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Abstract

Two approaches have been proposed in the literature to refine the rational-
izability solution concept: either assuming that players make small errors when
playing their strategies, or assuming that their is a small amount of payoff un-
certainty. We show that both approaches lead to the same refinement if errors
are made according to the concept of weakly perfect rationalizability, and there
is payoff uncertainty as in Dekel and Fudenberg [Journal of Economic Theory
52 (1990), 243-267]. For both cases, the strategies that survive are obtained by
starting with one round of elimination of weakly dominated strategies followed
by many rounds of elimination of strictly dominated strategies.
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1 Introduction

The solution concept of rationalizability has been introduced independently by Bern-
heim [2] and Pearce [10]. In some games it fails to eliminate all intuitively unrea-
sonable outcomes, for instance in games with weakly dominated strategies (see e.g.,
Pearce [10], Herings and Vannetelbosch [9]). Therefore, one has looked for refine-
ments that strengthen the rationalizability concept but still do not assume common
expectations of the behavior of the players. Two different approaches have mainly
been investigated in the literature. Both approaches propose to select outcomes which
are robust to the introduction of small perturbations. One approach consists of as-
suming that players make small mistakes when determining their strategic choices,
while the other one consists of assuming a small amount of payoff uncertainty.

The approach of strategy perturbations, i.e. the assumption that players make
small mistakes, has produced many refinements like perfect rationalizability (see
Bernheim [2]), cautious rationalizability (see Pearce [10]), proper rationalizability
(see Schuhmacher [11]), weakly perfect rationalizability (see Herings and Vannetel-
bosch [9]), and trembling-hand rationalizability (see Herings and Vannetelbosch [9]).
An analysis as well as a detailed description of these refinements can be found in Her-
ings and Vannetelbosch [9]. Recently, a general framework for studying refinements
of rationalizability has been introduced in Gul [7], who develops a solution concept
called 7-theory. In this theory it is modelled in a coherent way that players may
behave irrationally with a small probability, which is related to the assumption that
players make mistakes with a small probability.

The approach of payoff perturbations, i.e., the assumption of a small amount
of payoff uncertainty, has been studied by Dekel and Fudenberg [6], who obtained
the following substantial result. Under the assumption that there is a little bit of
uncertainty about the payoffs, rationalizability is equivalent to one round of deletion
of weakly dominated strategies, followed by iterated deletion of strategies that are
strictly dominated. In what follows, this rule for deleting dominated strategies will
be referred to as the Dekel-Fudenberg iterative procedure.

There are also other approaches that lead to the Dekel-Fudenberg iterative proce-
dure. Borgers [3] has shown that if it is approximate common knowledge that players
maximize expected utility using full support conjectures, then the players choose
strategies that correspond to the Dekel-Fudenberg iterative procedure. Branden-
burger [4] has obtained a similar result to Borgers [3]. But, instead of approximate
common knowledge, Brandenburger used a lexicographic analogue, called common
first-order knowledge. Gul [7] shows that the Dekel-Fudenberg iterative procedure is
the weakest perfect 7-theory. For the class of generic extensive-form games with per-
fect information, Ben—Porath [1] shows that the set of outcomes that are consistent
with common certainty of rationality at the beginning of the game coincides with the
set of outcomes that survive the Dekel-Fudenberg iterative procedure.

These results suggest that the Dekel-Fudenberg iterative procedure is a well mo-
tivated strengthening of rationalizability. To give further underpinning of this claim,
we show that the Dekel-Fudenberg iterative procedure receives also support from the



most common approach to refine rationalizability, namely by assuming that players
make errors with a small probability. In this note we show that the concept of weakly
perfect rationalizability coincides with the Dekel-Fudenberg iterative procedure. For
such an equivalence result to hold, however, it is necessary that players believe that
their opponents might make correlated mistakes. We provide a counterexample to
equivalence if players make uncorrelated errors instead.

2 Definitions and Notations

We consider a normal-form game I'(7,.S,U). The set [ is a finite set of players. Each
player ¢ has a finite pure-strategy set S; and a payoff function U; : S — R, where
S = Hie[ SZ and U = (UZ)ZEI

As general notation, we denote by A (X) the set of all Borel probability measures
on X. For finite X, we denote by AY(X) the set of all Borel probability measures
giving positive probability to each member of X.

Given ¢; € A(S;), we denote by c¢;(s;) the probability that c¢; assigns to pure
strategy s;. Player i’s opponents in the game I'(1,S,U) are denoted by —i.

Given a product set T, which is the Cartesian product of individual strategy sets,
T; denotes the strategy set of player ¢. The Cartesian product Hj £i T} is denoted by
T ;. For c_; € A(S_;), c_i(s—;) denotes the probability that c¢_; assigns to the pure
strategy profile s_;.

2.1 The Dekel-Fudenberg Iterative Procedure

To define the Dekel-Fudenberg iterative procedure we need to define the notions of
strict and weak dominance first.

Definition 1 (strict dominance) Let a product set T' C S of pure strategy profiles
in the game T'(I,S,U) be given. A pure strategy s; € T; of player ¢ is strictly
dominated in T if there exists ¢; € A (T;) such that U;(c;,s—;) > Us(s;,s—;) for all
s €T,

Given a product set T of pure strategy profiles, the pure strategies of player i
that are not strictly dominated in T" are denoted by B;(T"). The pure strategy profiles
that are not strictly dominated are denoted by B(T) = [[,.; B:(7T).

Definition 2 (weak dominance) Let a product set ' C S of pure strategy profiles
in the game T'(1,S,U) be given. A pure strategy s; € T; of player i is weakly
dominated in 7" if there exists ¢; € A (T;) such that U;(c;, s—;) > Uj(si,s—;) for all
s_; €T 4, and U(c;,s—4) > Ui(s;,5;) for some s_; € T ;.

Given a product set T of pure strategy profiles, the pure strategies of player 7 that
are not weakly dominated in T are denoted by W,(T'). The pure strategy profiles that
are not weakly dominated are denoted W(T') = [[,.; Wi(T).



The Dekel-Fudenberg iterative procedure for removing dominated strategies con-
sists of one round of deletion of weakly dominated strategies, followed by an arbitrarily
large number of rounds of deletion of strictly dominated strategies. This procedure
can be motivated by assuming small payoff uncertainty, see Dekel and Fudenberg [6],
who give the following intuition for this result: “Each player knows his/her own pay-
offs, and so by our rationality postulate will not choose a weakly dominated strategy.
In order to do a second round of deletion players must know that all the others will not
choose certain strategies. A small amount of payoff uncertainty cannot alter strong
dominance relationships, but can break weak ones, so that after the first round we
can only proceed with the iterated deletion of strongly dominated strategies” (Dekel
and Fudenberg [6, p.245]).

Definition 3 (Dekel-Fudenberg iterative procedure) Let P* = W(S). For k >
2, Pk = B(Pk_l). The set P® = limy_,o, P is the set of pure strategy profiles
generated by the Dekel-Fudenberg iterative procedure.

Evidently, §) # P* C P¥~1 C ... C P'. Since the set S; is finite for each player 1,
there exists some integer n such that P*¥ = P" for all k > n. Therefore, the limit set
P is well-defined and non-empty.

2.2 Weakly Perfect Rationalizability

Weakly perfect rationalizability has been introduced by Herings and Vannetelbosch
[9]. Here, we adapt our original definition such that it allows the players to hold
correlated conjectures. Correlated weakly perfect rationalizability weakens weakly
perfect rationalizability because allowing correlated conjectures about the strategies
of the opponents makes more strategies rationalizable. Correlated strategies or con-
jectures appear to make more sense in the context of the non-equilibrium approach
than in the equilibrium approach (see e.g., Brandenburger and Dekel [5] or Hammond
[8]). The motivation for weakly perfect rationalizability is that each player makes
mistakes but subject to an explicit constraint: the mistake technology puts a positive
weight less than ¢ on strategies that are not best responses.!

For our results it is crucial whether a player may believe that her opponents make
correlated mistakes or not. It is not unreasonable for a player ¢ to conjecture that
her opponents make correlated mistakes. Suppose, for instance, that her opponents
implement a correlated strategy c_; € A(S_;) by means of a mediator. The mediator
randomly selects a pure strategy profile s_; € S_; with probability c_;(s_;). Then
the mediator recommends a player j, j # 4, confidentially to use strategy s; if s_;
is the pure strategy profile selected. If the mediator makes errors and chooses with
positive probability not exceeding € any pure strategy profile s_; € S_; by mistake,

1This mistake technology is different from the one used in the perfect rationalizability concept
due to Bernheim [2], where each player has to choose each of her pure strategies with a certain
strictly positive minimum probability. It is shown in Herings and Vannetelbosch [9] that for the case
of uncorrelated beliefs perfect rationalizability is a refinement of weakly perfect rationalizability.



then this leads the opponents of player ¢ to make correlated mistakes, even if the
mediator makes no errors when making recommendations and the players make no
errors in playing the recommended strategy. On the other hand, if the mediator
makes no errors in randomly selecting a pure strategy profile s_; € S_; with prob-
ability c_;(s—;), but makes uncorrelated mistakes when doing his recommendations,
or players make uncorrelated mistakes when carrying out the recommendation, then
this leads to uncorrelated mistakes of the players. In this section we allow for the
possibility of correlated mistakes.

Weakly perfect rationalizability will be defined as an iterative procedure. At any
stage k, player i has a set DF(¢) C A(S;) of mixed strategies that are still rational for
her to play at stage k. Here € > 0 is related to the mistake technology. She conjectures
her opponents to play a correlated mixed strategy profile in A(J]; D;-“ (€)), which
is subject to correlated mistakes. A mixed strategy is rational for player i at stage
k41, and belongs to Df+1(5), if it is a best response against some Borel probability
measure over such correlated mixed strategy profiles subject to mistakes. The set
DF(e) will be shown to satisfy the pure strategy property.

Definition 4 A subset D; of A(S;) satisfies the pure strategy property if ¢;(s;) > 0
for some ¢; € D; implies that s; belongs to D;. The product set D satisfies the pure
strategy property if D; satisfies the pure strategy property for all i.

If the opponents of a player ¢ would not make any mistakes, then a correlated
conjecture of player ¢ on the play of her opponents is a Borel probability measure
Y-i € A([] Df(O)) Analogously to Pearce [10], for the purposes of expected
utility maximization, we can replace the collection of Borel probability measures
ATz Df(())) by the set A(][,4 Sj’-“(())), where Sj’-“(()) is the set of pure strate-
gies in D;-“ (0). Player ¢ is rational if she maximizes her utility against an element of
A5 55(0)).

Suppose player 7 conjectures that her opponents make correlated mistakes with
positive probability not exceeding ¢.? Let e_; be a measure on S_; describing the
mistake technology. For s_; € S_;, e_;(s_;) is the probability by which the pure
strategy profile s_; is played by mistake. It holds that 0 < e_;(s_;) < e, s_; € S_;.
Now, if player ¢ conjectures that her opponents try to coordinate on the correlated
mixed strategy profile c_; € A(S_;) and expects them to make mistakes according
to e_;, then player i should optimize against the probability measure ¢ ; € A%(S_;)
satisfying

E,Z'(gfi) = (1 — Z 671(571‘))671(571‘) + 671‘(572'), 5, €8,

S_i€S8_;

Suppose we are at stage k, and each player i has a set DF(¢) C A(S;) of mixed
strategies that correspond to rational play, where each set Df (¢) satisfies the pure

It is always assumed that ¢ is smaller than one over the total number of pure strategy profiles

in S.



strategy property. We denote the pure strategies in DF(e) by S¥(¢). If the mistake
technology is as described before, then player ¢ should maximize utility against an
element of A*([], Sf(s)), where

AE(H Sf(e)) ={c; € A%S_;) | ci(si) < clif 55 ¢ S]’?(s) for some j # i}.
J#i

The set A (H] 4 Sf(s)) contains all correlated, completely mixed strategy profiles
that put weight less than or equal to € on any pure strategy profile containing a
pure strategy not in S]’?(s) for some player j. Any probability measure of beliefs of
player i on correlated strategies profiles subject to mistakes, will never assign weight
exceeding ¢ to a pure strategy profile s_; € S_; such that s; ¢ S]’? (e) for some j. To
prove that the strategy profiles in A*(]]; ,; S f (€)) are the ones to consider, it remains
to show that any strategy profile in A(][, 4, Sf (¢)) can indeed be conjectured.

Consider any c_; € A (][, S]k(s)) We define S_; = {s; € S_; | c_i(s_i) > ¢}
and denote the cardinality of S_; by #S_,. For each 5_; € S_;, let 55_7 € AY%S.)
be defined by

&Gl = <1—#> 3 esi(sm),

T S_ieg_l
FUG) = ot Y ey S5\ i),
- #S_; —1ci(5-:) oA

Egli(sfz') = ci(sq), s,€5;\5,

The mixed correlated conjecture Acgjii corresponds to the conjectured play of the

pure strategy profile 5_; subject to error. Notice that ACE:; (5—;) < eforall 5s_; €
S_;\ {5_:}. Because of the pure strategy property of each D;-“ (¢), player ¢ may indeed
conjecture her opponents to play 63:11 If player i conjectures Acgjii with probability
c—i(3-4)/(Q2_,c5_, c-i(s—4)), then she should indeed optimize against c_;.

Now we can define weakly perfect rationalizability by the following iterative pro-

cedure.

Definition 5 (weakly perfect rationalizability) Lete > 0 be given. Let D%(¢) =
[Tic; A(Si) . For k > 1, D*(e) = [[,; DF(e) is inductively defined as follows: ¢; be-
longs to DF(e) if ¢; € A(S;) and there is c_; € A (Tl Sffl(s)) such that ¢; is a
best response against ¢_; within A(S;). The set D> (g) = limy_,o, D¥(¢) is the set of
e-weakly perfectly rationalizable strategy profiles and D> = lim,_,q+ D> (¢) the set
of weakly perfectly rationalizable strategy profiles.

In Definition 5 the limit set D™ is given by

lim D% (e) = {c € HA (Si)|3 {6’5}:20 — 01,3 {ct}:io —c,c" € D (€Y } .

o+
= icl



It is trivial to verify that indeed each set Df (¢) satisfies the pure strategy property.

Instead of the algorithmic definition given here, it is possible to define e-weakly
perfect rationalizability in an axiomatic way following the seminal contribution of
Pearce [10]. The following three axioms characterize e-weakly perfect rationalizabil-

1ty.

A1. Each player ¢ forms a subjective prior over her opponents choice of strategy, i.e.,
a prior over mixed strategy profiles c_; € A(S_;) played subject to an error e_;
satisfying 0 < e_;(s—;) <e, s_; € S_,.

A2. Each player maximizes her utility relative to her prior.

A3. Al and A2 are common knowledge.

Similarly to Herings and Vannetelbosch [9] it is possible to obtain the following
result.

Theorem 1 For every normal-form game T'(I,S,U), D> is non-empty, closed, sat-
isfies the pure strategy property, and contains all perfect Nash equilibria.

Although Theorem 1 shows that weakly perfect rationalizability is a well-defined
solution concept, it does not give us an easy characterization of the strategy profiles
that survive.

3 The Equivalence Theorem

Theorem 2 gives an easy characterization of the set of weakly perfect rationalizable
strategies. It states that weakly perfect rationalizability coincides with the Dekel-
Fudenberg iterative procedure. In the proof of Theorem 2 we will frequently use the
following lemma from Pearce [10].

Lemma 1 A strategy s; is strictly dominated in T if and only if it is not a best
response against a correlated conjecture on T_;. A strateqy s; is weakly dominated
i T if and only if it is not a best response against a completely mized correlated
conjecture on T_;.

Theorem 2 For every normal-form game I' (I,S,U), P> = S.

Proof. Let € = (][;c; #S;)71. For every product set T of pure strategy profiles,
if a pure strategy s; € T; is strictly dominated in T, then by Lemma 1 it is not a
best response against any correlated conjecture on T ;. By continuity of the payoff
function, there is (7,7, 0 < £(4,T) < g, such that a pure strategy s; € T; that is
strictly dominated in 7T is not a best response against any conjecture in

{c ;€ A%S ) | ci(s4) <e(i,T) if s; ¢ Ty for some j # i}.



We denote the minimum over all players 7 and all product sets T of £(i,T) by £. We
show by induction on k that PF = S¥(¢), for € € (0,¢].
Clearly, P? = S?(e) = S,.

Strategy s; belongs to Pi1 if and only if it is not weakly dominated in S. By
Lemma 1 s; is not weakly dominated in S if and only if it is a best response against a
completely mixed correlated conjecture on S_;. Strategy s; is a best response against
a completely mixed correlated conjecture on S_; if and only if it is a best response
against a conjecture in A*([[; S?(s)), which is the case if and only if s; belongs to
Sk(e). So, Pt = Si(e).

Now, let k > 2 and let P*~1 = S¥1(¢).

Consider any s; € Pf By Lemma 1, s; is a best response against some correlated
conjecture ¢_; on H#i Pfﬁl = H#i Sffl(s). Clearly, s; € Pz-l, since s; € Pf -
Pil. So by Lemma 1 s; is a best response against a completely mixed correlated
conjecture ¢_; € AY(S_;). There is a convex combination of ¢_; and ¢_; belonging to
AT, S]’.“*l(s)). It is sufficient to put a weight low enough on ¢_;. It follows that
s; is a best response against this convex combination, so s; € S¥(e).

Consider any s; € SF(e). Then s; is a best response against some
coi € A ([[u Sj’-“fl(s)). By the construction of &, s; is not strictly dominated in

11, Sffl(s) =Pl Sos;ePF. 1

For every normal-form game I'(I,S,U), a pure strategy survives one round of
deletion of weakly dominated strategies followed by iterated deletion of strategies
that are strictly dominated if and only if it is weakly perfectly rationalizable.

Theorem 2 allows us to advocate Dekel-Fudenberg iterative procedure for deleting
strategies since it is obtained both under the assumption that there is some small
uncertainty about the payoffs (see Dekel and Fudenberg [6]) and under the assumption
that there is some small uncertainty about the strategies (Theorem 2).

In Herings and Vannetelbosch [9] it is shown that, for the case of uncorrelated
conjectures, the concepts of perfect rationalizability [2], cautious rationalizability
[10], proper rationalizability [11], weakly perfect rationalizability [9], and trembling-
hand rationalizability [9] are different in two-person games. For those games there
is no distinction between correlated and uncorrelated conjectures. Weakly perfect
rationalizability is the only existing refinement of rationalizability based on strategy
perturbations that coincides with the Dekel-Fudenberg iterative procedure.

4 Uncorrelated Mistakes

We will show by means of an example that if players make uncorrelated mistakes, then
weakly perfect rationalizability does not coincide with the Dekel-Fudenberg iterative
procedure. It is obvious that we need at least three players for such an example, since
the issue does not arise in games with less than three players. Consider the following
three-player game in Figure 1.



Y1 Yo Y1 Yo

x| 1,1,1 0,0,0 X, | 1,1,1 1,0,0

X5 0,1,1 0,0,0 Xz 0,1,0 0,0,1

Z1 ZQ

Figure 1: Correlation of mistakes matter

It is rather obvious that only player 1’s pure strategy X1, player 2’s pure strategy
Y1, and player 3’s pure strategies Z; and Z3 survive the Dekel-Fudenberg iterative
procedure. Indeed, for k > 1, Pf = {X;}, P¥ = {Y1}, and P¥ = {Z;, Z»}. By Theo-
rem 2 this coincides with the strategies selected by weakly perfect rationalizability.

Now consider a version of weakly perfect rationalizability, where players are sure
that their opponents make uncorrelated mistakes. Although this goes counter the
intuition underlying the conjectured use of correlated strategy profiles, it is a pos-
sibility we want to scrutinize. Since the possible conjectures of players are now
more restricted, it is obvious that Sf(¢) = {X;} and S§(¢) = {¥1}, k > 1, where a
tilde is used to indicate that we are considering the case with uncorrelated mistakes.
If player 3 conjectures that players 1 and 2 are going to play the strategy profile
{X2,Y1}, then, if the mistake probability ¢ is sufficiently small, player 3 chooses Z;.
Similarly, if player 3 conjectures that players 1 and 2 are going to coordinate on the
strategy profile {X2, Y2}, then player 3 chooses Z,. Consequently, Si(¢) = {Z1, Z2}.

At stage 2, player 3 knows that players 1 and 2 will coordinate on the strategy
profile { X7, Y7 }. But if players 1 and 2 make uncorrelated mistakes, then player 3 will
optimize against a conjecture c_3 € A%(S_3) for which c_3(Xs,Y2) < c_3(X2,Y7) and
¢ 3(Xs,Y3) < c_3(X1,Ys). Against such a conjecture it is always optimal for player 3
to use strategy Z;. It follows that S¥(e) = {Z1}, k > 2.

Weakly perfect rationalizability with uncorrelated mistakes does not coincide with
the Dekel-Fudenberg iterative procedure.

5 Two Examples

We analyze two examples to conclude. The first example in Figure 2 is due to Bérgers
[3]. Borgers’ example is a counterexample to Dekel and Fudenberg’s [6, Footnote 4] as-
sertion that in two-player normal-form games perfect rationalizability coincides with
the Dekel-Fudenberg iterative procedure. Indeed, it can be shown that only player 1’s
pure strategies X1, X and player 2’s pure strategy Y» are perfectly rationalizable (see
Borgers [3, pp. 274-275]). Meanwhile, player 1’s pure strategies X7, X, X3 and player
2’s pure strategies Y7, Ya, Y3 survive the Dekel-Fudenberg iterative procedure and are
weakly perfectly rationalizable. Indeed, PF = {X1, X2, X3} and P¥ = {Y1,Y>s,Y3},
and, it holds that SF (¢) = {X1, Xa, X3} and S§ () = {¥1,Ys, Y3}, k > 1.



Y Yo Y3

X1 3,0 1,0 0,0

Xo 0,0 1,0 3,0

Xs| 2,0 | 0,0 | 20

X4 0,3 0,2 0,0

Xs 0,0 0,2 0,3

Figure 2: Borgers’ example

The second example shows the importance of allowing the players to have corre-
lated conjectures in order to derive our equivalence result. The example is a three-
player game (see Figure 3) and is taken from Herings and Vannetelbosch [9], where we
have shown that weakly perfect rationalizability without allowing correlated conjec-
tures supports the following pure strategies: { X1, X»} for player 1, {Y7,Y>} for player
2, and {71, Z»} for player 3. Next, consider the Dekel-Fudenberg iterative procedure.
It is easily seen that Pl = {X1, Xs, X3}, P} = {Y1,Y2}, and P} = {Z1, Z}. It is not
possible in the first iteration to eliminate any pure strategy of player 1, since all strate-
gies of player 1 are equally good against (cg,¢3) = ((1/3,1/3,1/3),(1/3,1/3,1/3)). In
the second iteration of Dekel-Fudenberg procedure it is impossible to eliminate any
other pure strategy of player 2 or 3. Consequently, for k > 1, PF = {X1, Xs, X3},
PF = {V1,Ya2}, and P§¥ = {Z;,Z>}. Given Theorem 2, we have S° = {X3, Xo, X3},
53¢ ={Y1,Ya2}, and S§° = {Z1, Z>}. That is, X3 is correlated weakly perfectly ratio-
nalizable but not uncorrelated weakly perfectly rationalizable. Intuitively, compared
to strategies X7 and Xo, strategy X3 is good against the conjectures (Y1, Z1), (Ya, Z2),
and (Y3, Z3), but bad against all other pure strategy combinations. Correlation al-
lows any combination of the first three conjectures to arise with very high probability,
which is not possible when conjectures are uncorrelated.

Y1 Ys Y3 Y1 Ys Y3 Y Ys Y3

X; | 21,1 1,1,1 00,1 X; | 1,1,1]011]001 X, | 1,10 | 1,1,0 | 0,0,0

X, | 01,1 1,1,1 00,1 X, | 1,1,1 | 2,1,1 | 0,0,1 X, | 1,1,0 | 1,1,0 | 0,0,0

Xs | 21,1 ] 01,1 00,1 Xs | 0,1,1 | 2,1,1 | 0,01 Xs | 0,1,0 | 0,1,0 | 2,0,0
7 72 Zs

Figure 3: A three-player game
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