation is measured by ZLo Pr{(o;) |fi — 1/2|. As g increases above 1/2, the val-
uations fo and f; for good 1 of both consumer’s types increase, while the spread in the
distribution of valuations A f decreases. The reduction of the degree of horizontal differen-
tiation is a by-product of Bayesian updating; a signal of given precision is less informative
the more concentrated the prior probability distribution, here the more extreme ¢ is. As of
the distribution of demand at the two locations, q raises Pr{o;) and reduces Pr(cp). An in-
crease in o spreads the distribution of the posterior valuations further apart by increasing
f1 and reducing fo, thereby augmenting A f, while still raising Pr(o,) and reducing Pr(a)
for ¢ > 1/2 (the opposite for ¢ < 1/2). Overall, an increase in « entails a mean-preserving
spread of the distribution of posterior valuation. Finally, ex-post differentiation is large
either for high ex-ante differentiation g — 1/2| even when the spread « is small, or for low
ex-ante differentiation but large spread.

Comparison to Hotelling. Figure 2b gives a reduced-form representation of this model
in the Hotelling line. Seller 0 is located at the origin and seller 1 at the other end of the
segment of unit length. With probability Pr{c;) the consumer (of type 1) is located
at f1, and with complementary probability is of type 0 at f,. Probability can also be
interpreted as mass of demand at these locations. As usual in Hotelling models of product
differentiation, the utility of consuming good j for the consumer of type ¢ is decreasing in
the distance d(z, j) of that consumer from seller j. In particular, in our model the utility of
the consumer of type ¢ is equal to 1 —d(1, 7) — P; when buying from seller j at price F;, and
equal to 0 when not buying. The structure of our model imposes restrictions on how to
perform comparative statics with respect to the probability distribution of the valuation
of the buyer. These restrictions would not have been obtained if one departed directly
from a reduced-formn Hotelling model.

4. Equilibrium

Each duopolist wishes to extract the maximum rent from the buyer for given expected
quantity demanded and at the same time is tempted to steal demand from the competi-
tor. The Bayes-Nash eguilibrium of the game strikes a balance between these two forces,
depending on the parameters of the model: the quality of private information a € [1/2,1]
and the prior belief g € {1/2, 1] represented in Figure 3.3 Notice that the game is symmet-

3The belief ¢ is the natural state variable in dynamic extensions of the model discussed in Section 7.
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ric with respect to ¢ = 1/2, so that we need only consider ¢ > 1/2. Once the equilibrium
outcome is characterized for a fixed parameter configuration (g,«a), we analyze how it
changes with the parameters in Section 5.

Before proceeding to the characterization, we briefly discuss the issue of equilibrium
existence which is a non-trivial problem in such continuous games with discontinuous
payoffs. In this game the payoff function of each seller jumps at prices of indifference for the
buyer, i.e. along the IC constraints where ¢ies arise for each buyer type. As a consequence,
the sum of payoffs is not upper semi-continuous (USC), violating the second Dasgupta and
Maskin (1986) sufficient condition for existence. For USC we would need the indifferent
buyer to always break the tie in favor of the high-price firm.* We are able to avoid
such technical difficulties by constructing the equilibriutn for each game corresponding
to any parameter configuration (¢,a). In our mode! ties happen with probability zero
in equilibrium, except for parameter configurations where a pure strategy equilibrium is
immediately found. This irrelevance of ties in equilibrium may generalize to richer games
with continuum of actions and private information.

4.1. Best Replies

As a preliminary step toward the characterization of the equilibrium, we construct the
best reply functions of the sellers. Given a price F, posted by seller 0, only three strategies
are not patently dominated for seller 1: not selling at all, selling only to type-1 customer
at the separating price

— 2f1—1+P0 fOl‘PoSl—fl
(P = { f for By > 1— fi, (4.)
or to both customer types at the pooling price

Pl (R)=2fo—1+ P (4.2)

The best reply is the strategy which achieves max (0, Pr (1) PF (Ry) , Pf (Pb)), where the
first option corresponds to not selling at all, the second to separating and the third to
pooling. At the (unique) switching price 13, the best reply function of firm 1 — j jumps
down from the separating P ; (-) to the pooling price P (), so that Pr(o1_;)PE (F;) =
PP ().

4This conclusion is not new in Hotelling games with continuous distributions of customers, but our
introduction of discrete amounts of private information (or equivalently of a discrete distribution of de-
mand) makes the identity of the firm to be favored by the indifferent customer depend on the specific
tying price pair. This endogeneity of the tie-breaking rule is reminiscent of the general result of Simon
and Zame (1990), though in our game the tie-breaking rule is truly part of the strategy of the buyer.



4.2. Equilibrium Characterization

Before proceeding to the general characterization of the equilibrium, we introduce four
special cases of this game as simple reference points. First, o = 1 corresponds to a buyer
who is perfectly informed ex post, discussed at the end of Section 4.2.1. Second, wheng = 1
the buyer is perfectly informed ex ante, a case we discuss at the end of Section 4.2.2. Third,
when the sellers are ex-ante identical (g = 1/2), we have a perfectly symmetric version of
our model, discussed in Section 4.2.5. Fourth, when there is no private information on the
demand side (o = 1/2), we are back to the Bertrand case with heterogeneous suppliers, an
important benchmark for our analysis. In this case existence of equilibrium is guaranteed
by requiring the indifferent customer to buy from the higher-quality seller. There is a
continuum of Nash equilibria where firm 0 posts Py € [1 — 2¢,0] without being able to
sell, and firm 1 sells at price P, = 2¢ — 1+ P € [0,1 — 2g] to the indifferent buyer. All
these equilibria, other the one with £, = 0 and P, = 2¢ — 1, are usually disregarded as
unreasonable because the low-quality seller plays weakly dominated strategies. In order
to exclude the undesirable equilibria, Bergemann and Valimaki (1996) require equilibria
to be cautious, in the sense that the non-selling firm would be indifferent between selling
and not in equilibrium.® In the unique cautious equilibrium prices are P5(g,1/2) = 0,
Py(q,1/2) = 2¢ ~ 1, the (indifferent) consumer buys from seller 1 with a net payoff of
Ve(g,1/2) =1 — g, and profits of the sellers are V5 (g,1/2) = 0, V; (¢,1/2) = 2¢ - 1.

Our investigation now heads for the unexplored territory of asymmetric games with
private information. In the parameter space (g, ) there are two regions (separating and
pooling) with equilibrium in pure strategy, and one with a mixed strategy equilibrium.

4.2.1. Separating Equilibrium

When both switching prices exceed the maximum valuations for the two goods, the best
reply correspondences of the two firms cross at the corner point P = 1 — fo, P, = fi.
The equilibrium is separating because the customer buys from a different seller depending
on the realization of the signal. See Figure 4 for a representation in the price space.
The no-deviation condition for firm 1 requires that pooling both types of buyer is less
profitable than selling only to the ex-post favorable customer at the separating price,
2fo— 1+ Py = fo < Pr(o1) f1, or equivalently ¢ < ¢°(a) = (e + a — 1)/[e (20 ~ 1)]
with d¢%/da > 0. The no-deviation condition for seller 0, equivalent to ¢ > 1 — ¢%, is
implied by g > ¢° for ¢ > 1/2. The region of parameters where the unique equilibrium is
separating corresponds to the area to the south-east of the lowest curve in Figure 3. For
this equilibrium to exist, it is necessary that the quality of private information be large

3Uniqueness of equilibrium can be also obtained by eliminating strategies which are dominated accord-
ing to the definition given by Bbrgers (1992) at page 168.
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enough (a > 2/3).

In the separating equilibrium region the sellers are weakly ex-ante differentiated, but
strongly ex-post differentiated. Although both suppliers are ex ante in the race, the buyer
has a strong ex post preference for the good favored by the signal realization. Each supplier
anticipates this fact and targets only the customer with favorable information for its own
good, resisting the temptation to steal from the competitor the customer with unfavorable
information. In sharp contrast with the standard Bertrand paradox, in this equilibrium
there is no competitive pressure on prices. The sellers become “local monopolists” and
make high profits by fully extracting the customer’s surplus.® In summary:

Proposition 1 (Separating equilibrium). For ¢ < ¢°(a) the unique equilibrium is
separating: the buyer who receives signal o; purchases from seller i, prices are Py(g,a) =
1 ~ folg, ), Pi(q,a) = fi(q,¢), the sellers enjoy expected profits of Vy(g,a) = ol —
q),Vi(g,a) = aq by extracting the entire rent of the buyer, who is left with expected
payoff Vg(q,a) = 0.

In the special case when the buyer is perfectly informed ex post (a = 1), Py(q,1) =
Pi(q,1) =1, Vp(q,1) = 1—4q,Vi(g,1) = q and the buyer surplus is Vg(g,1) = 0. Compared
to the case of no private information {& = 1/2), it can already be seen that the buyer is
worse off when perfectly informed, though the sum of the payoffs of buyer and sellers is
highest at a = 1. The increased level of competition among sellers destroys the buyer’s
incentives for acquisition of socially valuable information.

4.2.2. Pooling Equilibrium

When the switching price of one firm is below the marginal cost (e.g. £y < 0), the only
equilibrium is pooling on the good sold by the other firm, in this case good 1. In this
equilibrium the customer buys from seller 1 regardless of the realization of the signal.
Consider the prices Py = 0,P, = ICp(0) = 2f ~ 1 > 0, at which the indifferent type-0
buyer breaks the tie in favor of the high price seller 1. See Figure 5 for an illustration
in the price space. Clearly, seller 0 has no profitable deviation since any non-negative
price would not sell. The separating deviation for firm 1 is IC1(0) = 2f; — 1, where the
price couple (0, IC;(0)) is along the IC, constraint and the IR, constraint is satisfied
with strict inequality. The pooling deviation for seller 1 is not profitable provided that
ICy(0) > Pr (o) IC4(0), since the separating price JC1(0) sells with probability Pr(s|q),
while the pooling price JCo(0) sells with probability one. In the limit as g tends to 1,

$Full rent extraction only arises because the number of sellers (goods) is equal to that of buyer types
(signal realizations). With non-binary signals, some buyer types would enjoy rents even in a separating
equilibrium. These rents will be smaller the sharper ex post differentiation and type separation.
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f1 and fo both converge to 1, so that the separating price converges to the pooling one,
while the probability of selling at the separating price tends to o. For ¢ large enough it is
then optimal for seller 1 to charge the pooling price, thereby selling with probability 1. A
pooling equilibrium of this sort exists if only if ¢ > ¢” (a), where ¢° («) is the largest root
of

2fo(ga) -1=q—(1-0), (4.3)

with ¢* (@) € (a,1) and dg¥/da > 0. The pooling equilibrium region corresponds to the
area to the north-west of the highest curve in Figure 3. Similarly to what we have done
in the case without private information at the beginning of Section 4.2, we focus on the
unique cautious equilibrium.’

In the pooling region the prior quality g perceived by the market is biased enough for
one seller and the private signal precision a is low enough, that the final result of the
strong ex-ante heterogeneity and a mild ex-post spread is strongly biased for the seller
who is favored by the prior belief. Therefore, in equilibrium this seller becomes a “global
monopolist” and covers the entire market by posting a limit price which excludes the
competitor. The competitive pressure by the non-selling firm keeps the price low and
leaves rents to both types of buyer. In summary:

Proposition 2 (Pooling equilibrium). For ¢ > ¢ (a) the unique cautious equilibrium
is pooling on good 1: both buyer types purchase from seller 1 and enjoy rents, prices
are Po(q,a) = 0, Pi(q,0) = 2fo(q,0) — 1, profits for the sellers Vp(g,a) = 0,Vi(g,a) =
2fo(g, @) — 1, and expected payoff of the buyer Vg(g,a) =1+ ¢ — 2fo(g, a).

As made clear by this proposition and illustrated in Figure 3, the standard Bertrand
outcome in an asymmetric setting is robust to the introduction of small amounts of private
information, i.e. for & < (gF)~*(g). In the special case with an ex-ante perfectly informed
buyer (¢ = 1), Fo(1,a) = 0,P(1,2) = land Vp(1,a) = 0,V;(1,a) = 1 and the buyer
surplus is Vg(1l,2) = 0. In this case the superior seller monopolizes the market and
extracts the full surplus of the buyer.

4.2.3. Mixed Strategy Equilibrium

In the classic Hotelling (1929) pricing game with uniform distribution of consumers, a
pure-strategy equilibrium fails to exist when the sellers are located relatively close to each
other (see e.g. d’Aspremont, Gabszewicz and Thisse (1979)). Osborne and Pitchik (1987)

"The non-selling firm in a pooling equilibrium could reduce the profit of the selling firm to any non-
negative level by posting & negative price (a weakly dominated strategy). For ¢ > ¢* (a) there is a
continuum of pure strategy pooling equilibria, where the non-selling firm posts Py € [1 — 2fo,0] and firm
1 sells at price P, =2fp—1+ By € [0,2fo — 1] thereby achieving a profit of V3 = P,. In all these equilibria
the tie arises with probability one.
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is the best attempt of characterization of the mixed-strategy equilibrium in the original
Hotelling model. Similarly, in our model the equilibrium is in mixed-strategy for weak
ex-post differentiation, corresponding to intermediate levels of horizontal differentiation,
i.e. between the separating and the pooling regions max{(1/2,¢°(a)} < ¢ < ¢*(c). In j
we clarify the logic and the intuition behind the characterization of the equilibrium in our
more tractable setting with discrete distribution of demand.

Searching directly for a mixed strategy equilibrium with continuous action spaces and
proving its uniqueness appear daring enterprises, as uncountable partitions of the action
space are potential supports of equilibrium strategies. In a sequence of preliminary steps
(Lemmata 1-6 in the Appendix) we obtain joint restrictions on the forms of the equilibrium
randomizations that make construction and verification of uniqueness much simpler. The
main restrictions are now summarized. First, both sellers must make positive expected
profits. Second, firm j may quote a price P; with positive probability (an atom) if and only
if the opponent firm 1— j has a gap in its support, which includes the price P,_; = IC; (F;)
corresponding to the opponent’s atom through one of the two IC constraints. Third,
only the highest prices that the buyer may accept, Ffy = 1 — fy and P, = f;, can be
played with positive probability, so that ties happen with probability zero in equilibrium.
Finally, almost all prices in the support of one firm’s strategy must correspond through IC
constraints to a single price played by the opponent. These results could be of independent
interest and may shed some light on equilibrium play in other games with continuous action
space and countable types of private information.®

Building on these properties, we first present a unified formulation of the equilibrium
and then briefly describe the equilibrium strategies for each parameter configuration. As
illustrated in Figure 3, the mixed strategy region in the parameter space can be partitioned
in exactly four sub-regions (M1-M4), each corresponding to a different specification of the
equilibrium strategies. We omit the minute details of the derivations, which are available
on request.

General Characterization. Three benchmark prices help picture the form of seller j's
equilibrium mixed strategy, whose c.d.f. is denoted by G;, and the shape of its support,
S;. First, consider the upper and lower bounds to S;. Seller j = 0,1 randomizes on a set
S; € [B;,P;], where, depending on parameters (g, a), these bounds take values in the
following intervals: Py € [0, Py), Po € (1~ f1,1—fo], Py € [2fo — 1, P1], Py € [2f1 - 1, f1].

Next, let IEf, €5; C [BJ-,F,-] be the fully separating price, at which seller j sells with
probability Pr (o;) to its own customer, given the strategy of the competitor. The following

%In the Appendix we explain the close connection with analogous restrictions derived by Osborne and
Pitchik (1987) for the Hotelling model with uniform distribution (see their Appendix 1). Our additional
results (Lemma 5 and 6) allow us to prove uniqueness of the equilibrium.
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nonlinear map links this price to the upper and lower bound of the support.

P ?) Pr(aj)'ﬂ,—'ﬁ:’
p; (B, P;) = Pr(o;)+ P; — Pro1—;) - P;

Proposition 3 (Mixed strategy equilibrium). For any o € [0.5,1) and for any q €
[¢° (@), ¢F ()] there is a mixed strategy equilibrium where, for each seller, upper bound
and lower bound of the support and the fully separating price, {_}5,-, P, f}}j=o,1, are the
unique solution to the non-linear system of equations

Py =min (1 — fo,po (P, Po)) Py = min(f1,p1 (Py,P1))

Py =min<1 = Jo,1 —2f0+151> P, =m1'11<f1,2f1 - 1+130> (44)
Py=1-2fi+ B P, =2f-1+P5
which also satisfies
£D<m'in(a(1_'?):1_f1): £0>max(0?1_2f1+f0)' (45)

The support of seller j's strategy S; is the entire interval [ﬁj,-}—s,-] except (1) if the solution
to (4.4) and (4.5) entails Py > 1 — fi, as in the M1 and M2 regimes (parameters regions),
(resp. P1 > fo, as in M1, M2, and M3) then S, (resp. Si) does not include the interval
(1— f1, Py) (resp. (fo, P1)) and correspondingly seller 1’s (resp. seller 0’s) strategy has an
atom on the maximum price f; (resp. 1-fo); (2) if P, = f1, asin M1, then Sy = [By, 1— fy).
The equilibrium payoff of seller j is V; = Pr(o;)P;, the fully separating price times the
probability of selling at that price.

Depending on the parameter couple (g, «) defining the game analyzed, the min func-
tions in (4.4) select different combinations of their arguments, and the system (4.4) delivers
a different type of solution, corresponding to a different form of equilibrium. Only four
combination of (4.4) are consistent with no profitable deviations, and only one is possible
for any given parameter pair. We now provide a verbal description and discussion of these
four equilibrium regimes, each prevailing in the corresponding region of parameters as in-
dicated in Figure 3. The strategies are illustrated in Figures 6 to 9. We have separately
checked (4.4) and the restriction (4.5) for each candidate equilibrium. The Appendix il-
lustrates the details of this tedious exercise only for M1, the other three being similarly
constructed. The missing parts are available on request.

The Four Mixed Strategy Equilibrium Regimes: M1. A small increase of the prior
belief ¢ from the separating level ¢*(a) — and similarly a reduction of the precision of
the signal a -— raises the posterior valuation for good 1 of the consumer with unfavorable
signal o, giving firm 1 an incentive to be more aggressive than in the separating region. In
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particular, the best reply of firm 1 jumps from /C1{Fp) to ICo(Fp) at the interior switching
price By =1 —2fo+ ag < 1 — f;. In the region of parameters M1 (Figure 3) firm 1’s
equilibrium strategy puts some weight on low prices in order to attract the type-0 customer
with some probability. Firm 0 responds by posting corresponding low prices. Each seller
still posts the highest feasible price, f; and 1 — fj respectively, with positive probability (an
atom), and spreads the remaining probability with an atomless distribution on an interval
of prices. As illustrated in Figure 6, consistently with the general restrictions mentioned
earlier and derived in the Appendix, the probability mass by seller 1 on prices above fj
consists only of an atom at P, = f; in region M1, and there is a gap in firm 1’s support
S, between fy = ICq (1 — fo), recalling that on Py =1 — fp firm 0 puts an atom, and f;.

M2. By increasing g (or reducing a) beyond the boundary between regions M1 and M2
in Figure 3, the M1 equilibrium breaks down, since seller 0 would profit from deviating
to price 1 — fi, thereby gaining the demand of the type-1 consumer when the opponent
posts f;. Intuitively, with even lower ex-post differentiation in customers’ valuations, the
incentive for seller 1 to separate types is reduced and the incentive to insist on low (pooling)
prices is enhanced. The equilibrium of type M2 (Figure 7) is like M1, with the addition
of the interval [ﬁl, fi] to 81, and of the corresponding prices [P, = IC) (131), 1 — fi1] to So.
The probability mass by seller 1 on prices above fy consists not only of the atom on f;
(as in M1) but also of the density on the interval [P, f1]. Finally, there is a hole in the
support of each player corresponding to the atom by the competitor on the highest price.

M3. Increasing further the prior belief and/or decreasing further the signal precision, the
effects illustrated in M2 are reinforced. Ex-post differentiation in the valuations becomes
so low that the ex-ante superior seller 1 does not play at all the highest price f;. In
the mixed strategy equilibrium of type M3 (Figure 8) seller 0’s strategy has no holes
and an atom on 1 — f;; seller 1’s strategy has a hole between [P,, fo] and [P, P:], with
P, =2f1 — 1+ By > fo, and no atom.

M4. Finally, when the prior belief is rather balanced but the precision of the signal is very
low (close to 1/2) players compete aggressively on customers who are mildly differentiated
ex post. Ex-post differentiation is still strong enough to prevent a pooling equilibrium
from arising on the ex ante superior good 1. In the M4 equilibrium (Figure 9) not even
seller 0 plays the highest price F; = 1 — fp, and there are no atoms in the equilibrium
randomizations, nor holes in their supports, which are connected.

As we have seen, for ¢ > ¢F(a) ex post differentiation is so weak, vis-a-vis ex ante
beliefs, that the game exhibits a pooling equilibrium: firm 1 clears the market by selling at
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a low, limit price, which prevents the competitor from selling above marginal cost, given the
strong ex-ante disadvantage. Notice that M1 results either in a separating outcome or in a
pooling outcome on good 1, while the other mixed equilibria result possibly in a separating
or in a pooling outcome on either good. As parameters change from the separating to the
pooling region, the equilibrium mixed strategies shift gradually probability mass away
from high prices to more aggressive prices, leaving increasing rents to the buyer.

4.2.4. Uniqueness of Equilibrium

As proven in the Appendix, our characterization of equilibrium regimes is completed by:

Proposition 4 (Uniqueness of equilibrium). The cautious equilibrium is unique for
almost all parameters o € [1/2,1} and g € [1/2,1].

In the mixed strategies equilibrium regions, the explicit construction of the strategies
(omitted) shows that the four regimes are mutually exclusive, Therefore, to establish
uniqueness of the equilibrium we show that the mixed strategy equilibrium cannot take
any form other than the four described above. The general restrictions on the equilibrium
mixed strategies of the two sellers, also illustrated in the Appendix, make this task rela-
tively simple. If no atoms are played, the support of each strategy is connected, and we
are in the M4 regime. Conversely, to any atom played, necessarily on the highest IR prices
f1 and 1 — fp, there must correspond a gap in the support of the opponent. With atoms,
we need to consider only a few alternative candidates for equilibrium, discarded directly
in the proof.

4.2,5. Equilibrium with Ex-Ante Homogeneous Products

As an illustration and for future reference, we report the equilibrium for the special case
of ex-ante identical sellers (¢ = 1/2). There is an interval of a corresponding to each
of the three types of equilibria which are not asymmetric in nature (M4, M2 and sepa-
rating). For @ € [1 /2,2 — \/ﬂ the unique equilibrium is of type M4, defined by P, =
P, = vV2—8a+8a%) and B = P, = (1+V2) (2 — 1) and with profit V, (1/2,0) =
Vi(1/2,0) = (14 v2) (2a — 1) /2 for both sellers. For a € [2- V2, 2/3] the unique
equilibrium is of type M2, defined by P = 1 — 3a — 20%/(1 — 4a + v/1 — 8a + 1202) and
P = (2a—14+v1— 8a + 12a?)/2 and with profit V (1/2, a) = (2a—1+v1 — 8 + 1202) /4.
Finally for a € {2/3, 1] the separating equilibrium is P = a, and V (1/2, a) = /2 for both
sellers.
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5. Equilibrium Comparative Statics: Value of Public and Private
Information

In this section we derive and discuss our main results. The complete characterization of the
unique equilibrium allows us to analyze the dependence of the equilibrium payoffs of the
buyer and the sellers on the degree of ex-ante heterogeneity of the sellers and the precision
of the private information of the buyer. We focus mostly on two properties related to
the equilibrium value of information for each party: convexity in the prior belief ¢, which
pertains to the value of public information, and monotonicity in the precision of private
information «, which indicates the value of contemporaneous private information of the
buyer. Our results are compared with those obtained in the growing literature on the value
of information and learning with endogenous pricing.

In this paper we compare situations where the quality of information acquired by the
buyer is known or observed. This corresponds to the analysis of the second stage of price
competition which follows a first stage where sellers and buyer interact to determine the
information structure of the buyer. Our mode! could be extended by modelling the first
stage of such a dynamic game. Typically, sellers affect the precision of the information of
buyers by allowing them to try the product or to return it if not satisfied. In a similar
fashion, the buyer could control the information acquired at a cost. Finally, an alternative
to our comparative statics approach would be to analyze a game of covert information
acquisition by the buyer where the amount of information is determined in equilibrium,
as done by Crémer, Khalil and Rochet (1997) in a single-principal setting. The exten-
sion of our model with competing principals to the case of contemporaneous information
acquisition is left for future research.

In order to reach a better understanding of the role of market power and competition,
we first describe the efficient allocation in Section 5.1 and the solution of the problem of
the monopolist in Section 5.2. We then return to our duopoly model, where we derive the
value of information for the ducpolists in Section 5.3 and for the buyer in Section 5.4.

5.1. Efficient Allocation

Given that production costs are set to zero, the total surplus to be divided among the three
players is equal to the valuation of the buyer. In the efficient allocation the consumer buys
from the ex-post superior seller: the consumer of type ¢ choosesgood 1if f; > 1—f;, or f; >
1/2, and good 0 otherwise. The social optimum can be easily implemented in this model by
giving the bargaining power to the informed buyer. For ¢ € [1/2, a] the signal is relevant for
the optimal decision, and the social surplus is S(g,a) = Pr(o1) f1 + Pr{o0) (1 — fo) = a.
For ¢ € [, 1] it is efficient to buy good 1 regardless of the signal, so that the buyer’s ex ante
valuation or expected social surplus is S(g, @) = Pr{a,) f1 + Pr(os) fo = ¢. Overall social
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surplus is a piece-wise, continuous, weakly increasing and convex function of ¢ for given
@, and similarly a concave function of o for given q. Therefore, revelation of additional
information introduces a spread in the belief which can only increase social welfare by
allowing for better decisions. A more precise signal (higher ) leads to an increase in the
total surplus only if it is strong enough to potentially reverse the prior; otherwise ex-post
information is socially irrelevant. Similarly, a higher prior for one good does not help when
the signal is strong enough to reverse it.

5.2. Monopoly Benchmark

Consider the simple optimization problem of a monopolist competing against a good sold
at fixed price (set to zero for convenience). The monopolist can decide not to sell at all
by posting a non-selling price PY > 2f; — 1, sell only to type-1 buyer by posting the
separating price P° = 2f; — 1 with expected payoff ¢ — (1 — a), and sell for certain by
posting the pooling price P¥ = 2y — 1 with payoff 2f; — 1. The optimal pricing strategy
° PN for ¢q<l-a
P={ P’ for 1-a<q<¢(a)
PP for ¢2>4"(a),

where ¢f (@) is again the largest root of the quadratic equation (4.3). For low enough
prior belief (g < 1 — a) the monopolist prefers not to sell since in this region even the
separating price is negative PS < 0. For intermediate beliefs the separating price gives a
higher expected payoff than the pooling price. For a high enough prior (¢ > ¢*) pooling
becomes optimal for a similar reason to that discussed in the Section 4.2.2.

The resulting monopolist profit function V) is (strictly) increasing (when positive) and
globally convex in g, being the maximum of convex functions:

0 for g<1—-a
Vu(ga)=¢ g—(1-a) for 1-a<g<qF (5.1)
2fo(g,a) =1 for g>¢".

Convexity of the profit function of the monopolist in the prior distribution is a very general
property with important implications regarding revelation of public information.? For
instance, it always holds for a general number of signals in the binary state monopoly
pricing model since the conditional signal distributions satisfy the monotone likelihood
ratio property without loss of generality. More generally, it can be shown that the property
holds for an affiliated environment. It is a manifestation of the linkage principle of Milgrom
and Weber (1982), which implies that in a second-price auction with affiliated valuations

9See Ottaviani (1997) for more details on these results.
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of the buyers revealing public information is always beneficial to the seller.!® Monopoly
pricing with a single seller can be seen as a second-price auction, with the monopoly price
playing the role of the reserve price. The bid of the buyer is either above the reserve price,
in which case the reserve price is the second-price paid by the buyer, or below it when the
buyer decides not to buy.

Convexity of profits in the prior distribution implies that any change in the environment
that spreads the posterior belief benefits the decision maker. In particular, a spread
is achieved by revealing public information about the quality of the good, because of
the martingale property of beliefs. The convexity property has also important dynamic
consequences, for it implies that the monopolist values learning. A patient monopolist
would then be willing to spend resources in the short run to foster revelation of public
information on the quality of the good.

Finally, notice that monopoly profits are non-monotonic in the precision « of the buyer’s
signal. As it is seen immediately from (5.1), the monopolist’s profit function is decreasing
in a for & < (gP)~!(g), and increasing for o > (¢”)~(g).}! The monopolist benefits from
a stronger signal of the buyer when posting the separating price. In the pooling region the
monopolist is instead forced to reduce further the price to sell to the buyer with a more
precise unfavorable signal.

5.3. Value of Information for the Duopolists

We are now ready to discuss whether the properties of the profit function of the monopolist
extend to a strategic setting.!? First, without making use of the characterization of the
mixed-strategy equilibrium we show below that convexity in the prior belief breaks down.
Second, our characterization of the equilibrium in the mixed-strategy region delivers a
surprising result of non-monotonicity of the duopolist’s profit in the prior belief. We
also briefly report on the properties of the sum of the equilibrium profits of the sellers,
particularly important for dynamic extensions of the model. Finally, a seller’s payoff is
non-monotonic in the precision of the buyer’s private information.

Value of Public Information We now establish our main result:

10This property has been used by Milgrom and Weber (1982) to rank the revenue produced by different
auction formats, which entail different revelation of public information.

11The monopolist’s solution is asymmetric with respect to ¢ = 1/2. When ¢ < 1/2 the monopolist’s
profits are increasing in a for ¢ > 1 — o and constantly equal to 0 otherwise,

12At a more technical level, we remark that the equilibrium payoff of each duopolist is continuous in
both parameters. Continuity is easily verified algebraically at the borders across the regions. The form
of the equilibrium randomizations needs not instead be continuous when crossing such borders between
regions. For instance, as we cross the boundary between the M1 and M2 regions, the atom at the upper
bound of §; changes discontinuously. Nonetheless it is verified that in such cases there are two equilibria,
so that the equilibrium correspondence is upper-hemicontinuous in the parameters.
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Proposition 5 (Non-convexity of seller’s profit in prior belief). For high enough
quality of private information o > 2/3, the equilibrium profit function of firm 1 is not
convex in the prior belief q.

This is easily proved by projecting the linear segment ag (which corresponds to the
payoff in the separating equilibrium region, nonempty for a > 2/3) to the border of the
pooling region g = ¢°. The payoff cannot be convex because ag’ is strictly larger than
the equilibrium payoff Vi(¢”, @) = ¢ — (1 — @) computed at the same belief. See Figure
10 for an illustration.

The non-convexity originates from the high level of profits enjoyed by the duopolists
in the separating equilibrium, resulting when the prior belief is not too biased in favor
of one particular product. Intuitively, as the prior inclination of the market for good 1
rises from the separating to the pooling region, and the ex-post valuations of both buyer’s
types with it, the total payoff of seller 1 rises. But this payoff increase occurs at a less than
proportional rate with ¢, because seller 1 goes from fully extracting the buyer’s rent in the
separating region to a limit price which leaves some rents to both types of buyer in the
pooling region. As discussed in Section 3, for @ > 1/2 an increase in ¢ augments vertical
differentiation by increasing both f, and f,, but also decreases horizontal differentiation
by reducing the spread in the distribution of valuations Af for ¢ > 1/2. Lower horizontal
differentiation increases the aggressiveness of the sellers and results in lower prices. In
particular, P, (as well as the other bounds of $;) decreases in ¢. The value function
Vi = Pr(o1)P, increases less than linearly in ¢ in M2 and M3, because Pr(c;) increases
linearly in g, while P, decreases.

This non-convexity implies that seller 1 — favored by the prior belief — strictly prefers
to avoid diffusion of public information to customers for intermediate values of the prior
belief, even if this information is more likely to make the customer more willing to buy good
1. The duopolists are hurt by more information on relative quality, because it results in
a more asymmetric situation and therefore more pooling in equilibrium. The comparison
with the monopoly case reveals that the strictly negative value of learning can only be
due to purely strategic considerations. Notice also the contrast to cases of public learning,
studied for instance by Bergemann and Valimaki (1997), where instead the equilibrium
value functions of the sellers are convex. The linkage principle breaks down when a second
price-setting seller who offers a differentiated good is added to the picture. An important
implication of this for auction theory is that the revenue ranking of Milgrom and Weber
(1982) does not extend to settings where the sellers are competing in mechanisms.

The same argument used for the single seller shows that the sum of the equilibrium
profits of both sellers is also not convex in the prior belief when the quality of the buyer’s
information is high enough. Finally, is the sum of all three players expected equilibrium
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payoffs convex in the prior, like the payoff achieved in the social optimum? In the pooling
region, the equilibrium is efficient and the sum of players’ payoffs is ¢. In the separating
region, the firms extract full rents from the buyer, and the sum of payoffs is a. The total
surplus in equilibrium is continuous in g, but the separating equilibrium extends beyond
the efficient boundary ¢° (&) = a. Since for intermediate values of the prior belief g, a
public and informative signal would lead with some chance to an inefficient equilibrium,
where some surplus is wasted, it can lead to lower social surplus. For high enough quality
of private information the social surplus achieved in equilibrium is not convex in q. The
result is proved again by projecting the linear segment g, equal to the total surplus in the
pooling region, to ¢ = ¢°(a) > a (for a > 1/2/2), where « is the total (separating) payoff.

Non-Monotonicity in Prior Belief. The profit function of the monopolist (selling
good 1) is (strictly) increasing (when positive) in g. A monopolist with better prior quality
achieves higher profits. Surprisingly, this is not necessarily true in the duopoly model. As
q rises, the temptation for seller 1 of clearing the market becomes stronger, and triggers an
aggressive response by the competitor. It can be shown by simple algebra that for given «
the equilibrium profit of seller 1, V4, is always strictly larger at the M1-M2 boundary ¢M?
than at the M3-Pooling boundary ¢F, and therefore is necessarily decreasing in ¢ in M2
and/or M3. For concreteness, Figure 10 displays V; and V; as functions of ¢ for a = .69; in
region M3 V; = Pr(o1)P, is decreasing in g, as the decline in P, due to fiercer competition
is so strong to dominate the linear increase in Pr(¢;). The ex-ante superior seller achieves
lower profits despite being more favored by the prior belief.

Next consider the sum of the payoffs of the two sellers. In the model of Shaked and
Sutton (1982) an increase in the level of vertical differentiation leads to less competition and
more profits for the sellers. Does this prediction extend to our model where differentiation
is the result of private information on the relative quality of the different competitors?
Without private information (o = 1/2) we have Vy(q,1/2) + Vi(g,1/2) = max{l - ¢,q).
For ¢ = 1/2 both sellers are equally good for the buyer and make zero profits, while an
asymmetric belief results in higher profits of the superior seller and constant zero profits
for the inferior seller. While in the case without private information the more vertically
differentiated the goods, the higher the sum of the sellers’ profits, this is no longer true
in the presence of private information. On the one hand, the increased level of vertical
differentiation leads to more profits for the sellers, along the lines of Shaked and Sutton
(1982). On the other hand, the induced lower horizontal differentiation increases the
competitive pressure on prices and tends to lead to lower profits for the sellers. The latter
effect dominates the former for intermediate prior beliefs (relative to private information),
while the opposite is true for extreme priors. The sum of the equilibrium profits of seller
i is non-monotonic in the level of vertical differentiation |¢ — 1/2| for any level of noisy
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private information a € (1/2,1). The result is proved easily by comparing the sum of
the equilibrium profits at ¢ = 1/2 and ¢ = ¢f(a). Notice that Z;=Oifj(qp(a),a) =
g"(a) - (1 — a), and Z;zo V;i(1/2,a) = 2V (1/2,a) reported in Section 4.2.5. By direct
comparison the first quantity is strictly larger than the second for any «, so that the sum
must be decreasing in ¢ in part of the interval [1/2,¢"(e)]. The sum of the profits is
instead strictly increasing in q for ¢ > ¢*(a), being equal to the pooling profits of the ex

ante superior seller 1.

Value of Contemporaneous Private Information It can be immediately verified
from the closed-form solutions given in Section 4.2.5 that for ¢ = 1/2 the value function of
a duopolist is monotonic and concave in the quality of private information o of the buyer.
As soon as the prior belief becomes asymmetric, this monotonicity does not hold any more,
similarly to what happens in the solution to the monopoly model. Vi(g,.)} is decreasing in
@ in the pooling region, i.e. for @ < (¢¥)*(g), and increasing in the separating region,
ie. for @ > (¢°)7'(g). In the separating region the payoff of the sellers increases in
the amount of private information of the buyer, in accordance with the principle that, as
quality becomes more different, price competition between less similar products leads to an
increase in the profits of either seller.’® This non-monotonicity originates from endogenous
pricing, but it is not due to strategic reasons because it is also present in the monopoly
case.

Proposition 6 (Non-monotonicity of seller’s profit in private information). The
equilibrium profits of seller 1 are decreasing in the precision a of the signal of the buyer
for & < (gF)~(q) and increasing for a > (¢5)~1(q).

5.4. Value of Information for the Buyer

It is natural to consider what would happen if the consumer decided how much private
information to acquire on the quality of the products. This corresponds to the Bertrand
game between the sellers being played after observing the private signal’s quality o chosen
by the buyer. The main result is that the buyer benefits from small amounts of private
information, but is hurt by too precise a private signal, which reduces the competitive
pressure on prices. This contrasts with the well-known fact that more information neces-
sarily benefits in ex ante terms a decision maker facing fixed prices, as well as in our game
the society of buyer and sellers. A negative value of information is not a new result in a
game-theoretic context, but this model clarifies very sharply the nature of the strategic
interaction behind it.

130n this see e.g. Shaked and Sutton (1982).
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In the pooling equilibrium region of parameters, the buyer’s expected payoff V{ (g, a) =
1+¢g—2fo(q, @) is increasing in the quality of private information . In the pooling region,
the seller is forced to reduce further the price to attract the buyer with a stronger negative
signal. For the same reason, pooling becomes increasingly costly as o rises until the
temptation to clear the market loses its appeal. This effect is eventually reversed because
more precise information corresponds to higher ex-post differentiation of valuations, and
therefore to more rent-extraction by the sellers in part of the mixed strategy region and in
the separating regime. The optimal amount of costless information acquired by the buyer
is interior to the mixed strategy region. Once prices are endogenous, the buyer would
sometime prefer not to gather information even if it were free:

Proposition 7 (Non-monotonicity of buyer’s surplus in private information). The
buyer benefits from an informative private signal of low precision ¢, but too precise signals
lead to lower payoff in equilibrium.

As of convexity in prior beliefs g, it is easy to show that it does not hold for the buyer
either. In the pooling equilibrium, the buyer obtains ¢ — (2fy — 1) from good 1, strictly
concave in ¢. When buying the same good, the buyer obtains the expected posterior
valuation for good 1, equal to the prior belief ¢, and pays the pooling price which is convex
in the prior since ex post differentiation fades away with the rising prior.

6. Robustness

6.1. Sellers Competing in Mechanisms

Consider the possibility of expanding the tools given to the competitors by allowing the
sellers to offer menus of lotteries among which the buyer can choose. In this section we
show that excluding menus of contracts — as done in the analysis so far — is without loss
of generality in our model. This is a non-surprising implication of the fact that the payoff of
our (risk-neutral) buyer is linear in the valuations for the (indivisible) good. Nevertheless,
our analysis is restrictive in the sense that we do not allow the sellers to condition the offer
in their mechanism on the offer of the competitor. See Epstein and Peters (1998} for an
investigation of the issues involved when such a dependence is allowed.

A lottery contract {A;, Ti;} offered by seller j consists of a probability Ax; of transfer-
ring the good to the buyer who accepts the lottery, and an unconditional transfer T}, from
that buyer to the seller. A menu of lottery contracts is a collection of lottery contracts.
A menu is degenerate if has at most one distinct lottery which allocates the good to the
buyer with positive probability. A lottery k with A; = 1 is degenerate, being equivalent
to a simple price offer.
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To the purpose of characterizing the optimal menu of seller 1 in response to a menu
of lotteries offered by the opponent 0, it is convenient to define the outside option of
the consumer with signal o; as u; = max (max; Ako(1 — fi} — Tko,0), the highest payoff
achieved by either accepting the most preferred lottery offered by seller 0 or rejecting all
lotteries. Notice that 1 — fo > 1 — f; implies ug > u;.'* The problem for seller 1 is then a
standard mechanism design problem with type-dependent outside options. The menu of
lotteries offered by seller 1 solves

max Pr(og)Tp + Pr(o1)Th

A{).Ale[{,'l]
Te, 71
s.t.
Ao(Aofo—To—ug) = 0 (PCy)
Aarofo-To~(Mfo—T1)] = O (85)
MMA-Ti—-w) =2 0 (PChy)
MMMmA-Ti—(Afi—-Tp)] 2 0 (S51)

where the second index of the lotteries referring to seller 1 has been dropped. According
to the participation constraint PC; the buyer of type i weakly prefers to buy from seller
1 — requiring both IR;; and IC;, to be satisfied — whenever the seller does not exclude
that type of buyer. The self-selection constraint SS; requires type  buyer to prefer lottery
{7, Ti} to { M, T}

We will now show that the best reply of a seller to any menu of lotteries of the opponent
is a degenerate menu consisting of a simple price offer to the buyer, so that there cannot be
an equilibrium in non-degenerate menus. In particular, when the type 0 buyer is excluded,
the optimal menu consists only of the (separating) lottery {1, fy — u,}, while when no type
is excluded, the only distinct lottery in seller’s 1 optimal menu consists of the (pooling)
lottery {1, fo —uo}. The prior ¢ which makes the seller indifferent between separating and
pooling satisfies

Pr(o1lg)([fi(g,@) — w] = folg, @) — uo. (6.1)

Notice that when also the opponent makes a simple price offer, so that u; = max{1 ~ f; +
Py, 0), (6.1) determines the switching price. The proof (in the Appendix) adapts standard
arguments from non-linear pricing.

Proposition 8 (Degenerate menus). There are no equilibria in non-degenerate menus.

1 The same argument clearly applies to mixed strategy over menus of lotteries.
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6.2. A Model with a Continuum of Signals

The binary signal structure studied so far is admittedly restrictive and gives rise to non-
trivial analytical problems. Nevertheless, it has allowed us to provide a complete illustra-
tion of the dependence of the equilibrium on the degree of ex-ante heterogeneity and on
the amount of private information. In this section we show that alternative continuous for-
mulations would not simplify these tasks. In the process, we also discover that some of our
results are robust to more general specifications of signal distributions. To this purpose,
we present a binary-state version of the model with continuous signals distributed with
monotone (without loss of generality) and bounded likelihood ratio. In general, a pooling
equilibrium results for extreme prior beliefs. We cannot say anything more without spe-
cializing the analysis to particular distributions. In all the examples that we have explored
of continuous signals distributed symmetrically, equilibrium characterization and compar-
ative statics are less tractable than in our discrete setting. By contrast, in our discrete
setting we were able to describe a unique equilibrium for all parameter configurations.

Setup. We modify only the signal structure, leaving the rest of the model unchanged.
Signals have distribution H; (and density k;) conditional on state w; on the same support
S C R, to rule out the case of shifting support. They are imperfectly informative, with
bounded (though increasing) likelihood ratio A (¢) = h; (0) /ho(0) € [A,A] for 0 < A <
X < 0o. The posterior belief of state w, after signal ¢ is realized is:

h (o) q _ _Mae/(1-g)
hi(9)g+he(o)(1—q) 1+A(0)g/(1~q)

The decision of the consumer with signal o is determined by: the IR, constraint,
fo(q) — P, 2 0; IC,,, which is fo(q) —P1 21— fo (9} — Po; IRs0, 1 — fo(q) — P 2 0;
and ICyp, fo(q) — P, <1~ f,(g) — Po. The highest IR prices for any buyer type are:
P =(Aq)/(Ag+1—gq), and Po = (1 - q)/(Ag + 1 — g), both in (0,1). Since A(-) is in-
creasing, f, (q) % TS0 % A1z (1—¢q)/g(1 —z)]. Substitutingz =(1+ P, — F) /2 =
(1+ AP) /2 we obtain the cutoff signal satisfying both IC,¢ and IC,; with equality:
(P, - Py) = A1 [(1+AP)(1—¢q) /{1 — AP)q]. For all signal realizations o > ¢/
good 1 is strictly preferred to good 0, while the opposite is true for 0 < ¢/C. Simi-
larly, z = P, gives the cutoff signal o/% (P) = A7 [P, (1 — ¢) /¢(1 — P,)] correspond-
ing to IR,;. Clearly, IR,, is slack for all ¢ > ¢, Finally, 2 = 1 — P, gives
oo (By) = 271 (1 - Po} (1 —q) /Pog) -

To see which constraint binds, notice that for P, + Py <1

B < 1+ AP 1-F,

< .
1-P, - 1-AP~ B, (6.2)

fo(g) =
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corresponding to o'® (P)) < a'€ (P, — By) < o' (PR) since A~!(.) is increasing, so that
the IC constraint is binding for all ¢ (we drop o here). Similarly to what happens in the
binary case, if the price posted by firm 0 is low enough that Py < 1— P, then IC is binding
and IR, slack, because ¢7¢ > o!/® and because both the IR, (i.e. ¢ > o'®') and the
IC (i.e. o > o'©) constraints need to be satisfied for a consumer with signal realization
o to buy good 1. When instead P, + Py > 1 the inequalities in (6.2) are reversed and

olfo (Py) < 07C (P, — Py) < o (P)), so that the two TR’s are binding.

Best Reply. Let E,H(o) = qH, (o) + (1 — q)Hy (o) denote the expected probability
of receiving a signal no smaller than o when the prior belief is ¢, and #{€ (z, B) =
z [1 = E,H (0%¢ (z — R))] and #{R(z) = 2 [1 — E,H (0’1 (y))] the expected payoff to
seller 1 from quoting price £ when IC,; and IR, ; binds, respectively. Next let:

PIO(Py= argmax l¥(s,Pp); PR =agmax miR(y).  (63)
0<z<min(1- Py, Py ) 1-Po<y<h

Then the best response of firm 1 is P; (By) = P{° (R) if n'° (PI€ (R}, Ry) > =R (PIR)
and P (Py) = P[®, independent of Py, if n'C (P{°(PR),R) < «'®(PI®). A similar
construction holds for firm 0.

By the Theorem of the Maximum, the best reply map P; (P,_;) is a non-empty, upper
hemi-continuous and compact-valued correspondence. It is easily proved that P, (F) > 0
if and only if both ¢ > 0 and Py € (P, Ry), where Py = (1-g—2Aq) /(1 — ¢+ Aq) < B,
Symmetrically, Py(P,) > O if and only if both ¢ < 1 and P, € [P, P, with P, =
(g— 1+ Ag)/(1 — g+ Ag) < Py. As long as the opponent quotes prices not above P,
firm j has no incentive to quote a positive price and opts out of the market.

_J':

Equilibrium. A Bayes-Nash equilibrium is a pair (P, P,) such that P; = P; (P1—; (P;)) €
[0,P;] for j = 0,1. A separating equilibrium has P; > 0 for j = 0, 1. It is market-clearing if
P;+P_; < 1 and rationing otherwise. A pooling equilibrium on good j has P; > 0= P,_;.
In general:

Proposition 9 (Pooling for extreme prior beliefs). For prior beliefs sufficiently fa-
vorable to seller 1, q € [g,1] with § < 1, there exists a pooling equilibrium on good 1.

Proof. If Py = 0 the IC constraint always binds: ¢/C (P, — 0) = A~} ()\) = g. Then:

oriC (P ~ ) IR S
OB Po=0,P1=P, =1 2¢{1 - q) X (¢) [gh1 (@) + (1 — g)ho (2)] -

As g 11> 1/(1+ ), we observe that (Ag)? — (1 — g)? > 0 so that this quantity tends
continuously to —oo, and that P; | P, . By continuity, for ¢ close enough to 1, the slope
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of the objective function is strictly negative for all P, € [P, P,]. Therefore it is best to
respond to Py = 0 with a price as small as possible, or P, (0) < P,. By definition of P,,
this implies that in turn Fy = 0 is a best response to P, (0), and the claim follows: there
is a pooling equilibrium on good 1, in which firm 0 posts a zero price and yet sells with
probability zero.¢

Nothing more can be said in general. Specializing the analysis to even very simple
signal densities does not help either. The comparison between maximized values in (6.3)
quickly reaches forbidding peaks of algebraic complexity, which complicates the equilibrium
characterization. We conclude that our discrete setting is preferable for the purpose of
performing comparative statics across equilibria.

7. Conclusion

We have investigated price competition in markets where quality is difficult to ascertain
and the price-taking buyer has private information on the relative quality of the alternative
competitors. When the prior belief is very biased toward one good and private signals are
not too informative, sellers compete fiercely and leave rents to the buyer as in the classical
Bertrand model. When instead the prior is balanced and signals are of bounded but
strong precision, the sellers become local monopolists. The more spread the distribution
of valuations, due to a vaguer prior and stronger signals, the more rent the sellers can
extract from the consumer. This fact has two main implications: First, contrary to the
linkage principle of Milgrom and Weber (1982) the equilibrium profits of the seller are not
globally convex in the prior belief, so that the sellers may lose from the release of public
information. Second, the buyer is hurt by receiving too precise private signals, as long as
the sellers know it.

Our insights on the value and incentives for information acquisition with strategic
pricing can be applied naturally to a broad class of markets where buyers are offered
individualized prices. The stylized relationship between a buyer and two competing sellers
could be easily enriched in order to consider problems arising in the labor, credit, and
insurance markets. It is essential that the price-taking party has superior information
on the relative desirability of the competing price-setters. As a labor market application
with the role of buyer and seller reversed, consider the situation of a job applicant (seller)
with private information on the net costs of working for different employers (buyers) who
compete in wage offers.

Finally, our static model is a building block for dynamic models of strategic pricing
with private learning. For a dynamic extension of this model we refer to Moscarini and
Ottaviani (1997)’s mode} of social learning about product quality with endogenous prices.1®

15Related to this, Caminal and Vives (1996) construct a two-period model of duopoly competition for
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The demand side of the market consists of a sequence of privately informed customers with
the same preferences. Buyers are then able to partially infer the information possessed
by other buyers by observing their purchase decisions as in the social learning model
of Bikhchandani, Hirshleifer and Welch (1992). On the supply side of the market the
sellers engage in repeated price competition. In this context prices serve not only the
usual allocative role, but also act as a screening device for the transimnission of the private
information held by the previous buyers.

Appendix

A.IL General Properties of the Mixed Strategy Equilibrium

This Appendix illustrates general restrictions on the form of equilibrium mixed strate-
gies for our game. All are valid for and only for the region of parameters where there is no
pure strategy equilibrium, ¢ € [max (1/2,¢% (@)} ,¢" (a)]. The graphical representation of
the constraints in the price space (Figure 2a) is of the great help to follow the arguments.
A mized strategy by firm j, j = 0,1 is a probability measure over the Borel sets, and the
support S; of the mixed strategy is the smallest Borel set of probability 1.

Lemma 1 (Sellers’ payoffs). Both firms make strictly positive profits in equilibrium.

Proof. Suppose that firm j makes zero profits in a mixed strategy equilibrium. If firm 1—j
plays a positive mass of probability on prices above IC; (0), then firm j could post P} =¢
for some € > 0, which would sell with positive probability, thereby making positive profits
in contradiction with the assumption. Otherwise, we are back to the pooling equilibrium
on good 1 — j, which does not exist in this region of parameters.$¢

Recall that P; and P; dencte the lower and upper bounds of the support of the equi-
librium randomization of player j. Since, by Lemma 1, any price in the support - including
the upper bound P; - must yield positive expected profits, we have:

Lemma 2 (Mass above IC; (P;)). Seller 1 — j must play prices above IC; (P;) with
positive probability.

Lemma 3 (Atoms and gaps). (i) Atoms and gaps must correspond through IC
constraints. If in equilibrium seller j plays a price P; with positive probability (an atom),
then there is a corresponding gap in the support of the opponent’s randomization: 3G > 0
such that (ICi{(P;), IC;(P;)+G)NSi—; = @ fori = 0,1. The converse is also true, provided
that seller 1 — j plays prices weakly below the gap (some P,_; < IC(F;)).

(ii) Atoms only at maximum prices. Only the maximum prices that the buyer may
accept, o =1 — fo and P, = f,, can be played with positive probability by the sellers.

a continuum of informed consumers.
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Proof. (i) First, we show sufficiency of an atom for a corresponding gap. The price
IC,(P;) + € for some ¢ > 0 is strictly dominated for firm 1 — j by ICiy(F;) — 6 for some
6 > 0, because the latter steals a discrete mass of demand (the atom) from the competitor
and loses only a small §-+¢ in terms of unit revenues. Therefore J/C;(P;}+¢ cannot possibly
be in S;_;, for a set of € € (0,G), with G > 0 being the width of the gap.

Next, we show sufficiency of a gap (ICi(F;), ICi(P;) + G) in Si_;, provided further
that prices weakly below IC;(F;) are also in S)_;, for a corresponding atom by firm j on
P;. First, prices in (P;, P; + G) cannot be in S, since they are dominated by P; + G,
so the two gaps correspond through IC;. By contradiction, suppose there is no atom on
P;. Then firm 1 — j would gain strictly from playing ICi(P;) 4+ G rather than IC;(P;) — ¢
for ¢ > 0 small, because (P;, P; + G) are not played by firm j; but this contradicts the
assumption that prices JC;(P;) — € for some € > 0 small are in S;_;.

(ii) Suppose that there is an atom at an interior price, e.g. at P, < f;. Then, by (i)
there is a corresponding gap in Sy containing either ICq(P,) or IC,(P) (or both), and
firm 0 does not play prices in (IC;(P,), IC;(P,) + ¢) for some £ > 0, for either . But then
firm 1 would gain over P, by deviating to a strictly higher price P; + &, which would sell
with the same probability — positive by Lemma 1 — as P,.¢

It follows immediately from claim (i) that, when there is an atom on Py = 1 — fp
(P, = f1), there must be a gap in S) containing P, = fy (resp. in Sp containing Py = 1—f;).
From claim (ii), it follows that each seller’s equilibrium randomization G; is continucus
and, being nondecreasing by definition, has a density g; = G} a.e. for prices smaller than
the maximum ones acceptable by the buyer. Finally, since 1 — fo 7 IC;(f;) for i =0, 1:

Corollary 1. Ties happen with probability zero in equilibrium.

The previous results imply that the support of an equilibrium mixed strategy - a Borel
set in [0, 1], thus a countable union of bounded intervals - is a collection of non-degenerate
intervals, plus possibly the upper bound of the support. In fact, absent any atom on
interior prices, we may exclude any isolated point other than the maximum feasible price
by considering the smallest set of prices played by a firm with probability one. The next
result is that the “holes” separating these intervals must be projections through one IC
constraint of the holes in the opponent’s support.

Lemma 4 (Corresponding bounds). The bounds of the disjoint intervals of prices that
form the support of a player’s equilibrium randomization must correspond through an IC;
constraints to those of the other player.

Proof. By contradiction. Let P; be a lower bound of one of these intervals, such that
P,_; # IC{(P;) for both i = 0,1. Consider the case Pi_; > IC;(P;). Then F; = IC;(P,_;)
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dominates all prices in (P;, IC;(P,;)), in contradiction with the definition of equilibrium.
Similarly if P,_; < ICi(B;).4

These results are closely connected to analogous restrictions derived by Osborne and
Pitchik (1987) in their analysis of the Hotelling pricing game with linear demand. They
first try to solve the equilibrium of the pricing game for all possible pairs of firms’ locations,
which are their parameters. In their Appendix 1, they prove the claim of Lemma 1, their
claim (b) is similar to our Corollary 1, claim (j) to Lermma 3, (ii}, claim (m) to Lemma 3,
(1). As a consequence, their partial characterization of different equilibrium regimes (T1
and T2) resembles ours (M1-M4). However, they cannot obtain enough restrictions to pin
down uniquely the equilibrium for all parameter values. In our discrete setting we are able
to do this.

Consider a price Fp in the support Sp; by Lemma 4 there must be a price in S,
corresponding to Fp through one of the two IC constraints. The next result shows that
there is almost always only one such a price: both the high price IC;(Fp) and the low price
ICy(F,) can be in 51 only for a countable set of prices Fy; similarly for firm 0. Intuitively,
the rate at which expected profits are lost by rasing a price, given the opponent’s strategy,
is different on the two IC constraints. This result simplifies enormously the search for
mixed strategy equilibria over non countable action spaces.

Lemma 5 (The tie principle). In equilibrium, for all values of the parameters (g, a),
the set of prices in the support of seller j such that the two tying prices are both in
the support of 1 — j, {P; € Sj : P|_; = IC, (P;) € 81— and P__; = ICy (P;) € S1_;}, has
Lebesgue measure zero.

Proof. Consider seller 0 and tying prices by firm 1, the other case being symmetric.
Fix any price Py in the relevant range [0,1 — f,], where two feasible (IR) tying prices
by firm 1 exist: P = 2f; — 1+ Fo and P/ = 2f3 — 1 + Fy. Let us first compute the
expected payoffs associated with these two prices, recalling that G; denotes the c.d.f. of
the mixed strategy played by seller j. Pj sells to both customers’ types if P, > Pj +
1-2fo = B+ 2Af, with chance 1 — Go (Py+ 2Af); only to type 1 if Py ¢ [P] + 1 ~
2f1, Pl + 1~ 2fo] = [Py, Py + 2Af], chance Go (Py) — Go (Py + 2Af); to none otherwise.
Thus the expected payoff to firm 1 from P} is m (P]) = my; (Po) = (2fi —1+ Fp)[1 -
Pr (00) Go (Fo + 2Af) — Pr(01) Go (F)). and, similarly, from Py": m (P)') = mo(B) =
(2fo— 1+ Po) (1 — Pr(g0) Go (Fo) ~ Go (Fo ~ 2Af)]

Contrary to the claim, suppose there exists a non-zero Lebesgue measure set X, of
Py € Sp such that P, P’ € 8. Since P < 1- f, < 1- fo, Gp has a density go = G}
at almost all points we are considering. P| € S; and P/ € S imply, for all Py €Xy, that
the two expected payoffs to firm 1 from Py, m o (Fy),= 7,1 (Po) and therefore ) o (Po) =
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711 (Fo). Rearranging the latter:

0 = go(Fo)[Pr{oo)(2fo~1+ Po)—Pr(o1)(2fy — 1 + P)] + (7.1)
+ Pr (O’o) [Gg (Po) - Go (Po + 2Af)] + Pr (0'1) [Gg (Po - 2Af) - Go (Po)] -+
—(2f/i =1+ Po)Pr(o0) go(Po+2Af) + (2fo — 1+ Bo) Pr (o) go (Py — 2Af)

All terms on the r.h.s. are either non positive or strictly negative, except possibly the
last one, so we require go (Fp — 2Af) > 0, or By — 2Af = ICy (PY) € Sp. Then P € 8§,
ICy(P') € S and IC, (P)") = By € Sy, and the situation that we are trying to rule out
for firm 0 at F is replicated for firm 1 at P{'. By symmetry, this implies g (P! —2Af) >
0. (We have verified this implication step by step). Then, recursively Fp — 2Af must
be in Sp, and it ties with P{' = IC, (P, — 2Af) € S,, as just seen, and Py - 2Af =
ICo(Fo —2Af) € 51 by g1 (P — 2Af) > 0. By reiterating the reasoning, initially applied
to Fy, this time to Fy —2Af, we require go (P, — 4Af) > 0 and, at any further step n > 2,
9o(Fo—n-2Af) > 0, for otherwise the whole argument would unravel. But clearly for
n = N large enough and for (g,e) € (1/2,1)?, so that Af = fi — fo > 0, we must have
Fy—2NAf < 0 and thus go (P, — 2NAf) = 0, giving the desired contradiction. ¢

For firm 1, which is favored by the prior belief, we can say even more: given any
randomization by firm 0, firm 1’s profits are increasing faster on JC, than on I Ch:

Lemma 6 (From up to down). For almost all P, < 1 — f1 in the interior of Sy the
profit of seller 1 increases less along IC; than along ICj in the price of the competitor:

dm (IC) (Pp)) < dm (ICs (Fy))
dPo dPO .

Proof. To establish the claim it suffices to prove that gy (Py — 2Af) = 0 and use equation
(7.1). By Lemma 5, ignoring zero Lebesgue measure sets, P{ and P cannot be both in S;.
However at least (and therefore ezactly) one of the two is, otherwise firm 0 would strictly
gain by deviating from P to some Fp+¢. Suppose by contradiction that go (Py — 2A f ) >0.
If P/ € S, and thus P ¢ S, we contradict Lemma 5, as Py = ICy(P{) € S and Py —
2Af = JC, (P{) € 5. If instead P{' € S; and thus P]{ ¢ Sl, as P-I = IC) (Pg - 2Af) e S
while Py—2Af € Sy, as again one of the two projections must be in the opponent’s support,
it follows that " = ICo (P — 2Af) € 1. But P" =2fo—1+Py—2Af = PI—2Af < P},
so we have P{", P}’ € 51, and P ¢ S, where P| € (P}", P). Since we are concerned only
with non zero Lebesgue measure sets of such prices, this requires (P, — 6, P, +6)NS; =0
for some 6 > 0. No hole in Sy may correspond through ICy to the hole (P — 6, P+ 6)
in 5y, because the former would contain (Py — 6, P + 6) while (Py — &, Py +¢) C Sp by
assumption; so by Lemma 4 a hole in Sy must project (P] — 6, P] + &) through the other
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constraint ICp, and be of the form (P~ 6 —2Af, R+ 6+ 2Af). This hole contains
Py — 2Af, contradicting go (Fo — 2Af) > 0.4

Proof of Proposition 4 (Uniqueness of Equilibrium).

In the pooling region there are a continuum of non-cautious equilibria, while the cau-
tious pooling equilibrium is always unique. The separating equilibrium is easily seen to
be the unique equilibrium in the separating region. The various mixed-strategy equilibria
constructed are mutually exclusive by construction, other than possibly at the boundaries
between the different regions. To establish uniqueness we need to exclude mixed strategy
equilibria that do not fall into one of the four classes M1-4.

From clairas (i} and (ii) of Lemma 3 in equilibrium there can be at most two atoms at
the maximum prices of the relevant range and two corresponding gaps, and the rest of the
support is connected. Therefore, using Lemma 5 and Lemma 6, M4 is the only possible
equilibrium if there are no atoms.

If there are both atoms the equilibrium is of type M1 or M2, since the other a priori pos-
sible forms of the equilibrium (similar to M1 with the indexes of the sellers interchanged)
do not exist for ¢ > 1/2, as we now show by contradiction. By symmetry with respect to
M1 (details missing, available on request), such an equilibrium would have P, = a(1 - g),
P, =2fi-14+a(l —q), Vp = P,, and V] = Pr(oy) P;, with Py < 1 — f; by construc-
tion. The atom on Py = 1 — f, would have measure v = P,/fi, so that in order for
1 not to deviate to fo, one needs m(fo) = fo(Pr(e1) + v Pr(co)) < Vi, equivalent to
P, > fo/(2a — 1). But this inequality is incompatible with Py < 1 — f; (equivalent to
g<1—4¢%(a)) for ¢ > 1/2.

Finally, from Lemma 5 again, M3 is the only possible form of the equilibrium which
features only an atom by firm 0 on Py =1 — fy. So we are left to exclude the symmetric
equilibrium with only an atom by firm 1 on P; = f;, which is the hardest case. By contra-
diction. By Lemma 2, in such an equilibrium firm 0 must play with positive probability
prices above 1 — f,. By Lemma 4, to this (atomless) mass there must correspond a mass
by seller 1 below fo . If 2f; — 1 > f;, firm 1 randomizes below f; and on P, = f;, but
not in the interval [fp,2f; — 1] dominated by 2f; — 1, so that there would be a hole in
S) without an atom by firm 0, contradicting Lernma 3. If instead 2f) — 1 < f,, absent
atoms by firm 0, firm 1 must play below and above f3, with no hole in S;. Firm 0 must
play prices below 1 — f), and then below the hole, for otherwise prices in (fp, f;) would
be dominated by f; for firm 1, and there would be a hole in $;. Firm 0 must play all the
way down to 1 — 2f; + fo to avoid this hole, and not below it, otherwise Lemma 6 would
apply. Therefore the following four prices are in the support of firm 0: 1—-2f, + fo, 1 - f1,
P,, and, 1 — fo. Equating the four payoffs yields a system of three equations in the three
unknowns: P, the measure of firm 1’s atom, and the probability mass played by firm 1 in
[fo, f1), which we have shown must be positive. Given the solution for £, consider prices
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in Si: 2fo — 1+ Py, fo, f1- Equating the expressions for the payoffs of firm 1 at these
prices yields two independent equations to determine one unknown only, the fraction of
the probability played by firm 0 above the hole. Therefore the system is overdetermined
and has no solution.$

Proof of Proposition 8 (Degenerate menus)

As mentioned in the discussion above, it is enough to show that the best reply of a
seller to any menu of lotteries of the opponent is a degenerate menu. Consider first the
case where no type is excluded, i.e. Ag, \; # 0. Adapting standard arguments from non-
linear pricing with the twist of type dependent reservation utilities (with ug > %,), it can
be easily shown that PCy and SS; are always binding. In detail: (1} PCy and SS; imply
PC,. The proof of this is standard, other when making use of uy > u;. (2) PC) is slack
since Ag > 0. (3) PCp must be binding, for otherwise Ty and T; could be reduced by the
same small amount without affecting the other constraints but increasing profits. (4) S5,
is binding, for if both PC; and SS; were slack 77 could be reduced by a small amount
without violating the other constraints but increasing profits.

Substituting Tp = Agfo — ug and 71 = (A — Ag) f1 + T, the objective function becomes

Aogi?[fl.ll Pr(o1)A; + (fo — Pr(o1) f1) Ao — uo-
For it to be optimal not to exclude the type-0 buyer (X > 0) it is necessary that ¢ > ¢°
(defined in Section 4.2.1). The optimal non-excluding menu {A¢ = 1,7y = fo — uo},
{A\ = 1,1 = fo — w} is degenerate and corresponds to an unconditional pooling price
offer. It yields # = fo — up. The remaining constraint SSp is immediately checked to be
satisfied.

Conditional on excluding the type-0 buyer by setting Ay = 0, PC} — rather than
S8, — is binding, and the optimal lottery is degenerate with {\, = 1,7} = f; — w;},
corresponding to the separating price, and = = Pr(o1)(f; — u1). Comparing profits it is
immediately seen that the separating menu is preferred to the pooling menu if and only if
Pr(o1]q)[fi(g, a) — w1] 2 folg, ) — uo-¢

A.Il. Construction of Equilibrium Type M1

Description. The equilibrium prices that define the support, payoffs and randomizations
of M1 are {I%,_ﬁj,ﬂj}, j = 0,1, which solve uniquely the system:

P,=aq, Pi=fo, Pi=h, Py=B=1-2fi+P, Pp=1-f,.

Seller 0 randomizes over an interval of prices [}50, 1- fo), where Py = Py > 1~ fi, withan
atomless distribution Gy of total mass Gg (fg) = 1 — -y, and on the highest possible price
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1 — f, with an atom of probability mass

@ Pr(o)
l1-a Pr(op)’

I

(7.2)

Yo

seller 1 randomizes on [P,, fo] with an atomless distribution G, of total mass G, (f1) =
1 — 7, and on f; with an atom of probability mass

_1-2fo+aq

n=T7 o (7.3)

According to the chosen tie-breaking rule, at prices {1 — fo, fo} the indifferent type-0 buyer
chooses good 1 since firm 0 posts price fg with positive probability; at prices {1 — f1, fi}
the (indifferent) type-1 buyer to the low price seller 0. The equilibrium payoffs to the
sellers are:

Vo(g,@) =Pr{aolg,0)[1-2fo(g,0) + o], Vi(g,2) =g (74)

To verify that these strategies and tie-breaking rule constitute an equilibrium, we show
that all prices in the support of the probability distribution of each seller yield the same
expected payoff, given the strategy of the other seller, and that no seller has a strictly
profitable deviation to prices not in the support.

Payoffs. The expected payoffs associated with three benchmark prices in the support of
firm 0 (firm 1} given the seller 1’s strategy G, stated above (resp. firm 0’s strategy Go)
are easily computed with the help of Figure 6:

Price Py Payoff mo (Po) Price P, Payoff m; (Py)

P P
Py=F Pr(oo)h 1 £ )
Tn— fo mPr(oo)(1- fo) ; ‘1’ g:(al’;o}lpi (a; ) + 7o) fo

Solving for Strategies and Randomizations. All prices in the support must yield
the same expected payoff Vi: from m(P,) = = (fi) we find V; = P, = ag and from
71 (fo) = m (f1) we obtain (7.2), the mass of the atom -, played by seller 0 on the maximum
price 1 — fo. Notice that dvyo/dg < 0, 10(¢%) = 1, and v (1) = 0. The prices P; € (P, fo)
in the support are left to be considered. The randomization Gy of seller 0 must be such
that seller 1 is indifferent among all such prices in the support of G; which yield: V; =
1-Go(1-2fo+ P)+Go(1—2f + P)Pr(o1)] A. Equating this to V} = aq and sub-
stituting Py = 1-2fo+P1, we obtain Go (Pp) = (Po+ 2fo — 1 — aq) / {Pr(o0) [2fo — 1 + Py)}.
Notice that Go(P,) = 0 and that the density played by seller 0, go (Fb) = G’ (B), is strictly
decreasing in Fp.



Substituting back B = 1 — 2fy + P, = 1 — 2f, + ag in the two equations above we
obtain the equilibrium payoff for firm 0 given in (7.4) and the mass of the atom in (7.3).
Notice that v,(q) < 1 for q € [¢°,¢%]. The c.d.f. G; played by seller 1 must make seller 0
indifferent among all the remaining prices in the stated support Py € (Py, 1 — fo) which
yield Vj = Py Pr(eg)[1 — G1(2fo — 1 + F)]. Equating this to (7.4) obtained above and
substituting P, = 2fy — 1 + Fy, we obtain G, (P,) = (P, —aq) /(1 — 2fs + P,). Notice
that G1(P,) =0 and G, (fo) =1 — 7, so that G (f1) = 1. The density g; (F1) = G}(F1)
is decreasing in P;.

Deviations. Given seller (’s strategy, any price less than P, is dominated by P, and
any P, € (fo, f1) by f1, as immediately seen from Figure 6. Given seller 1’s strategy, seller
0’s best deviation is P = 1— f;: any price below P} would result in the same probability of
selling as P} but at a lower price, and similarly for a price between P, and Py compared with
P,. This best deviation is not profitable provided that m(P}) = fy1 + (1 — 1) Pr (¢0)](1 -
f1) £ Vp. By (7.4), this is equivalent to ¥(g,a) = 2a—1)(1-2fo+ag) —a(l - fi) > 0.
First, notice that ¥"(q) = —2(2a — 1)f5(q) + af{'(g) < 0 because f{(q) > 0 > fi'(q) for
all g, so that 9 is strictly concave and quasi-concave in ¢: hence 1(g) > 0 for ¢ belonging
to an interval Qun. Next, it can be verified that for a > 2/3, i.e. whenever a separating
equilibrium exists, ¥(g) = 0 has a unique root ¢! > ¢°. For ¢ < ¢° the atom on the
separating price P, = f; in the M1 equilibrium would have a mass exceeding 1 (cf. 7.3),
so that M1 may exist only in Qan = [¢5,¢™"] C [¢5,¢%]. Instead, for & < 2 there are two
roots (g™, gM!), with ¢! < ¢™! and ¢¥/(¢™!) < 0 < ¢¥'(g™?), so that M1 may exist only
in Qan = [¢™, ¢"'] C [1/2,4").

Construction of Mixed Strategy Equilibrium M2-3-4. The same procedure leads
to construct the equilibrium strategies in the other three equilibrium regimes, and to show
that each pair is indeed an equilibrium only in the corresponding region of parameters,
that we depicted in Figure 3 with the help of a Mathematica™ routine.
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