COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1186

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

NONPARAMETRIC CENSORED REGRESSION
Arthur Lewbel and Oliver Linton

July 1998



NONPARAMETRIC CENSORED
REGRESSION

Arthur Lewbel* Oliver Linton'

Brandeis University Yale University

July 28, 1998

Abstract

The nonparametric censored regression model is y = max[c,m(x) + €], where both the
regression function m(x) and the distribution of the error e are unknown, but the fixed censoring
point ¢ is known. This paper provides a simple consistent estimator of the derivative of m(z)
with respect to each element of x. The convergence rate of this estimator is the same as for
the derivatives of an uncensored nonparametric regression. We then estimate the regression
function itself by solving the associated partial differential equation system. We show that our
estimator of m(x) achieves the same rate of convergence as the usual estimators in uncensored
nonparametric regression. We also provide root n estimates of weighted average derivatives of

m(x), which equal the coefficients in any linear or partly linear specification for m(z).
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1 Introduction

Consider the censored regression model Y; = max[c, m(X;) — e;], where X; is an observed d vector
of regressors Xy, for k = 1,...,d, and e; is an unobserved error that is mean independent of X,
(writing the model as m — e instead of the more usual m + e simplifies later results). Here, the
censoring point c is a known constant, which, without loss of generality we can take to be zero. Both
the regression function m(-) and the distribution F'(-) of the error e is unknown. The errors are not
assumed to be symmetric. For each element xj of z, let my(z) = Om(x)/0xg. This paper provides
a simple consistent estimator of the derivatives my(z). These derivatives are directly interpretable
as the marginal effect of a change in x on the underlying uncensored population. They can also be
used to test or estimate parametric or semiparametric specifications of m(z). For example, my(x) is
constant if m(z) is linear in xj , and my(x) depends only on z if m(z) is additive in a function of xy.
Also, we show that the regression function m(x) itself can be estimated by integrating the derivative
estimates, and the distribution function of the errors can be estimated given m(x). The proposed
estimator can be extended to deal with heteroscedasticity of the form y = max[m(x) — p(x)e, 0],
where both m(z) and p(z) are unknown functions.

Parametric and semiparametric estimators of censored regression models include Amemiya (1973),
Heckman (1976), Buckley and James (1979), Koul, Suslara, and Van Ryzin (1981), Powell (1984),
(1986a), (1986b), Duncan (1986), Fernandez (1986), Horowitz (1986,1988), Moon (1989), Powell,
Stock and Stoker (1989), Nawata (1990), Ichimura (1993), Honoré and Powell (1994), Lewbel (1998a,
1998b), and Buchinsky and Hahn (1998). Unlike the present paper, most of these models either
assume m(x) = 'z, or they provide estimates of average derivatives only up to an unknown scale.

Concerning estimation of nonparametric censored regression models, it is well known that non-
parametric quantile regression is unaffected by the presence of a little censoring. Except when the
error distribution is symmetric, the mean and median are estimating different quantities, so our
results are not directly comparable to nonparametric quantile regressions. One advantage of our
method over median regression is that the conditional median estimator is only consistent when cen-
soring is less than 50%, while our procedure for the mean works for any amount of censoring less than
100%. In the case of mean regression functions when ¢ is a random censoring point independent of
X (which is a model adopted in many medical applications), there are a number of suitable methods
for estimating m. See, e.g., Fan and Gijbels (1996, section 5.2). However, to our knowledge no one
has provided consistent estimates of mean regression functions in the fixed censoring case that we
treat. The fully nonparametric model is important because of the sensitivity of the parametric and
semiparametric estimators to misspecification of functional form.

Our estimation methods are based on local polynomials, whose advantages are discussed in Fan



and Gijbels (1996). We show that the uniform convergence rate of the derivative estimator is the
same as for the derivatives of an uncensored regression. We also establish that weighted averages of
these derivatives can be estimated that are root n consistent and asymptotically normal. Finally,
we show that our estimator of m(z) is asymptotically normal and converges at the same rate as the

corresponding estimator in the uncensored case.

2 The Main Idea

Let Y;* = m(X;) —e; be an unobserved latent variable. The function m is differentiable and unknown.
The error e; is independent of X; and continuously distributed with unknown distribution function
F(e). The observed dependent variable Y; equals the latent variable censored at zero, so Y; = I(Y* >
0)Y;*, where I is the indicator function that equals one if its argument is true and zero otherwise.
We assume throughout that our observed data are independent, identically distributed observations
(Y;, X;) for i = 1,...,n, although our main results, Theorems 1-4, under reasonable conditions hold
as stated when {Y;, X;} is a stationary mixing process with {e;} independent of { X;}, as in Robinson
(1982).

AssuMPTION Al. Assume Y* =m(X) —e and Y = I(Y* > 0)Y*. Let Q be a compact subset
of the support of the d x 1 wvector x. The function m is differentiable and has finite derivatives
my(z) = Om(z)/0xy for k = 1,...,d, for all x € Q. The error e is continuously distributed,
independent of x, with probability distribution function F(e) and probability density function f(e).
Flm(z)] exists for all x € Q, where the function § is F(m) = [ F(e)de.

Theorem 1 If Assumption A.1 holds then E(Y|X = z) = §m(z)], E[I(Y > 0)|X = z] = F[m(z)],
and for all x € Q having F[m(z)] # 0,
_OE(Y|X = 1) [0z}

mk(m)_E[I(Y>O)\X:x]’ E=1,...,d. (1)

Proor. We have

E(Y|X=2) = B{m() - clllm(z) — ¢ > 0]}



-/ " () — Ile < m(@)]f(e)de

m(z) m() m(x)
= /_ [m(x) — e]f(e)de = m(x) /_ fle)de — /_ ef(e)de.
Now do an integration by parts
E(Y|X =2) = m(z) Flm(z)] - [eF ()] + / F(e)de = §m(x))

Next we have the standard result that E[I(Y > 0)|X = z] = E{lle < m(x)]} = F[m(z)], and
therefore
OE(Y|X =x) Om(z)0E(Y|X =x) 0m(x)
oxy,  Oxy, om  Oxy

Om(z)
&Bk

Fim(z)] = EIY >0)|X==z]. (2

|
For the special case of m(z) = (', the fact that E(Y|X = z) = F[m(z)], and hence equation (1)
holds, has long been known. See, e.g., Rosett and Nelson (1975), Heckman (1976), McDonald and
Moffitt (1980), and Horowitz (1986). Theorem 1 shows that this expression holds for arbitrary m
and F, and so can be exploited for nonparametric estimation of my(z).
Define r(z) = E(Y|X = z), ri(z) = 0r(z)/0xy, and s(z) = E[I(Y > 0)|X = z]. Theorem
1 showed that mg(z) = rr(x)/s(x). The latter expression can be readily estimated using any dif-
ferentiable nonparametric regression (conditional expectation) estimators for r and s, e.g., kernel
regressions.
As discussed in an Extension section later, results similar to Theorem 1 hold for E(Y"|X = x)
for arbitrary positive integers x. These can be exploited to yield additional estimators of my(x),
including estimation in the presence of heteroscedasticity of the form y = max[m(z) — p(x)e, 0],

where both m(z) and p(z) are unknown functions.

2.1 Censored Regression Function

Given my(x) for k= 1,...,d, the censored regression function m(z) can be recovered under certain
conditions by solving the implied system of partial differential equations. This problem is similar to
Hausman and Newey (1995), who, based on Shephard’s lemma, recover estimates of consumer surplus
by integrating nonparametrically estimated demand equations. See Horowitz (1998) for another
application of this idea, in his case to estimating additive transformation models. For the partial
derivative system my(x) = gx(z), k = 1,...,d, to have a solution it suffices that we have a boundary

1

condition' m(z) = 0 for some z and that the cross partials are symmetric, i.e., mye(x) = my(z) for

!The boundary condition m(z) = 0 can be assumed to hold without loss of generality for any x € €2, because the

errors are not assumed to have mean zero.



all £, k, where @) (@) - (@)
_oreel) () - se(a

mké(m) - s(x) Sz(m) I (3)

where r(z) = E(Y|X = z), ri(z) = 0r(z)/0zy, and s(x) = E[I(Y > 0)|X = z|. Therefore, it suffices

that

sk(x) - re(z) = se(x) - 7o)

for all 7, k. If this is true, then the p.d.e. system has a unique solution given by

m) =Y [ mtao) a

where for each k, z(t) = (21,...,%k—1,t, Zpyq, - - -, L4), see Varian (1984, p332). We will use (1) and

(4) below to generate estimates of my(x) and m(x).

2.2 Average Derivatives and Partly Linear Models

Given any weighting function w(z), define the average regression function derivative

Owr = Elw(X)mg(X)]/E[w(X)]. Since my(z) = ri(x)/s(z), this d,x can be estimated at rate root
n by replacing the expectations with sample averages and substituting in nonparametric regression
based estimates of r(z) and s(x).

Taking w(x) = 1 results in unweighted average derivatives. Taking w(z) to equal s(x) times the
density of x yields a particularly simple form for ., if kernel regressions are used to estimate ry(x)
and s(z), since then 6, will equal the Powell, Stock, and Stoker’s (1989) weighted average derivative
divided by the mean of a kernel regression numerator (see, e.g., Lewbel 1995).

If the latent regression function is linear or partly linear, that is, if for some j < d, m(z) =
Brx1+ .+ Bz + Mz, ... 1), then for 1 < k < j, By = Our. Root n estimation of the coefficients
in uncensored partly linear regression models is described in Robinson (1988), among others. In
contrast, what is provided here is estimation of the same parameters when the partly linear model
is censored. As an estimator of 3, 8, has the advantage that if m(z) turns out to not be linear or
partly linear, d,,, will still equal the usual interpretation of 3, as a measure of the average effect on

the latent variable of a marginal change in .

2.3 The Error Distribution

For any e*, E[I(Y > 0)|m(X) = €*] = F(e*), where F is the distribution function of the errors e.

Therefore, given the estimated regression function m(z), the distribution function F' can be estimated



as a nonparametric regression of (Y > 0) on m(z). In addition, Lemma 1 in Lewbel (1997) can be
used to directly estimate the mean, variance, and other moments of e.

It may alternatively be possible to use Theorem 1 to estimate F', or at least functions of F', more
directly. For example, it follows from Theorem 1 that h(z) = F{F ![g(z)]}, so a one dimensional

nonparametric regression of I(Y > 0) on g(z) should yield a consistent estimate of the function

FI3~(g)]-

3 Estimation

For the remainder of the paper we will discuss estimation using local polynomials. We use local
polynomials instead of ordinary kernel or sieve estimators because of their attractive properties with

regard to boundary bias and design adaptiveness, see Fan and Gijbels (1996) for discussion and

references.
We shall use the following notation. For functions ¢ and vectors k = (ky,...,k;) and =z =
(1,...,24), let

Kl =kl x - x k!, K| = Zk}“x—xl e g

P J J

9% g(y)

S Y e 3 (DR = 2

0<|k|<p  §=0 k1=0 ka=0 Yo O
oy e+ heg=j

To be consistent with our earlier usage, we will also use the special notation gx(z) = D®g(z), where
ey, is the k' elementary vector, and g (z) = D) g(z). We also stack the first derivatives into a
vector so that Dg(z) = (g1(x), ..., g94(z))".

3.1 Nonparametric Regression Derivatives

Given observations {Y;, X;}" , and function ¥(Y;), we shall estimate the regression function g(z) =

E[U(Y;)|X; = z] and its derivatives using the multivariate weighted least squares criterion

2
n

Z U(Y;) — Z be(2) (X — )% | K((Xi = 2)/hn), (5)

i=1 0<Ikl<p

where K(u) is a nonnegative weight function on R® and h,, is a bandwidth parameter, while p

is an integer with p > 2. Minimizing (5) with respect to each by gives an estimate Bk(x) such that
(D*g)"(z) = klby () estimates (D¥g)(z). Let also gy (x) = (D*gNz) and Dg(z) = (§1(z), . . ., Ga(z))".



3.2 The Censored Regression Function Derivatives

Let 7x(z) and s(x) be nonparametric estimators of the functions 7 (z) and s(z) as defined above.
Specifically, for 7 (z) and 5(z) we take ¥(y) =y and ¥(y) = 1(y > 0) in (5) respectively. We then
let

my(x) = , oo, d. (6)

3.3 The Censored Regression Function

To estimate m(x) we use the representation (4). Since the solution to the p.d.e. system is explicit,

we can just substitute estimates of my(-) and do numerical integration. Specifically, let

e = 305 3 R 0 € fay, ), )

where J(n) is a large number such that J(n) — oo at a faster rate than n, each X}, are i.i.d. with

density ¢, while my(z) are nonparametric estimates of my(z) defined above.

3.4 Symmetry

It is desirable for efficiency reasons to impose the symmetry condition (3) on the partial deriva-
tive estimates, which can be done as follows. The symmetry condition requires of the first partial

derivatives of r(z) and s(z) that

= forall x, k, £. (8)

Letting 6 = (61,...,04:1)" € R¥! and

(61763 : 617 .- -76(1 ' 61|62763 ' 627 oo 76d ' 62), = g(é) - (gi(6)|gl2(6))/7

the symmetry condition (8) can be expressed conveniently as (Dr(z), Ds(z)) = ¢(6), where we
have suppressed the dependence of § on z. Now let l/?\r(x) = (M(x),...,rq(x)) and l/);(x) =
(51(z),...,5q4(x)) be estimates of Dr(x) and Ds(x), and let

6(x) = argémin {( %Eg > - g(é)} vt {( %Eg ) - 9((5)} ;

where V, is weighting sequence with V;, —P V > 0 [we discuss choice of V,, below]. We then let
Dr(z) = ¢1(8(x)) and Ds(z) = g2(6(x)) be our symmetry restricted estimates of Dr(z) and Ds(z),
which can then be used to define a new estimate of my(x), Dm(x) which we denote by my(x), Dm(x).

This can also be used in (7).



4 Asymptotic Properties

4.1 Nonparametric Regression

We first give some general definitions for our local polynomial kernel nonparametric regression esti-

Ne=<€+d_1>
d—1

be the number of distinct d-tuples j with |j| = ¢. Arrange these N, d-tuples as a sequence in a

mators. Let

lexicographical order (with highest priority to last position so that (0,...,0,¢) is the first element
in the sequence and (¢,0,...,0) the last element) and let ¢, ' denote this one-to-one map. Arrange
the distinct values of (D¥)"(g), 0 < |k| < p, as a column vector of dimension N x 1, where N =

>0 _o Ne x 1, where the " element of that vector is obtained by the following relation

l7]-1

=01 ()+ D Nie (9)
k=0
Similarly, arrange the vector (D¥)(g). For each j with 0 < |j| < 2p, let

1K) = /R WK (u)du, v;(K) = /R WK (u)du,

and define the N x N dimensional matrices M and I' and N x 1 vector B by

Mo,o Mo,l ce Mo,p I\0,0 FO,l te Fo,p Mo,p+1
M— ]\4.1,0 M1,1 s Ml,p T= F?,o F1,1 s F%,p . B= M1:p+1 ’ (10)
Mp,O Mp,l e Mp,p Fp,O Fp,l e Fp,p Mp,pﬂ

where M, ; and I'; ; are N;x N; dimensional matrices whose (¢, m) element are, respectively, Hes, (0)+b, ()
and v, O+, (m)- Note that the elements of the matrices M and I' are simply multivariate moments of
the kernel K and K2, respectively. Finally, arrange the N, elements of the derivatives (1/5!)(D?g)(x)
for |j| =p+ 1 as a column vector D, (z; g) using the lexicographical order introduced earlier.

For each j with 0 < |j| < 2p + 1 define the function

H;(u) = W K(u).

We make the following assumptions on the kernel K.

ASSUMPTION A2



(a) The kernel K is bounded with compact support (K(u) =0 for ||u|| > Ap).

(b) For all j with 0 < |j| < 2p+ 1, there exists finite Cy such that

|Hj(u) = Hj(v)] < Calfu = ol].

AsSSUMPTION A3.

(a) The regression functions r and s are p + 1-times continuously differentiable.

(b) The conditional distribution G(y|u) of Y given X = w is continuous at the point u = x.

REMARK. By dominated convergence, Assumption A3(b) implies that for each L > 0, the
functions E[Y1(|Y| < L)|X = u], E[Y?1(]Y| < L)|X = u], are continuous at the point z. Hence for
each L > 0, 5% (u) = var[Y - 1(|Y| > L)|X = u] is continuous at the point x provided m(-) and o(-)
are continuous at the point z. This is needed in the proof of Theorem 2 where a truncation argument

is employed and the continuity of 52 (u) at u = x is required.

ASSUMPTION B
(a) For any k with |k| = p+ 1, there exists finite Cy such that
|(D*r)(u) — (D*r)(v)],[(D*s)(u) — (D"s)(v)| < Csllu —v]l.
(b) E[|Y1]"] < oo for some t > 2.

(c) The Lebesgue density f of X and the regression function s satisfy

;relgf(f(x) >0 ; wlrelgffs(x) >0

on some compact subset X of R,

We are now ready to give the asymptotic properties of our estimate Er\n(x) of (Dm)(z) computed
using our estimates Dr(x) and 5(z). Define 02(z) = var(Y|X = z) and o2(z) = var[1(Y > 0)|X = z].



Theorem 2 Suppose that Assumptions A1-A3 hold and that h,, = O(n=Y/(@+2P+2)) Then, we have

Vg | { Do) - Dunta) ) - i MEDEIN ] o, P,
s(z) f(x)s*(z) ’
at continuity points x of {2,072, f, s} whenever f(x),s(z) > 0. Here, (M 'TM1)11 and (M~ BD,1(z;7));
are the corresponding [as in (10)] submatriz of M—'T M~ and subvector of M~ BD,1(x; ), respectively.
Suppose in addition that Assumption B holds, and that the bandwidth h, — 0 slowly enough such
that the right hand side of (11) below is o(1). Then, we have with probability one

rzeX

o nn 1/2
sup |Dm(z) — (Dm)(x)] = O { (,,fh—) } +0(h). (1)
REMARKS A.

1. The optimal bandwidth for estimating the j* derivative (D%m)(z) can be defined as the one
which minimizes the sum of the squared bias and “variance” above. With h?P! = O(n~1/(d+2p+2))
and using the above expressions for the bias and “variance” for the estimate of m;(z) it is seen
that the rate of “mean-square convergence” is O(n~%/(4+2+2)) which matches the optimal rate

given by Stone (1980,1982) in the i.i.d. regression setting.

2. The quantity s(z) measures the amount of censoring: when s(z) = 1 there is no censoring, while
when s(z) = 1/2 there is 50% censoring. Both variance and bias deteriorate as s(z) decreases,
but the estimate is still consistent when s(z) < 1/2 in contrast to the usual nonparametric
median estimator.

4.2 Symmetry Restricted Estimation
By a straightforward extension of Masry (1996b, Theorem 5), we can establish that
D - D
P/ 2p+2) ( ,féx; T(aji > — N(b(z),Q()), (12)

for some matrix functions b(-) and €2(-). Masry actually gives the marginal convergences but the joint
convergence follows directly under our conditions provided the covariance o,5(x) = cov(Y, (Y >

0)| X = z) is continuous at z. In fact,

boax1(x) = ( Z:Ez; > o Qaaxoa(z) = ( 32:8 3:83 ) ,

10



where

bj(z) = {lim n?/PEIREY (M BDyia(w;95)1, j=1,8

n—oo

n—00 f(,I) Ors ('I) Ug ('I)

We have the following result.

2
Q(JE) _ {hm n2p/<d+2p+2)(nhi+2)_l} % 1 ( O-T(x) 0-7‘8(37) > ® (M_IPM_I)LL

Theorem 3 Suppose that Assumptions A1-A3 hold and h,, = O(n~Y/(@+2P+2))  Then,
nP! (d+2+2) {5771(:5) - Dm(x)} — N [0b, DI

where ® = GY(GV G 1GV /s and G = (G4, Gy) is the (d + 1) x 2d vector of partial derivatives

0ge/ 06y evaluated at 6, and we have suppressed dependence on x.

This theorem says that the pointwise asymptotic mean squared error matrix for 577/1(13) is O[bb'+Q) D’
When the matrix = = bb'+§2 is non-singular, the optimal weighting matrix according to mean squared
error is V = =2, and the asymptotic mean squared error is G} (G=Z'G’)~'G;. In practice, we must
replace = by an estimate. Estimating the bias term b is quite difficult and likely to suffer from small
sample effects. An alternative approach is to choose V' to minimize the asymptotic variance, in which
case V1 = Q7! and the asymptotic variance is G} (GQ1G’)1G; with bias G} (GQ1G')1GQ .
The quantity €2 can be estimated using residuals. Finally, note that

Q-G(GUIE)TIG =9V [I - QARG @) T G2 02 > o,

so that the symmetry restricted estimates are more efficient. Intuitively, the decrease in variance is
about one half, reflecting the fact that symmetry effectively doubles the number of observations used

in each estimation.

4.3 Estimation of The Regression Function

We now suppose that p = 1, i.e., we use a local linear estimator. Note that in the local linear case,
the bias of Dm is actually of order h2, provided r has three continuous derivatives, rather than the

implied h,, suggested by Theorem 2.

11



We take K (u) =[], K (ug) and let L(u = [*_ K(v)vdv, which is symmetric about zero and has
the same support as K, i.e., it can be mterpreted as a sort of kernel [although it doesn’t necessarily
integrate to one]. We have the following theorem

Theorem 4 Suppose that Assumptions A1-A3 and B hold except that r(x) has three continuous
derivatives, and that limsup nhit* < oo. Suppose also that r; # z;, j = 1,...,d, and that

n—oo

xd_ [z, x) C X. Then,

where

B © [K(u )uku]ulumdu © 310 (2 (1)) fin (20(E)) + T (20(8)) f (2(1))
flw) = 2.0 0 K Z/wk NEONIEN0) &

B S ) ()
3#2“@22/@ {f(zk(t))S(Zk(t)) JJ( k(t)) + 82(Zk(t)) JJ( k(t))}dta (13)

v(z) = HKHQd ! HLH2 - o, (zn (1)) 02 (zk(zy))
" {<82 1)z xk>>+<52-f><zk@k>>} (14)
P L oiaen)
15(K) £ (52 f)(zn(wn)’
where ( f K(u)L(u)du. Furthermore,
2(d—1) 2 d a0
nhcov(@ifz), m(z)xm) — e IE 5~ o:(2) 15)

AE) =GN
Jorany x # z and xj,z; # x5, j=1,...,d.

REMARKS B.

1. When K is Gaussian, L(u) = —K (u). In this case, the stochastic part of m(z) — m(x) is like
the stochastic part of a (weighted) kernel estimator evaluated at x minus the stochastic part
of the same estimator evaluated at x, and

) 1 o?(x) o} (z)
0=\ D)

12




This explains why there is a covariance between the estimates at distinct points = and z.

2. Standard errors can be calculated in the obvious way; all that is required are consistent esti-
mates of 02(-), s(-), and f(-), see Hérdle and Linton (1994) for discussion of this.

3. Using the symmetrized derivative estimators affects both bias and variance, reducing the latter

by approximately one half.

4. The local quadratic estimate has the same variance and the same bias magnitude [O(hZ2)],
although the exact form of the bias depends only on the fourth derivatives of r, and is design

adaptive.
5. Estimation of the distribution function can be analyzed using the theory of nonparametric

regression for generated regressors treated in Ahn (1995) and Rilestone (1996).

4.4 An Average Censored Regression Derivative Estimator

For w(-) a given weight function and let §,, = E[w(X;)ms(X;)], and define

T {mk(Xi)_gw}+{i?g)) 15&3) Ssk<( ))}5,_410(?&()&_)%

where ¢, =Y; — r(X;) and n;, = 1(Y; > 0) — s(X;), while g, = Y; — 7(X;) and 7, = 1(Y; > 0) — 5(X)).

Theorem 5 Suppose that conditions A1-A3 and B hold and that p, h,, are such that nh** — 0 and

nhé/logn — oo. Suppose also that w(-) is continuously differentiable. Then,

V(6 — 64) = N(0, E(u?)) M — N(0,1). (16)

EVES S

5 Extensions and Conclusions

We have a provided an estimator for the nonparametric censored regression model with fixed censor-
ing, assuming the errors are mean independent of x.The estimator is based on the conditional means

r(z) and s(x). Higher moments of Y can also be employed. In particular, for any integer x > 2,

E(Y"®|X =x) /0xy
REI(Y*1)|X =x]’

k=1,...,d (17)

my(x) =

13



The proof works in exactly the same way as Theorem 1. These higher moment based estimates
could either be combined with the estimator based on Theorem 1 to improved efficiency, or compared
to that estimator as a test of the (nonparametric) model specification.

The estimator can also be extended to handle some heteroscedasticity. Consider the model y =
max[m(x) — p(x)e, 0], where now both m(x) and p(z) are unknown, differentiable functions. Assume
p(x) > 0. Let M(z) = m(z)/p(x) and P(z) = Inp(x). If y = max[m(xz) — p(x)e, 0], it follows from
Theorem 1 that now s(z) = E[I(Y > 0|X = z| = F[M(z)] and r(z) = E(Y|X = z) = p(x)F[M (x)],
where 0F(M)/OM = F(M). Similarly, by the above higher moment extension of Theorem 1 for
k=2, t(z) = BE(Y?|X = z) = p(2)?F2[M ()], where OFo(M)/OM = 2F(M). Letting the subscript k

denote taking the derivative with respect to x; we have
re(x) = p(z) F[M(z)|My(z) + F[M (z)]pi () = s(x)mp(z) + [r(x) — s(z)]Pp(z)
te(2)/2 = p(a)*FIM (2)]| My(2) + F2[M (2)]p(2)pr(z) = r(z)mp(z) + [t(z) — r(z)] Pe(2).
Solving this pair of equations for the regression function derivatives yields

(2) — r(@)ree) — (@) — s()][ta(x)/2
) s(2) — r(2)? (18)

The right side of this expression is a function of conditional expectations and their derivatives, and

mk(ac) =

so can be estimated using kernel functions or local polynomials, and can be integrated to yield m(x)
or averaged to get average derivatives and coefficients in a linear or partly linear specification for

m(z). The above pair of equations can also be solved for the variance function derivatives, yielding

_ [s@)tle)/2] — (@)
O = s v )

A Appendix

We first give some facts about the generic local linear estimator gi(x) of a partial derivative gg(z),

which will be needed in the proof of Theorem 4. This can be decomposed as

Gi(@) — gi(@) = e, M (2)Un(x) + €M, () By(z),

14



where ¢, = (0,0,...,0,1,0,...0)" is the d + 1 vector with the one in the k + 1 position, while
(d+1) x (d+ 1) symmetric matrix M, (z) is
L () A k() (un) o Y (5 (e
2
ar S (55) (572) o mr S () (s (e
1 n z—X; rg—Xagi 2
L W21=1K< hnz) ( dhndl)

the stochastic term

hdzllﬁ(

) 6

Uno(ﬂi)
z1—X1i )
Un(,r) — hd ZZ llC ( ‘n ) ( hn ) € _ Unl(m) 7
T () (22 o | Lo
where ¢; is the mean zero error term, and finally the bias term
ﬁ >ia K (m;fl) Ai(z) — Bo(z |
1§ =X | (=X ,
Bn(x) _ nhd Zi:llc ( hn ) ( Bn, ) Az(x) _ Bnl('r 7
L (5 (252 ade) | LB
where A(z) = g(X;) — g(x) — >y ge(x)( Xy — a3), with
hi 4 329 Xji —x; X —
Aile) = 7;125 o) ( Tin ) ( Tin )
hi d d d in — Xy Xli — X sz’ — Ty 3
5 o ,z;mz::l axjaxlaxm(:”)< o ) ( o ) ( o ) + o),

where the remainder is of the stated order on the set {X;

have

H1+o0,(1)}

Zggg
iii/

j=1 1=1 m=1

h3

o K ()it uttmdi {3g,0(2) fn(2) + gy (2) £ (@)} {1+ 05 (1).

15
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)

2 |1 Xi — z|| < hy}. Using symmetry, we

(20)

(21)



We shall approximate M, (z) by

logn
nhd

M, (z) = f(x)M + h,M*(x) + O(h2) + O, (

N———

[the errors are uniform in x|, where

1 0 . 0 0  filz) ... fa(z)
= |0 e o | 0
0 0 s (K) fa(z) 0

Therefore,

M*l(ﬁ) = f*l(x)M*1 _hnf2($)M1M*($)M1+O(hi)—l—0p< logn>

" nhd
1 0 ... 0 0 filz) ... fal=)
_ 1|0 @ e 0 he | A0 0 5 logn
- fl) | R )| RV +O(h”)+op< nhd |-
0 #2(1K) fd(ﬁ) 0

We next give the proofs of Theorems 1-4.

PrOOF OF THEOREM 1 AND 2. By a geometric expansion and the Cauchy-Schwarz inequality,

we have
o |PE) _ i(e)  Fale) — rila) | o) 3le) — (o)
zex | S(T) s(x) s(x) s(x) s(z)
) - @) 5 — st) | Al f3) = s@)|?
R 5(@) *aw{ 5(@) }

IN

SUDgcx |;’\]€($) B Tk(x)| sup ’/S\(,I) _ s(x)] + SUDgcx |?k(x)| {
zeX

infcx [s(z)] zEX inf e [S(x)s(z)]

logn
= O (W) + Op(hy),

swmmﬂmqg
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since sup,¢ y [Tk(z)| = O,(1) and

inf |5(z)s(z)] > inf |s*(z)| — sup s*(x)|5(z) — s(z)|

zeX zeX zEX

> {;gg|s<x>|}3 +oy(1).

Therefore, we can restrict attention to the linearization

~

() = Tk(x) — ri(x) B ri(z) s(x) — s(x)

! s(z) s(z)  s(x)
whose asymptotic distribution and rate of uniform convergence follows from Masry (1996a,b). Specif-
ically, 5(z) — s(z) = Op(n Y2k ") + O(RE*1), which is of smaller order than the first term, while
{Tul@) = r(2)}/s(2) = Oy(n="2ha %) - O(RE).

Proor or THEOREM 3. Let

Qulb) = {( = ) —gw)} v{( = ) —g<6>}7 Q) = {( o ) —g<6>} v{( o ) —g<6>}.

Then, for any compact subset A of R4*!, we have

sup |Qn(6) — Q(6)] = o(1)

[JSTAN

with probability one. The pointwise convergence follows by Theorem 5 of Masry (1996b). Uniform
convergence follows from the quadratic form of ),, and the smoothness of g. Furthermore, when the
restrictions are true, (6) is uniquely minimized by 8y. Therefore, § is strongly consistent.

Asymptotic normality of 5 follows from the following two results:

n2p/<d+2p+2>%(50) = NQGV b, 4GV QV ¢ (22)
and 920
n y—1
A5ap (0n) —» 20V 'G (23)

for any sequence 6,, — 8¢, see Amemiya (1985, Chapter 4). We have

% 50) = 20V, {( = ) —9(50)} — gy {( = ) —9(50)} {1+ 0,(1),

and (22) follows from an extension of Theorem 5 of Masry (1996b) to cover the joint asymptotic

behaviour. The matrix G consists of ones, zeros, and 6;, while the second derivatives of g are either

17



one or zero. Therefore, standard arguments can be applied to establish condition (23). To obtain
the distribution of gl(g), we use the delta method

91(8) — :(6) = G168 — 80) + Oyl [5 — 8o

|
PrOOF OF THEOREM 4. The first approximation we make is that
d J
m(zr) = 2 e MK € [z, )
; J ; er(X5) ’ *
d g
_ / i (20()dt + O(T ) (24)
k=1 Zk

with probability one. Then, we say that
d gy

m(x) —m(x) = Y [ ‘wlz(t))dt

_ —r(z(t)  re(ze(t) S(a(t) — s(z(t) logn \
- 3 [ (P ) ) 2o D, (51 4 0,0

by the uniform convergence result (11). The next step is to linearize 7x(zx(t)) — 7x(2(t)) and

5(2zx(t)) — s(2x(t)) and integrate term by term.

We first turn to the stochastic part of our estimator m(z), which is

1 zd:/wk e M, (21,(1))Un(z dt Z/ Forg( Zk *1(zk(t))Un(zk(t);3)dt

b £ Ja, S(Zk(t))

" (25)

k=1

where we use the notation U, (zx(t);7) to show which regression function is involved. The second
term is of smaller order.

Consider the term

_L/“%M1Mﬁww%®wwt:__/”’ i),

hn Ty (Zk(t)) k(t))
_ 1 Uni(e(t);r)
- @mw%ékwmmﬂ%@ﬂt
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= e 2 I (7 I (257

=1 i<k >k

g / o (t _hfm> (t _hfm> e

T g 261HK< Xél) [[x (xe hnX&>
i=1 i<k >k

- (s)(ze(z)  (sf)(zu(z))) {1+0,(1)},

where the approximation error is small by dominated convergence arguments. Furthermore,

/mkeleM*m( DM 2 (o) Unslt): PVt = /mkfk(zk(t))fQ(Zk(t))Uno(zk(t);r)dt

= Op(nil/Q)

and is of smaller order. In conclusion, we have written the stochastic part of m(z) — m(z) as

d
1
T, = Y AT (zrlan) = Tun(zilay))} + op(n™ 2Ry "%), (26)

o (K) =1

where
Ty — XEZ ng Ty — sz 1
" Z; £<Hk 4>Hk ho ) (sf)(zk(x))

Thus T}, has variance (14) because z(zx) = zp41(244), K =1,2,...,d —1, and

1 2(d—2) 2 UQ(Zk(xk))
E\T, T, = —||K K,L L ,
[ k(zk(ﬁk)) ,k+1(zk+1(£k+1))} nhﬁ H H < > (82 . f)(zk(xk))
while E [T (2x(2)) T ks (204 (244 ;)] = 0 for all k and j > 1. The central limit theorem follows
immediately from the representation (26).
We next examine the bias term. In this case, we must include terms from the estimation of s,
that is, the bias is

d T ﬁe;Mgl(zk(t))Bn(zk(t); 7’) B Tk(Zk(t)) eé)Mq;l(Zk(t))Bn(Zk(t); 8)
kz;/ { s(zk(t)) s(zx(t)) s(z (1)) } dt. (27)



We have
L[ e M (2 (0) Bu(z(t)ir) o 1 [™  Bu(z(t)ir)

hoJe, — GO)sG(0) oy TGS <zk<t>>u2<f<>dt =0m)
T el M~ M* (2 (t)) M1 B,y ( fk 1)) Buo(z(t);7) ,
/zk J?(2(t)) s (2t ) dt / 2k(t))s(zk(1)) dt = O(hy,).

We then also subtract the bias term contributed by s, which is

‘Z/ S0 Ty 2~ O

The result follows by substituting in the expressions (20) and (21).

|
ProOF OF THEOREM 5. The asymptotic distribution of the average derivative estimator follows

from the expansion

1 ¢ Xi) — re(Xi)
[Z D {7 (X0) — 6, = %Zw(Xi){mk(X — 8} + /Z )

1 w(Xa)re(Xa) s(XG) — s(XG)
vn ; s(X;) s(X3) n(1)
1 n Xz Sk Xz
= 77 Lm0 — 8} + Z{ ((XZ; S(<X 1))}51
_in w(sﬁzgé()X)mﬂp(l)

The first approximation follows from our uniform convergence results, while the second line is stan-
dard [almost] - it is established using integration by parts and bias reduction [the implementation of

my, has to use higher order polynomials as implied by the conditions]. [ |
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