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Abstract

In a typical empirical modeling context, the data generating process (DGP)
of a time series is assumed to be known up to a finite-dimensional parameter.
In such cases, Rissanen’s (1986) theorem provides a lower bound for the empir-
ically achievable distance between all possible data-based models and the true
DGP. This distance depends only on the dimension of the parameter space. The
present paper examines the empirical relevance of this notion to econometric
time series and discusses a new version of the theorem that allows for nonsta-
tionary DGP’s. Nonstationarity is relevant in many economic applications and
it is shown that the form of nonstationarity affects, and indeed increases, the
empirically achievable distance to the true DGP.
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1 Introduction

The twin notions of ‘simplicity’ and ‘complexity’ affect modeling throughout the
social and physical sciences and are recognised as being important in most modeling
methodologies, even though there may be no general agreement on methodological
principles themselves. We therefore applaud the courage of the organizers of the
Tilburg Conference in fostering an interdisciplinary treatment of these twin themes.
The interdisciplinary nature of the subject means that most readers of this volume
will be specialists in fields other than our own primary interest, which is econometrics,
and are therefore most likely to be interested in the main ideas of our work on this
topic rather than the technical details. Consequently, this article passes over most
technicalities and seeks to explain why econometricians are interested in a particular
aspect of Rissanen’s theorem. Those readers who wish to pursue the technical details
can consult our companion paper, Ploberger and Phillips (1998).

In economics, and other empirical sciences, researchers collect data — say ™ =
(x¢)y_; — which do not follow any pre-ordained pattern but which can often be suc-
cessfully ‘explained’ using a certain probabilistic framework. In particular, the data
can be modeled in terms of a ‘data generating process’ or DGP whereby it is assumed
that the observed series 2" comprises realizations of some random variables X1, ..., X,
that are jointly distributed according to a probability measure P. This approach to
modeling naturally turns attention to the measure P.

Usually, this probability measure arises from a theoretical model of the underlying
mechanism. In most applications, however, we do not have enough prior information
or ‘first principles’ to define all possible parameters of our model. Instead of one
probability measure we have to consider a parametrized set — say Py — of probabil-
ity measures, where §# € O (the parameter space) and it is often simply assumed
that the ‘true’ DGP is among those measures. We now must use our data z” for
inference about the parameter . Under this framework, a large number of applica-
tions have been developed and been successfully applied in practical work, including
econometrics.

This parametric statistical framework is not, of course, free from conceptual and
practical difficulties, one of which is alluded to above, viz. the existence of a knowable
‘true’ model for ™. A major practical difficulty that arises in most empirical appli-
cations is that the above description does not include one essential part: in many
cases the parameter space itself is not fixed.

Consider a popular time series example. Often a process like x; is influenced by
its past history and a common model for such data is an autoregressive process of
the form

Tt = Q1%¢—1 + ..QpTr—p + Ut

where the u; are i.i.d.N(0,0?). In this case, our parameter space consists of all (p-+1)-
tuples (ay, ..., ap,0%). Usually one has no information about p, although in economics
we can usually expect p > 2 if we are seeking to model cyclical behaviour and p > 4
when we are modeling quarterly data. In choosing p, we are aware of two immediate
dangers:



1. We can specify p too small. Then, we lose the opportunity to find the ‘true’
model within our class. We have misspecified.

2. We can specify p too large. Then, statistical procedures become less efficient,
a matter that affects estimation, inference and forecasting capability.

The loss of efficiency from p being large can be dramatic, especially in multiple
time series situations where a unit increase in the lag parameter p involves m? ad-
ditional parameters for an m—variable system. It is such an object of concern for
econometricians that it is treated in standard undergraduate texts like Dougherty
(1992). For this reason, it can be said that econometricians are often preoccupied
with the complezity of the model class.

In economics, as elsewhere in the statistical sciences, many people have advocated
the principle of parsimony: seek out the model with the smallest number of parame-
ters which ‘fit the data’. The principle has been successful in practical applications
and it obtained a precise theoretical foundation through attempts to quantify the
loss of information arising from the lack of knowledge about the parameters. Several
proposals, including the AIC criterion by Akaike (1969,1977) and the BIC criterion
by Schwarz (1978), have won acceptance and been widely adopted in the empirical
literature. This paper concentrates on one of the most remarkable approaches in this
class, the idea of stochastic complexity, due to Rissannen. We will be particularly
concerned with a theorem in Rissanen (1987) which shows that stochastic complexity
attains, in a certain well defined sense, the best achievable rate of approach to the
‘true’ law of a process in a given parametric class.

Since our paper concentrates on the application of Rissanen’s theorem to econo-
metric time series, we will shortly discuss the basic ideas underlying his approach
from an econometric time series perspective. We will not here pursue the information-
theoretic interpretation of the theorem (q.v. Cover and Thomas, 1991). In informa-
tion theory, a probability measure is very largely a means to construct a code, or as
Rissanen (1986) put it, a “language to express the regular features of the data”. In
econometrics, it is often an object of central importance in itself - one goal in the
construction of models being the computation of ‘probabilities’ of events, for which
the probability measure is an essential element. Thus, for us, the result of modeling
will be - for every sample size - a probability measure - say G, - on the sample space
for «™.

This approach allows us to consider both Bayesian and classical statistical mod-
eling. A Bayesian statistician would use the ‘Bayesian mixture’ @, = [ Ppdu(6),
where p is the prior distribution for the parameter 8, as the data measure. If pg is
the density of Py with respect to some dominating measure then the Bayesian mixture
Qn = f pedp(0) is simply the data density, or, as it is sometimes called, the marginal
likelihood. Conditional data densities for x3, = (Tpg+1, ..., Zn) given 2™ can then be
constructed from the ratios gn n, = Gn/qn,, With corresponding measures Q, n,.

Now, suppose that the conditional probabilities Pp(x¢|z! 1) have densities pg (x|t 1)
with respect to a common dominating measure v. A classical statistician might - for
every t < n that was big enough - use z/~! to estimate 6, e.g. by the use of the



maximum likelihood estimator ;_1, and then use the ‘plug-in’ density Pj,_, (w¢|2t=1)
to ‘predict’ x;. Then, the model, in our sense of a useable empirical measure, is
given by the density pnny = [, <t<n pgtil(xﬁwt_l), where ng is the smallest num-

ber of observations for which 5,5 is well defined. This model corresponds to Dawid’s
(1984) ‘plug in forecasting system’ and leads to his notion of prequential probability.
Phillips and Ploberger (1994, theorem 2.3) and Phillips (1996) establish the asymp-
totic equivalence between these prequential DGP’s and the conditional Bayesian data
densities ¢ no- One can also use procedures like the Kalman filter to ‘predict’ the
next data point and this would simply correspond to the use of a different model, in
our terminology.

Since the class of possible ‘models’ for the data is extremely large it is natural to
start thinking about ways of assessing the quality of models as statistical instruments.
Since models, in the sense above, are just probability measures, we can compare them
- or their densities - with the true data generating process. There are a variety of
sensible distance functions for probability measures (see Strasser, 1985, and LeCam
and Yang, 1990, for an overview and discussion of their properties). One of these
is the so-called Kullback-Leibler (KL) information distance. This distance measure
is well known not to be a metric, since it is not symmetric, but has some useful
advantages and is appealing in our context where the models are measures and we
want to compare the ‘likelihood’ of different models. The KL distance from model
Gy, to the ‘true’ DGP Pj is defined as -Fjy log ‘ff]ig.

Rissanen (1987,1996) showed that if X is stationary, if © is a regular subset of
the R*, i.e. if

dim© =k,

and if some technical conditions are fulfilled, then the Lesbesgue measure (i.e., the
volume in R¥) of the set

dG, 1
{0 : —Eylog dig < Eklogn}

converges to 0 for any choice of empirical model G,,. This theorem shows that what-
ever one’s model, one can approximate (with respect to KL distance) the DGP no
better on average than %k‘ logn for the typical parameter. Thus, outside of a ‘small’
set of parameters we can get no closer to the truth than %klogn - the ‘volume’ of
the set for which we can do better actually converges to zero!

In a way, Rissanen’s theorem justifies a certain amount of skepticism about models
with a large number of parameters. Note that the minimum achievable distance of
an empirical model to the DGP increases linearly with the number of parameters. In
essence, the more complex the system is, the harder it is to construct a good empirical
model. Thus, the theorem makes precise the intuitive notion that complex systems
can be very hard to model, that models of larger dimension place increasing demands
on the available datal



2 Stylized Facts about Econometric Data and Models

Before discussing our extension of the Rissanen theorem, we discuss some typical
features of economic time series that help to motivate our generalization. We partic-
ularly want to draw attention to the following:

(a) Economic time series are often nonstationary

Simple inspection of time series plots for aggregate macroeconomic data are suffi-
ciently compelling to justify this observation. Extensive analysis of economic data,
following early work by Nelson and Plosser (1982), confirms that there is good reason
to believe that the trending mechanism is stochastic. However, the precise form of the
nonstationarity is not so much an issue. Even if one chooses models that involve time
polynomials, or breaking time polynomials as in Perron (1989), the nonstationarity
of the data itself is seldom at issue.

(b) Many interesting econometric models have a ‘stochastic information
matrix’

Following the formal development of unit-root tests (both parametric approaches
like those in Dickey and Fuller 1979, 1981, and semiparametric approaches like those
in Phillips, 1987), econometricians have devoted substantial effort to analyzing the
particular class of nonstationary models where the stochastic trend results from ac-
cumulated shocks. The log likelihood function for such models is - after proper nor-
malization - asymptotically quadratic, but has some special features that distinguish
it from the traditional stationary case. Indeed, contrary to the standard assumption
that the matrix originating from the quadratic term (i.e. the properly normalized
second derivatives of the likelihood funcion) converges to a constant, under unit root
nonstationarity this matrix converges in distribution to a ‘proper’ limit random ma-
trix. Secondly, when we move away from unit root nonstationarity but stay in the
local vicinity, the limit matrix also changes. In this sense, the traditional Fisher
information is both random and variable in the limit, divergences from traditional
theory that were pointed out in Phillips (1989). These points of difference end up
having a profound effect on the extension of Rissanen’s theorem.

The simplest example is as follows. Consider an autoregressive process x; defined
by
Ty = 9.%571 + Uy (1)

where u; is i.i.d N(0,1), the scale parameter being set to one and assumed to be
known. The log likelihood (up to additive constants) can be written as

_% Z(wt — th,l)Q
I - 5 1 & 1 o] 1~ o
= —52% +{”(9_1)}{E§;$tut}_§{n(9_1)} {ﬁz;xt} (2)



The log likelihood function here is exactly quadratic and, in the case where we centre
on # = 1 (the true DGP has a unit autoregressive root), we use the normalization
factor n (in contrast to the traditional \/n). The quadratic factor # 3" 2% converges
in distribution to a nontrivial functional of a Brownian motion and the linear factor
LS 1 @ to a stochastic integral of Brownian motion (see Phillips, 1987). When
we centre on ¢ = 1+ in the vicinity of unity, we get the same normalization factor n,
but the limit functionals involve a diffusion process. In both cases, there is random
Fisher information in the limit. For a detailed discussion of the behaviour of this
likelihood, see Phillips (1989) and Jeganathan (1995).

The main aim of our companion paper, Ploberger and Phillips (1998), is to gen-
eralize Rissanen’s theorem to an environment that includes such examples. In doing
so, we did not use the KL-distance. Instead of investigating the expectation of the
log likelihood ratio log Cfgg , we focus on deriving bounds for log C(lflig itself. Rissanen’s
(1987) emphasis lay in the construction of codes which encode the data optimally (i.e.,
using the smallest number of bits). Then, the measure Eplog Cfgg is closely related
to the amount of bits necessary to encode the data (e.g., for storage or transmission).
Our primary interest is in statistical inference, not just data encoding, so we focus
our attention on the log likelihood ratio log ‘ﬁ,g itself rather than its average value.
In consequence, we may interpret certain aspects of our theory differently from that

of Rissanen.

3 The Generalization of Rissanen’s Theorem

Defining a ‘distance’ to the true model automatically establishes an ordering on sets
of models: ‘Good’ models have a ‘small’ distance to the true DGP measure, whereas
‘bad’ models have a ‘large’ distance. Our distance measure will be the log likelihood
ratio itself, viz. the random variable

dGn

log

From the econometric point of view, the idea of using (3) as the basis for a distance
measure between the model G,, and the DGP is an attractive one, since the resulting
‘ordering’ reflects established practice of choosing models. Suppose one has given
two models G, and Ga,. Statisticians are accustomed to basing inference on the

value of the likelihood ratio gg;’:, measured here by the Radon Nikodym derivative
of the two measures. This pracﬁice applies irrespective of the particular foundations
for inference. A ‘classical’ statistician would use this ratio as the basis for a test in
the Neyman-Pearson framework, whereas a Bayesian statistician would use this ratio
as a Bayes factor in the context of posterior odds testing. In either event, if flgﬁ is
‘large’, G'1 5, is taken to be the better model over G, and vice versa if the ratio is
‘small’. Since we can write

dG1 n dGl n dGl n
— =log — —log :

log — ™ —
8 dGa iz Py



the logarithm (which is a monotone transformation) of this ratio is just the difference
of our distance measure (3) for the two models.

From our point of view, it is not so important to look at the expectation E(log dng:).
Since lim,_,glogx = —oo, the expectation can be over influenced by small values of
%. To illustrate, consider a series of events A, in part of the sample space of z"
and models G, defined on the same sample space. Suppose G1,(A4,) — 0 and
Py(Ay,) — 0 for all 6, but

Py(Ay) > 0. (4)
Then define alternate models Ga ,, by

dGQ,n _ 0 on An
dGi, TIAM) on the complement of A,

Most statisticians would consider G, and G, to be asymptotically equivalent:
since their likelihood ratio converges to one - and even the variational distance be-
tween these two measures converges to zero - there is no way to distinguish them
asymptotically. On the other hand, (4) demonstrates that

dGon
Ey (]og f—;@) = —00,

so that, upon averaging, G2 5, is taken to be one of the worst possible models!

The precise formulation and requisites for our extension of the Rissanen theorem
are technical and we refer readers to our original paper, Ploberger and Phillips (1998),
for details. The exposition here is intended to outline the essential features and to
discuss its implications. In this regard, it is helpful to clarify the model classes under
investigation.

As mentioned above, we want the likelihood function is asymptotically sufficiently
‘smooth’, i.e. locally quadratic, and we start by making this statement more precise.
The key conditions can be laid out as follows.

1. The parameter space © is an open and bounded subset of RF.

2. The measures Py on the sample space of ™ are, for all n € N, generated by
densities pp = pp(z™). For 6 € O, the log likelihood is defined as ¢,(0) =

log pg(a™).
3. There exist deterministic norming matrices D,, such that for h € R* we have
the expansion

00(0+ D) = 0,(0) + Wi — %h’Mnh +o(l'h), (5)

uniformly for all bounded h, where

o,

W, =D, "
"0



and 920
n

~ 5000 (6)
are the properly normalized first two coefficients in the Taylor-series expansion
of the likelihood. (This model class is discussed extensively in e.g. LeCam and
Yang (1990) and Jeganathan (1995)). An expansion that is equivalent to (5) is
obtained when the second derivative matrix in (6) is replaced by the conditional
quadratic variation of the score process 0¢,,/00.

M, =D,"B,D,!, B,=

4. The components W,,, M,, defined above converge jointly in distribution to ran-
dom elements (a matrix in the case of M,,) which we denote by W and M. We
furthermore assume that

M > 0 with probability one

in the matrix (positive definite) sense.

5. There exists an estimator /H\n for which the normalized quantity D, (@n —0)
remains bounded stochastically.

Ploberger and Phillips (1998) discuss and use some more general conditions than
these. However, concentration on problems for which the likelihood satisfies the above
conditions simplifies the exposition considerably, yet still allows for some non-trivial
cases as the following two examples illustrate.

Example 1.

Suppose z" is a realization of a time series for which the conditional density of x;
given 2'71 is fig(x) depending on the scalar parameter 6. In this case, the log likeli-
hood is £,,(0) = >3-, log fig(z¢) and, under familiar regularity conditions (e.g, ch. 6 of
Hall and Heyde, 1980), the score process 00y, /00 = > ;' Olog fip(x:)/00 =1 1 e
is a martingale. The quantity I,g = Z?:l Ey 4 (efe) is the conditional variance of the
martingale and measures conditional information (it reduces to the standard Fisher
information when the x; are independent). Under quite general conditions, it is known
(Hall and Heyde, 1980, Proposition 6.1) that the normed quantity &,, = w0200, 2els
satisfies a martingale central limit theorem and converges to the mixed Gaussian law
1neN (0,1) , where 7, is the limit in probability of E (I,9) ! Is and is generally ran-
dom. This time series set-up fits our general framework when we can choose a scalar
sequence D,, for which D 2FE (I,9) converges to a constant, which will be the case
when the e are stationary and ergodic martingale differences and then D,, = \/n.

Example 2.

The Gaussian nonstationary autoregression (1) has log likelihood (2) and we can
choose D,, = n. Then, it is well known from unit root asymptotic theory (cf. see
Phillips and Xiao, 1998, for a recent review) that the normed quantities n=19¢,,/06 =



% > xpug, and —n~"19%0,/ 06% = L > x? converge in distribution to certain function-
n

als of Brownian motion. Again this example satisfies all the above requirements..
We are now in a position to state the main result of Ploberger and Phillips (1998).

We presume that for each n € N we have a given empirical model represented by the

proper probability measure G, and that the assumptions given above apply. (Some

additional technical conditions are used in Ploberger and Phillips and these too are

assumed to be fulfilled.)

Proposition 1 For all a,e > 0 the Lebesque measure of the set

{6) 1 Py {—log dGn < 1;610gdetBn] > a}

dPy —

converges to zero.

This result may be interpreted as follows. Up to a ‘small’ exceptional set, the
empirical model GG, cannot come nearer to the true DGP than %log det B,,. Since
G, is arbitrary, the result tells us that there is a bound on how close any empirical
model can come to the truth and that this bound depends on the data through B,,.

Phillips (1996) and Phillips and Ploberger (1996) show how to can construct
empirical models for which

dGy, 1
—(log d—Pe)/(log det B,) — 7 (7)

These models can be formed by taking G,, to be the Bayesian data measure @),, for
proper Bayesian priors. Or, in the case of improper priors, the models G, may be
obtained by taking the conditional Bayes measures @y, n,, which will be proper for
all ng > k, and these can be assessed against the corresponding true conditional
DGP of 7, given x,,. In the latter case, we may also take G, to be the classical
(or prequential) measure, ]Sn,noa which is asymptotically equivalent to the conditional
Bayes measure Qp, n,-
Given the feasibility of (7), it seems sensible to define ‘essentially better’ models
as models G, for which
- <1og Zi:) /(g det By) <+ %, (8)

for some ¢ > 0. The above inequality needs to be made more precise because
both log dG,/dPy and logdet B, are random variables, and so the event A, =

[— (log ‘é%g) /(log det B,,) < 1—55} may be nontrivial. However, if the probability
of the event A,, converges to zero, one cannot reasonably define GG,, to be essentially
better because the sample space over which the inequality (8) holds has negligible
probability. Therefore, for a model to be essentially better, we must postulate the
existence of an a > 0 for which Py(A,) > «, and then the probability of events
such as A,, is non negligible. What the Proposition tells us is that the set of such
essentially better models has Lebesgue measure zero in the parameter space in R¥ as
n — 00. In this well defined sense, we can generally expect to be able to do no better
in modeling the DGP than to use the models @y, Qr ny Or P sy -

9



4 Consequences

The upshot of Proposition 1 is that for time series where there is apparent nonstation-
arity the smallest possible ‘distance’ of the empirical model from the truth is given
not by the quantity % log n, but by % log det B,,. When the data are stationary, these
two benchmarks are asymptotically equivalent. More specifically, in the stationary
and ergodic case, it is apparent that B,, ~ nl, where [ = —F (82 log fio(¢)/0008")
is the Fisher information matrix. Then, we have det B,, ~ n* det I and it follows that
log det By, /(klogn) —, 1.

In the nonstationary case, the two bounds are different. The distance % log det B,
in the general case is determined by the logarithm of the determinant of the condi-
tional variation matrix of the score process, a form of Fisher information. Moreover,
(6) and the weak convergence of M, to some nonsingular matrix implies that

log det B,
Newde . P L 9)
2logdet D,

so that, under our assumptions here, the asymptotic behavior of the deterministic
sequence
2logdet D,

essentially determines how ‘near’ we can get to the true DGP.

In the stationary case, it is relatively easy to compare the ‘loss’ from parameter
estimation in different parameter spaces. Rissanen’s theorem states that the loss due
to parameter estimation is essentially determined by the dimension of the parameter
space!. In the presence of nonstationarities, however, the situation changes. It is not
the dimension of the parameter space (which we can think of as the simplest quantity
associated with the complexity of the model class) that determines the distance of
the model to the true DGP, but the order of magnitude of the first and the second
derivatives of the log likelihood, which in our case here is essentially represented by
the matrix D,,. In some commonly arising cases, the matrices D,, are diagonal and
the diagonal elements are given by simple powers of the sample size, n®, and then

we have i
log det D,, ~ (Z ai> logn (10)

i=1
In the example below, we analyze the special case of a linear regression model. We
show that in cases of primary interest to econometricians a; = %, with inequality
occuring for at least one diagonal element 7. In such cases, the distance of the model
to the DGP increases faster than in the traditional case. Thus, when nonstationary
regressors are present, it appears to be even more important to keep the model as
simple as possible. An additional nonstationary component in a linear regression
model turns out to be more expensive than a stationary regressor in terms of the
marginal increase in the nearest possible distance to the DGP. In effect, nonstationary

'Rissanen(1996) investigates the role of the information matrix for stationary processes. The
dominant term, however, in that context is simply the dimension of the parameter space.
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regressors have a powerful signal and generally have estimated coefficients that display
faster rates of convergence than those of stationary regressors. But they can also be
powerfully wrong in prediction when inappropriate and so the loss from including
nonstationary regressors is correspondingly higher. In a very real sense, therefore,
the true DGP turns out to be more elusive when there is nonstationarity in the data!

The above remarks apply regardless of the modelling methodology that is in-
volved. Neither Bayesian nor classical techniques can overcome this bound. As the
statement of the Proposition itself makes clear, the bound can be improved only
in ‘special’ situations, like those where we have extra information about the true
DGP and do not have to estimate all the parameters (e.g. we may ‘know’ that there
is a unit root in the model, or by divine inspiration hit upon the right value of a
parameter). On the other hand, Phillips (1996) and Phillips and Ploberger (1996)
show under conditions similar to the ones considered here (or those in Ploberger and
Phillips, 1998), that the bound is attainable and can be achieved by both Bayesian
models and plug in prequential models.

Example 3.
Consider the linear model
Y = x40 + uy, (11)

where y; is scalar, x; is a k-vector and the u; are i.i.d Gaussian with known variance,
which we set to one. We assume the z; to be (weakly) exogenous in the sense of
Engle-Hendry-Richard (1983). This condition allows us to substitute for the full
joint likelihood the concentrated log likelihood

(6) = =5 (o — 10)” (12)

The function is quadratic and the conditional variance matrix of the score is
/
B, = E TtLy.
t<n

To illustrate the points made above about the growth (cf. (10)) of our bound, we
start by taking the special case where x; has the following form

xy = (L,t, Wi, e, Win, Z1, o0y Zp) (13)

where W1, ..., Wy, are (full rank) integrated (i.e. unit root) processes and Z1, ..., Zp
are stationary processes with nonsingular variance matrix. It is easily seen that
D,, = diag(y/n, vVn3,n,..n,\/n, . /n). Hence, applying formula (9), we have
log det B,
2(3+3+m+2)logn

1 (14)

It follows from this formula that the inclusion of a deterministic trend ‘costs’ (in
terms of the distance between the empirical model and the DGP) three times as

11



much as the lack of knowledge about the constant or the coefficient of a stationary
variables, whereas the inclusion of an independent stochastic trend costs twice as
much. Similarly, a polynomial time trend of degree q¢ would cost 2¢ + 1 times as
much as a stationary regressor.

In the general case where the regressors z; are stationary in some directions,
integrated in others and have some deterministic trend components, it is possible to
transform the system into one with regressors of the form (13). Indeed, by rotating
coordinates in the regressor space (cf. Phillips, 1989, and Ploberger and Phillips,
1998), we can find a nonsingular matrix C for which Cx; has the form (13). In
transformed coordinates, we have the equivalent linear model y; = x}'6* + u;, where
xf = Cxzy and % = C''4. Then, formula (14) above continues to apply with p
equaling the total number of stationary components (which includes the number of
cointegrating vectors) and m being the number of primitive (i.e not cointegrated)
stochastic trends.

Some Implications for Prediction

A direct analysis of the likelihood (12) helps to establish some results about the best
prediction in a linear model when the parameters are unknown. Take the classical
linear regression model (11) with w; i.i.d. N(0,0?) and 02 known. If we knew the
true parameter 6g, the best predictor for y; given z; would equal x}6y. In practical
empirical problems, of course, the true parameter is unknown and has to be estimated.
In place of the optimal predictor x}0p, therefore, we have to use another predictor
such as x40, 1, where 6; 1 is the OLS-estimator for 6 based on 2!~ = (y,z)!~!. Of
course, we may also use more sophisticated methods relying on the past history z¢~1.
So let us assume that we have given some predictors 7, = ¥,(x¢, 2!~1) for y;. Then,
for fixed (t,x,2"") we can consider the function

- 1 Yyt =)’
ool = o (R ),

which evidently is a proper density function, integrating to unity. Therefore, the
probability measure G on the sample space defined by the density [[,,, ¢(yt|, 21
is a model (in the our sense) for the data?.Then, it is easily seen that

G 1 ., ,
_IOgd_Pg = ﬁz{(yt — )" — (e — 2400)°},

namely the difference between the sums of squared prediction errors for the given
predictor and the best possible predictor. Now, we can apply our Proposition 1 and
conclude that this difference must be (for Lebesgue-almost all 6, of course) greater
than our bound (14). This shows that there is a natural bound on how close we can
come to the optimal preditor, in terms of mean squared prediction error, and that
this bound depends not only on the parameter count but on the trend properties of
the regressors.

2Strictly speaking, we should define a measure on the space of all y;,z:. But, we can use the
concept of exogenity mentioned earlier to restrict attention to conditional measures.
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5 Conclusion

In a certain way, our Proposition helps to quantify the well-known opinion of one of
the editors of this volume that models with high-dimensional parameter spaces are
to be avoided. Increasing the dimension of the parameter space carries a price in
terms of the quantitative bound of how close we can come to the ‘true’ DGP and,
in consequence, how close we can reproduce the properties of the optimal predictor.
Our Proposition shows, further, that this price goes up when we have trending data
and when we use trending regressors. The price no longer follows the (parameter
count)*(logarithm of sample size) law, and it becomes necessary to multiply the
parameter count by an additional factor that depends on the number and the type
of the trends in the regressors.

No methodology can break this curse of dimensionality, at least for almost all of
the elements of the parameter space. The new element that emerges from the present
theory is that the curse is exacerbated when nonstationary regressors and trending
data are involved. Both in modeling and in prediction, our results indicate that
there are additional gains to be had from parsimony in the formulation of models for
trending time series.
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