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Abstract

Asymptotic expansions are developed for Wald test statistics in coin-
tegrating regression models. These expansions provide an opportunity to
reduce size distortion in testing by suitable bandwidth selection, and auto-
mated rules for doing so are calculated. Band spectral regression methods
and tests are also considered. In such cases, it is shown how the effects
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over to high frequency asymptotics, with consequential effects on bandwidth
rules.
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1. Introduction
This paper studies the Wald statistic in time series regression models of the form
yo =Bz +u, t=1,...,n, (1.1)

where u; is a stationary process with zero mean and continuous spectral density
fuu(N). The regressor x; may be a vector of either stationary or unit root non-
stationary time series. Results for the stationary case are given here, but the
main focus of the paper is on the nonstationary case. In this event, if x; is an
integrated process of order one (or I(1) ), then both z; and y, are nonstationary
and the linear combination y; — 3'x; is stationary, so that (1.1) is a cointegrating
regression in the sense of Engle and Granger (1987).

We consider the frequency domain version of (1.1), viz.
wy(As) = Bwg(Ns) + wy(Xs), As =2ms/T, s =0,1,......,n— 1, (1.2)

where wy(As), wz(As), and wy(A,) are discrete Fourier transforms of y;, x¢, and
ug, at the fundamental frequencies \; = 27s/n, s = 0,1, ...... ,n — 1,defined by

wa()\s) = ﬁz:;l ateit/\s .

with continuous spectrum bounded away from the origin, the residuals of regres-

If the residual process in (1.1), wu, is stationary

sion (1.2), wy(A¢), are asymptotically uncorrelated but generally heteroskedastic.
Regression in the frequency domain permits a nonparametric treatment of the
regression errors and, utilizing a consistent estimate of fy, (), delivers a semi-
parametric estimator of 3 that is asymptotically equivalent to GLS in the case of
stationary u; and x;. Hence, it is unnecessary to parameterize the autocorrelation
structure of u; to achieve efficient estimation. In addition, these methods allow
attention to be focused on the most relevant frequency in the regression, thereby
providing a selective approach that accommodates more general formulations in
which the parameter 3 may not be constant across frequency bands.

Regression analysis in the frequency domain was introduced by Hannan (1963),
following ideas of Whittle (1953), and extended to nonlinear models by Hannan
(1971) and Robinson (1972). Robinson (1991) studied automatic frequency do-
main inference on semiparametric and nonparametric models where bandwidth

selection for the spectral density estimate is determined from the data. Phillips



(1991) showed how to apply this method to cointegrating regressions, developed
a limit theory for frequency domain estimators in this case and established some
optimality properties for such regressions. In addition, a recent paper by Phillips,
Ouliaris and Corbae (1997) has explored spectral regression methods in the pres-
ence of deterministic trends.

This paper studies the use of Wald statistics in linear time series regressions
like (1.1). Finite sample problems of over-rejection in the use of Wald tests in such
regressions have long been recognized by econometricians, an example being the
well studied phenomenon of over-rejection of homogeneity conditions in empirical
consumer demand analysis (see Barten 1969; Byron 1970; Llush 1971; and Deaton
1974 among others). Monte Carlo results in such cases have shown that the Wald
test is biased toward rejecting the null hypothesis (e.g. Laitinen 1978; Meisner
1979; and Bera, Byron and Jarque 1981).

One of the mechanisms for improving asymptotic x? approximations of Wald
tests is the use of higher order expansions. The statistical theory of asymptotic ex-
pansions for Wald tests has been extensively studied in econometrics (see Sargan
1976; Phillips 1978; Phillips, 1983; Phillips and Park 1988; Rothenberg 1984a,b;
and Linton 1995a, b among others). However, higher order expansions have not
so far been developed and used in nonstationary time series environments, with
an exception in Phillips (1987), largely because of the difficulty in developing
valid higher order extensions of the underlying functional central limit theory on
which the nonstationary regression asymptotics typically depend.

This paper seeks to implement a simple and useable approach to the develop-
ment of a higher order theory for Wald tests in time series regressions with I(1)
regressors, avoiding the need for higher order extensions of the functional limit
theory. In efficient semiparametric time series regression a critical element in the
construction of the estimator and associated tests is the choice of the bandwidth
in the estimation of the spectral density fuu(A). The idea behind the present
development is to construct a bandwidth selection criterion by minimizing the
second order effect on the expected value of the Wald statistic. A second order
adjusted Wald statistic can then be constructed to correct the size distortion of
the Wald test in finite samples. Results are also given for stationary time series

regressions.



The paper is organized as follows. The model and test statistics are studied
in the next section. Some preliminary results for spectral density estimation and
spectral regression in cointegrated systems are given in Section 3. The expansion
for the Wald statistic and a modified Wald test in the univariate case is given in
Section 4. The case of band spectral regression is studied in Section 5. Section
6 gives the results in the multivariate case. The results of a small Monte Carlo
experiment are reported in section 7. Section 8 concludes and proofs are given in
the Appendix in Section 9.

2. Background and Assumptions

To develop higher order asymptotics for the Wald statistic in regression (1.1), it

is convenient for us to make the following assumptions on z; and w; :

ASSUMPTION 1: x; is an I(1) process satisfying Axy = vy, initialized at t =0 by
any Op(1) random variables.

ASSUMPTION 2: v, and u; are independent stationary and ergodic k— wvector
and scalar time series with zero mean, finite second moments and continuous
spectral densities fu(A) and fuu(X), which are positive at the origin. The vector
xr and partial sums of wur both satisfy invariance principles with independent
limit processes, so that, as n — oo, n_l/Qx[T,,] = B,(r) = BM (27 f,,(0)), a
vector Brownian motion of dimension k with covariance matriz 27 f,,(0), and
n=125 0 = BL(r) = BM(27 f4u(0)).

The matrix representation of regression (1.2) can be written as

W, = W3 + Wy, (2.1)

where W,,, W, and W, are vectors of wy(As), we(As), wy(As), and can be written
as Uy, Uz, and Uu, with U = exp[i(%’r)Tg’}/\/ﬁ being the n x n Fourier matrix,
7 =10,1,...,n—=1], ¢ = [1,2,...,n], y = (Y1, .- JUn) s = (X1, e R URTIES
(U1, ... ,Uup)", and U*U = I,,, where the affix * indicates transposition combined
with complex conjugation. Under Assumption 2, the covariance matrix of the

residual in (2.1) is asymptotically diagonal since the discrete Fourier transforms



of uy are asymptotically uncorrelated. Thus, the frequency domain efficient esti-
mator of G can be obtained based on weighted averages of periodogram estimates

at the fundamental frequencies, viz

3= [wEmwl] s

- [Z Iww()‘s)};_ul(/\S)] [Z Iwy(/\s)ﬁ:ul()‘S)] ’

where Iz (As) = wz(As)we(Ns)*, IﬂcyO‘S) = wm(AS)wy(AS)*a Sl = diag|--, ﬁm()‘S)flv -

-], and ﬁu()\s)_l are nonparametric spectral density estimators.

We are interested in testing the linear hypothesis
Hy: R3=r, (2.2)

where r is an p x 1 vector of constant and R is an p x k matrix. The regression
Wald statistic corresponding to 3 is given by

W = (RB—r) |RW:S™'W,)" 'R o (RB —1). (2.3)

All of the theory we develop carries over with minor changes to the case of analytic
nonlinear restrictions on [ in place of (2.2) and associated changes in the Wald
statistic (2.3).

The following Lemma summarizes the limit theory of the estimator B and the

corresponding Wald statistic (2.3) in the nonstationary case.

LEMMA 1: As n — o0
(1) n(B = 8) = [ BeBL] ™ [ BadBu] = MN (0,27 £u(0) [/ BaBL] ).
(2) Under Ho, W % X2,

REMARK 1: As the Lemma shows, the asymptotic distribution of the regression
estimator is mixed normal with matrix mixing variate 27 fuu(0) [ [ B.Bj] ! that
depends on Brownian motion B, (r). This mixed normal distribution facilitates
the construction of a regression Wald test about 3 by using an estimate of the

conditional covariance matrix WX ~1W,. As a result, the Wald statistic has an



asymptotic x? distribution under Hy, and the null hypothesis can be tested using
conventional x? limit theory distribution. However, the asymptotic y? distrib-
ution by no means always provides a good approximation to the distribution of
W, and Monte Carlo evidence indicates that Wald tests often over-reject the null
hypothesis in finite samples. This paper proceeds to derive a higher order expan-
sion for the expected Wald statistic, and this helps to partially explain the finite
sample performance of the Wald test and to make compensating adjustments us-

ing second order effects.

3. Some Preliminary Expansions

We consider the “leave-one-out” type nonparametric estimator for the spectral

density of the residual process uz, viz

-~ 1 . ~ *
fuu(As) = E Z K()‘j - AS)wU(AJ)wU()‘J)
/\jEB(}\s),)\j#)\s

1 ~
= D KA = A Luu(Xy)
= Zwsjluu()\j)u
it
where B()\;) = {w : As — 557 < w < A + 557} is a frequency band of width
/M centered on \s = 27ws/T. Let m = [T/2M], where [-] signifies integer
part. Then, each band B; contains m fundamental frequencies As. K(-) is a
spectral window and satisfies conventional properties of being a real, even func-
tion with L DN EBW) K()\] —w) = 1. The corresponding lag window is k(<) =
5 DoreeBw) KAs —w)e Me79) Many candidate kernel functions are available
and are discussed in standard texts of spectral analysis (e.g., Hannan 1970;
Brillinger 1980; and Priestley 1981). The periodogram ordinates fuu()\s) are
calculated using consistent estimates of the residuals. In our analysis, we use the
residuals from an OLS regression on (1.2), so that @, (As) = wy(As) —BOLSww(/\S).

It is convenient to decompose the error term in the nonparametric spectral

density estimator fuu()\s) into a bias effect due to smoothing, B, a variance



term arising from the periodogram, V;, and an error coming from the preliminary
estimation of wy(As), Ps. Thus, we have

FuuXs) = fuu(Xs) + By + Vs + P, (3.1)

where By = Z}\j#swsj[fuu()\j) - fuu()\s)]> Vs = Zj;és wsj[lu ()\]) - fuu()\s)]>
Py =3 s wsj[luu(Aj) — Tuu(As)]. Asymptotic results for the bias and variance
in spectral density estimation are well known (e.g. Hannan, 1970) and are stated

in the following lemma for completeness.

LEMMA 2:
By ~ =M™ kq fg( M),

Vv AN, /'°° k()2da f2,(\)),

— 00
where q is the characteristic exponent of the kernel function defined as limgz—o{1—
k(z)}) |2]? = kg < 00, fi(N) = = 350 _ o |AlTvu(h)e™ ™, ~ denotes asymptotic

equivalence and 2 denotes asymptotically distributed.

Most commonly used kernel functions have the property that ¢ = 2 and thus
the bias term is of order O(M~—?2). For example, the commonly used smoothed pe-
riodogram estimate corresponds to the Daniell kernel that k(x) = sin(nz/2)/(7z/2),

and N /

7, for |A| <@ /2

K — 7 ‘— M
V) 0, otherwise.

Since our interest is primarily on the analysis of second order effect, without loss

of generality, in what follows, we simply use the smoothed periodogram so that

a=1 [ k(x)*dr =1, and v/mV, & N(0, f2,(A\,)).

In spectral regression for stationary time series, the error term coming from
the preliminary estimation of wy(As) is of smaller order of magnitude and thus
can be dropped. However, different results arise in cointegrating regression mod-
els. Because the spectral power of an integrated process is heavily concentrated
at the origin, errors from the preliminary estimation are amplified around zero

frequency and thus enter the second order effect. The order of magnitude for P;



is summarized in the following Lemma.

LEMMA 3:

. . —1 .
P — / BB, [ / BmB’w} / BydBu, for |N| < 7/(2M)
2mm . .

and
Py =op(m™ 1), for |N| =7/(2M).

In view of they/m rate of convergence of the spectral estimates and the M~
order of magnitude of the bias, the expansions we deal with will typically be in
terms of powers of m~3 and M. Tn these expansions, terms that are of order
Op(m~1) or O,(M29) turn out to be of principal interest and will be referred to
as “higher order” terms.

An expansion for the inverse of the spectral density estimator, ﬁm()\t)*l, can
be obtained based on (3.1) and Lemma 2 and Lemma 3. The results are given in
Lemma 4 and readers are referred to Xiao and Phillips (1998) for details of the

derivation.

LEMMA 4:

ﬁm()‘t)il = f’uu()‘t)il _._fuu()‘t)iz‘/t +‘_fuu(>‘t)73v%2 - fu’u()‘t)ith
—}—fuu()\t)_SBtQ — fuu()\t)_QPt + higher order terms, (3.2)

where ?uu(AS) =m! Zj;és K()‘J - AS)fuu()‘J)
The following Lemma gives some useful limiting results for periodogram aver-

ages of I(1) processes and is based on results in Phillips (1991). The results will

be used in the analysis of higher order asymptotics in later sections.

LEMMA 5:



-1
-1
% me(ks)fﬁ(&)fq(&) 4, %fuu(or? 1,(0) | /0 B,B.,

a 1 _ 1 ,
nQZIm A2 S 0 21,07 [ BB

REMARK 2: As pointed out in Phillips (1991), contributions from the zero-
frequency ordinates dominate the limit behavior of these periodogram averages
since the spectral power of x; is concentrated at the origin. The limits are char-
acterized in terms of quadratic functionals of the Brownian motion weak limit of

1
n 2T
4. The Wald Expansion in the Univariate Case

We start the development with the scalar case to simplify the derivations and illus-
trate the main results. The multivariate case will be treated later in Section 6. In
the univariate case, the linear hypothesis R3 = r reduces to Hyp : 8 = (3, and the
corresponding regression Wald statistic is simply W = (3 — BO)I [W; i_le} (B — 60) .
Under the null hypothesis that 8 = 3,

—Bo= [ZIM fuu 8) 1] {ZImU()‘S)ﬁLu(/\S)ll )

and
W=2H"'Z, (4.1)
where
B o= 3 L) ful) 4.2
H = %Zlmw()‘S)fuu()‘S)_la (4 3)
1 _
Z = =) LuA) fuu(Xs) ! (44)



If we expand H-! around H~! to the third term in a geometric expansion,

we get

H'=H'-H??D+H®D*+R, (4.5)
where D = H — H, and R; = H-'H-3D3 is the remainder term. We then

decompose D and Z as follows:

1 « —2 31,2
1
2 ZIM()‘ ) fuu(As QB 3 n2 ZI‘W o) fuu(As) ™ SBE
1
- ZIM()\S)J‘W(}\S)_QPS + higher order terms
= —Dyi1+ Dys—Dp1+ Dp2— Dp1 (4.6)

—+higher order terms

and

Z = —Zlgpu fuu s __ZI:BU fuu ) 8
+E ZIxu()‘s)f;u 3V2 ZIxu fuu 5) B,
+— Zlmu ) fuu(As) 3B2 lecu ) fuu( S) P

+ h1gher order terms
= Zo—Zvi+Zve—Zpr+Zpa—Zp1 (4.7)
+ higher order terms

The following Lemma gives the orders of magnitude of the terms in these

expressions.
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LEMMA 6:

Zy = O0p(1),Zv1=0p(m %), Zyy = Op(m™1),
Zp = Op(M™9),Zpa = Op(M™%), Zp1 = Op(m™1),

and

DVl = Op(n_l/Q),DVQ = Op(m_l),DBl = Op(]\/[_q),DBQ = Op(M_Qq), Dp1 = Op(m_l).

Using (4.5), (4.6), and (4.7) in (4.1) and collecting terms up to O,(m ! +
M~29), we obtain a formal! moment expansion for E[W], which is summarized

in the following Theorem.

THEOREM 7:

EW] = Qo+m Qi+ M Qs+ M Qs+ op(m ' + M )
= W+ op(m '+ M%),

where Qp, @1, Q2 and Q3 are O(1) quantities defined as

Qo = E[H'Z:7y,

Q1 = Qu1+ Q1

Qu = m{E[H 'Z{Zy1] +2E[H 1 Z: Zys) — E[H > Dy Z 20},

Q1o = m{E[H 'DpZ} 7] — 2E[H™ Z Zp1]}

Q> = MIY{E[H %DpiZ}Zy) — 2E[H 175 Zp1]},

Qs = M*Y{E[H 2}, Zp)| + E[H 3D%,Z; Zy) + 2E[H 12} Z o)
—2FE[H %Dp1Z Zp1) — E[H 2Dp2Z Z)},

and W = Qo +m~ Q1 + M~9Q5 + M~—24Q5 is the truncated expectation of the
Wald statistic.

'Here and elsewhere in the paper we proceed in a conventional way with formal moment
approximations. The expressions given are formally moments of the approximating expansions
rather than formal asymptotic expansions of the moments of the statistics.

11



REMARK 3: In this expansion, the leading term, @, is just the expected value

of the infeasible version of W in which the true spectral densities appear.

REMARK 4: The higher order effects (up to Op(m~! + M~2%)) include: Q11, a
variance effect; ()12, second order effect coming from the preliminary estimation;
()2, a bias effect; and @3, a squared bias term. Here, the bias effect Q2 plays an
important role in the second order term and dominates the squared bias term Q3

in order of magnitude.

REMARK 5: Among the second order effects, the first term, m~1Qq, is a vari-
ance term and is always positive. The effect coming from preliminary estimation,
m~1Q12, is asymptotically positive. The third term, M ~9Qo, is a bias term that
depends on the curvature of the spectral density function f,,(w). The fourth
term, ()3, is also positive. Thus, it is apparent from the expansion that, in most

cases, the Wald test is likely to over-reject the null hypothesis.

When Q)5 is negative, we get two terms in the second order effect with different
signs: m1Q; and M~9Q,. Whether or not the Wald test will over-reject H
depends on which of these terms dominates. In this case, a (second order) optimal
bandwidth can be selected by minimizing the absolute value of the second order
effects, that is, M can be chosen by equating m~1Q1 to M~7|Qs|, giving the

wr = (19N e
21

Choosing the bandwidth by this formula enhances the second order efficiency.

optimal bandwidth

When @ is positive, both terms in the second order effect of E[W] are pos-
itive. As a result, at least to the second order, the Wald statistic (2.3) tends
to over-reject the null hypothesis. In this case, a bandwidth selection criterion
can be defined by minimizing the expected value of the second order effect in the
Wald statistic, i.e. M can be chosen to minimize m~'Q1 + M~9Qs, yielding

M = (LQQ) ey nl/(a+1)
2Gn

12



Choosing the bandwidth in such a way, the truncated expected Wald statistic is

Qo +n~ 4/t [q1/<q+1> 4 g /@D (20)9/ @D QY+,

A second order adjusted Wald statistic can also be constructed based on the
above expansion. If @1 and @2 are consistent estimates of Q1 and )2, we define

the following second order modified Wald statistic:
Wy = W —n~9/atD) [ql/(qul) + qfq/(qul)} (2@1>q/(q+1) @;/(q-}—l).

This modified Wald statistic is asymptotically x? and has an o,(n~%(+1) second
order effect removed from its expected value.

Using the results in Lemma 4, we have the following asymptotics:
LEMMA 8:

(1) mE[HYZ; Zv9) — 15

(2) mE[H *Dy2Z§ 2] — 1;

(3) mE[H ' Z31 Zy1] — 15

(4) mE[H’lZé‘Zpl] — —1;

(5) mE[H=2Dp1 23 Zo| — —1;

(4) MUE[H™' Z§ Zp1] — kqfuu(0) ™" fo(0);

(5) MIE[H™Dp1 Z§ Zo] — kg fuu(0) " f(0);

(6) MME[H 1 Z) Zp ] — ki fuu(0) 2 f4(0)%;

(7) M2 E[H3D%, Z§ Zo] — k2 fuu(0)2£,(0)%;

13



(8) MXME[H™"Z§ Zps] — k2 fuu(0) 2 f,(0)%;
(9) M E[H*Dp1Z Zp1] — ki fuu(0) 72 f4(0)%;
(10) M2 E[H=2DpyZ§ Zo| — k2 fuu(0) 72 f4(0)2.

These results lead us to the following approximation for the truncated ex-
pected Wald statistic.

THEOREM 9:

— 3

2
We~1+ —+ %fu(O)_lfq(O) +

M—qu,fuu(o)_qu(O)Q-

Since the effect at zero frequency dominates, the second order effect in W is
asymptotically determined by the spectral density of the residual process at the
origin. As a result, the size of the hypothesis test based on W will be largely
affected by the curvature of the spectral density function f,,(-) at the origin.
When f,(0) is positive, a simple formula for bandwidth selection can be defined

that is based on the unknown spectrum and its smoothness component, viz.

M = (qkqfuu(%)lfq(o) ) Vi ni/(a+1) (4.8)

If we plug consistent estimates fuu (0) and fq(O) into the formula, then a practical
formula for bandwidth selection is obtained. A simple second order modified
Wald test can also be constructed using this formula as follows:

Weo = W —n~¢/(a+D) [ql/(qﬂ) + qfq/(qﬂ)} (6)4/(a+D) [kqﬁ](O)/ﬁm(O) Yiatl) .

(4.9)

REMARK 6: If x; is a stationary process, the higher order asymptotics are differ-

ent. It can be shown in this case that

k k2
E[W] ~ 1+@ + 4O, L

-1 —212
m M4 a2 T = T

14



where

1 [7 —
@ = g [ fuelo) )

r, = i ’ fm(w)qu(w)isfq(w)dea

T = 5 [ feell o) i)

and the corresponding bandwidth formula based on minimization of the second

order term in the expected Wald statistic is

_ 1/(g+1
M= (M) e
4a ’

Such a formula depends on integrated forms of the spectral density functions,
rather than their values at a single point. As a result, we can not simply substi-
tute consistent nonparametric density estimates for a single point into the formula
to obtain a bandwidth choice rule. Instead, the usual procedure is to prespecify a
parametric model for the error process u;, estimate these parameters and utilize
these estimates in a plug-in procedure to obtain an estimator of the optimal band-
width. The bandwidth rule is then optimal for this parametric model, and has

the correct order of magnitude even when the parametric model is misspecified.

5. Band Spectral Regression

One of the advantages of frequency domain regression is that it provides a se-
lective procedure which allows us to focus on the most relevant frequencies. In
economic applications, it is possible that a model applies more accurately at
some frequencies than others, a famous example being the permanent income
hypothesis model where permanent consumption is modeled as a linear function
of permanent income. In this model, the marginal propensity to consume out of
permanent income can well be very different from that out of transitory income.
Since it is reasonable to associate permanent income with zero- and low-frequency
components in the data, regressions based on high-frequency components can be
expected to deliver different estimates of the marginal propensity to consume than
those from low frequency components. Engle (1974) first applied the band spec-

tral regression method to test the permanent income hypothesis, while Corbae,

15



Ouliaris and Phillips (1994) extended it to cases with stochastic trends, and, in a
later work, Phillips, Ouliaris and Corbae (1997) studied band spectral regression
with deterministic trends.

Corresponding to a frequency band B;, we may hypothesize a spectral regres-
sion model of the form

wy(As) = Bawz(As) + wy(As), if Ay € B;. (5.1)

In this band spectral model, the value of the regression coefficient vector f3; is
now frequency dependent. In what follows, we consider a simple band spectral
regression model where the regression coefficients have different values on two
symmetric frequency bands: a low frequency band A = [—wg, wp], which includes
the zero frequency, and a high frequency band B = [—m, 7| — [~wq,wp]. As a
result, the full model has the form

wyhs) = Bawa(Ns) + wu(Ns), if As € A, (5.2)

and
wy(As) = Bpwe(Ns) +wu(Ns), if As € B. (5.3)

As we have seen in previous sections, due to the dominating effects of the zero
frequency components, regression (5.2) (which includes the zero frequency) and
(5.3) (which excludes the zero frequency) lead to estimators with differing rates
of convergence and limit distributions. It can therefore be anticipated that test
statistics arising from these two different regressions will have different second
order effects.

The following lemma summarizes the limit distributions for efficient band

spectral regression estimators.

LEMMA 10: If

Ba= | Lio(As) fuu(Xs) ! 7 Ly () fuu (M) !

As€A As€A

and

Bp=| D LuP) )™ | D Ty D)™

As€EB As€B

16



then

n(Ba—Ba) S [ / BmB;] h [ / BmdBu] — MN (0, 27 i (0) [ / BEB;} 1) ,

R -1
\/ﬁ(ﬁB - BB) i} N <07 |:/B hm(w)fuu(w)ldw:| ) s (54)
where iBw(l)Bx(l)’
2 |1 - ez’wﬁ '

he (W) = foo(w) +

The asymptotics for B 4 and its corresponding Wald statistic are the same as
those of B in Section 4, allowing for the fact that the full band is replaced by the
partial band A in Remark 6 (the stationary case) - see Remark 9 below. Thus, the
following discussion focuses on B g and its related regression Wald test, for which
case the zero frequency is not included. Notice that in the frequency band B, the
errors coming from preliminary estimation of w,(A;) can be dropped by Lemma
3, and thus do not enter the second order effect. Some useful asymptotic results
are summarized in Lemma 11. Because of the absence of the zero frequency, rates

of convergence of these periodogram averages are different from those of Section 4.

LEMMA 11:
— Z Lz (Ns) /hw(w)dw,
)\SGB B
- Z Iww fuu 5) i) EBa
)\ €B
— Z Iww fuu 5) qu( ) _>A17
)\ €B
- Z Iww fuu 5) qu( )_>A27
)\ €B
where



ha: fuu 3fq(w)2dw, and

ha: fuu 2fq(w)dw

The Wald statistic for Hy (6 = () in this band spectral regression can be
written as Wy = W*ﬁ§1W where

ﬁB = %Z Iww(As)ﬁLu()\s)_lv

As€EB

Hg = n Z Lz (Xs) fuu(Xs) ™", and
As€EB
1 N —

T o= — ) Luh) fuurs) ™

The following lemma verifies the orders of magnitude for some higher order

components and is useful in the expansion that follows.

LEMMA 12:

Ay = - Z Lz (As) fuu(As) ™ QVS :Op(n_l/Q)’
)\SGB

AVQ = ~ Z Iww fuu 5) 3‘/52 = Op(m_l)’
)\SGB

ABl = - Z Iwaz fuu s) QBS :OP(]\/[_(I)’
)\SGB

ABQ - Z Iwaz fuu s) 3B€?:OP(M_2q)’
)\SGB

and



Ty = %éuu(mmw)—m = 0, (m™/2),
by = %A%IM(AS)M(AS)*‘VE=0p(m‘1),
Uy = %A;BIW(AS)J”W(AS)‘QBS=0p(M—q),
Up = % S L) fuuA) P B2 = 0,(M~2),

As€B

Performing a similar expansion to that in Section 4, we get the following result
for the band spectral regression Wald statistic.

THEOREM 13:

EWg] = ®+m & + M 10y + M 213 + o (m + + M 29)
= Wg+ op(nf1 + ]V[fzq),

where ®¢, P, Py, and 3 are O(1) quantities defined as

) = E[HZ'U;T,
&1 = m{E[HZ U} U] + 2E[H ' U5Uyo] — E[HZ*AyoU5T0)},
®y = MYE[HG*Ap1 UV — 2E[H5 ' ViU g}, and

3 = MYE[HZ Uy Up] + E[HZ* A% U5V + 2E[H 5 U0 o]
—2F[H*Ap1 VU p1] — E[Hz*Ap2 V)1,

and Wp = &g+ m~1®; + M99y + M~29d3 is the truncated expected Wald
statistic.
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REMARK 7:  This expansion is similar to that in Section 4. However, the
quantities in the formula have different definitions and different asymptotics. As
discussed before, for hypothesis testing (2.2) and the corresponding regression
Wald test, a bandwidth selection criterion can be defined by minimizing the
expected value of the second order effect in the Wald Statistic, giving the following

bandwidth choice: Ler1)
A= (122
20, '

Lemma 14 provides some useful asymptotic results parallel to those of Lemma

LEMMA 14:
(1) mHZ U505 S a,
(2) mHZ2Av2 V500 — a,
(3) mHZ U0y — a,
(4) MIHZ U305, 5 kS5 Ay,
(5) MUHZ2Ap U0y 5 kS5 Ay,
(6) M2 Hy Wy Wy % k2551A,
(7) M2H P A% WiWy 5 k25 ,2A2,
(8) M2H, WU 2 k25 ,A2,

(9) M2 H 2 Ap W30 gy -5 k25,202,
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(10) M2 HZ2ApaUWo -5 k2S5,

The following approximation for the truncated expected Wald statistic can

then be obtained based on Lemma 14:

THEOREM 15:
2a kq k‘2

1 —22
WB~1+—+Mq Y5t A, +M [255'A1 — Z5°A5] .

REMARK 8: Notice that the frequency band does not include the zero frequency
and thus the second order effects in W g are functions of integrals of the spectral
density. As a result, we can not obtain a bandwidth selection formula as we did
in Section 4 by simply using spectral density estimates at the origin. Instead, a
plug-in method or cross validation procedure has to be used to find a bandwidth

in practice.

REMARK 9: If z; is a stationary time series, the expansion of the expected Wald
statistic in the band spectral regression model is very similar to the full spectral
regression model. The asymptotics for the higher order components have the same

formula but integrations are now taken over the frequency band B. Specifically,

2a kq k:2

EWp] ~ 14—+ 205 Ty + —80 [205 Ty — QT

where

QB = % /B fazw(w)fuu(w)_ld‘da
'y = % ./B fm(w)fuu(w)fsfq(w)de, and
Tor = g [ eel) o) 2 e0)d

6. The Multivariate Case

In this section, we consider the multivariate case and the Wald test for a general
linear hypothesis with p restrictions. Thus, the null hypothesis has the general
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format Hy : RG = r, where r is an p X 1 vector and R is an p X k matrix. x;
and 3 are now k x 1 vectors, I;z(\) and fz5(\) are k x k matrices, and Iy, Iy,
are k x 1 vectors. The corresponding regression Wald statistic is given by (2.3).
Under the null hypothesis that RG = r, we have

W= G- oy R [ROV;ST W) R RG - 5).

For simplicity, we still use notations H ,H, and Z, which are defined by formulae
(4.2), (4.3), (4.4), for their matrix counterpart, then the Wald statistic can be
written as .

W=2zH"'R |RH'R| RH'Z.

The expansion for W in this section follows similar ideas as those in Section 4,
and the higher order asymptotics are similar to those in Theorem 9. However, the
expansion is now much more complicated because of the multivariate nature of
the model. The detailed expansions are given in the appendix and we only state
the major steps of the expansions here. Denote RH'R' by jo, and RH™'R' by
Jo, we expand jo_l around Jy to the third order and get the following expansion
for W,

Z*H 'R I3t = T (Jo — Jo) Iyt + Iyt (Jo — Jo) Iyt (Jo — Jo) gt + RQ} TRz,
(6.1)

where Ry = J5 ' (Jo — Jo)J5 ' (Jo — Jo)J5 H(Jo — Jo)J5t. Notice that Jo — Jy =

R(H'—H=Y)R', H! can be expanded around H as H~' = H~'—~H-'DH1 4

H 'DH'DH !+ Ry, and D and Z follow similar expansions as (4.6), (4.7),

substituting all these preliminary expansions into (6.1) and collecting terms up

to Op(m=1+M~9), we get the following expansion for the expected Wald statistic.

THEOREM 16:

EW] = So+m 1S+ M 1Sy + op(m™t + M 9)
= We+op(m * + M),

where Sy, S1 and Sy are O(1) quantities defined as
Sy = E[Z;H 'R(RH 'R)"'RH 'z,
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S1 = m{E[Z{ H 'RJ;*RH ' Zy| + 2E[Z;H 'R Jy 'RH ' Zy9)
+E[Z;H 'R J;'RHE 'DyvoH R Jy'RH 1 Zy) — 2E(Z3 H 'R Jy ' RH 1 Z)
—2E[Z}H 'R Jy'RH 'DyoH ' Zo) + 2E[Z;H 'R J; ' RH ' Dp1 H 1 7))
~EB[ZiH 'RJT'RA 'Dp H 'R I RHE 1 2]},

Sy = MI{2E[Z;H 'R J,'RH'DpH ' 2] — 2E[Z;5 H 'R J, ' RH' 7))
~FB[Z:H 'R J;*RH-'DpH 'R J; ' RH™ Zy)},

and Wg = So +m 1S; + M 455 is the truncated expected Wald statistic.

REMARK 10: The orders of magnitude of the second order terms are the same
as those in the univariate case. However, these second order effects do depend on
the linear hypothesis. The number of restrictions, p, in the null hypothesis goes
into both the first and the second order asymptotics. The following Lemma gives

asymptotic results for the higher order terms in the expansion.

LEMMA 17:

mE[Zi H 'R J; ' RH™ Zy1] — p,
mE[ZH 'R Jy'RH " Zya) — p,

mE[Z;H 'R Jy'RH Dy, H 'R Jy'RH ' Zy] — p,
mE[ZyH 'R Jy '\RH™'Dyy H ™ Zg] — p,
MUE[Z;H 'R Jy ' RH ™ Dp1 H™ Zo] — —pkq fuu(0) ™" £4(0),

MIE(Z} H 'R Jg ' RH 1 Zo] — —phq fuu(0) 72 £4(0),
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MIE[Z;H 'R J,'RH 'DpiH 'R J, ' RH 1 Zg] — —pkyfuu(0) 1 £,(0).

Thus, the truncated expected Wald statistic W has the following approxi-
mation, which is similar to that in Theorem 9.

THEOREM 18:

T 3p | Pkq .4

REMARK 11: Just as in previous sections, an optimal bandwidth rule can be
determined by minimizing the second order term, giving formula (4.8), and a

second order modified Wald test can then be constructed as in (4.9).

REMARK 12: When x; is a stationary process, the zero frequency no longer has
the dominant effect and the value of spectral density elsewhere goes into the
asymptotics. As a result, certain terms can not be cancelled out and the higher
order asymptotics of the Wald test have a more complicated representation than
in the univariate case. We have been able to show that the expected value of

Wald statistic in this case has the following expansion

EW] ~pt 204 Ky, { (RO'R)™ RQ—lrgg—lR’} ,

m M
where 2 and T’y are k x k matrices of integration of spectral densities defined by

the same formulae as those in Remark 6.

REMARK 13:  Expansions for the Wald statistic in band spectral regression

models can be derived in a similar way.

7. Monte Carlo Results

We conducted a small Monte Carlo experiment to evaluate the second order theory

for Wald tests in cointegrating regressions. In particular, we examined the size

24



properties of Wald statistics using different bandwidth choices and the second
order adjusted Wald test, and looked at the effect of the second order bandwidth
selection criterion on test size.

The data were generated according to the model

Yy = Brp 4w,
Ty = Tyl + Uy,

Uy = QU1 + &g,

where v; and e; are both iid N(0,1) variates and are independent of each other.
Two values of autoregressive coefficient, @« = 0.3 and o = 0.6 were considered.
The null hypothesis Hy : 8 = 1 was tested. The corresponding Wald test is
asymptotically x? and the nominal 5% level critical value for the test based on
the asymptotic distribution is 3.84.

Three sample sizes, T' = 64, T' = 128, T = 256, were used in the experiment.
The number of replications was 10,000 for each case. The Daniell window was
used in the nonparametric density estimation. The size properties of the four
Wald statistics are examined in the Monte Carlo analysis. They are as follows:

Wo : Wald statistic (2.3) using the optimal bandwidth formula (4.8).

W1 : Wald statistic (2.3) using a fixed bandwidth choice M = 8.

W5 : Wald statistic (2.3) using a fixed bandwidth choice M = 10.

Wso : Second order adjusted Wald statistic (4.9) using the optimal band-
width.

We calculated the empirical sizes of these test statistics from the Monte Carlo
rejection rates based on asymptotic critical value at the 5% level. The results
are reported in Table 1. The empirical critical values of these tests are also
calculated as quantiles in the simulations under the null hypothesis. Table 2
gives these values.

The optimal bandwidth selection criterion yields relatively satisfactory finite
sample performance of the Wald test. Although size distortion still exists for all
of these tests, the empirical size of the Wald statistic, Wy, which uses the optimal
bandwidth, is smaller than those of the Wald statistics ( W; and W5 ) that use
arbitrary bandwidth parameters. The empirical critical values of Wy are also

closer to the asymptotic critical values than those of W7 and Wa. Size distortion
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is further reduced in the second order adjusted Wald statistic.

As the sample size increases from 64 to 256, we can see from these tables
that the empirical size decreases and empirical critical values are closer to the
We
also find more size distortion when the autocorrelation in the residual process u;

asymptotic critical values, corroborating the asymptotic approximations.

increases.

Table 1: Empirical Size (nominal size = 5%)

Wo 441 Wo Wso
a=03|T=64 |0.1474 | 0.1587 | 0.1598 | 0.1069
a=03|T=128| 0.1127 | 0.1213 | 0.1215 | 0.0879
a=0.3|T =256 0.0821 | 0.0849 | 0.0855 | 0.0688
a=0.6|T=64 | 0.1827 | 0.2005 | 0.2017 | 0.1400
a=0.6|T=128] 0.1352 | 0.1445 | 0.1458 | 0.1104
a=0.6 | T=256|0.0932 | 0.1041 | 0.1047 | 0.0799
Table 2: Empirical Critical Values

Wo W1 W2 WSO
a=03|T=64 | 7.4858 | 8.0124 | 8.0596 | 6.5098
a=0.3|T=128] 5.9016 | 6.2244 | 6.2279 | 5.2868
a=0.3|T=256|4.7959 | 4.9326 | 4.9488 | 4.4086
a=0.6|T=64 |9.6044 | 10.347 | 10.349 | 8.6285
a=0.6 |T=128| 6.9657 | 7.3700 | 7.4274 | 6.3509
a=0.6 | T=256|5.3542 | 5.5971 | 5.5990 | 4.9669

8. Conclusion

This paper develops higher order expansions for Wald test statistics in efficient,
frequency domain semi-parametric cointegrating regression models. These expan-
sions address some of the problems presented by first order asymptotic theory.
In particular, they provide an opportunity to reduce size distortion in statistical
testing by suitable bandwidth choices and second order adjustments. Since the
effect at the zero frequency dominates the asymptotics for periodogram averages

of I(1) process, the second order effect in the expected value of the Wald statistic

26



is asymptotically determined by the spectral density of the residual process at
the origin. As a result, the size properties of Wald tests are largely affected by
the curvature of the spectral density function at the origin.

A bandwidth selection criterion that is based on minimizing the second or-
der effect on the expected value of the Wald statistic is proposed to improve
statistical testing and second order modified Wald tests are proposed that use
consistent estimates of the second order terms. Expansions for the Wald test are
also developed for band spectral regression models. When the frequency band
under consideration does not contain the zero frequency, the estimator of the
cointegrating vector converges to its true value at a different rate and, the second
order effects in the expected value of the Wald statistics are functions of integrals
of the spectral density. Interestingly, some of the effects of the nonstationarity
that dominates low frequency limit behavior also carry over to high frequency

asymptotics in band spectral regression models.

9. Appendix: Proofs
9.1. Lemma 1:

As in Phillips (1991), we find

N2> Lw(A) fuu(X) ™ —QZIM ) Fuu) ™5 127 (0)] 7 / B, Bj,.
n_l leu()‘s)ﬁw( 8 B _1 leu fuu 5)_1 i [27TfUU(O)]_1/

9.2. Lemma 2:

Results for B; and V; come from standard analysis of the bias and variance of

kernel spectral density estimates.

9.3. Lemma 3:

Denote the preliminary OLS estimator for 3 as B, and notice that

6 5 Zwts a:u s 6 6 Zwts ww

st s#t
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and

n(3—g) = {/‘BxB;]_l/deBu.

It can be verified that

Z Wts mu()\

= fmu

Z (3 Cmttne”
zh: <Ai> ”‘fh/B dB,
= ]V[{ﬁ zh:k <%> e“th} /BmdBu

= ]V[-K(]W)\t)/Bdeu

1
2T
1

s

Op(M), if | M| < m/(2M),
0, otherwise.

and
> wislea (A
= fra(N)
_ % zh:k <%> Ol ()P
= MnK(M\) / B,B,

0, otherwise

Thus, for |\ > 7/(2M),

Pt = 6 52‘*}158 wu 5 6 5 Zwts TT s)
s#£t st
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= o(m™)
and for |\| < 7/(2M),

P = 6 5 Zwts :pu s 6 5 Zwts LBLB
s#£t st

. . -1
~ —LK(M)\,:)/CZBUB;E [/ BxB;} /deBu.
2m

9.4. Lemma 5:

We provide the proof for the third result, proofs of the other results being very
similar. The approach follows that of Phillips (1991).

_QZIM: fuu 2fq( )

= 7221“ [27r > Dye ] [% ) |h|q7(h)e”“j]

g=—00 h=—0c0
- i eSS ] 25w
h=—00

_ n—2 Z |h|9~( D D ZIM ot pTg—h)X;

7g7p
= 72 Z ’h’q D DPZ [ ZCLE:E Z)\jT] ei(ergih)/\j

7g7p
_ I i(r+ptg—h)A;
= Ter" %MWMDP;OM@)? S

Denote r +p+g—h =0, €M =3 e?2m/7) —p if b=0or b =n*1 for

some [, otherwise > "% = 0. Thus, setting r = h — p — g in what follows, we

have

_QZIM: fuu 2fq( )
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1
= 167T4n 2> " |12y (h) Dy DpCha (r)n

h.g,p

= 577 2 WA(WDD, [0 o)

7g7p
1
— 0) fuu(0 /B B'
9.5. Lemma 6

Proof.

DVl = n2 Zlazw )\t fuu )‘t Zwts uu
s#t

- _Z[Zwts (S s s 00" )] FuA)°
— 0y,

Note that [>°, wys (%Im()\t)f;‘u()\t)*Q)] = 0,(1), and the I,,,,(Xs)¢ are asymptot-
ically uncorrelated mean zero variates. Thus, conditional on x, Dy is a weighted

average of n uncorrelated variates. Next,

1
EDyy = Eﬁzlxa:()\t)fiu(At)_SWQ

1
~ 2 ZIM >‘t fuu()\t) SE uu()‘t)Q

%Z /\t fuu /\t ]
t

~ 5= tul0)'E [ BB,
- 0p<m—1>

N—

1 _
DBl - ﬁtz_:fxaz(/\t)fuu(At) QBt

> L 00) fua )M £y ()
t
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_ 1 717")\)5

~ M Uy {2# > Cuulr) ]

o ZDgDh‘f“gM} [% 3 Cunlt) |11 ]
g.h

n/2
R T N |

t=—n/2+1

n/2
_ 1 i(gth—l—1)Ae
~ Mk W%ZCW(Z) | 1] DgDhXT:Cm(r) ( » el ) )]

t=—n/2+1

o1
~ My W%ZCW(I) | 119 DyDyCoy(r)n

~ M7, {(271?)4 Z;Cuu(l) |1|% D,Dy, /‘BxB;}

_ I%—ﬁd)%®/&&
= OP(]\/[ )7

and similarly for Dps.
For Zy, Zy1,etc., we need to check their second moments. Notice that the
wy,(A¢) are asymptotically uncorrelated, and

E[ Z()}2 = E% zt:jx:p()\t)fuu(/\t)fuu(/\t)Q
~ E% ZIww()\t)fuu()‘t)_l
t

1
~ B uu - BwBla
30! [ BB,

BT = By D a0 Sl 3) 07
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~ ll’ji Zlmm(At)fu’u(At)_l
t

m. n?

11 _ '

1 N _
E[ZV2]2 = Emzfxaz(/\t)juuo‘t)fuu()‘t) 6E‘/;t4
t

1 1 -
t

= Op(m72)7

Bz = By 3 Lea(A) L) fus3) B}

t

~ E% > Lo (M) fuu (M) P M 29K fy(Mr)?

t
. 1 . ‘
~ M 2qk§§fuu(0) qu(O)QE/BmBm
= Op(M%).

Similarly for Zgs.

9.6. Theorem 7

W=2H'Z=Z[H'-H*D+HD*+R|Z
Notice that

Z = Zy—Zyi+Zye—Zp1+ Zp2 — Zp1
D = —Dyi1+ Dyy—Dp1+ Dp2— Dp1

Plug these expansion into (A.1), and drop higher order terms, giving

W ~ H'Z3
+H 2% —2H ' Z5 Zp1 + H2Dp1 25 7
+H 7% + H3D%,7Z3 —2H 2Dg1ZyZp1 — H *Dp273
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—2H ' ZyZp1 + H2Dp1 Z§

+H 2Dy 73 — 2H ' Zo Zvyy

+2H 12y Zyy — H 2Dy 73
+2H 1 Zpo 7,

+2 H ' Zy1Zg1 — 2H 2Dg1Z0Zv1.

Notice that
1. The periodograms are asymptotically uncorrelated

2. A leave-one-out estimator is used so that wy(\¢) is asymptotically uncorre-
lated with V;

It can be verified that E[H 2Dy1 Z3], E[H ' ZyZy1|, E[H *Zy1Zp1), E[H 2Dp1Z0Zy1)
are of smaller order of magnitude, giving the result of Theorem 6.

9.7. Lemma 8
1 ) 2
E[H™'Z§] = IHQZIM o) fuu(Xs)™ ] [ngmus)fw(m*]

-1
~ |:221mx fuu s) ] |:%Zlmm()\s)luu()\s)fuu()\s)2]

— 1,

and

HlZVl:[ QZImm fuu s) 1] [ leu fuu s)

Since the expectation of this term is zero, we check the order of the second

fuu / B.B,.
For

EE[ZV'l]2 = n2 Zzlrpu fuu s) QX/SIxu()\t)fuu()\t)72‘/t

moment. Notice that

~ n2 ZILB:E fuu s) 4qu(As)‘/;2-
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Notice that I, (\s) and V; are asymptotically uncorrelated by the leave-one out
property, and

E[Zn]? ~ QZEIM 5) fuu(Xs) T E[Luu(Ns)| EIV;]?

~ E{E%fw(o)— /Bwa},

mE[H ' Zy%] =

QZIxm fuu s) 1] |: Zlmu fuu
n2 ZILBLB fuu s) ] |:7’L2 ZILBLB s u fuu(

M

2
S

s)

4v2

8

mE([ZyoH Y Z)) ~ mEH™? {%Z u(As) fuu(As) H\FZIM ) fuu(Xs) ™ 3‘/3]

~ mEH E ZIM<A5>qu<As>fuu<As>—4m2]

Similarly

E[H 7} Zp1)]

NE[ Fuu(0 /BB’} [ZIW o) fuu(Xs) }

X{; SERARIAE (_ﬁ/dBuB; [./.Bng]l‘/‘BdeqJ}

|Ae|<m/(20M)

1 _ 17
~ B[ [ 5.5

Adl<m/(2M)
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. . —1 .
y (; [ m.; | [ p.r] /Bdeu)
2mm . .
1 111
_ il —1 /
E { o Fu(0) / Bme] -

"2 Z Imm()\t) (fuu(0)72 +O(1))]

|Ae|<m/(2M)

(s fomn [ [ p.02] [ an )
~ [ Fuu (0 /B B’] % (l%g/:(m) m(At)) Fuu(0)~ }
><<2nlm/dBB’ [/BB’]_I/BdB>
~ [ Fuu(0 / B B’] 1 = Faa(0) fuu(0)?]
(s fomn [ BwB;]‘l /Bxdgu)
~ { Fuu(0 /B B’] [ fuu(0 /B B’}
(2”11% [ as.5. [ / BwB;]_l / Bdeu>
N —%E (% Fuu(0)™ / dB,B. [ /‘BxB;} B / deBu>.

Notice that By(r) = BM (27 fuu(0)) = [27 fuu(0)]Y/2 Wy (r), where W, (r) is a
standard BM independent of By (r). Thus

E (%fuu(o)—l /‘dBuB; [/BwB;] - /‘Bdeu> =1,

E[H 1Z:Zp)] ~ —m L.

and

E[ZOH DBle} ~ FEH™ 2l)Bl |:\/— ZIuw fuu( 5) :| {%wau()\s)fuu()\s)l

~ —M" qké]fuu() 1fq()
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E[ZElH_IZO] = EH_ |: Zluw fuu

~ _]W_qkqqu() fq( )a

E[Zy H 1 Zp] =

1.2 2
~ EH WM % QZLM

1
—17.237-2
EH 'KZM qﬁsz(A])

- BS] [% > L) fuu(As) ™!

Luu(Ng) Fg(Ng)2 fu(Xg)

) fa(Ng)? fu(Xg)

= EH*lkzg.M*?qWZIM(A,:)fq(At)qu(At)*S

1
— EM- 2qk2H 1 - Z |:27TZC$:E th]

% 27T ()2 ZCW

DIFANEI ]

o
L g:h.p
= EMUGHT' e Z > Cuuli)Cuu(l) | 5 19 117 Dy Dy Dy

g:hp LJ

n/2

X ET:CM(T) ( Z

t=—n/2+1

g g 1 .
~ MURRGH T o fu(0) 7 £(0

~ MR £,(0) 72 £4(0)2.

Similarly,

ei(g+h+ler)/\t)

= EM MR2H' { o > Cwli)C

g.hp 1,j

D13 1" Dy Dy DyCy ()n

2 / BB,

2
— _ _ 1
BIZgH Dy, 2] ~ BH-SEM {ﬁszw(%)fq(%)fu(kjwl
J

36



~ EH*%SM*QQ {gfuu(O)qu(O)/BmB’] [ ful0) [ B B'}
= k§M72qfuu(0)72fq(0)27
and

E[Z%H 2Dp1Zy) ~ EH 2
J

% Z Ium(Aj)ijU()‘j)Ql
|: me Bfu ) ] |:%ZIM(/\J')JCU()‘J’)1]

j

~ ks quuu( ) qu( ) :
Similarly

E(Z}oH 1 Zy] ~ k2M 24 £,,(0) 2 £,(0)2

B2 0 q fuu( ) q( >
and
E[Z§H *DpsZo| ~ k2 M 29 £,,,(0) 2 £,(0)2.

9.8. Lemma 10

As shown in Phillips, Ouliaris and Corbae (1997), the discrete transform of the
I(1) process x; has the following asymptotic form
1 et
wa(Xs) ~ T wo(As) = T, Ba(1),

Thus

7 > I
- 7 2[ a—ﬁww] 0
[fw L Bx(1)Ba(1)

21 |1 — eiw|?

=
=
\

qu( ) 1dw>7
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and

LS L) funA)

As€EB
| 1 BB "
- /B[fw(w)Jr% | fle) e
Thus
-1
\/E(BB_ﬁB) = Zlm fuu 8) \/— ZI””“ fuu( s)
" XoeB AsEB
-1
. [y 1 L BB "
N 0’{./3 {fw( o | fule) d}

9.9. Theorem 16

Notice that
~ ~ ~ -1 <
W =Z"H 'R |J;' =I5 (Jo — Jo) gt + Iy (Jo — Jo) Iy Y (Jo — Jo) Iy L + Rs|  RH'Z,

and H 1= H '—H 'DH '+ H 'DH 'DH'+R;. Denote H-'DH ! = A,

H-'DH'DH™' = Ay, RH-'DH'R' = J;, and RH'DH'DH™'R' = J,,

and drop higher order terms in the covariance matrix expansion, giving

W o= ZH = A+ AR [Jg Ty Tyt — Ty eyt Ty W g
xR(H™' — A; + A3)Z + higher order terms,

= Z'H'RJ;'RHE'Z+Z*H 'R I, WJy '\RH'Z —2Z*H 'R J; ' RA Z
~Z*H 'R I NI RE 1 Z + 272 H 'R Iy hJy L hJy '\ RE 2
2Z*H 'RI NI\ RAVZ +22*H 'R J;'RAZ + Z* A R J; ' RAL Z
+ higher order terms

D and Z follow similar expansions as (4.6), (4.7), Substituting these preliminary
expansions into the above formula, and collecting terms up to Op(m ™1 + M~9),

gives the following expansion for the expected Wald statistic.
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EW] = E[Z;H'R(RH'R)'RH™'Zj| + E[Z;{:yH 'R J, '\ RH™' Zy]
+E(Z;H 'R J;* RH' Dyy H 'R J; ' RH Z)
R2E[Z;H 'R Iy \RH  Zyy) — 2B[Z;H 'R J; ' RH ' Dy H 1 Zg)
R2E[Z;H 'R J;'RH D H ' 2] — 2E[Z5, H 'R J; RH 1 Zy)
~EB[ZiH 'RJT'RAE D H 'R ;' RH 1 Zy)

275 H 'R J;'RH 1 Zy + 2E(ZH 'R Jy ' RH ' Dp1 H™ Z]
~EB[Z;H 'R J;'RAE'Dpi H 'R/ J;7 ' RH™' Zy] + higher order terms

9.10. Lemma 17

Proofs of the asymptotic forms for these term are similar, and we derive the
results for Z{ H 'R'J;'RH 1 Zy and ZEH 'R'J;'RH D1 H ' Z,. First,

E[Z;IH—lR’ngRH—lel}

nQwa s Xs) fuu(Ns) WVEHT'R Jy P RH ™ ww()\s)]

H‘lR’Jo’lRH_l

= Eftr nQwa 5) Luu(Ns) fuu(Ns) *VEH 'R Jy ' RH™ wx()\s)]}

— E{tr |H'RJ;'RH™ Qwa $)We(As) Luu(As) furu (As) T4V

S

}

= E{tr H_lRlJalRH_lﬁ ZIx(/\s)fuu()‘s)qu(/\S)_4V2

S

}

~ %E{tr R, 'RH! QZI o) fuu(Xs) ™ ]}
~ —Bftr [H R R]}

_ —1pr7—1
= mE{tr[RH R J, }}
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m
Similarly,
* TT— _ _ a
ElZiH 'RJS'RH Y Zyy) ~ %,
ElZiH 'R Jy'RH *DyoH 'RJ;'RH ' Zy) ~ %,
E[ZiH 'R\ RH Dy, H 17 ~ 2
m
and
E[Z*H—lR’ngRH—lDBlH—le}
= Zlu:p fuu s lR/J lRH 1l)BII_I_ [ Zlmu fuu s ]
~ [nQwa ] As) fuu(Ns)™ QH_IR’Jo_lRH_lDBlH_lwx()\8)]
= E{tr nszx ) Liu(Ns) fuuNs) 2H 'R JT'RH ™ D1 H™ wx()\s)]}

= E{tr |H'RJ,'RH'DpH™! 2wa ww(AS)*qu(AS)fuu(As)_Ql

~ B{tr |H'R'J;,'RH'DpH™! QZIM o) fuu(As) ™ ]}

= B{tr |H'R'J,'RH™* ( le As) fuu(As)™ 2M‘q/fq)]}

. —1 -
’R( / BmB;> R

o O ([ B8)
<R (i/'fw;)_1 ([
(o)

. -1 -
’R( / BxB;) R

k
~ _ﬁqqqu() lfq (0)E{tr

pk _
~ _ﬁgfuu(o) 1fq(0)7
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and

k
EZinH'RJIS'RH ™ Z)) ~ —%fw(O)‘lfq(O),

k
EZ;H 'R J;'RH D H 'RJ'RHE ' Z)] ~ —%fuu(orlfq(oy
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