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Abstract

We present a method for consistently estimating nonparametric functions and
distributions in simultaneous equations models. This method is used to identify
and estimate a random utility model of consumer demand. Our identification
conditions for this particular model extend the results of Houthakker (1950),
Uzawa (1971) and Mas-Colell (1977), where a deterministic utility function is
uniquely recovered from its deterministic demand function.

1 Introduction

We present necessary and sufficient conditions for the identification of nonparametric
primitive functions in simultaneous equations models. These conditions are necessary
and sufficient for the identification of a random utility function from a distribution of
consumer demand. Moreover, we propose a new method that can be used to estimate
this random utility function.

The interrelationship among the variables in economic models is often described
by a system of simultaneous equations. Given data on the observable endogenous
and exogenous variables in the system, one is typically interested in estimating the
functions and distributions describing the relationships among the observable and
unobservable variables or in estimating the primitive functions of the system. For
example, in a partial equilibrium model, where the observable variables are the equi-
librium price and quantity, income of the consumers, and cost of inputs of the firms,
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one may be interested in estimating the market demand and supply functions, or in
estimating the utility functions of the consumers and the production functions of the
firms.

Many results on simultaneous equations models have assumed that these functions
are known up to a finite dimensional parameter. Extending ideas in Brown (1983),
Roehrig (1988) analyzes the identification of simultaneous equations models that are
not restricted to finite dimensional parameterizations. In the partial equilibrium
example, Roehrig’s conditions can be used to study the identification of the market
demand and supply functions. We provide an extension of Roehrig’s result that can
be used to study the identification of the nonparametric primitive functions (e.g.,
production and utility functions) in simultaneous equations models.

The method that we propose to estimate nonparametric functions in simultane-
ous equation models is based on the Closest Empirical Distribution method. This
method was introduced in Manski (1983) to develop estimators for finite dimen-
sional parameters and nonparametric distributions of unobservable disturbances in
nonlinear-in-parameters simultaneous equation models. In this method, an estima-
tor for the parameters is obtained by minimizing the distance between the empirical
and true distributions of the observable and unobservable variables. When, as we
will require, the unobservable variables are assumed to be independent of the observ-
able exogenous variables, an estimator can be obtained by minimizing the distance
between the joint distribution of the exogenous variables and the product of their
marginal distributions. Since in our model the parameters are functions, we min-
imize this distance over a set of nonparametric functions rather than over a finite
dimensional set. To measure the distance between distributions, we propose using
the bounded Lipschitz metric, which is equivalent to using the Prohorov metric, but
easier to compute. We show that our estimator is strongly consistent. A different
estimation method for nonparametric simultaneous equations models was proposed
by Newey and Powell (1988) . Their nonparametric two-stage least-squares method
is based on integral equations. It requires a conditional mean restriction on the
disturbances, given instruments, and completeness of the conditional distribution of
the dependent variable, given instruments.

As an application of our results, we consider a random utility model for demand
analysis. Random utility models provide a theoretically consistent way of model-
ing randomness in consumer demand data. In these models, the randomness in the
data is generated by heterogeneity of preferences, where the heterogeneity is due to
unobservable characteristics. (See, for example, McElroy (1981).) Random utility
models provide an alternative to commonly used methods where the randomness in
the data is assumed to be generated by measurement errors. In these latter methods,
the errors are added to the demand function generated by a nonrandom utility func-
tion. The nonrandom utility function may vary across the population but only as a
function of observable characteristics. If the additive errors were part of a random
utility specification, then in general they would not be homoskedastic, since they will
be functionally dependent on income and prices (Brown and Walker (1989)). These
random utility models can be seen as extensions of the Random Utility Model that



is used to analyze choices over discrete sets of alternatives (McFadden (1974)).

Identifying and estimating the distribution of preferences over a population of
consumers may be necessary, for example, to evaluate the distribution of demand
that would be generated by a change in a tax structure. Or, the distribution of
preferences over a population of consumers may be needed to evaluate the changes
in the distribution of welfare that would be incurred by some policy change.

We show that from data on consumer demand one can estimate the nonparametric
distribution of a random utility function. The location function of the distribution,
denoted U*, is assumed to be a concave and smooth function over the set of feasible
commodity bundles, but it is otherwise unknown. The variation around the location
functionis generated by adding to U*(x) the term &'z, where ¢ is unobservable. This
specification implies that the distribution of the marginal utilities at any vector of
commodities = and across a population of consumers has location DU*(x) and vari-
ation given by the distribution of e, DU*(x) denotes the gradient of U at x. We
do not assume that the function U* or the distribution of € possesses a parametric
structure.

One might think of specifying a random coefficients model for the demand func-
tion, instead of for the utility function, and use demand data to estimate the non-
parametric distribution of the coefficients (see, for e.g., the linear random coefficients
structure used in Hahn (1994) to calculate consumer surplus). One of the problems
associated with using this approach is that in random coefficient models for demand
functions, it is not clear how to impose on the distribution of the coefficients the re-
strictions generated by utility maximization. It is also not clear in those models how
one could recover the distribution of preferences from the distribution of demand. In
contrast, our procedure provides both an estimator for a distribution of demand that
satisfies the restrictions imposed by utility maximization and an estimator for the
distribution of preferences.

We use our result for the identification of nonparametric functions in simultaneous
equations models to derive necessary and sufficient conditions for the identification
of U* and the distribution of €. Our assumptions are extremely weak. Assuming the
last coordinate of € equals one, and the value of U* is known at one point, we show
that a necessary and sufficient condition for the identification of both U* and the
distribution of ¢ is for any U # U* there exist x such that

Usj() Uii(x)
UK(l‘)—l- U}k((x)—}—l’

where U;;(z) and Uk () denote the ij-th partial derivative and the derivative with
respect to the K-th coordinate of x, respectively. We present a convenient way of
normalizing the set of utility functions to guarantee that this identification condition
is satisfied.

This identification result provides an extension of the results of Houthakker
(1950), Uzawa (1972) and Mas-Colell (1977), where a deterministic utility function
is uniquely recovered from a deterministic demand function.

Although we have not done it in this paper, it is easy to extend our results for
the random utility model to the case where the function U* depends on a vector of

- # i,j=1,2,..,K.



observable characteristics, and to allow the distribution of € to depend on observable
characteristics. This latter extension will require, however, that the observable char-
acteristics be discrete random variables, corresponding to different consumer groups.
The value of ¢ for each of the individuals in the same group is assumed to be drawn
from a common distribution. If we specialize our results to the case where the func-
tion U* is known up to the value of some finite dimensional parameter vector, then
asymptotic properties of our estimator can be derived.

The outline of the paper is as follows. In the next section we present a simul-
taneous equations model and study its identification and estimation. In Section 3
we present a random utility model for consumer demand and apply to it the results
presented in Section 2. All the proofs are contained in the Appendix.

2 The Model

We consider simultaneous equations model of the form
9(y,x,&U") =0

where y € R“ denotes a vector of endogenous observable variables, z € R denotes a
vector of exogenous observable variables, and ¢ € R denotes a vector of exogenous
unobservable variables, which is distributed independently of x. The function ¢ :
RGTE+G _, RG ig assumed to be known up to the vector valued function U* :
RE+K _ RS, The distribution of ¢ is assumed to be unknown. We denote the cdf of
€ by FZ and the joint distribution of (z,¢) by ®% ..

A simple example of a simultaneous equations model where ¢ is known and U*
is unknown is a competitive equilibrium model with a representative firm, a rep-
resentative consumer, and additive disturbances, where the unknown functions are
the production function of the firm and the utility function of the consumer. Let
y = (p,q), x = (w,I),and € = (g5,24),where p and ¢ denote, respectively, price and
quantity, w and I denote, respectively, the price of the inputs paid by the firm and the
income available to the consumer, and ¢; and ¢4 denote unobservable disturbances
in the price offered by the firm and the quantity demanded by the consumer. Denote
the production function of the firm by 7™ and the utility function of the consumer
by V*. Then,

CTTR\ gl<yax7€; U*) _ p—s(q,w;T*)—gS
9,7, U7) = (gz(y,w,a U*)) B (q—d(p,l; V) —€d)
where s(q,w; T*) denotes the profit maximizing price offered by a firm with produc-
tion function 7% when it has to produce the quantity g and the price of the inputs is
w, and d(p, I; V*) denotes the utility maximizing quantity demanded by a consumer
with utility function V* when the price of the commodity is p and the income of the
consumer is 1.

Let W denote the set to which U* belongs, and let T' denote the set to which
the joint distribution ®% . belongs. Each (U,®x,) € (W xT') generates through the



system of structural equations g(y,x,e;U) = 0 a distribution, Wy x(-; U, ®x ) of the
observable variables.
As usual, we say that (U*, @ ) is identified within the set (W x I) if

(U, @xe) € (WXT) & (U, @xe) # (UF, Pk )] = Wy x (U, Px.0) # Vrx (5 U7, Ox )l

In words, (U™, ®% ) is identified within the set (W x I') if for any pair (U, ®x)
that belongs to (W x I') and is different from (U*,®% .), then the distribution of
the observable variables (y,x) generated by (U, ®x ) and the structural equations
9(y,x,e;U) = 0 is different from that generated by (U*,®% .) and the structural
equations g(y, ,&; U*) = 0. Equivalently, (U*, ®% ) is identified within the set (W x
I) if from the distribution Wy x (:; U*, ®% )] of observable variables, (y,z), one can
uniquely recover the pair (U*,®% _),within the set of functions and distributions
(W x T) that satisfy g(y,z,&;U) =0.

We next present a set of assumptions sufficient for establishing the identification of
(U™, ®% ) within a set (W xT). For any U € W, let By = {(y, x,¢)|g(y,z,;U) = 0}.

ASSUMPTION LO0: (U*, &%) € (W xT).
ASSUMPTION 1.1: VU € W, g(-;U) is C*.
ASSUMPTION 1.2: YU € W, the matrices 0yg(-;U) and 0-9(-; U) are of full rank.

ASSUMPTION 1.3: YU € W, there exist C! functions r(y,z;U) and h(z,e;U)
such that V(y,z,¢) € By, 9(y,z,r(y,z;U);U) =0 and g(h(x,e;U),x,e;U) = 0.

ASSUMPTION 1.4: The vectors of exogenous variables, x and &, are stochastically
independent.

ASSUMPTION 1.5: T is the set of absolutely continuous distributions on REKTC
that possess everywhere positive Lebesque densities.

ASSUMPTION L6: YU, U’ € W, [(U # U*) < (g(-;U) # g(U"))].

Theorem 1, which is a simple modification of Roehrig (1988), establishes necessary
and sufficient conditions for the identification of (U*, ®% ).

THEOREM 1: Suppose that Assumptions 1.0-1.6 are satisfied. Then (U*,®% )
is tdentified within (W x T') if and only if V(U,®x.) € (W xT) if (U, Px.) #
(U, ®% ), then there exists (y,x,e,€') such that (z,e) € supp(®%.), (z,e) €
supp(®x), (y,x,€) € By, (y,x,¢’') € By, and the rank of the matric

Oy gy, v, &5U)  0.,9(y,x,¢;U)

Oyz9(y, z,6;U") 0 18 2G



where g; denotes the vector € with its i-th coordinate deleted.

As Roehrig (1988) notes, if Vi,j (i # j) 0-,9:(U) = 0 and 0, g:(-;U) # 0, the
rank condition in Theorem 1 is equivalent to the condition that for some ¢ the matrix

l Byri(y, 7 U)

Byor(y, z; U") ] has rank G + 1,

where r;(-;U) denotes the i-th coordinate of the function r(-;U).
We provide in the following Theorem a condition equivalent to the rank condition
of Theorem 1 that does not require calculating the rank of a matrix.

THEOREM 1': Suppose that Assumptions 1.0-1.6 are satisfied. Then (U*,®% )
is identified within (W x T') if and only if Y(U,®x.) € (W xT) if (U, ®x.) #
(U*, @% ), then there exists (y,x,e,e') such that (z,e) € supp(®%.), (x,¢) €
supp(®x ), (y,x,€) € By, (y,x,€') € By, and

Oph(x,e;U*) # Oph(z, &5 U).

To estimate nonparametric functions and distributions in simultaneous equations
models satisfying the above assumptions, we propose using the Closest Empirical
Distribution method. This method was introduced in Manski (1983) for parametric
functions r(-;0), € RX.

Given U € W and N independent observations {y’, '}V, let

1n >r@y',2%0), v > 2|

=
e

-
Il
—_

F.xn(n,z;U) =

2|~
=

-
Il
—_

Fx n(z) = 1 [w > xl} and

1n > r(y’, 2" U)].

2|~
=

Il
—_

FE,N (77’ U) =
F. x n(n,z;U) is the empirical joint distribution of the random vectors (Y, X; U)
and X. Fx n(x) is the empirical distribution of the exogenous observable vari-
ables X, and F; y(n;U) is the empirical marginal distribution of the random vector
r(Y,X;U). Let F. x(n,x), Fx(x) and F; (n; U) denote, respectively, the distributions
of the random vectors (r(-;U), X), X, and 7(-;U) induced by Wy x(-;U*, % ).
Let p denote the Prohorov metric on the space of distributions and let pp L7 denote
the bounded Lipschitz metric on the same space. The bounded Lipschitz distance
between two distributions, F' and G, is defined by

/¢ VdF (s /w VdG(s

where the supremum is taken over all functions ¢ satisfying the Lipschitz condition:

[9(s) = ()] < mfs, ).

ppL(F,G) —Sup




The metric m(-,-) is any metric whose value is bounded by 1 on the joint domain
of the distributions. For example, one can take m to be given by

[Is = 'l

N
m(s,s') = s

The Prohorov metric and the bounded Lipschitz metrics are topologically equiv-
alent (Corollary 4.3 in Huber (1981)). The bounded Lipschitz metric is, however,
easier to calculate. The proof of Theorem 4.2 in Huber (1981) and the definitions of
FE,X,N('§ U), FE,N(§ U), and FX,N imply that IOBL(FE,X,N('; U), FE,N(§ U)FXJV) is the
optimal value of the objective function of the following linear programming problem:

N N N

min Zzzm €i, Ti), 5]7%)) Hijk

{u”k}z 1j5=1k=1

s.t. Z%k N?’ jk=1,..,N

ZZMzgk 1= 17--->N

7=1k=1
/”LZ]kZ()? Z.ajak:]-a"'aN'

We define our estimator, Uy, for U* to be any function that solves the following
problem:

LI/%II?/ pBL( 57X,N(aU)7 6,N(ﬂU) X7N)

Our estimator, Fyy for F* is F. y(e;Up).
Our consistency result for the above estimators will make use of the following
assumptions:

ASSUMPTION C.1: (U*,®% ) is identified within a set (W x T').

ASSUMPTION C.2: The set W is a compact set with respect to a metric d :
W x W — R, e.g., C? uniform convergence on compacta.

ASSUMPTION C.3: The metric d is such that convergence with respect to d of
any sequence {Uy} C W to a function U € W implies that r(-;Uy) converges to
r(-;U) in the topology of CV uniform convergence on compacta.

THEOREM 2: Suppose that Assumptions 1.2, 1.4, and C.1-C.3 are satisfied. Then,
Uy is a strongly consistent estimator for U* with respect to the metric d and Fy is
a strongly consistent estimator for F} with respect to the metric p.

Note that if F} is assumed to possess absolutely continuous marginal distribu-
tions, then the convergence, in Theorem 2, of Fiy to F} is in fact with respect to the



supremum norm. This is so because weak convergence of cdf’s is equivalent to con-
vergence with respect to the supremum norm when the marginal cdf’s of the limiting
function are absolutely continuous (see Rao (1962)).

3 A Random Utility Model

As an application of our general results for simultaneous equations models, we con-
sider a model of consumer demand where a typical consumer has a utility function
V : X — R defined by

V(z) =U*(z)+ €'z,

where X C R¥,, U* : X — R and ¢ = (e1,...,ex) € R is such that ex = 1.
The price of the commodities is given by a vector p = (p1,...,pK) € Rf 4, which
we normalize by requiring that px = 1. The consumer, facing prices p and in-
come I € R, 4, purchases a commodity bundle x* that maximizes V* over the set
{r e X|p'z < I}.

We assume the function U* is a smooth utility function, in the sense of Debreu;
i.e., we assume

(i) the closure of the indifference curves of U* lie in RY
(il) Ve € X DU*(z) >> 0 and
(iii) Vo € X D?U*(x) is negative definite on the kernel of DU*(x)

where DU*(x) and D2U*(z) denote, respectively, the gradient and Hessian of U* at
x. We note that these conditions on U* suffice to guarantee the existence of a C*
demand function, for any given value of ¢.

The monotonicity of U* (condition (ii)) guarantees that the demand, x*, of each
consume satisfies the budget equality: p’z* = I. Hence, given (p, I) and noting that
pr =1, we can write o* = (27, ..., 2% _1, 2% ) = (27, ..., x5, I — Ef:_llpjwj-).

While the value of € is assumed to be fixed and known for each consumer, different
consumers have possibly different values of . The econometrician does not observe
. The distribution of € = (eq, ...,k 1) over the population of consumers is assumed
to be characterized by an absolutely continuous distribution function F¥ : RK-1 —
R. Since the demand function of each consumer depend on his/her value of e, the
distribution of € over the population of consumers generates, for each vector of prices
and income (p, I), a distribution of demand. The most the econometrician can observe
is the joint distribution of purchased commodity bundles x*, prices p, and incomes.

Applying our identification result in Theorem 1, we next show that both the
smooth utility function U* and the distribution F of € can be recovered from the
joint pdf of (z*,p, I). For simplicity, we denote (z7,...,2%_1) by =, (p1,...,px—1) by
p, and (e1,...,ex—1) by €. Let fy,1(x,p,I) denote the joint pdf of (x,p,I), and
let F(z,p,I) denote its distribution. Assume that U* belongs to a set W of smooth
utility functions and that F belongs to a set I' of absolutely continuous distributions
on Rf -1



For any pair (U, F) € (W x I'), one can derive the pdf for (z,p, I), generated by
(U, f). We denote this pdf by f,,(x,p,I;U, f). Its conditional pdf’s, given (p, I),
can be calculated by letting x be, for any given (p, I), the vector that maximizes the
function U(z, I —p- ) +&'x + 1 —p- x over the set {x € RE I —p-x > 0}.

THEOREM 3: Assume that the vector (p,I) has a continuous Lebesque density.
Let x € X and o € R be given. Suppose that W is a set of smooth utility functions
U: X — R such that VU € W, U(Z) = «a. Let ex = 1, and denote by T the
set of absolutely continuous distribution functions of vectors (e1,...,ex 1) that are
distributed independently of (p,I). Then, (U*, F¥) is identified in (W x I') if and
only if YU € W such that U # U*, there exists v € X and i,k{1,..., K} such that

Ulw) , _Ug(@)
Uk(x)+1 " Up(x)+1

Note that the result of Theorem 3 can be used to determine not only when a
nonparametric U is identified, but also when a parametric U is identified.

The following corollary present a set of conditions that are easily imposed and
guarantee that the above identification conditions are satisfied.

COROLLARY 1: Let z € X, a € R, T € Rf+, and g : X — R be known. Let W
be a set of smooth utility functions U : X — R such that YU € W,

(i) U(@) = a,

(i) DU(z) =T, and

(i) Vo € X, Uk (x) = g(x).

Let ex = 1, and denote by I' the set of continuous density functions of vectors
(€1, ...,€x—1) that are distributed independently of (p,I). Then,

(U*,FY) is identified in (W x T).

Estimators for U* and F} can be obtained using the result in the previous sec-
tion. Here, x, the commodity bundle, is the vector of endogenous variables, (p,I),
the vector of prices and income is the vector of exogenous variables, and £, the het-
erogeneity term, is the unobservable exogenous variables. For any function U in a set
W to which U* belong, we have that the first order conditions of the maximization
over x of U(x,I —p-x)+e-x+ 1 —p-x subject to the constraints that > 0,
I—p-x>0are

&k = Tk(xapa I7 U) = (UK(.I,I _pl'r) + 1)pl€ - Uk(fl?,[ _pl'r)v k= 17 7K -1

Let W denote a set of smooth function that satisfy (i)—(iii) in Corollary 1 and is
compact with respect to the metric d defined by

n o __ _Tr! _Ir
dU,U") = jg)g\U(w) U'(z)] +§g§1g}%§(\Uk(m) Uk ()|

. 77
+sup | max [Uk(z) - Ugy ()|

9



where Uy (z) = 0U(z)/0xy, and Uyj(z) = 0°U(x)/0x0x; (k,j = 1,...K; U € W;
x € X). W will be compact with respect to this metric if all functions in W and
their derivatives up to the second order are equicontinuous and uniformly bounded.
Then, in addition to Assumptions I.1-1.6 being satisfied we have that Assumptions
C.1-C.3 are also satisfied. Hence, we can apply the consistency result in the previous
section.

To compute the estimators, we note that the value of the function

QNWU) = ppr(Fepin(5U) ,Fon(5U) Fprn())

at any function U € W, depends on U only through the values that U and its
gradients attain at the finite number of points (2!, I* —pt-zb), ... (2, IV —pV . 2N),
we can transform the optimization problem (1) into a two step procedure. First,
find the values and gradients of Uy at (x1,I* —pt - ab), ..., (@™, IV —pN . 2V), and
then we obtain the function Uy by interpolating between the values. This follows
the approach taken in Matzkin (1991, 1992).

For each vector (ul,...,u®,dul,...,0uN) of values and gradients of a function in
W, let

N
QN(ul’_..,uN’aul’...,auN) = pBL (%Zl[(s,p’f) > (El’pz’jz)D’

N 4 N o
x (% >k a}) (% >t 1) 2 <paﬂ>D>

where ¢t = (Qule + 1)pi —Oul, k=1,..,K;i=1,....N.
Then, the first step consists of finding a solution to the problem:

min ul, Y out, L oulY
iy @ )

subject to

ut <l + 0w - (o8, I —p'-a?) — (/P —p/ - 2?)), i=1,..,N+1

N+1 N+1 _p

U =a, Ou

outy = g(a', I' —p'-2%), i=1,..,N+1

The constraints guarantees that the vectors (ul,...,u™,du!, ..., 0u”) over which
the minimization is performed correspond to the values and gradients of a function
in W.

The second step proceeds to interpolate the estimated values and gradients,
(al,...,aN*t), and 94t ..., 00N, of U*.

The estimator F. for the cdf of ¢ is calculated by

N
F(e) = £ e > (Dt + 1)ph — 9a); k= 1,..., K — 1]
=1

10



4 Appendix

PROOF OF THEOREM 1: By Roehrig (1988), r(;U*) and ®% _ are identified
if and only if the rank condition is satisfied. Hence, by Assumption 1.6, U* and ®% .
are identified if and only if the same rank condition is satisfied.

PROOF OF THEOREM 1’: By Roehrig (1988), the rank condition in the state-
ment of Theorem 1 is equivalent to the condition that

Oep(z,8) # 0 (1)
where the function p is defined by
p(x,e) = r(h(z,&U"),z;U). (2)
Using (2), (1) becomes
Oyr(y, x; U)0ph(x,e;U") + 0pr(y, a;U) # 0. (3)

The equations ¢(y, z,e;U*) = 0 and g(y,z,&’;U) = 0 imply, by Assumption 1.2 and
the Implicit Function Theorem that

Oyr(y,a;U) = —(9eg(y, x;U)) ' 0yg(y, x;U) and (4)
0y, 2;U) = —(9eg(y, 23 U)) " 0ug(y, 2;U) - (5)
Hence, (3) becomes
(0-9(y, z;U)) " (0yg(y, ;: U)ph(x,8;U*) + dug(y, ;U)) # 0. (6)
By Assumption 1.2, (6) is equivalent to
Oyg(y, 7 U)0uh(w,8;U") + dag(y, x; U) # 0, (7)
which, by Assumption 1.2 and the Implicit Function Theorem is equivalent to
Oph(x,e3U") # —(9yg(y, 2;U)) ™ 0ug(y, 2;U) = Ozh(w,&; U). (8)
Hence, identification holds if and only if
Oh(x,e;U") # 0zh(x,e;U).

PROOF OF THEOREM 2: We will show that the assumptions in Theorem 1 in
Manski (1983) are satisfied when the parameter space is (W, d) instead of (©, ]| - ||),
and when the distance over the space of probability distributions is p instead of the
supremum distance used in Manski. The strong consistency of Un will then follow
by the same arguments used in the proof of Theorem 1 in Manski (1983).

The compactness of the parameter space follows by Assumption C.1. Identifica-
tion follows by noting that Assumption 1.2 guarantees that the conditional distribu-
tions of r(Y, X; U) given X are identical to the conditional distributions of (Y, X; U*)

11



given X if and only if the joint pdf of (Y, X) generated by U and the joint distribution
of (r(Y,X;U), X) equals the pdf of (Y, X) generated by U* and the joint distribution
of (e, X). Since our Assumption C.1 rules out this latter equality, the joint distribu-
tion of (r(Y,X;U),X) must be different from the joint distribution of (¢, X) if and
only if U # U*. This is the argument of Lemma 3.2 in Roehrig (1988). See also
Brown (1983, Lemma 1).

We next show that

(I) If{Ux} C W,U € W are such that d(Uy,U) — 0 and if Fy y is any distribution
of (Y, X) then

P(FL x (1 Uk), FL( Ur) Fx) — p(F x( U), F{(:; U)Fx)

where for any U € W, F «(;U"), F{(;U’), and F denote, respectively, the
distributions of (r(-;U’), X), r(:;U’), and X generated by Fy, y.

Let {Ux} C W,U € W be such that d(Uy,U) — 0. Let p1., and . denote, respec-
tively, the probability measures of F.(-; Uy) and F!(-;U). Let p} v denote the proba-
bility measure of Fy, y. By assumption, d(Uy,U) — 0 implies that r(+; Ug) converges
to r(-;U) in the topology of C? uniform convergence on compacta. It then follows
that p, = py x or~1(-; Ug) converges weakly to u. = Ky x or~1(;;U). (See Theorem
3.3 in Rao (1962).) Similarly, g,y converges weakly to pif y, where p y and p, y,
are, respectively, the probability measures of F, y(+;Uy) and F_ x(-;U)), X). Hence,
since weak convergence of probability measures implies weak convergence of the dis-
tribution function, which implies convergence with respect to the metric p, we have
that

lp(Fex (5 Uk), Fe(3 Uk) Fx) — p(Fe,x (5 U), Fe (5 U) Fx)|
< |p(Fex (5 Uk), Fe (53 Uk) Fx) — p(Fex (5 U), Fe(+; U) Fx )|

+p(Fex(5U), Fe(5 Uk) Fx) — p(Fe x (5 U), Fe (5 U) Fx)|
< |p(Fex (5 Uk), Fex (5 U+ |p(Fe (55 Ug), Fe (55 U))|

— 0

N

where the last inequality follows from the triangle inequality by noting that for any
F. G, D, p(F,G) < p(F,D) + p(D,G) and p(F, D) < p(F,G) + p(G, D) imply that
This shows (I).

Next, we show that

(I1) If {Ux}32, € W,U € W are such that d(Uy,U) — 0 and if {Fy x,}32, is a
sequence of distributions such that Fy x; converges weakly to Fy, x, then

P(Fex k(3 Ug), Fe (3 Up)Fx ) = p(Fex (5 U), Fo (5 U)Fx

where for any U’ € W, F_ x 1(;U'), F.(-;U’), and Fx  denote, respectively,
the distributions of (r(-;U’),X), r(-;U’), and X generated by Fy xj, and
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F. x(;U), F.(;U) and Fx denote, respectively, the distributions of (r(-; U), X),
r(-;U), and X generated by Fy x (Fy x is the true distribution of (Y, X).)

By assumption, d(Ug,U) — 0 implies that r(-;Uy) converges to r(-;U) in the
topology of C? uniform convergence on compacta. Let Py x i denote the probability
measure of Fy x g, He,, denote the probability measure of Fe,k('; Ug), and p, denote
the probability measure of F.(:;U). Then, since piy. x j converges weakly to py x, it
follows that p1., = py x 077 (-;Uy) converges weakly to p. = pry x or~1(-;U). (See
Theorem 3.3 in Rao (1962).) Similarly, p., y converges weakly to p. x, where ., x
and p, x, are respectively, the probability measures of F_ x x(;Ux) and Fy x(+;U).
Since weak convergence of probability measures implies weak convergence of the dis-
tribution functions, which implies convergence with respect to the metric p, we see
that

|p(Fe x k(5 Ur)s Fe (5 Uk) Fx ) — p(Fe x (5 U), Fe (55 U) Fx)|
< p(Fex k(5 Uk), Fer (5 Uk) Fx) — p(Fe,x (5 U), Fe (45 Uk) Fx)|

+1p(Fex (5U), Fo k(5 Uk) Fx) — p(Fex (5 U), Fe (5 U) Fx)|
< p(Fex k(55 Uk), Fe x (55 U))

— 0.

This shows (II).

(I) and (IT) imply that the continuity assumption in Theorem 1 in Manski (1983)
is satisfied. Hence, using the same arguments as in the proof of that theorem, we get
that

d(Un,U*) — 0 as.

Now to show that FN converges a.s. to F, we note that

A~

My, x N © T Un) — My, x © r~1(-; U*) weakly,

since py x y — fyx weakly, and by Assumption C.3, d(Uy,U*) — 0 implies that
r(; U ~) — r(-;U*) in the topology of C? uniform convergence in compacta. Hence,
Fy, which is the distribution function of Hy.x N or~i(s U ~), converges weakly to F¥,
which is the distribution function of iy x o 1(-;U*).

This completes the proof of the theorem.

PROOF OF THEOREM 3: Choose the K-th good as numeraire and express the
first order condition for utility maximization subject to a budget constraint in terms
of the inverse demand function. Letting V*(x,¢) denote the smooth utility function,
U*(x) +€'x, and denoting the associated smooth random inverse demand function as
g(x,¢e), it follows that

oV*(z,e)
aib‘i
9:(%:€) = PV (ae)
81‘[(
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Then, the first order condition for utility maximization are given by

g(z,e) =p
pr=1

where p’ = (p1,...,pK—1,1). Using the last equation to calculate xx, we can express
the above system as:

K-1
U;‘(xl,...,xK_l,I— Z pjx]> +5i

=1

=pi, i=1,.,K—1.

K—1
U}}(xl, v 1,1 — Z pjx]> +1
=1

Rearranging, we get, for i =1,..., K — 1:

K-1
g = UI*((iEl, v T 1,1 — Z pjxj) +1
=1

=1

K1
pi — Uz'*(wb -1, 1= pj%‘) :

This is a system of K —1 simultaneous equations, with x1, ..., xx_1 being the K —1
observable endogenous variables, €1, ...,ex 1 being the K —1 unobservable exogenous
variables, and pi,...,px—1,I denoting the K observable exogenous variables in the
system. Denote the vectors (z1,...,xx-1), (¢1,--,6x-1), and (p1,...,px—1) by @, €,
and p, respectively.

For each U € W define the function r : X x P x Ry, — RX~1 by

K-1 K—1
ri(z,p, I;U) = [UK<961,---,$K—1J— > Pj%’) + 1]pi—Ui<331,---,xK—1,I— > Pj%‘)
j=1 j=1

t=1,..., K — 1. Our smoothness assumptions on the functions in W imply that:
(i) YU € W, r(;U) is a C* function, and

(ii) YU € W, there exists a function x : P x Ry x RE™! — RK=1 such that Ve
e=r(x(p,1,&U),p, ;).

Moreover, one also has that
(i) VO,U e W U £ U <= r(;U) #r(5U").

To show this last assertion, we first note that U = U’ = r(-;U) = r(-;U’). Next,
suppose that U # U’, then, since U(Z) = U’'(Z), there must exist z and ¢ € {1, ..., K’}
such that U;(x) # Uj(z). If i = K and for some k # K, Ui (x) = Uj(z), then letting p
and I be such that zx = I — Z;;l pjxj, we get that ry(x,p, I;U) # ri(x,p, I; U’). If
i = K and for some k # K, Ug(x) # U}, (x), let py # (Up(x)—Uj(x))/(Uk (2)-Uk(x)),
and choose p; (j # k) and I such that xx = I — Zf:_llpjmj. Then, r(z,p, I;U) #
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ri(x,p,I;U’). Suppose, on the other hand, that for all z, Ux(x) = Uj(x), then
letting p and I be such that xx = I — Z;i‘ll pjx;, we get that r(x,p, [;U) #
ri(xz,p, I; U").

Properties (i)—(iii) allow us to use Theorem 1 to determine the necessary and
sufficient conditions for the identification of U* and the distribution F of €. Hence,
to prove the theorem it only remains to show that for all U € W such that U # U™,
there exist vectors z, p, I and i € {1, ..., K — 1} such that the matrix

ori(z,p, I;U)
_ Oz, p, I)
Ai = ori(z,p, ; U*)
d(x,p,I)
has rank K.
The typical elements of the above matrix are as follows:
87’2'
Er Ukjpi — Uk kpipi + Uikpj — Uij
Ly
87"1‘
= Uin'—UKKw'pi if 4 ]
o : ipi ifi 7
67’2'
= Uigx; — Uggaip; + U + 1
Op;
67’2'
E - UKsz - Uz

with U being replaced by U* when the derivatives are taken over r(-; U*).
Write the matrix of partial derivatives of r(-; U) and r(-; U*) as a vector of columns

or(z,p, I;U)

_ O(z,p,I) _
A=\ orya,p, 1;07) | = 1001

(x,p, 1)

- Qxg_1 Op1 --- Opx—1 1.

The rank of this matrix is the same as the rank of the matrix obtained by sub-
stituting each column Ox; with the column (0x;)* = 0x; +p; OI and substituting
each column Op; with (Op;)* = Op; +x; OI. The i-th and the(K — 1) 4 ¢ elements
of the vector (Ox;)* are then, respectively, Uk ;p; — Us; and Uk;pj — Uj;. The i-th
and the (K — 1) + ¢ elements of the vector (Op;)* are Ux +1 and Uj; +1if i = j and
they are 0 otherwise.

Substitute the (Op;)* columns with the columns (dp;)** obtained by dividing
the (Op;)* columns by (Ugx + 1). Subtract from each (0x;)* column the vector
S ET (0x))i 1y (Opi)**, where (Ox;)}_; ., is the (K — 1 44)-th element of the col-
umn vector (Ox;)*. Finally, subtract from the dI vector the vector > X 1(0I)x 1.4
(Opi)**. Then, the resulting matrix is

X P I
X* P I
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where the submatrices X* and I* are zero matrices, and the submatrix P* is the
(K —1) x (K — 1) identity matrix; i.e.,

X P il [x P i
X* P 1| |0 Ixq1 O

The ij-th element of X is Ug:p; — Uij — (Ukpj — Ui)(Uk +1)/(Ug +1)). The
j-th row of I is UKKpj - UjK - (U;(Kpj — U;Kj)((UK + 1)/(UI*( + 1))

The above matrix has the same rank as the matrix A. So, it is easy to see that
the rank of A; is K for some i € {1,..., K — 1} if and only if an element of either the
submatrix X or the submatrix I is dlfferent from 0. Hence, (U*, f*) is identified if
and only if for some ¢ and j (1 <7< K;1 <j < K —1), some p;, and some x

Uki(x)p; — Uij(x) y Uki(x)p; — Uf(x)
Uk(z)+1 Uk(x)+1

(iv)

It is easy to verify that this is satisfied if and only if for some x and some i, k,
where (1 <i< K;1<k<K-1),
Usj(x) y Ui ()
Uk(z)+1 " Ui(x)+1

(v)

To see this, note if (v) is not satisfied, then (iv) can not be satisfied so that (iv)
= (v). To see that (v) implies (iv), divide (v) into the case in which (v) is satisfied
when either ¢ or k or both equal K and the case in which Vz, Vi, k such that « = K
ork=Kori=k=K, Uyg(x)/(Ug(x)+1) =Uj(x)/(Uk(x) +1). In the first case,
it is always possible to find j and p; such that (iv) is satisfied. In the second case, (v)
implies that 3i,j (< K) and x such that U;(z)/(Uk(z) + 1) # Ui (x) /(U (z) + 1),
and the definition of the case implies that Ug;(x)/(Uk () +1) = Uk, (x) /(U (x)+1);
so, (iv) is satisfied.

This completes the proof.

PROOF OF COROLLARY: It suffices to show that if U € W and U # U*, there
exists some x and some ¢ and j, where (1 <7< K;1 <j < K — 1), such that

Suppose then that U € W and U # U*. Then, since U(z) = U*(Z), it must be
that for so = and 1, U( ) # Uf(x). But then, since DU(Z) = DU*(Z), it must be
that for some x and j, U;j(x) # U*(x). Since Uk (x) = Uj(x) = g(x), it follows that
i # K, and hence, (vi) is satlsﬁed.
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